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Abstract

The widespread use of sensor networks in scientific and
engineering applications leads to increased demand on the
efficient computation of the collected sensor data. Recent
research in sensor and stream data systems adopts the no-
tion of sliding windows to process continuous queries over
infinite sensor readings. Ordered processing of input data is
essential during query execution for many application sce-
narios. In this paper we present three approaches for or-
dered execution of continuous sliding window queries over
sensor data. The first approach enforces ordered process-
ing at the input side of the query execution plan. In the sec-
ond approach we utilize the advantage of out-of-order exe-
cution to optimize query operators and enforce an ordered
release of the output results. The third approach is adap-
tive and switches between the first and second approaches
to achieve the best overall performance with current input
arrival rates and level of multiprogramming. We study the
performance of the proposed approaches both analytically
and experimentally and under a variety of conditions such
as the asynchronous arrival of input data, and various lev-
els of multiprogramming. Our performance study is based
on an extensive set of experiments using a realization of the
proposed approaches in a prototype stream query process-
ing system.

1. Introduction

Continuous queries on streaming applications depend on
windows to limit the scope of interest over the infinite in-
put streams. Several forms of windowed execution are
currently proposed in the literature, of which, sliding time
windows are commonly used by several stream data sys-
tems [1, 3, 10]. The following example gives a continuous
query � that computes the on-line total sales of the items
sold in common by two different department stores. Sold

items are identified by their RFID (Radio Frequency Iden-
tifier) tags and sensors at the checkout terminals read the
RFID of each sold item. SensorReadings1 and SensorRead-
ings2 represent the stream of sales transactions detected by
each sensor, respectively. The window clause indicates that
� is interested only in the last ��� minutes of the sales from
each store.

SELECT COUNT(DISTINCT S.ItemType)
FROM SensorReadings1 S, SensorReadings2 T
WHERE S.ItemType = T.ItemType
WINDOW 10 minutes

Figure 1(A) gives the pipelined evaluation of � . In the fig-
ure, the output from joining � and � is streamed as input to
the DISTINCT and then to the COUNT operators at the top
of the pipeline.

The operation of the join over a sliding window (W-join)
is described as follows [9]: Tuple �
	 in Stream � joins with
tuple ��� in Stream � iff (1) � 	 and ��� satisfy the join pred-
icate (i.e., the WHERE clause in the SQL query), (2) the
timestamp of tuple � 	 is within window size from the times-
tamp of �� . Old tuples, say ��� , from one input stream is ex-
pired (dropped from the window) iff �
� is far by more than
window size from any new tuples in the other stream. Fig-
ure 1(B) gives an example of W-join between streams S and
T. The ticks on the time line of S or T are equally spaced
at one time unit between two consecutive ticks. We assume
that each tuple is indexed by its timestamp. As ��� arrives,
W-join drops ��� and produces the output tuple ������������� .
Similarly, as ��� and  ��"! arrive, W-join drops #%$ and pro-
duces the output tuples �&�('��
���)� and �* (+��
 ��,!-� , respec-
tively.

W-join as described in the previous paragraph can poten-
tially produce an unordered output stream. For example, in
Figure 1(C), tuple � � in Stream � is delayed . time units
while tuples � � and  �"! in stream � arrive without delays.
In this case, W-join will process tuples � � and  �"! before
processing the earlier tuple ��� . This will result in an out-
of-order release of the output tuples (i.e., tuples ���/'��
���-�
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Figure 1. Motivating Example.

and �  + �� �"! � will be released before tuple � � � �
� � � ).
The notion of ordered output is crucial in the pipelined

evaluation, mainly for two reasons: (1) The decision of ex-
piring an old tuple from a stored state (e.g., a stored win-
dow of tuples in an online sliding-window

������� � oper-
ation) depends on receiving an ordered arrival of the input
tuples. Otherwise, we may expire an old tuple early (e.g.,
potentially report an erroneous sequence of count values).
(2) Some important applications over data streams require
processing the input of their queries in-order (and therefore,
produce ordered output). This is especially true if the out-
put from the queries is used as an input stream for further
analysis, e.g., as in feedback control, periodicity detection,
and trend prediction (patterns of continuous increase or de-
crease) in data streams.

One approach to provide in-order execution of input tu-
ples is to synchronize the processing of W-join over the in-
put streams [15]. We call this approach the Sync-Filter ap-
proach (for synchronize then filter). In this approach, and
using the example in Figure 1(C), W-join will delay the pro-
cessing of �(� and  �,! from stream � until verifying that a
new tuple from Stream � arrives and has a larger times-
tamp. The obvious drawback of the Sync-Filter approach is
that W-join will block waiting for new tuples at both streams
before every join step. This will result in increased response
times of output tuples.

In this paper, we make the following contributions:

1. We study the problem of in-order execution of W-joins
in stream data systems and present the Sync-Filter ap-
proach as an alternative to provide in-order execution
of W-join.

2. We study the Sync-Filter approach analytically and in-
troduce a closed-form representation of the average re-
sponse time.

3. We propose a new approach, termed the Filter-Order
approach, and provide a closed form representation of
the average response time. In addition, we study an-
alytically the relative improvement of the Filter-Order
approach over the Sync-Filter approach.

4. Based on our analytical study, we propose a third ap-
proach, termed the Adaptive approach, that has the ad-
vantages of the two previous approaches while avoid-
ing their drawbacks.

5. We study the three approaches experimentally using
our prototype stream data system, Nile [10]. The ex-
perimental study validates our analytical results and
shows that the Adaptive approach can always achieve
the targeted improvement in response time by switch-
ing between the Sync-Filter and the Filter-Order ap-
proaches.

The rest of the paper is organized as follows. Section 2
presents related work on window join over data streams.
Section 3 introduces the system architecture and our basic
assumptions. Section 4 presents the Sync-Filter approach
of W-join. Sections 5 and 6 introduce our proposed ap-
proaches, namely the Filter-Order approach and the Adap-
tive approach of W-join. We present the performance study
in Section 7. Section 8 contains concluding remarks.

2 Related Work

Stream query processing has been addressed by many
evolving systems such as Borealis [1], Telegraph [4] and
STREAM [3]. These systems suggest the support for win-
dow join processing as a practical implementation of join
queries over data streams. Adaptive query processing [2]
and the execution of continuous queries [7, 6] address the
reordering of operators during the execution of continuous
queries. The non-blocking execution and the support of
continuous queries are essential for stream processing. The
algorithms studied in this paper support continuous queries
and are non-blocking.

The work on band join [8] addresses a binary join among
stored relations where tuples are joined whenever their val-
ues are within a band of each other. This approach addresses
a problem that is similar to joining two streams where the
band represents a time interval between the two streams.
However, the notion of ordered processing over infinite data
streams is not addressed by the band join approach.

Window join processing has been addressed in [5, 11].
Psoup [5] handles streamed queries over streaming data and
provides a similar definition for sliding time windows but
with approximate answers. However, Psoup assumes no
delays among input streams. The work in [11] addresses
the window join over two streams where the two arriving
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Data Streams.

streams have different arrival rates. The window is defined
in terms of a tuple count. The authors suggest using asym-
metric join, e.g., applying a full scan on one stream and
probing a hash table on the other stream, to reduce exe-
cution cost. In contrast, we consider a time window that
represents a constraint over all input streams.

3 Context and Environment

We consider a centralized stream data system, where
data is collected from remote sensors for further processing
and analysis. In each stream, data is ordered locally (tuples
arrive with increasing timestamps). However, tuples from
two different data streams are not necessarily ordered. We
term this type of data streams as asynchronous data streams.
Figures 2(i) and 2(ii) give two examples of synchronous
and asynchronous data streams, respectively. In the figure,
the index of each tuple represents the tuple’s timestamp.
For synchronous data streams (e.g., Figure 2(a)), tuples al-
ways arrive in increasing value of the timestamps across all
streams. For asynchronous data streams (e.g., Figure 2(b)),
tuples in the same stream always arrive with increasing val-
ues of the timestamps, however, there is no implicit order
among tuples that belong to different data streams.

In the following, we illustrate two stream processing sce-
narios that receive asynchronous data streams. In the first
scenario, a centralized stream processing unit receives data
over the network from remote sensors. Each sensor aug-
ments a timestamp to the streamed data item (e.g., valid
timestamp [14]). At the stream processing unit, the received
data streams from various sensors are likely to become
asynchronous due to the communication delays in the net-
work channel between the physical sensor and the central

processing unit. The second scenario of asynchronous data
streams is when data items are timestamped upon arrival
at the centralized processing unit (e.g., transaction times-
tamp [14]). In this case, asynchronous processing could po-
tentially happen during the query pipelined execution. For
example, a join operation, say � , in a query evaluation plan
may receive two tuples, say � and � , from two different data
streams. While � could receive � earlier than � , the times-
tamp of � could be newer than that of � . This situation may
occur if � and � are processed by different child operators
(e.g., different filtering operations). As a result, � and/or �
could experience different processing delays before arriving
at � .

Our focus in this paper is on sliding window queries de-
fined in terms of time units. In our stream query proces-
sor, we employ the “stream-in stream-out” philosophy. The
main idea is that since the input stream is composed of tu-
ples that are ordered by some timestamp, the output tuples
also appear as a stream that is ordered by a timestamp. A
single sliding window query consists of multiple operators.
These operators execute in a pipelined fashion where the
output from one operator is incrementally added to the input
of the next operator in the pipeline. The operators are con-
nected by First-In-First-Out (FIFO) queues and a scheduler
schedules the execution of each operator. This execution
model is typical in many stream processing systems such as
Fjord [12], Borealis [1], and STREAM [13]. We assume
that for any continuous query, the stream data system can
keep up with the aggregate arrival rates of all input streams.

4 The Sync-Filter Approach

One straightforward approach to get ordered output
from the W-join operator is by enforcing ordered pro-
cessing of input tuples. In other words, for any two tu-
ples ��� and ����� � that are processed in sequence by W-join,
���
	�� � �"�	���� ������� ����	�� � �"�	���� ����� ��� . Note that ��� and
����� � may not necessarily belong to the same stream. We
describe the basic steps of W-join that uses the Sync-Filter
Approach in the following: We consider a W-join over two
input data streams, say � and � , where the join Buffers (i.e.,
the hash tables to store input tuples) over � and � are ���
and �! , respectively. We consider a time window of size" #�"

. Output tuples are inserted in the output queue of the
W-join operator.

1. Retrieve ��� and � � such that ��� and � � belong to two
different input streams.

2. If � � or ��� does not exist, return to Step 1.

3. Select $�� 	&% � 	(' $ � � �����*),+ TimeStamp � � 	 � =
min(TimeStamp � ����� , TimeStamp � � � � ) ) . /* � 	 may be-
long to S or T, let us assume that ��	 belongs to S */.
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Figure 3. W-join using the Sync-Filter Ap-
proach.

4. Remove from �  every tuple � � such that:
TimeStamp � � 	 � - TimeStamp � � � � � " #�"

.

5. Retrieve from �  the set of tuples, say
�

, that satisfy
the join condition with ��	 and add � 	�� � to the output
queue

6. Add � 	 to � � .

7. Return to Step 1

Figure 3 gives the execution of the Sync-Filter approach for
the example of Figure 1(C). As �(� in Stream � arrives, W-
join blocks waiting for another tuple from Stream � . At
time 11, ��� arrives in Stream S. W-join processes ��� and
removes � � from Stream � since � � and � � are far by more
than window (6 time units). Finally, W-join produces the
output tuple � � � ��� � � . Notice that W-join processes � �
and  �"! only when tuple � �"$ arrives in Stream S. At time
��� , W-join processes � � and produces the output tuple �
��' �
�(� � at time �������	� , where �
� is the time to process
an input tuple by the W-join. Then, W-join processes  �"!
and produces the output tuple �& /+ �� ��"! � at time ������� �	� .
The delay in processing every tuple is given in the rightmost
column of the table in Figure 3.

4.1 Analysis

In this section, we provide an analysis of the response
time of input tuples (the time elapsed between the arrival
and the complete processing by the W-join). We consider a
binary W-join between two streams, say S and T, where the
time to perform a join operation between two tuples is  . Let � tuples/second be the average arrival rate of Stream S and
let
 $ tuples/second be the average arrival rate of Stream T.

Let
" #�"

be the window size in seconds. The time to process

a new input tuple from Stream S is
� ���  " #�"  � and the

time to process a new input tuple from Stream T is
�  ��

 " #�"  $ . For the window join to keep up with the arrival rate,
� � � ���� and

�  � ���� . Using the equations of
� � and

�  ,
the condition of the window join to keep up with the arrival
rate is:

 " #�" � � �  $ (1)

Without loss of generality, we can assume that
 � �  $ .

During ���� seconds (the inter-arrival times of two tuples in
Stream � ), � tuples could be received by Stream � . On
average, � �

���� � tuples. The � tuples will not join imme-
diately and must wait until a new tuple, say � � , arrives at
Stream � . Let � 	 � , � 	 � , . . . , � 	�� be the � tuples ordered by
their arrival times. The response time of �
	 � � �� � � � � .
The response time of ��	 � � �� ��� �� � ��� � � . The response
time of � 	�� � �� � � $� � ��. � � , etc. The response time of
� 	�� � �� ������� �� � � � � � . The total response time of the �
tuples is:

� � �
� $ � �
�  $ � � �!�"��� �

�
� � (2)

while the average response time is:

� � �
� � �
�  $ �

�#���
�
� � (3)

4.2 Discussion

The advantage of the Sync-Filter approach, besides its
simplicity and guaranteed provision of ordered output, is
that W-join needs to store only those tuples that are within
window from each other. Notice that tuples �/� and  ��"! are
not stored in the buffer of Stream � . Instead, �/� and  ��"!
are kept in the input queue 1. In addition, W-join drops old
tuples as new tuples are processed (e.g., dropping � � when
W-join processes ��� ). Therefore, the Sync-Filter approach
eliminates the need to check the window condition (i.e., that
tuples are within window from each other) while scanning
the buffer of the joined stream.

One drawback of the previous approach is that W-join
blocks while waiting for a delayed tuple from one stream
(e.g., ��� ) even though some tuples (e.g., �/� and  ��"! ) could
be waiting to join in the other stream. A better approach is
to overlap the time of processing the waiting tuples with the
waiting time to receive the delayed tuple. Apparently, this
new approach has to prevent the out-of-order release of out-
put tuples (see the example in Figure 1(C)). In the following
section, we describe a W-join algorithm that guarantees the
ordered release of output tuples while avoiding the draw-
back of the Sync-Filter approach.

1Notice that the input queue of $ will not increase indefinitely since
we always assume that tuples from Stream % will eventually arrive.
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proach.

5 The Filter-Order W-join Algorithm

In the Filter-Order W-join Algorithm (Filter-Order, for
short), W-join processes input tuples independent of their
global order. Furthermore, W-join buffers the output tuples
before releasing them in-order. The following algorithm de-
scribes the steps of W-join using the Filter-Order approach.
In this algorithm, the hold buffer refers to a min-heap data
structure to store output tuples sorted by their timestamps.
Let � 	 and �� be the last tuples received from Streams S and
T, respectively. Let � ����� ������� � = min $����
	�� � �"�	���� � 	 � ,
���
	�� � �"�	���� ��� � ) , let ���
	�� � �"� 	���� � � 	 � ��� ���
= max $����
	�� �/�"�	���� � 	 �(� ���
	�� �/�"�	���� � � ��) and let
���
	�� � �"�	����!��	


�
 � = largest defined timestamp.

1. Check for a new tuple in any of the input streams. Re-
peat this step until having at least a single input tuple in
one of the input streams. /* Without loss of generality,
assume that Stream � has a new tuple, � 	 .*/

2. � ����� ������ � = 	��	� $����
	�� � �"� 	���� � 	 �(� ���
	�� � �"�	���� ��� � )
3. Add � 	 to its corresponding buffer (i.e., ��� ).

4. Remove from �! every tuple � � such that:
TimeStamp � � 	 � - Timestamp � � � � � " #�"

.

5. Retrieve from �! the set of tuples, say
�

, that satisfy
the join condition with � 	 and add � 	 � � to the hold
buffer.

6. For every tuple, say ��� , at the top of the hold buffer
such that ���
	�� � �"� 	���� � � � �*� � ��� ������ � , add � � to the
output queue.

7. Return to Step 1.

Figure 4 gives the execution of W-join using the Filter-
Order approach. W-join processes �/� once �(� arrives (with-
out blocking to wait for � � ). The output tuple � � ' �
� � � is
stored in the hold buffer and is not released immediately.
Similarly, W-join processes  �"! and stores the output tu-
ple �  + �
 �,! � in the hold buffer. W-join cannot release
the two output tuples since � ����� ������� � equals � (i.e., the
timestamp of the last tuple seen from Stream � ). As tu-
ple ��� arrives at time ��� , W-join updates � � ��� ������ � to � ,
produces � ��������� � and releases this tuple immediately
since � ���
	�� � �"�	����"� ��������� ��� � ���� � � ��� ������� � . At
time � � , tuple ��� $ arrives and � � ��� ������� � is set to ��� (the
timestamp of the last tuple in Stream � ). W-join can now
release the output tuples � �/' �
�(� � and �  �+ �� ��"! � . No-
tice that the time to produce � �('��
��� � and �  �+ �� ��"! �
is overlapped with the waiting time to receive � �"$ and the
total delay to receive the three output tuples is lower than
that of the Sync-Filter approach by . tp.

5.1 Analysis

In this section, we study the Filter-Order approach ana-
lytically in terms of its response time. We use the same no-
tation as that in Section 4.1. Recall that the Filter-Order ap-
proach overlaps the processing time of the new tuples from
one stream with the waiting time for a new tuple from an-
other stream. Consider the � tuples (see Section 4.1) �
	 � ,
� 	 � , . . . , ��	�� . The response time of ��	 � is ���� . The response
time of � 	 � is �� � � �� � , etc. The response time of ��	�� is�� � � ��� �� � . The total response time for all the � tuples is:

� � �
� $ � �
�  $ (4)

and the average response time is:

� � �
� � �
�  $ (5)

5.2 Discussion

Memory Requirement. In addition to the join buffers of
the input data streams, the Filter-Order approach needs ex-
tra memory to hold the output (the hold buffer). As long as
W-join is selective, the memory consumption in the Filter-
Order approach is expected to be lower than that of the
Sync-Filter approach. However, for a W-join with low se-
lectivity (a tuple from one stream joins with more than one
tuple from the other stream), the hold buffer may need to
store an increased amount of tuples. Since we assume that
none of the input streams will block indefinitely, the mem-
ory consumption in both the Sync-Filter and Filter-Order
approaches is always bounded and is not critical in this pa-
per.



Average Response Time. By comparing the average re-
sponse time of the Filter-Order approach with that of the
Sync-Filter approach (i.e., Equation 3 and Equation 5), it is
clear that the term � � �$ � � disappears in the case of Filter-
Order since the processing time overlaps the waiting time.
Therefore, the average output response time is expected to
improve when using the Filter-Order approach. However,
we still need to evaluate the relative significance of this
improvement especially as the Filter-Order consumes more
memory. In the following, we study analytically the rela-
tive improvement in average response time when using the
Filter-Order approach over the Sync-Filter approach. Such
measure will be referred to as ��� ��� .

� � ��� is obtained by simply dividing the difference be-
tween the average response time of Sync-Filter (Equation 3)
and Filter-Order(Equation 5) by the average response time
of the Sync-Filter approach (Equation 3):

��� ��� � � � �$ � ��� � � � � �$ � � � � � �$ � � (6)

However,
� � �  " #�"  � and � �

� �� � (from Section 4.1).
By substituting these values in Equation 6 and reducing the
equation, we get the following:

��� ��� �  " #�"  $  �
� �  " #�"  $  � (7)

Therefore, the upper-bound of � � ��� is:
� � � ���	� � 
������ ��� � �� � � � � � ��� � ��� � (8)

In the following, we provide two numerical examples that
compare the performance of the Sync-Filter and the Filter-
Order approaches.
Example 1: Figure 5 (a) gives the expected performance
of W-join when using the Sync-Filter and the Filter-Order
approaches. The example uses Equation 3 and Equation 5
while increasing the processing time (i.e.,  in Section 4.1).
In this experiment

 � is set to 1 tuple/second and
 $ is set

to 10 tuples/second. The window size is set to one day
and  starts at 0.01 � second with double increase at each
new point. Figure 5 (b) gives the relative performance of
the same experiment. As  increases, the average response
time of the Sync-Filter approach increases while the av-
erage response time of the Filter-Order approach remains
fixed (since the average response time of the Filter-Order
approach does not depend on c). As  increases to the point
that the system can hardly keep up with the arrival rate (i.e.,
 " #�"�� ���� ��� ), the Filter-Order approach becomes closer to� � � ���	� of 0.5.
Example 2: We repeat the previous experiment using low
arrival rate in both streams ( � � tuple/second) and varying
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Figure 5. Example 1: Analytical compari-
son between the Sync-Filter and the Filter-
Order approaches while varying the process-
ing speed.

the arrival rate of stream � (e.g.,
 � ) between ��� ����� � tu-

ples/second and ��� � tuples/second. We set the window size
to one day and set  to 0.0001 seconds. Figure 6(a) and Fig-
ure 6(b) give the absolute and relative performances of W-
join using the Sync-Filter and the Filter-Order approaches,
respectively. In this example, the Filter-Order achieves a
significant absolute as well as relative reduction in average
response time (i.e., from 10 seconds to 5 seconds) as the
arrival rate increases.

We validate the results obtained from the analytical study
in the performance study section.

6 The Adaptive Algorithm

Equation 7 shows that the relative performance improve-
ment when using the Filter-Order approach is significant at
specific ranges of arrival rates and processing speeds. Oth-
erwise, the Sync-Filter approach is a valuable option espe-
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Figure 6. Example 2: Analytical comparison
between the Sync-Filter and the Filter-Order
approaches while varying the input arrival
rate of Stream S.

cially as we consider the low memory overhead in the Sync-
Filter approach. In this section we introduce the Adaptive
approach that keeps the advantages of both the Sync-Filter
and the Filter-Order approaches while avoiding their draw-
backs.

Initially the Adaptive W-join algorithm adopts the Sync-
Filter approach. However, the Adaptive approach performs
two extra steps:

1. Monitor
 � and

 $ (the arrival rates at the input data
streams S and T, respectively.)

2. Verify the following condition that is based on Equa-
tion 1:  " #�"  �  $���� , where � � � � � .

When the condition in Step 2 is fulfilled, the Adaptive ap-
proach switches to the Filter-Order approach while contin-
uing to perform the above two steps. The Adaptive ap-
proach switches back to Sync-Filter when the test condition
in Step 2 is false. � is a user-input parameter and indicates

the required relative performance. For example, when �
equals 0.9 and the condition in Step 2 is TRUE, a relative
improvement of at least ���� �

2 or 0.47 is achieved when us-
ing the Filter-Order approach.

The steps of the Adaptive approach are as follows:

(A) Steps A.1 to A.6 are Steps 1 to 6 of the Sync-Filter
Algorithm (refer to Section 4)./* Start with Sync-Filter
*/

(B) If  " #�"  �  $ � � , Goto Step A.1 /*Continue using
Sync-Filter*/.

(C) Steps C.1 to C.6 are Steps 1 to 6 of the Filter-Order Al-
gorithm (refer to Section 5.) /* Switch to Filter-Order
*/

(D) If  " #�"  �  $ ��� , Goto Step C.1 /* Continue using
Filter-Order */.

(E) Retrieve ��� and � � such that ��� and � � belong to two
different input streams. If � � or ��� does not exist, re-
peat Step E./* Switch to Sync-Filter - Clean hold-buffer
first*/

(F) � � ��� ������� � = 	 �	� $�����	�� � �"�	���� ��� �������
	�� � �"�	���� � � ��) .
/* Without loss of generality, assume that tuple
���
	�� � �"� 	���� ����� � � � ��� ������� � and ��� ' Stream S */

(G) Add ��� to its corresponding buffer (i.e., � � ).

(H) Remove from �! every tuple � � such that:
TimeStamp � ��� � - Timestamp � � � � � " #�"

.

(I) Retrieve from �  the set of tuples, say
�

, that satisfy
the join condition with ��� and add ��� � � to the hold
buffer.

(J) For every tuple, say ��� , at the top of the hold buffer
such that ���
	�� � �"�	���� � � � �*� ����� ����� � � , add � � to the
output queue.

(K) If the hold buffer is not empty, return to Step E.

(L) Return to Step A.1 /* Start Sync-Filter*/.

7 Performance Study

7.1 Experiments Setup

The experiments are performed on a prototype stream
query processor, Nile [10]. A sensor is represented us-
ing a stream-type that provides the following interfaces,
InitStream, ReadStream, and CloseStream. In order to col-
lect data from the streams and supply them to the query exe-
cution engine, Nile has a stream manager that registers new

2The term is obtained by substituting ��� 	
� ������ in Equation 7 by �



stream-access requests, retrieves data from the registered
streams into its local buffers, and supplies data to be pro-
cessed by the query execution engine. The stream manager
runs as a separate thread and schedules the retrieval of tu-
ples in a round robin fashion. To interface the query execu-
tion plan to the stream manager, Nile uses a StreamScan op-
erator to communicate with the stream manager and receive
new tuples as they are collected by the stream manager. We
use a hash-based implementation of W-join as in [9]. The
join buffers are structured as hash tables that have the join
attribute as the hash key. We have implemented the steps of
the proposed algorithms in Sections 4, 5, and 6. The hold
buffer in the Filter-Order and the Adaptive approaches is
implemented as a dynamic min-heap structure. The Adap-
tive approach maintains estimates of the average arrival rate
per input stream and the average processing speed.

Our measure of performance is the average response
time per input tuple, which is the average time to completely
process an input tuple by W-join. This time includes the
waiting time, the processing time, and the time to produce
an output tuple (if any). We perform our experiments on
synthetic data streams, where each stream consists of a se-
quence of integers. In the experiments, the inter-arrival time
between two consecutive tuples of an input data stream fol-
lows the Exponential distribution with mean �� . All the ex-
periments are run on an Intel Pentium 4 CPU 2.4 GHz with
512 MB RAM running Windows XP.

7.2 Experimental Results

To verify our analytical findings, we perform the experi-
ments presented in Section 5.2.

7.2.1 Varying the Number of Concurrent Queries

In this experiment, we study the performance of the pro-
posed approaches as we vary the number of concurrent
queries. Our workload is a set of concurrent W-join queries
over two data streams, � � and � $ . We measure the time
to process a single W-join operation per query (parameter
 in Section 4.1) as we increase the number of concurrent
queries. Since  is directly proportional to the number of
concurrent queries in our workload, we vary the value of
 by varying the number of concurrent queries. We use
a window of size one minute. The average stream arrival
rates in � � (the slow stream) and � $ (the fast stream) are
1 tuple/second and 10 tuples/second, respectively. We set
� of the Adaptive approach to ��� . (i.e., we would like to
switch to Filter-Order if the relative improvement is greater
or equal to !�� ���� !�� � or

�
25%). We collected the average re-

sponse time of the input tuples during the lifetime of the
experiment (20 minutes for each run).

Figure 7 gives the average response time when varying
 between 1 microsecond and 1 millisecond. Y-axis is the

0.0 0.2 0.4 0.6 0.8 1.0
Time to perform a single join (milliseconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(s

ec
on

ds
)

Sync−Filter
Filter−Order
Adaptive

Figure 7. Average response time while vary-
ing the number of concurrent queries.

average response time per input tuple. Figure 8 gives the
performance of the proposed approaches relative to Sync-
Filter.

With all processing times, Sync-Filter has the worst aver-
age response time. At large processing times, the difference
between Sync-Filter and Filter-Order is significant and the
difference gets smaller at small processing times. This can
be interpreted as follows: Using Sync-Filter while increas-
ing the processing time per join tuple, leads to excessive de-
lays of tuples in the fast stream (i.e., � $ ). This is the case as
new tuples from � $ must wait for a new tuple from the slow
stream (i.e., � � ) to proceed in W-join. On the other hand,
Filter-Order shows small or no variations in the average re-
sponse time as we increase the processing time. This is
mainly a result of overlapping the processing of tuples from
� $ while waiting for new tuples from � � . The Adaptive
approach behaves similar to Sync-Filter in our first three
measurement since the condition  " #�"  �  $ � � is true. At
 � ��� � milliseconds,  " #�"  �  $ � ��� ����� ��� ����� ����� � � ��� .
(i.e., � � ). Therefore, the Adaptive approach switches to
the Filter-Order approach. One interesting observation is
that the analytical measure of the relative performance is
conservative. For example, at � � ��� . , we expect Filter-
Order to perform 25% better than Sync-Filter. Experimen-
tally, the performance improvement was around 45%. This
is the result of using an estimate of  to evaluate the condi-
tion  " #�"  �  $ � � .

In Figure 8, the relative improvement exceeds 50% (our
upper bound) at the last two measurements because the pro-
cessing speed of Sync-Filter starts to lag behind the input
arrival rate.

The performance of Sync-Filter and Filter-Order in Fig-
ures 7 and 8 is similar to that in Figures 5(a) and 5(b), re-
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Figure 8. Relative performance among the
proposed approaches in terms of average
response time (normalized by that of Sync-
Filter.)

spectively. Recall that the curves in Figures 5(a) and 5(b)
are based on the analytical derivation in Equations 3
and 5. This verifies our analytical derivation in Sections 4.1
and 5.1.

7.2.2 Changing Input Rate

In this experiment, we study the effect of the proposed ap-
proaches on the average response time of the input tuples
while varying the arrival rate of the slow stream. We use a
binary W-join with a window size of one minute as in the
previous experiment. We fix the input rate of the fast stream
( � $ ) at ��� tuples/second and vary the input rate of the slow
stream ( � � ) between ��� ��� and one tuple/second. As in the
previous experiment, the Adaptive approach uses � � ��� . .
We fix the multiprogramming level such that  � ��� � mil-
liseconds.

Figure 9 gives the average response time while Figure 10
gives the performance of the proposed approaches relative
to Sync-Filter. In all the proposed approaches, the aver-
age response time increases significantly (more than one
minute) at small arrival rate of the slow stream. Obviously,
this is a direct result of having large � ( � �

���� � ) in Equa-
tions 3 and 5. However, the increase in Sync-Filter is larger
than that of Filter-Order for the same reasons, as explained
in the previous experiment.

¿From Figure 10, the relative improvement of Filter-
Order over Sync-Filter is small at low arrival rates and
gets larger as the rate of the slow stream increases. Recall
that as we increase the rate of the input data streams, the
term  " #�"  $  � in Equation 7 becomes more significant and
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Figure 9. Average response time while vary-
ing the input rate of � � (the slow stream).

increases the overall relative improvement between Filter-
Order and Sync-Filter.

Similar to the behavior in the previous experiment, the
Adaptive approach switches between Sync-Filter and Filter-
Order when the slow stream rate is one tuple/second. Hav-
ing smaller � will shift the switching point to a small arrival
rate of the slow stream.

Finally, this experiment supports our analytical deriva-
tions in Section 5.2. This follows if we compare the perfor-
mance trends of Sync-Filter and Filter-Order in Figures 9
and 10 with those in Figures 6(a) and 6(b), respectively.

7.2.3 Joining more than two data streams: Discussion

Although this paper focuses on binary W-joins, the pro-
posed approaches are directly applicable when joining more
than two data streams. Generally, two W-join implementa-
tions are possible for this case: (1) The multi-way W-join
and (2) a pipeline of more than one binary W-join. For the
first implementation, our proposed approaches can be ex-
tended in a straightforward fashion to consider more than
two data streams. For example, Sync-Filter will need to
synchronize new tuples based on receiving an input tuple
from each of the input streams. For the pipelined imple-
mentation of W-join, our approaches apply directly to each
binary W-join in the pipeline.

The cases of W-join where the window is different per
input stream and where the window is based on tuple count
are beyond the scope of this paper.



0.0 0.2 0.4 0.6 0.8 1.0
Average arrival rate at Stream S2 (tuples/second)

0.50

0.60

0.70

0.80

0.90

1.00

1.10

R
el

at
iv

e 
pe

rf
or

m
an

ce
 (

av
g.

 r
es

po
ns

e 
tim

e)

Sync−Filter
Filter−Order
Adaptive

Figure 10. Relative performance among the
proposed approaches in terms of the average
response time (normalized by that of Sync-
Filter).

8. Conclusion

Ordered evaluation of continuous queries over data
streams is crucial in stream processing systems. In this
paper, we studied the problem of providing ordered exe-
cution of window joins over asynchronous data streams.
We showed that the Sync-Filter approach that enforces or-
dered processing of input tuples to guarantee ordered output
can result in increased response time. We then proposed
the Filter-Order approach that applied the filter step of the
window join followed by the buffering and ordering steps.
In this way, the processing time of input tuples from one
stream will overlap the waiting time to receive synchronous
tuples from the other stream. We illustrate that when both
Sync-Filter and Filter-Order approaches provide compara-
ble performance, Sync-Filter is recommended because of
the low memory overhead. We studied both the Sync-Filter
and the Filter-Order approaches analytically and verified the
relative performance improvement. Based on the analy-
sis, we proposed the Adaptive approach that switches be-
tween Sync-Filter and Filter-Order to achieve a given per-
formance improvement goal. We showed both analytically
and through real implementation of the approaches on a pro-
totype stream data system the superiority of our proposed
approach over the Sync-Filter approach.
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