
Adaptive Rank-aware Query Optimization in

Relational Databases

IHAB F. ILYAS

University of Waterloo

WALID G. AREF and AHMED K. ELMAGARMID and HICHAM G. ELMONGUI and

RAHUL SHAH and JEFFREY SCOTT VITTER

Purdue University

Rank-aware query processing has emerged as a key requirement in modern applications. In these
applications, efficient and adaptive evaluation of top-k queries is an integral part of the application
semantics. In this paper, we introduce a rank-aware query optimization framework that fully
integrates rank-join operators into relational query engines. The framework is based on extending
the System R dynamic programming algorithm in both enumeration and pruning. We define
ranking as an interesting physical property that triggers the generation of rank-aware query plans.
Unlike traditional join operators, optimizing for rank-join operators depends on estimating the
input cardinality of these operators. We introduce a probabilistic model for estimating the input
cardinality, and hence the cost of a rank-join operator. To our knowledge, this is the first effort in
estimating the needed input size for optimal rank aggregation algorithms. Costing ranking plans
is key to the full integration of rank-join operators in real-world query processing engines.

Since optimal execution strategies picked by static query optimizers lose their optimality due
to estimation errors and unexpected changes in the computing environment, we introduce several
adaptive execution strategies for top-k queries that respond to these unexpected changes and
costing errors. Our reactive reoptimization techniques change the execution plan at run-time to
significantly enhance the performance of running queries. Since top-k query plans are usually
pipelined and maintain a complex ranking state, altering the execution strategy of a running
ranking query is an important and challenging task.

We conduct an extensive experimental study to evaluate the performance of the proposed
framework. The experimental results are two-fold: (1) we show the effectiveness of our cost-based
approach of integrating ranking plans in dynamic programming cost-based optimizers; and (2) we
show a significant speedup (up to 300%) when using our adaptive execution of ranking plans over
the state-of-the-art mid-query reoptimization strategies.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems

General Terms: Advanced Query Processing, Ranking

Additional Key Words and Phrases: top-k, adaptive processing, rank-aware optimization

Authors Address: University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada
N2L 3G1; and Purdue University, 250 N. University Street, West Lafayette, Indiana 47907, USA.

This is a preliminary release of an article accepted by ACM Transactions on Database Systems.
The definitive version is currently in production at ACM and, when released, will supersede this
version.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–45.

2 · Ilyas et al.

1. INTRODUCTION

Emerging applications that depend on ranking queries warrant efficient support of
ranking in database management systems. Supporting ranking gives database sys-
tems the ability to efficiently answer Information Retrieval (IR) queries. For many
years, combining the advantages of databases and information retrieval systems
has been the goal of many researchers. While database systems provide efficient
handling of data with solid integrity and consistency guarantees, IR provides mech-
anisms for effective retrieval and fuzzy ranking that are more appealing to the user.

One approach toward integrating databases and IR is to introduce IR-style
queries as a challenging type of database query. The new challenge requires several
changes that vary from introducing new query language constructs to augmenting
the query processing and optimization engines with new query operators. It may
also introduce new indexing techniques and other data management challenges. A
ranking query (also known as top-k query) is an important type of query that al-
lows for supporting IR-style applications on top of database systems. In contrast
to traditional join queries, the answer to a top-k join query is an ordered set of join
results that combines the orders of each input, according to some provided function.

Several application examples exist in which rank-aware query processing is essen-
tial; in the context of the Web, the main applications include building meta-search
engines, combining scoring functions and selecting documents based on multiple
criteria [Dwork et al. 2001]. Efficient rank aggregation is the key to a useful search
engine. In the context of multimedia and digital libraries, an important type of
query is similarity matching. Users often specify multiple features to evaluate the
similarity between the query media and the stored media. Each feature may pro-
duce a different order of the media objects similar to the given query, hence the
need to combine these rankings, usually, through joining and aggregating the indi-
vidual scores to produce a global ranking. Similar applications exist in the context
of information retrieval, sensor networks and data mining.

1.1 Query Model

Most of the aforementioned applications have queries that involve joining multiple
inputs, where users are usually interested in the top-k join results based on some
score function. The answer to a top-k join query is an ordered set of join results
according to some provided function that combines the orders of each input.

Hence, we focus on join as an expensive and essential operation in most top-
k queries. However, several efficient algorithms have been proposed to answer
top-k queries on a single table (top-k selection) [Bruno et al. 2002; Chang and
Hwang 2002]. Most of these algorithms are directly applicable as a rank-aware scan
operator. In this paper, we focus on rank-aware join operators and on addressing
their impact on query processing and optimization.

Definition 1. Consider a set of relations R1 to Rm. Each tuple in Ri is asso-

ciated with some score that gives it a rank within Ri. The top-k join query joins

R1 to Rm and produces the results ranked on a total score. The total score is com-

puted according to some function, say F , that combines individual scores. Note that

the score attached with each relation can be the value of one attribute or a value

computed using a predicate on a subset of its attributes.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 3

A possible SQL-like notation for expressing a top-k join query is as follows:

SELECT *

FROM R1, R2, . . . , Rm

WHERE join condition(R1, R2, . . . , Rm)
ORDER BY F (R1.score, R2.score, . . . , Rm.score)
LIMIT k;

where LIMIT limits the number of results reported to the user, join condition is a
general join condition that associates objects from different relations, and Ri.score
is the score of a tuple in Relation Ri. Note that score can be a single attribute
or a function on a set of attributes in Ri. For simplicity of the presentation, we
assume that score is a single attribute since we concentrate on the processing and
optimization of the rank-aware join operators.

1.2 Motivating Examples and Challenges

Below are two real-life examples in which efficient evaluation of ranking queries is
essential. Example 1 illustrates a key-equality top-k join scenario, while Exam-
ple 2 gives a general top-k join scenario. We also discuss the effect of changes and
fluctuations in the computing environment on the performance of query evaluation.

Example 1. Consider a video database that contains several extracted features,

e.g., color histograms, texture, and edge orientation. These features are extracted

for each video frame and are stored in separate tables. Each feature is indexed by a

high-dimensional index for a faster query response. Suppose that a user is interested

in the k frames most similar to a given image based on both color and texture. We

refer to this type of queries as multi-feature or multi-criteria ranking queries.

To answer single-feature queries (i.e., similarity based on texture or color individ-
ually), a database system supporting approximate matching ranks tuples based on
how well they match the query. The challenge in multi-feature queries is to obtain
a global ranking of frames based on the color and texture similarities to the query
image. In the case of multi-criteria ranking, it is not clear how the database system
combines the individual rankings of the multiple criteria.

Example 2. A family is interested in buying a house with a school nearby, with

the objective of minimizing the total cost. Consider a simple cost function that sums

the price of the house and 5-year school tuition. Searching the two web databases,

HOUSES and SCHOOLS, the family issues the following query:

SELECT *

FROM HOUSES H, SCHOOLS S

WHERE Distance (H.location,S.location) < d
ORDER BY H.price + 5 * S.tuition

LIMIT 10;

Distance is a user-defined function that evaluates how near a school is to a house.
The family is interested only in the top 10 results instead of all possible join results.
The order by clause provides the ranking function of the results. Note that each of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

4 · Ilyas et al.

the two external web sources, HOUSES and SCHOOLS, may be able to provide
a list of records sorted on the price and tuition, respectively.

In current database systems, the queries in the previous examples are evaluated
as follows: First, the input tables are joined according to the join condition. Then,
for each join result, the global score is computed according to the given function.
Finally, the results are sorted on the computed combined score to produce the top-k
results and the rest of the results are dropped. Two major expensive operations
are involved: joining the individual inputs and sorting the join results.

A key observation in these examples is that even if the database system can
efficiently rank the inputs, the query engine cannot use these rankings to obtain a
global rank on the final result. Instead, a sort operation after the join is the only way
to get the final ranked query answers. We call this traditional approach Materialize-

then-Sort, where a blocking sorting operator on top of the join is unavoidable. If
the inputs are large, the cost of this execution strategy can be prohibitive.

Rank-aware query processing [Ilyas et al. 2002; 2003; Chang and Hwang 2002;
Li et al. 2005] has emerged as an efficient approach to answer top-k queries. In
rank-aware query processing, ranking is treated as a first-class functionality and is
fully supported in the query engine. In [Ilyas et al. 2002; 2003], we introduced a
set of new logical and physical rank-join operators to augment current relational
query processors with ranking capabilities. Other rank-aware operators have also
been introduced in [Chang and Hwang 2002; Bruno et al. 2002; Natsev et al. 2001].

With these operators, query engines can generate new rank-aware query exe-
cution plans that avoid the näıve materialize-then-sort approach. Instead, joins
progressively generate ranked results, eliminating the blocking sort operator on top
of the plan. Moreover, the query optimizer will have the opportunity to optimize a
ranking query by integrating the new operator in ordinary query execution plans.
Figure 1 gives alternative execution plans to rank-join three ranked inputs.

: The proposed rank−join operator.

r

r

R S

L

Top(k)

R S

L

Top(k)

Sort
r

R S

Top(k)

Sort L

r

: Ordinary join operator.

Fig. 1. Alternative execution plans to rank-join three ranked inputs.

However, the absence of a cost model of these novel operators hinders their
integration in a real-world query engine. An observation that motivates the need
for integrating rank-join operators in query optimizers is that a rank-join operator
may not always be the best way to produce the required ranked results. In fact,
depending on many parameters (for example, the join selectivity, the available

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 5

(a) (b)

Fig. 2. Estimated I/O cost for two ranking plans.

access paths and the memory size), a traditional join-then-sort plan may be a
better way to produce the ranked results.

Figure 2 gives the estimated I/O cost of two plans: a sort plan and a rank-

join plan. Figure 2 (a) compares the two plans for various join selectivities, while
Figure 2 (b) compares the two plans for various k (the required number of results).
The sort plan is a traditional plan that joins two inputs and sorts the results on
the given scoring function, while the rank-join plan uses a rank-join operator that
progressively produces the join results ranked on the scoring function. Figure 2 (a)
shows that for low values of the join selectivity, the traditional sort-plan is cheaper
than the rank-join plan. On the other hand, Figure 2 (b) shows the superiority
of the rank-join plan for low values of k. Figure 2 highlights the need to optimize
top-k queries by integrating rank-join operators in cost-based query optimization.

However, even with a way to cost ranking operators and generate rank-aware
query plans, Example 2 introduces another important challenge: Since the ranking
involves external sources, query execution plans may stall due to the blocking calls
of the GetNext interface when these data sources experience disconnection or unex-
pected long delays. Moreover, the optimality of the execution plan is compromised
when certain execution characteristics change permanently or become inconsistent
with the estimated values. For example, this may happen when a source becomes
slower for the rest of the execution period, or the monitored selectivity shows large
estimation error. Hence, the overall execution plan becomes sub-optimal and may
result in a significant performance degradation. The only effective solution in these
scenarios is to alter the execution plan to a more efficient execution strategy. We
summarize the two main challenges addressed in this paper as follows:

—Costing and Optimizing Rank-aware Plans: We need to develop cost-based enu-
meration and pruning techniques to integrate ranking operators in real-world
query engines. As we show, it is hard to estimate the cost of rank-join operators
because of their “early-out” feature; whenever the top-k results are reported, the
execution stops without consuming all the inputs.

—Coping with the Fluctuations and changes in the Computing Environment: As
more applications migrate to hand-held devices, sensor networks and the Internet,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

6 · Ilyas et al.

many of the assumptions we make about the availability of data are no longer
valid due to unexpected delays and frequent disconnections. Ranking queries
are dominant in these less-stable environments. Providing an adaptive process-
ing mechanism for ranking queries has a direct effect on the adaptability and
performance of many modern applications.

To the best of our knowledge, there have been no proposals to handle adaptive
execution of ranking queries. However, in recent years, several techniques have
been proposed for adaptive query processing of traditional Boolean queries. Refer
to Section 2 for further details on these proposals. As we demonstrate in Sec-
tion 5, applying these techniques in rank-aware query processing is hindered by
the pipelined and incremental nature of rank-aware query processing. We intro-
duce novel mid-query reoptimization techniques that handle the specific nature of
ranking operators and reuse most of the state information of rank-join plans.

1.3 Contributions

We summarize our proposed solution for the aforementioned challenges in the fol-
lowing contributions:

—Ranking as a physical property: we extend the notion of interesting properties
in query optimization to include interesting rank expressions. The extension
triggers the generation of a space of rank-aware query execution plans. The new
generated plans make use of the proposed rank-join operators and integrate them
with other traditional query operators.

—Cost-based rank-aware optimization: we tackle the challenge of pruning rank-
aware execution plans based on cost. A rank-join plan stops once it produces the
top-k answers. Thus, the input cardinality of the operators (and hence the cost)
can vary significantly and in many cases depends on the query itself. We pro-
vide an efficient probabilistic model to estimate the minimum input size (depth)
needed. We use these estimates in pruning the generated plans.

—Adaptive optimization of ranking plans: we present a novel adaptive execution
framework for ranking queries. We outline general adaptive processing algorithms
based on the types of change in the optimality conditions of the current executing
plan (e.g., cost parameters and fluctuations in the computing environment). We
introduce a novel algorithm to alter the current pipelined ranking plan in run-
time and to resume with the new optimal (or better) execution strategy. The
plan alteration mechanism employs an aggressive reuse of the old ranking state
from the current plan in building the state of the new plan.

—Experimental study: we conduct an extensive experimental study to evaluate
all the aspects of the proposed techniques based on an implementation in Post-
greSQL. The experiments show orders of magnitude performance gain over cur-
rent top-k evaluation approaches in database systems and significant improve-
ment over recent rank-join algorithms proposed in the literature. The experi-
ments also show the accuracy and effectiveness of the proposed cost model. In
evaluating the adaptive execution framework, the experiments show significant
performance gain (more than 300% speedup and 86% more results in the case of
source disconnection) by changing sub-optimal execution strategies in run-time.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 7

The experiments also show significant superiority over current reoptimization
techniques of pipelined query plans based on re-executing the whole query.

In an earlier work [Ilyas et al. 2004], we proposed the static rank-aware opti-
mization techniques presented in this paper. The work in [Ilyas et al. 2004] does
not address adaptive optimization of rank-aware query plans, when changes in the
computing environment cause the current execution plan to become sub-optimal.
In this paper, we propose several new techniques and algorithms for adaptive opti-
mization of ranking queries, supported by extensive experimental study to evaluate
our approach. We believe that the new contributions are more than 40% of this
paper. We summarize the new material as follows:

—In the introduction, we provide motivating examples and new research challenges
to highlight the need for adaptive rank-aware optimization (Section 1.2).

—We give the necessary background on adaptive query processing in Section 2.4.

—We enhance the cost analysis in Section 4 by discussing the effects of assump-
tions violation, and by showing how to change the model to relax some of these
assumptions.

—We introduce a new section, Section 5, which covers our proposed adaptive opti-
mization techniques for ranking query plans, by changing the execution strategy
at run-time.

—In the experiments, we introduce a new section on the experimental evaluation
of our proposed adaptive optimization techniques (Section 6.3).

1.4 Outline

The remainder of the paper is structured as follows. In Section 2, we give an
overview of rank-aggregation and rank-aware query operators; we also give back-
ground information on traditional and adaptive query processing. We show how to
extend traditional query optimization to be rank-aware in Section 3. Moreover, in
Section 3, we show how to treat ranking as an interesting physical property and its
impact on plan enumeration. In Section 4, we introduce a novel probabilistic model
for estimating the input size (depth) of rank-join operators and hence estimating
the cost and space complexity of these operators. Section 5 describes algorithms
to adaptively execute pipelined ranking queries, and describes how to reuse current
state information in building new execution strategies. Section 5 also studies the
applicability of eddies and operator scheduling in the context of ranking queries.
We experimentally evaluate the cost estimation model and the adaptive execution
techniques in Section 6. Section 7 concludes by a summary and final remarks.

2. BACKGROUND AND RELATED WORK

In this section, we highlight the research efforts to introduce efficient algorithms
that integrate (aggregate) the ranking of multiple ranked inputs. Also, we present
the necessary background for the new proposed rank-join algorithms.

2.1 Rank Aggregation

Rank aggregation is an efficient way to produce a global rank from multiple input
rankings, and can be achieved through various techniques. In a nut-shell, rank

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

8 · Ilyas et al.

aggregation algorithms view the database as multiple lists. Each list contains a
ranking of some objects; each object in a list is assigned a score that determines
its rank within the list. The goal is to be more efficient than the näıve approach of
joining the lists together, and then sorting the output list on the combined score.
To get a total ranking, a rank aggregation algorithm incrementally maintains a
temporary state that contains all “seen” object scores. The algorithm retrieves
objects from the lists (along with their scores) until the algorithm has “enough”
information to decide on the top ranked objects, and then terminates. The reader
is referred to [Fagin 1999; Fagin et al. 2001; Nepal and Ramakrishna 1999; Güntzer
et al. 2000; 2001; Natsev et al. 2001; Bruno et al. 2002; Ilyas et al. 2003; Hristidis
et al. 2003; Chang and Hwang 2002] for more details on the various proposed
algorithms.

2.2 Rank-Join Query Operators

To support rank aggregation algorithms in a database system, we have the choice
of implementing these algorithms at the application level as user-defined functions
or to implement them as core query operators (rank-join operators). Although
the latter approach requires more effort in changing the core implementation of
the query engine, it supports ranking as a basic database functionality. In [Ilyas
et al. 2002; 2003], we show the benefit of having rank-aware query operators that
can be smoothly integrated with other operators in query execution plans. In
general, rank-join query operators are physical join operators that, besides joining
the inputs, produce the join results ranked according to a provided scoring function.

Ranking join operators: (1) achieve code reusability by pushing ranking from
the application to the core database system; (2) exploit orderings on the inputs to
produce ordered join results unlike current Boolean join operators; and (3) allow
for global optimization of queries that involve other non-ranking operations such
as ordinary join and selection. On the same time, rank-join operators require the
following: (1) ranked inputs (or at least one of them) and each input tuple has an
associated score, (2) a GetNext interface on the input to retrieve the next tuple
in descending order of scores, and (3) a monotone scoring function, say F , that
computes a total score of the join result by applying F on the scores of the tuples
from each input.

Rank-join operators are almost non-blocking. The next ranked join result is
usually produced in a pipelined fashion without the need to exhaust all the inputs.
On the other hand, a rank-join operator may need to exhaust part of the inputs
before being able to report the next ranked join result. It has been proved that
rank-join operators can achieve a huge benefit over the traditional join-then-sort
approach to answer top-k join queries especially for small values of k [Ilyas et al.
2003].

For clarity of the presentation, we give a brief overview of one possible rank-join
implementation, hash rank-join (HRJN): The operator is initialized by specifying
the two inputs, the join condition, and the combining function. HRJN can be viewed
as a variant of the symmetrical hash join algorithm [Hong and Stonebraker 1993;
Wilschut and Apers 1993] or the hash ripple join algorithm [Haas and Hellerstein
1999]. HRJN maintains an internal state that consists of three structures. The first
two structures are two hash tables, i.e., one for each input. The hash tables hold

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 9

input tuples seen so far and are used in order to compute the valid join results. The
third structure is a priority queue that holds the valid join combinations ordered on
their combined score. At the core of HRJN is the rank aggregation algorithm. The
algorithm maintains a threshold value that gives an upper-bound of the scores of all
join combinations not yet seen. To compute the threshold, the algorithm remembers
and maintains the two top scores and the two bottom scores (last scores seen) of
its inputs. A join result is reported as the next top-k answer if the join result
has a combined score greater than or equal the threshold value. Otherwise, the
algorithm continues by reading tuples from the left and right inputs and performs
a symmetric hash join to generate new join results. In each step, the algorithm
decides which input to poll depending on different strategies (e.g., depending on
the score distribution of each input).

In [Li et al. 2005], the authors show how to integrate rank-aware operators (in-
cluding rank-join) in query engines through an extended rank-aware relational alge-
bra. Our proposed cost-model and adaptive optimization techniques in this paper
complement the approach introduced in [Li et al. 2005].

2.3 Cost-Based Query Optimization

The optimizer transforms a parsed input query into an efficient query execution
plan. The execution plan is then passed to the run-time engine for evaluation. To
find the best execution plan for a given query, the optimizer examines a large space
of possible execution plans and compares these plans according to their “estimated”
execution cost.

Plan Enumeration Using Dynamic Programming Since the join operation
is implemented in most systems as a diadic (2-way) operator, the optimizer must
generate plans that transform an n-way join into a sequence of 2-way joins using
binary join operators. Dynamic programming (DP) was first used for join enumer-
ation in System R [Selinger et al. 1979]. To avoid generating redundant plans, DP

maintains a memory-resident structure (referred to as MEMO, following the termi-
nology used in [Graefe and McKenna 1993]) for holding non-pruned plans. Each
MEMO entry corresponds to a subset of the tables (and applicable predicates) in
the query. The algorithm runs in a bottom-up fashion by first generating plans for
single tables. Then it enumerates joins of two tables, then three tables, etc., until
all n tables are joined. For each join it considers, the algorithm generates join plans
and incorporates them into the plan list of the corresponding MEMO entry. Plans
with larger table sets are built from plans with smaller table sets. The algorithm
prunes a higher cost plan if there is a cheaper plan with the same or more general
properties for the same MEMO entry. Finally, the cheapest plan joining n tables
is returned.

Plan Properties Such properties are extensions of the important concept of
interesting orders [Selinger et al. 1979] introduced in System R. Suppose that we
have two plans generated for table R, one produces results ordered on R.a (call it
P1) and the other does not produce any ordering (call it P2). Also suppose that P1 is
more expensive than P2. Normally, P1 should be pruned by P2. However, if table R
can later be joined with table S on attribute a, P1 can actually make the sort-merge

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

10 · Ilyas et al.

Select A.c2
From A,B,C

 and B.c2 = C.c2 ;
Where A.c1 = B.c1

From A,B,C

 and B.c2 = C.c2
Where A.c1 = B.c1		

Order By A.c2 ;

Select A.c2

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

Number of Plans = 12 Number of Plans = 15

Both Queries Have 4 Joins

(b)(a)

AB

BC

ABC

C

B

A

AB

BC

ABC

C

B

A

MEMO Structure MEMO Structure

(A,B) (B,C) (A,BC) (AB,C)

DC

B.c1

B.c2

C.c2

B.c1

A.c1

B.c2

A.c2

B.c1

B.c2

C.c2

B.c1

A.c1

A.c2

B.c2

A.c2

Fig. 3. Number of joins vs. number of plans.

join between the two tables cheaper than P2 since P1 doesn’t have to sort R. To
avoid pruning P1, System R identifies orders of tuples that are potentially beneficial
to subsequent operations for that query (hence the name interesting orders), and
compares two plans only if they represent the same expression and have the same
interesting order.

In Figure 3(a), we show a 3-way join query and the plans kept in the correspond-
ing MEMO structure. For each MEMO entry, a list of plans is stored, each carrying
a different order property that is still interesting. We use DC to represent a “don’t
care” property value, which corresponds to “no order”. The cheapest plan with a
DC property value is also stored in each MEMO entry if this plan is cheaper than
any other plan with interesting orders. Modifying the query to that in Figure 3(b),
by adding an orderby clause increases the number of interesting order properties
that need to be kept in all MEMO entries containing A. The idea of interesting
orders was later generalized to multiple physical properties in [Graefe and DeWitt
1987; Lohman 1988] and is used extensively in modern optimizers.

Optimization of Top-k Queries Another approach to evaluate top-k queries
is the filter/restart approach [Carey and Kossmann 1997; 1998; Donjerkovic and
Ramakrishnan 1999; Bruno et al. 2002]. Ranking is mapped to a filter condition
with a cutoff parameter. If the filtering produces less than k results, the query
is restarted with a less restrictive condition. The final output results are then
sorted to produce the top k results. A probabilistic optimization of top-k queries is
introduced in [Donjerkovic and Ramakrishnan 1999] to estimate the optimal value
of the cutoff parameter that minimizes the total cost including the risk of restarts.

In contrast to previous work, we focus on optimizing ranking queries that involve

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 11

joins. Moreover, our ranking evaluation encapsulates optimal rank aggregation
algorithms. To the best of our knowledge, this is the first work that tries to estimate
the cost of optimal rank aggregation algorithms and incorporate them in relational
query optimization.

2.4 Adaptive Query Processing and Reusing Query Results

In recent years, several techniques have been proposed for adaptive query pro-
cessing. One approach is to collect statistics about query sub-expressions during
execution and to use the accurate statistics to generate better plans in the fu-
ture [Bruno and Chaudhuri 2002; Stillger et al. 2001]. The mid-query reoptimiza-
tion technique [Kabra and DeWitt 1998] exploits blocking operations as material-

ization points to reoptimize parts of a running query, by rewriting the query using
the materialized sub-queries. Scheduling execution of query operators [Amsaleg
et al. 1996] activates different parts of the query plan to adapt to high latency
incurred by remote data sources. The eddies architecture and its variants [Avnur
and Hellerstein 2000; Raman et al. 2003; Deshpande and Hellerstein 2004] contin-
ually optimize a running query by routing individual tuples to the different query
processing operators, eliminating the traditional query plan altogether. Adaptive
query operators such as ripple joins [Haas and Hellerstein 1999] are proposed to
allow for changing the order of inputs within an operator. The robust progressive
optimization technique (POP) [Markl et al. 2004] allows for reusing intermediate
results in reoptimizing the running query by invoking the query optimizer with the
availability of the materialized intermediate results.

A variant of the CHECK operator in the progressive optimization frame-
work [Markl et al. 2004] allows for the reoptimization of pipelined query plans.
In this variant, a compensation mechanism is used to avoid duplicates by storing
the record identifiers (rids) of the already reported results, however, the whole
query is re-executed and old computations cannot be reused. Recently, on-the-fly
reoptimization of continuous queries in the context of data streams has been pro-
posed in [Zhu et al. 2004]. The work in [Zhu et al. 2004] focuses on reusing state
information of windowed join operations to transform one continuous query plan to
another semantically equivalent one. Although our proposed techniques in Section 5
share the same objective of the state migration techniques in [Zhu et al. 2004], we
focus on the particular nature of the state information in ranking query plans and
incorporating the proposed techniques in real-world relational database engines.
Moreover, we study the applicability of other adaptive processing techniques such
as eddies and query scrambling in the context of ranking queries.

Recent work on reusing query results in the context of top-k process-
ing [Chakrabarti et al. 2004] focuses on refined ranking queries. The work
in [Chakrabarti et al. 2004] is similar to our proposal and to most of mid-query
reoptimization techniques in the general principle of reusing old accessed objects
to minimize the I/O cost of new queries. However, our proposed approach is sig-
nificantly different as: (1) we focus on reusing the state of the rank-join operators
(including hash tables and ranking queues) for the same ranking criteria but for
different join orders, in response to unexpected delays and source disconnections;
and (2) our technique to reuse the ranking state is completely different from reusing
the cached index nodes in [Chakrabarti et al. 2004] and includes tree comparison,

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

12 · Ilyas et al.

promotion and demotion operations as we explain in Section 5. We view the tech-
niques introduced in [Chakrabarti et al. 2004] as orthogonal to our proposal and
can be used in tandem with the approach introduced in this paper.

3. INTEGRATING RANK-JOIN IN QUERY OPTIMIZERS

In this section we describe how to extend the traditional query optimization–one
that uses dynamic programming a la [Selinger et al. 1979]–to handle the new rank-
join operators. Integrating the new rank-join operators in the query optimizer
includes two major tasks: (1) enlarging the space of possible plans to include those
plans that use rank-join operators as a possible join alternative, and (2) providing
a costing mechanism for the new operators to help the optimizer prune expensive
plans in favor of more general cheaper plans.

In this section, we elaborate on the first task while in the following section we
provide an efficient costing mechanism for rank-join operators. Enlarging the plan
space is achieved by extending the enumeration algorithm to produce new execution
plans. The extension must conform to the enumeration mechanism of other tradi-
tional plans. In this work, we choose the DP enumeration technique, described in
Section 2. The DP enumeration is one of the most important and widely used enu-
meration techniques in commercial database systems. Current systems use different
flavors of the original DP algorithm that involve heuristics to limit the enumera-
tion space and can vary in the way the algorithm is applied (e.g., bottom-up versus
top-down). In this paper, we stick to the bottom-up DP as originally described
in [Selinger et al. 1979]. Our approach is equally applicable to other enumeration
algorithms.

3.1 Ranking as an Interesting Property

As described in Section 2.3, interesting orders are those orders that can be beneficial
to later operations. Practically, interesting orders are collected from: (1) columns in
equality predicates in the join condition, as orders on these columns make upcoming
sort-merge operations much cheaper by avoiding the sort, (2) columns in the groupby

clause to avoid sorting in implementing sort-based grouping, and (3) columns in the
orderby clause since they must be enforced on the final answers. Current optimizers
usually enforce interesting orders in an eager fashion. In the eager policy, the
optimizer generates plans that produce the interesting order even if they do not
exist naturally (e.g., through the existence of an index).

In the following example, we specify the ranking function in the orderby clause,
in order to describe a top-k query using current SQL constructs.

Q2:

WITH RankedABC as (

SELECT A.c1 as x, B.c1 as y, C.c1 as z, rank() OVER

(ORDER BY (0.3*A.c1+0.3*B.c1+0.3*C.c1)) as rank

FROM A,B,C

WHERE A.c2 = B.c1 and B.c2 = C.c2)

SELECT x,y,z,rank

FROM RankedABC

WHERE rank <=5;

where A, B and C are three relations and A.c1, A.c2, B.c1, B.c2, C.c1 and

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 13

Interesting Order Expressions Reason

A.c1 Rank-join
A.c2 Join
B.c1 Join and Rank-join
B.c2 Join
C.c1 Rank-join
C.c2 Join
0.3*A.c1+0.3*B.c1 Rank-join
0.3*B.c2+0.3*C.c2 Rank-join
0.3*A.c1+0.3*C.c2 Rank-join
0.3*A.c1+0.3*B.c2+0.3*C.c2 Orderby

Table I. Interesting order expressions in Query Q2.

C.c2 are attributes of these relations. Following the concept of interesting orders,
the optimizer considers orders on A.c2, B.c1, B.c2 and C.c2 as interesting orders
(because of the join) and eagerly enforces the existence of plans that access A, B and
C ordered on A.c2, B.c1, B.c2 and C.c2, respectively. This enforcement can be
done by gluing a sort operator on top of the table scan or by using an available index
that produces the required order. Currently, orders on A.c1 or C.c1 are “not inter-
esting” since they are not beneficial to other operations such as a sort-merge join or
a sort. This is because a sort on the expression (0.3*A.c1+0.3*B.c1+0.3*C.c1)

cannot significantly benefit from ordering the input on A.c1 or C.c1 individually.
Having the new rank-aware physical join operators, orderings on the individual

scores (for each input relation) become interesting in themselves. In the previous
example, an ordering on A.c1 is interesting because it can serve as input to a rank-
join operator. Hence, we extend the notion of interesting orders to include those
attributes that appear in the ranking function.

Definition 2. An Interesting Order Expression is one that orders the interme-

diate results on an expression of database columns and that can be beneficial to later

query operations.

In the previous example, we can identify some interesting order expressions ac-
cording to the previous definition. We summarize these orders in Table I. Like an
ordinary interesting order, an interesting order expression retires when it is used
by some operation and is no longer useful for later operations. In the previous
example, an order on A.c1 is no longer useful after a rank-join between table A and
B.

3.2 Extending the Enumeration Space

In this section, we show how to extend the enumeration space to generate rank-
aware query execution plans. Rank-aware plans will integrate the rank-join opera-
tors, described in Section 2.2, into general execution plans. The idea is to devise a
set of rules that generate rank-aware join choices at each step of the DP enumera-
tion algorithm. For example, on the table access level, since interesting orders now
contain ranking score attributes, the optimizer will enforce the generation of table
and index access paths that satisfy these orders. In enumerating plans at higher
levels (join plans), these ordered access paths will make it feasible to use rank-join

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

14 · Ilyas et al.

DC

DC

DC

DC

DC

DC

Number of Plans = 12 Number of Plans = 17

(b)(a)

MEMO Structure

AB

BC

ABC

C

B

A

Interesting Order Expression

Interesting Order

MEMO Structure

AB

BC

ABC

C

B

A DC

DC

DC

0.3*B.c1+0.3*C.c1

DC

DC

DC0.3*A.c1+0.3*B.c1

C.c1

B.c1

A.c1 A.c2

B.c2

C.c2

B.c2

B.c1B.c1

B.c2

C.c2

B.c1

A.c2

B.c2

0.3*A.c1+0.3*B.c1+0.3*C.c2

Fig. 4. Enumerating rank-aware query plans.

operators as join choices.
For a query with n input relations, T1 to Tn, we assume there exists a ranking

function F (s1, s2, . . . , sn), where si is a score expression on relation Ti. For two
sets of input relations, L and R, we extend the space of plans that join L and R to
include rank-join plans by adapting the following:

—Join Eligibility L and R are rank-join-eligible if all of the following conditions
apply:
(1) There is a join condition that relates at least one input relation in L to an

input relation in R.
(2) F can be expressed as F (F1(FL), F2(FR), F3(SO)), where F1, F2 and F3 are

three scoring functions, SL are the score expressions on the relations in L,
SR are the score expressions on the relations in R, and SO are the score
expressions on the rest of the input relations.

(3) There is at least one plan that accesses L and/or R ordered on SL and/or
SR, respectively.

—Join Choices Rank-join can have several implementations as physical join oper-
ators, e.g., the hash rank-join operators (HRJN) and the nested-loops rank-join
operator (NRJN). For each rank-join between L and R, plans can be generated
for each join implementation. For example, an HRJN plan is generated if there
exist plans that access both L and R sorted on SL and SR, respectively. On
the other hand, an NRJN plan is generated if there exists at least one plan that
accesses L or R sorted on SL or SR, respectively.

—Join Order For symmetric rank-join operators (e.g., HRJN), there is no distinc-
tion between outer and inner relations. For the nested-loops implementation, a
different plan can be generated by switching the inner and the outer relations. L
(R) can serve as inner to an NRJN operator if there exists a plan that accesses
L (R) sorted on SL (SR).

For example, for Query Q2 in Section 3.1, new plans are generated by enforcing
the interesting order expressions listed in Table I and using all join choices available

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 15

including the rank-join operators. As in traditional DP enumeration, generated
plans are pruned according to their cost and properties. For each class of properties,
the cheapest plan is kept. Figure 4 gives the MEMO structure of the retained
subplans when optimizing Q2. Each oval in the figure represents the best plan
with a specific order property. Figure 4 (a) gives the MEMO structure for the
traditional application of the DP enumeration without the proposed extension. For
example, we keep two plans for Table A; the cheapest plan that does not have any
order property (DC) and the cheapest plan that produces results ordered on A.c2 as
an interesting order. Figure 4 (b) shows the newly generated classes of plans that
preserve the required ranking. For each interesting order expression, the cheapest
plan that produces that order is retained. For example, in generating plans that
join Tables A and B, we keep the cheapest plan that produces results ordered on
0.3*A.c1 + 0.3*B.c1.

3.3 Costing and Pruning Ranking Plans

A subplan P1 is pruned in favor of subplan P2 if and only if P1 has both higher
cost and weaker properties than P2. In Section 3.2, we discussed extending the
interesting order property to generate rank-aware plans. A key property of top-k
queries is that users are interested only in the first k results and not in a total
ranking of all query results. This property directly impacts the optimization of
top-k queries by optimizing for the first k results. Traditionally, most real-world
database systems offer the feature of First-N-Rows-Optimization. Users can turn
on this feature when desiring fast response time to receive results as soon as they
are generated. This feature translates into respecting the “pipelining” of a plan
as a physical plan property. For example, for two plans P1 and P2 with the same
physical properties, if P1 is a pipelined plan (e.g., nested-loops join plan) and P2 is
a non-pipelined plan (e.g., sort-merge join plan), P1 cannot be pruned in favor of
P2, even if P2 is cheaper than P1.

In real-world query optimizers, the cost model for different query operators is
quite complex and depends on many parameters. Parameters include cardinality of
the inputs, available buffers, type of access paths (e.g., a clustered index) and many
other system parameters. Although cost models can be very complex, a key ingre-
dient of accurate estimation is the accuracy of estimating the size of intermediate
results.

In traditional join operators, the input cardinalities are independent of the oper-
ator itself and only depend on the input subplan. Moreover, the output cardinality
depends only on the size of the inputs and the selectivity of the logical operation.
On the other hand, since a rank-join operator does not consume all of its inputs,
the actual input size depends on the operator itself and how the operator decides
that it has seen “enough” information from the inputs to generate the top k re-
sults. Hence, the input cardinality depends on the number of ranked join results
requested from that operator. Thus, the cost of a rank-join operator depends on
the following:

—The number of required results k and how k is propagated in the pipeline. For
example, Figure 5 gives a real similarity query that uses two rank-join operators
to combine the ranking based on three features, referred to as A, B and C. To

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

16 · Ilyas et al.

Fig. 5. Example rank-join plan.

get 100 requested results (i.e., k = 100), the top operator has to retrieve 580
tuples from each of its inputs. Thus, the number of required results from the
child operator is 580 in which it has to retrieve 783 tuples from its inputs. Notice
that while k = 100 in the top rank-join operator, k = 580 in the child rank-join
operator that joins A and B. In other words, in a pipeline of rank-join operators,
the input depth of a rank-join operator is the required number of ranked results
from the child rank-join operator.

—The number of tuples from inputs that contain enough information for the oper-

ator to report the required number of answers, k. In the previous example, the
top operator needs 580 tuples from both inputs to report 100 rankings, while
the child operator needed 783 tuples from both inputs to report the required 580
partial rankings.

—The selectivity of the join operation. The selectivity of the join affects the num-
ber of tuples propagated from the inputs to higher operators through the join
operation. Hence, the join selectivity affects the number of input tuples required
by the rank-join operator to produce ranked results.

There are two ways to produce plans that join two sets of input relations, L
and R to produce ranked results: (1) by using rank-join operators to join L and
R subplans, or (2) by gluing a sort operator on the cheapest join plan that joins
L and R without preserving the required order. One challenge is in comparing
two plans when one or both of them are rank-join plans. For example, in the two
plans depicted in Figure 6, both plans produce the same order property. Plan (b)
may or may not be pipelined depending on the subplans of L and R. In all cases,
the cost of the two plans need to be compared to decide on pruning. While the
current traditional cost model can give an estimated total cost of Plan (a), it is hard
to estimate the cost of Plan (b) because of its strong dependency on the number
of required ranked results, k. Thus, to estimate the cost of Plan (b), we need
to estimate the propagation of the value of k in the pipeline (refer to Figure 5).
In Section 4, we give a probabilistic model to estimate the depths (dL and dR in
Figure 6 (b)) required by a rank-join operator to generate top k ranked results.
The estimate for the depths is parametrized by k and by the selectivity of the join
operation. It is important to note that the cost of Plan (a) is (almost) independent
of the number of output tuples pulled from the plan since it is a blocking sort plan.
In Plan (b), the number of required output tuples determines how many tuples will
be retrieved from the inputs and that greatly affects the plan cost.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 17

Fig. 6. Two enumerated plans.

Plan Pruning According to our enumeration mechanism, at any level, there will
be only one plan similar to Plan (a) of Figure 6 (by gluing a sort on the cheapest
non-ranking plan). At the same time, there may be many plans similar to Plan (b)
of Figure 6 (e.g., by changing the type of the rank-join operator or the join order).

For all rank-join plans, the cost of the plan depends on k and the join selectivity
s. Since these two parameters are the same for all plans, the pruning among
these plans follows the same mechanism as in traditional cost-based pruning. For
example, pruning a rank-join plan in favor of another rank-join plan depends on
the input cardinality of the relations, the cost of the join method, the access paths,
and the statistics available on the input scores.

We assume the availability of an estimate of the join selectivity, which is the same
for both sort-plans and rank-join plans. A challenging question is how to compare
the cost of a rank-join plan to the cost of a sort plan, e.g., Plans (a) and (b) in
Figure 6, when the number of required ranked results is unknown. Note that the
number of results, k, is known only for the final complete plan. Because subplans
are built in a bottom-up fashion, the propagation of the final k value to a specific
subplan depends on the location of that subplan in the complete evaluation plan.

We introduce a mechanism for comparing the two plans in Figure 6 using the
estimated total cost of Plan (a) and the estimated cost of Plan (b), parametrized
by k. Section 4 describes how to obtain the parametrized cost of Plan (b). For
Plan (a), we can safely assume that Costa(k) = TotalCosta where Costa(k) is the
cost to report k results from Plan (a), and TotalCosta is the cost to report all
join results of Plan (a). This assumption follows directly from Plan (a) being a
blocking sort plan. Let k∗ be that value of k at which the cost of the two plans
are equal. Hence, Costa(k∗) = Costb(k

∗) = TotalCosta. The output cardinality
of Plan (a) (call it na) can be estimated as the product of the cardinalities of all
inputs multiplied by the estimated join selectivity. Since k cannot be more than
na, we compare k∗ with na. Let kmin be the minimum value of k for any rank-join
subplan. A reasonable value for kmin would be the value specified in the query as
the total number of required answers. Consider the following cases:

—k∗ > na: Plan (b) is always cheaper than Plan (a). Hence Plan (a) should be
pruned in favor of Plan (b).

—k∗ < na and k∗ < kmin: Since for any subplan, k ≥ kmin, we know that we
will require more than k∗ output results from Plan (b). In that case Plan (a) is

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

18 · Ilyas et al.

cheaper. Depending on the nature of Plan (b) we decide on pruning:
—If Plan (b) is a pipelined plan (e.g., a left-deep tree of rank-join operators),

then we cannot prune Plan (b) in favor of Plan (a) since it has more properties,
i.e., the pipelining property.

—If Plan (b) is not a pipelined tree, then Plan (b) is pruned in favor of Plan (a).

—k∗ < na and k∗ > kmin: We keep both plans since depending on k, Plan (a) may
be cheaper than Plan (b) and hence cannot be pruned.

As an example, we show how the value of k affects the cost of rank-join plans and
hence the plan pruning decisions. We compare two plans that produce ranked join
results of two inputs. The first plan is a sort plan similar to that in Figure 6(a),
while the second plan is a rank-join plan similar to that in Figure 6(b). The sort
plan sorts the join results of an index nested-loops join operator while the rank-join
plan uses HRJN as its rank-join operator. The estimated cost formula for the sort
plan uses the traditional cost formulas for external sorting and index nested-loops
join, while the estimated cost of the rank-join plan is based on our model to estimate
the input cardinality (as will be shown in Section 4). Both cost estimates use the
same values of input relations cardinalities, total memory size, buffer size, and input
tuple sizes. While the sort plan cost can be estimated to be independent of k, the
cost of the rank-join plan increases with increasing the value of k. Figure 2 (b)
compares the estimate of the costs of the two plans for different values of k. In this
example, k∗ = 176.

4. ESTIMATING INPUT CARDINALITY OF RANK-JOIN OPERATORS

In this section, we give a probabilistic model to estimate the input cardinality
(depth) of rank-join operators. The estimate is parametrized with k, the number
of required answers from the (sub)plan, and s, the selectivity of the join operation.
We describe the main idea of the estimation procedure by first considering the
simple case of two ranked relations. Then, we generalize to the case of a hierarchy
of rank-join operators.

Let L and R be two ranked inputs to a rank-join operator. Our objective is to get
an estimate of depths dL and dR (see Figure 8) such that it is sufficient to retrieve
only up to dL and dR tuples from L and R, respectively, to produce the top k join
results. We denote the top i tuples of L and R as L(i) and R(i), respectively. We
outline our approach to estimate dL and dR in Figure 7.

In the following subsections, we elaborate on steps of the outline in Figure 7.
Algorithm 1 gives Procedure Propagate used by the query optimizer to compute
the values of dL and dR at all levels in a rank-join plan. We set k to the value
specified in the query when we call the algorithm for the final plan.

4.1 Model Assumptions

We make the following assumptions on the input scores, scoring function, join selec-
tivity and distributions. The reason for most of these assumptions are: (1) analyt-
ical convenience: the assumptions facilitate smooth symbolic computation needed
to quickly estimate the input cardinalities and hence the join costs; and (2) statis-
tics cost: relaxing these assumptions require complex statistics collection that can
be prohibitively expensive or unavailable.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 19

Outline EstimateTop-kDepth

INPUT: Two ranked relations L and R

The number of required ranked results, k

The join selectivity, s

Any-k Depths

1. Compute the possible values of cL and cR, where
cL is the depth in L and cR is the depth in R such that,
∃ k valid join results between L(cL) and R(cR).

Top-k Depths

2. Compute the value of dL and dR, where
dL is the depth in L and dR is the depth in R such that,
∃ k top-scored join results between L(dL).
and R(dR). dL and dR are expressed in terms of cL and cR.

Minimize Top-k Depths

3. Compute the values of cL and cR to minimize dL and dR.
cL, cR, dL and dR are parametrized by k.

Fig. 7. Outline of the estimation technique.

Algorithm 1 Propagating the value of k.

Propagate(P : root of a subplan, k : number of results)

1 Let dL and dR be the depths of inputs to the operator rooted at P to get k results
2 Compute dL and dR according to the formulas in Section 4.3
3 Call Propagate(left subplan of P , dL)
4 Call Propagate(right subplan of P , dR)

c L c R d Rd L S c o r e = S R (c R)F (S R (d R) , S L (1)) = F (S R (c R) , S R (c R))F (S L (d L) , S R (1)) = F (S R (c R) , S R (c R))
S c o r e = S L (c L)

L R

Fig. 8. Depth estimation of rank-join operators.

As in the case of traditional cost estimation, these assumptions may not hold

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

20 · Ilyas et al.

in practical scenarios, and hence will affect the accuracy of our estimates. We
relax some of these assumptions and comment on the effect of their violation in the
subsequent sections.

For two ranked relations L and R, let Li and Rj be the ith tuple and the jth

tuple from L and R, respectively, and let |L| and |R| be the total number of tuples
in L and R, respectively.

—Join Independence: We assume that the probability for a pair of tuples being valid
join result is independent of the fact that some other pair of tuples was chosen or
rejected to join. Although not true in general, this assumption is always made in
current optimization cost models. Also, we assume that these probabilities are
independent of the tuple ranking. This can be violated when there is correlation
between input rankings. We elaborate on this case in Section 4.5.

—Join Uniformity: We assume that a tuple from L is equally likely to join with
any tuple from R. Formally, ∀i, j Prob(Li 1 Rj) = s. This assumption can be
violated in practice, e.g., when the rankings of the two relations are correlated.
Consider the case when L and R are results from two different search engines
using the same search query. In the case of positive correlation, tuples ranked
high in L are more likely to join with tuples ranked high in R, violating the join
uniformity assumption. Join uniformity is usually assumed in current cost-based
optimizers as it simplifies the analysis significantly, besides it is usually hard to
capture the general non-uniform join distribution in a cheap and scalable way.
We assume join uniformity in our proposed cost model, however in Section 4.5,
we show how to relax this assumption for simple rank correlation models.

—Score Distribution: We assume that scores of each input relations are from some
standard symbolic distributions like uniform, Gaussian or Poisson and that the
parameters are known. We use the parameters for deriving the resultant score
distribution and also to estimate the rank of a tuple with score x and the score of
the ith ranked tuple. We use uniform distribution for demonstration purposes.
When distributions are not standard, we may approximate them by histograms.
As long as we can manipulate the histograms for resulting distributions with
relatively low cost compared to the join operation, histograms can serve as a
useful estimation tool for the optimizer. We assume uniformity when the score
distribution is not available.

—Monotonic Score Aggregation Function: The proposed rank-join algorithms as-
sume monotone scoring function for effective pruning.

Under join uniformity and independence assumptions, we can view a join as
|L| × |R| independent Bernoulli trials. In each trial the probability of success (a
tuple from L joins a tuple from R) is s, where s in this case is the “join selectivity”.
In the following sections, we rely on these assumptions to derive estimate of depths
dL and dR in L and R, respectively to produce the top k join results.

When these assumptions are violated, we may tend to underestimate or over-
estimate dL and dR. As in the case of traditional query processing, statistics on
score distributions and rank correlation significantly enhance the accuracy of the
estimate and can be easily incorporated in our model as we discuss in the following
sections.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 21

4.2 Estimating Any-k Depths

In the first step of the outline in Figure 7, we estimate the depths cL and cR in
L and R, respectively, required to get any k join results. “Any k” join results are
valid join results, but not necessarily among the top k answers.

Theorem 1. Under join uniformity and independence assumptions, the expected

number of join combinations that need to be evaluated to produce k valid join results

is k/s. Hence, cL, cR should be chosen such that their product cLcR is ≥ k/s to

produce k valid join results.

Proof. Under the assumptions in Section 4.1, each join combination is a
Bernoulli trial with a probability of success s. Let Xk be a random variable that
represents the number of join combinations we need to check to produce k valid join
results. The expected value E(Xk) is the expected number of Bernoulli trials to
get k successes = k

s . In joining cL tuples from L and cR tuples from R, the number
of trials (possible join combinations) is cLcR. We can allow any combination cL,
cR that satisfies cLcR ≥ k/s as the estimates to produce any k valid results. Note
that Xk follows a negative binomial distribution whose mean is k/s and deviation
is

√

k(1 − s)/s. This distribution is tight about its mean as k increases. Chernoff

bounds analysis indicates that if we take (k + 3.1
√

k)/s trials we can be 99% sure
there are at least k outcomes.

Note that if the join uniformity assumption is violated, the constraint in The-
orem 1 will not be accurate. We show the effect of relaxing the join uniformity
assumption on Theorem 1 in Section 4.5.

4.3 Estimating Top-k Depths

In the second step in the outline given in Figure 7, we aim to obtain good estimates
for dL and dR, where dL and dR are the depths into L and R, respectively, needed
to produce the top k join results. The estimation procedure is inspired by the
rank-join algorithm.

Assuming a monotone score aggregation function F , let SL(i) and SR(i) be the
scores of the tuples at depth i in L and R, respectively.

Theorem 2. If there are k valid join results between L(cL) and R(cR), and

if dL and dR are chosen such that F (SL(dL), SR(1)) ≤ F (SL(cL), SR(cR)) and

F (SL(1), SR(dR)) ≤ F (SL(cL), SR(cR)), then the top k join results can be obtained

by joining L(dL) and R(dR).

Proof. Refer to Figure 8 for illustration. Since there are k join tuples between
L(cL) and R(cR), the final score of each of the join results is ≥ F (SL(cL), SR(cR)).
Consequently, the scores of all of the top k join results are ≥ F (SL(cL), SR(cR)).
Assume that one of the top-k join results, say J , joins a tuple t at depth d in
L with some tuple in R such that SL(d) < SL(dL) (i.e., d > dL). The highest
possible score of J is F (SL(d), SR(1)). Since F is monotone, the highest possible
score of J is < F (SL(dL), SR(1)). Since we chose dL such that F (SL(dL), SR(1)) ≤
F (SL(cL), SR(cR)), hence there are at least k join results with scores > the highest
possible score of J . By contradiction, Tuple t cannot participate in any of the top

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

22 · Ilyas et al.

k join results. Hence, any tuple in L (similarly R) that is at a depth > dL (dR)
cannot participate in the top k join results.

Step (3) of the outline in Figure 7 chooses the values of cL and cR that
minimize the values of dL and dR. Note that both dL and dR are minimized
when F (SL(cL), SR(cR)) is maximized subject to the constraint in Theorem 1
(scLcR ≥ k). The rationale behind this minimization is that an optimal rank-
aggregation algorithm does not need to retrieve more than the minimum dL and
dR tuples from L and R, respectively, to generate the top k join results.

Obtaining closed-form formulas for the estimated value of cL, cR, dL, and dR

depends on the score distribution and the aggregation function. In Section 4.4, we
give an example estimation by specifying these parameters.

4.4 Example Estimation of dL and dR

In this section, we study an example implementation of the estimation framework
described in Figure 7. To have a closed-form formula for the minimum dL and
dR, we assume that: (1) the rank aggregation function is the sum of scores; and
(2) the rank scores in L and R are from some uniform distribution. Let x be the
average decrement slab of L (i.e., the average difference between the scores of two
consecutive ranked objects in L) and let y be the average decrement slab for R.
Hence, the expected value of SL(cL) is SL(1)−xcL and the expected value of SR(cR)
is SR(1) − ycR. To maximize F (SL(cL), SR(cR)), we maximize (SL(1) + SR(1)) −
(xcL+ycR), i.e., we minimize xcL+ycR, subject to scLcR ≥ k. The minimization is
achieved by setting cL =

√

(yk)/(xs) and cR =
√

(xk)/(ys). Applying Theorem 2,
SR(1) + SL(dL) = SR(cR) + SL(cL) and SL(1) + SR(dR) = SR(cR) + SL(cL).
In this case, dL = cL + (y/x)cR and dR = cR + (x/y)cL. In a simplistic case,
both the relations come from the same uniform distribution, i.e., x = y, then
cL = cR =

√

k/s and dL = dR = 2
√

k/s.

4.5 The Effect of the Join Uniformity Assumption with Rank Correlation

In the previous sections, we assume the independence of the join from the input
rankings, and we assume the uniformity of the join (cf. Section 4.1). In practical
scenarios the rank scores between two joining relations can be correlated. For
example, the highly ranked tuples from one relation are more likely to join with
highly ranked tuples in the other relation (positive correlation). Another example
is when there is a trade-off between the two ranking criteria, e.g., ranking houses
on price and location (negative correlation).

In general, it may be hard to capture the nature of this correlation between the
ranks of two lists. The correlation may exist between highly ranked tuples only
and does not exist in the rest of the two relations. Input cardinality estimates can
be significantly different when such correlations are strong. In the context of The-
orem 1, we can no longer assume that L(cL) 1 L(cR) can produce k output tuples
by just ensuring that cLcR ≥ k/s. Hence, we need to change the constraint for
maximization. That is, we maximize F (SL(cL), SR(cR)) subject to the constraint
that L(cL) 1 L(cR) produces k join tuples.

We calculate the error in estimating dL and dR assuming join uniformity in
the two worst case scenarios: Let s = 1/n, then in a perfect positive correlation

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 23

scenario, an object with rank i in L will have a rank i in R as well. In this case, it is
not hard to see that the rank-join algorithm retrieves only k objects from L and R
to produce the top-k objects. In this case, we overestimate dL and dR with a factor

of 2
√

kn
k = 2

√

n/k. In the other worst case scenario, only the last k objects from L
and R join to get the top-k objects. In this case, the rank-join algorithm may need
to retrieve up to n objects from both relations. In this case, we underestimate dL

and dR by a factor of n
2
√

kn
= (

√

n/k)/2. The error factors increase (slowly) as n

increases, and they can cause the optimizer to choose a suboptimal execution plan.
To illustrate the effect of relaxing the join uniformity and rank-independence, we

assume the following simple rank correlation model: Consider two relations L and
R with n tuples each and with scores uniformly distributed [0, n]. Assume that the
join probability between the ith ranked tuple in L and the jth ranked tuple in R is
prob(Ri 1 Sj) = 1/θ if |i − j| ≤ θ/2 and 0 otherwise. Therefore, each ranked tuple
has a “window” of similarly ranked tuples in the other relation with which it can
join. Note that the expected value of the join selectivity is still approximately 1/n,
however the join is not uniformly distributed. We can show that cL and cR can be
estimated by k + θ/4 and hence dL = dR = 2k + θ/2 (see Appendix A.1). Note
that with this simple model of correlation our estimate of dL and dR has decreased
from 2

√

k/s to 2k + θ to reflect the effect of rank correlation. Similar analysis can
be obtained for other simple forms of rank correlation.

4.6 Tighter Bounds in a Join Hierarchy

Algorithm 1 gives an outline of how to propagate the estimate of dL and dR in
a hierarchy of joins. For simplicity of the presentation, we assume a sum scoring
function and uniformly distributed scores for base relations.

In a join hierarchy, the score distributions of the second level joins are no longer
uniform. The output scores of a rank-join with two uniformly distributed inputs
follow a triangular distribution. As we go higher up in the join hierarchy, the
distribution tends to be normal (a bell-shaped curve) by the Central Limit Theorem.

Let up be the sum of p distributions, each is a uniform distribution on [0, n].
Let L be the output of rank-joining l ranked relations and let R be the output of
rank-joining r ranked relations. For simplicity, assume that each of L and R has n
tuples and follows ul and ur, respectively. Let k be the number of output ranked
results required from the subplan, and s be the join selectivity. We can show that
maximizing SL(cL) + SR(cR) (according to Theorem 2) amounts to minimizing
(l!cLnl−1)1/l + (r!cRnr−1)1/r (see Appendix A.2). The minimization yields:

cr+l
L =

(r!)lklnr−llrl

sl(l!)rrrl
(1)

cr+l
R =

(l!)rkrnl−rrrl

sr(r!)llrl
(2)

dL = cL[1 + r/l]l (3)

dR = cR[1 + l/r]r (4)

Note that dL and dR are upper-bounds assuming expected values of cLcR. Al-
though the estimates might be accurate for a small number of joins, the error

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

24 · Ilyas et al.

propagation becomes more significant as we proceed through the hierarchy. We in-
troduce an alternative framework for tighter bounds in estimating dL and dR based
on estimating the score distribution of the join results.

Let T be the output join relation T = L 1 R, Srel(i) be the score of the ith

tuple in Relation rel, and rankrel(x) be the rank of the first tuple (in decreasing
order of scores) with score ≤ x in Relation rel. i.e., rankrel(x) = mini|Srel(i) ≤ x.
According to the rank-join algorithm, we can estimate:

dL = rankL(ST (k) − SR(1)) (5)

dR = rankR(ST (k) − SL(1)) (6)

In general, the ability to manipulate the score distributions to produce Srel(i)
and rankrel(x) allows us to estimate dL and dR in a join hierarchy. We give an
example estimation of these quantities in the case of uniform score distributions for
the base relations.

Assume that L follows a ul distribution and R follows a ur distribution with
each having n tuples. The join of L and R produces the relation T with a ul+r

distribution and sn2 tuples. Using Equation 7 from Appendix A.2, by setting
j = l + r and m = sn2, the score of the top kth tuple in T is ST (k) = (l + r)n −
((l + r)!knl+r−2/s)1/(l+r). Hence, we need to check in L up to a tuple that joins
with R to produce ST (k). Using Equations 5 and 6, we can show that on average,
dL and dR can be computed as follows:

dl+r
L =

((l + r)!)lklnr−l

(l!)l+rsl
and dl+r

R =
((l + r)!)rkrnl−r

(r!)l+rsr

Similarly, bounds for other distributions like Gaussian and Poisson can be sym-
bolically computed under weighted sum scoring function. We can apply the formu-
las recursively in a rank-join plan, as shown in the Algorithm 1, by replacing k of
the left and right subplans by dL and dR, respectively. The value of k for the top
operator is the value specified by the user in the query.

5. ADAPTIVE EXECUTION OF RANKING QUERIES

Since adaptive execution of ranking plans depends heavily on the state maintained
by these plans, we briefly summarize the state information of a ranking plan. We
concentrate on the hash rank-join implementation.

HRJN maintains an internal state that consists of the following components:

—Input Hashes: For each input, we maintain a hash table that stores objects seen
so far from that input. We can view this state as “half” the state of a symmetric
hash-join operator.

—Threshold: The rank-join threshold is an upper-bound ranking score of all un-
computed (partial) join results.

—Operator Rank-queue: Each rank-join operator buffers intermediate join results
that have not qualified yet as top-k results. A join result qualifies as an output
if its score (partial score in the case of an intermediate result) is greater than the
threshold maintained by the operator.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 25

Fig. 9. An initial plan for Example 3.

We use the following example to further describe these components of the ranking
state information.

Example 3. Assume that we are interested in the top-k results of joining three

inputs R, S and T . Each input provides objects along with their scores ordered in

descending order of their scores. For simplicity, let the join condition be on the

object id, and the ranking function be the sum of the individual scores. Assume

that based on statistics, the plan in Figure 9 is chosen to be the best execution plan.

Figure 10(a) gives the state information of the execution plan in Figure 9, at
some point during the execution. The marker arrows on the inputs show the objects
retrieved from each input. At this point in the execution, the input hash tables HR

and HT have the objects A, B and B, C, respectively. There is a match (a valid
join result) (B, B) with a combined score of 9. Since the threshold at this point of
time is computed as 14, this valid join result is not guaranteed to be in the top-k
answers. Hence (B, B) is kept in the operator rank-queue, QRT . The rank-queue
of Operator RTS and its input hashes are empty at this point of time. Now assume
that changes in the computing environment result in Plan Pold being sub-optimal.
After updating the statistics and system parameters, the optimizer chooses a new
plan, say Pnew. Figure 10 (b) gives the new plan, Pnew along with its new state
information. In this paper, we show how to transform the state between these two
plans at run-time without re-executing the query.

Applying current adaptive query processing techniques (discussed in Section 2.4)
in rank-aware query processing is hindered by the following problems:

—Non-standard execution models: Techniques that require drastic changes in the
database engine such as query scrambling [Amsaleg et al. 1996] or eddies [Avnur
and Hellerstein 2000] (eliminating the query plan altogether) may experience
high run-time overhead and integrating them in practical query engines is still
an open question. However, both operator scheduling and eddies architectures
can be used in adaptive rank-aware query processing. We briefly show how to
modify these techniques in our context.

—The pipelined and incremental nature of ranking queries: Techniques that allow
for mid-query reoptimization, such as the pioneering work in [Kabra and DeWitt
1998], depend on the existence of materialization points. The main goal in rank-

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

26 · Ilyas et al.

(a) The initial plan Pold

(b) The new plan Pnew

Fig. 10. Ranking state information of two execution plans for Example 3.

aware query processing is to avoid blocking sort operators and to use incremental
and pipelined join operators such as ripple-join. Hence, techniques that depend
on materialization points cannot be applied.

—Ranking state information: In contrast to traditional pipelined join operators,
ranking operators maintain a computation state. Changing the execution plan
at run-time has to deal with this state and then reuse it in computing the state
of the new plan.

5.1 Altering and Reusing Ranking Plans

In this section, we introduce an adaptive query processing technique for ranking
queries, which allows for altering the query execution plan in run-time to cope with

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 27

unexpected changes and fluctuations in the underlying computing environment.
Handling the state information is the main challenge in run-time reoptimization

of query execution plans. The core idea of the proposed technique is to transform
the ranking state information of the current plan, say Pold, to another state that
can fit in the new execution plan, say Pnew . The objective of the transformation
is to produce a new ranking state that reflects the scenario as if Pnew were chosen
from the beginning of the execution. The proposed technique assumes the ability
of accessing the state information of the inputs and the operators using simple
primitives. For example, we assume that we can store objects in the input hash
tables, probe the input hash tables for matches, and retrieve objects from the
operators’ rank-queue. In this section, we limit our focus to plans with rank-join
operators only. The proposed state transformation algorithm in this section will be
used in the reoptimization frameworks in Section 5.2.

For clarity, we show the state transformation mechanism by a simple application
on Example 3. In Example 3, let the initial execution plan, say Pold, be the plan
depicted in Figure 9, and let Figure 10(a) reflect the state information after execut-
ing Pold for some time. Now assume that changes in the computing environment
result in Plan Pold being sub-optimal. After feeding the optimizer with the updated
statistics and system parameters, the optimizer chooses a new plan, say Pnew . For
simplicity, let Pnew be the same rank-join plan as Pold except for switching the two
inputs T and S. The state transformation should result in a new state that realizes
the scenario as if Pnew were the initial plan. Figure 10 (b) gives the new plan,
Pnew , along with its new state information. Before showing how to transform the
state between these two plans, we make the following observations:

Fig. 11. Collapsing common sub-plans.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

28 · Ilyas et al.

—By switching the two inputs, T and S, the operator RT has disappeared and is
replaced by the operator RS. Hence, the rank-queue QRT should no longer exist
in the new plan.

—Since the new operator RS is created in the new plan, the state information
associated with that operator needs to be created, i.e., a new rank-queue, QRS ,
and a new threshold.

—The threshold values can always be computed for the newly created operators
since they depend only on the joined relations.

—The main objective of the transformation is to continue the execution of Pnew

without having to redo most of the work of Pold. This objective, however, does
not guarantee that repeating some work already done by Pold will be eliminated.

We identify two major steps in our proposed state transformation mechanism:
(1) Merging the old state by “removing” the effect of the old input, and deleting the
state information that has no equivalent in the new plan; and (2) Creating a new

state that is unique to the new plan. Merging the old state has the effect of losing
some of the work done in the old plan. New state creation may involve accessing
the old state to fill the new state with all information that can be “reused” from the
old plan. In Algorithm 2, we give the generalized algorithm for reusing the state
information in the current sub-optimal plan, Pold, to build the state of an arbitrary
new ranking execution plan, Pnew.

Procedure RegainState in Algorithm 2 takes as input two rank-join plan struc-
tures, Pnew and Pold. The algorithm first reduces the two input plans by “col-
lapsing” all common sub-plans (sub-trees). A common sub-plan is the one that
appears in both Pnew and Pold, possibly in different locations. Figure 11 gives an
example of this step by collapsing the common sub-plan that joins inputs E and F .
The state information of common sub-plans are copied as is into the new generated
plan. The algorithm proceeds by initializing all ranking-queues and hash tables
of the non-leaf nodes in Pnew. Building the new state of Pnew is carried out by
calling the Procedure JoinAndPromote. The reuse of old information in Procedure
RegainState is limited to identifying common sub-plans in Pnew and Pold. A more
aggressive state reuse is carried out in Procedure JoinAndPromote by exploiting
the commutativity and symmetry of rank-join operators.

Procedure JoinAndPromote in Algorithm 2 builds the new state information
by reusing useful old state information and by performing all the remaining joins.
Duplicate results are prevented by the check in Step 14, making use of the invariant
that no rank-join result has been reported with a score less than the global threshold
(maintained by the root of the rank-join tree) 1.

The novelty of the algorithm is in reusing the state of “non-leaf” nodes by identi-
fying those non-leaf nodes with the same set of leaf nodes (inputs) even if they are
joined in a different join order. This approach is more elaborate than mid-query
reoptimization techniques that identify only materialization points. For example,
consider the plans in Figure 11. Since the nodes ABC and ACB have the same set

1For ties in global score, the algorithm as described may miss results with the last reported score.
One solution is to buffer all the reported results in a root InputHash and compare the reported
results against the buffered reported results.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 29

Algorithm 2 Building the new state information of the newly constructed plan.

Regain State(Pnew : The New P lan)

1 Identify all common sub-plans in both plans.
2 Collapse common sub-plans in both plans.
3 Copy state information of all common sub-plans (including all leaf nodes).
4 Reset InputHash and RankQueue of all non-leaf nodes in Pnew.
5 CALL JoinAndPromote(Pnew.Root)

JoinAndPromote(X : Plan Node)

1 if X is a leaf
2 return
3 CALL JoinAndPromote(LeftChild(X))
4 CALL JoinAndPromote(RightChild(X))
5 if ∃ a node in Pold with same leaves of X
6 Let the node in Pold be Xold

7 Copy Xold state to X.InputHash
8 return
9 JOIN LeftChild(X).InputHash and RightChild(X).InputHash

10 for each join result j
11 do
12 if X is root
13 if j.score < X.Threshold
14 Put j in X.RankQueue
15 else
16 Put j in X.InputHash

of leaf nodes, {A, B, C}, the state information stored in node ABC in Pold can be
reused in node ACB in Pnew.

The state migration in Algorithm 2 can be modified to handle the state of other
rank-join implementations (e.g., nested-loops rank-join). We omit the details of the
modifications for space limitation.

5.2 Adaptive Execution Frameworks

As mentioned in Section 1.2, inter-operator adaptability (altering execution plan in
run-time) depends on the optimizer being able to produce a new plan in response to
the detected changes. The success of the proposed technique relies on our ability to
“monitor” the query execution and the changes in critical parameters such as source
delays, source availability, and selectivity. In query monitoring, we build upon the
work introduced in [Kabra and DeWitt 1998] and in the POP framework [Markl
et al. 2004] (progressive optimization in query processing) to monitor and to check
the optimality of the currently executing plan. The CHECK operator detects un-
expected execution behavior such as significant errors in selectivity estimation. It
can also be extended to detect large source delays.

Upon detecting changes in optimizer-sensitive parameters (e.g., selectivity esti-
mates), we introduce a mid-query reoptimization framework that uses the optimizer

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

30 · Ilyas et al.

during execution to generate a new optimal execution strategy. We handle the spe-
cial characteristics of ranking query plans to reuse old execution state to build the
state of the new plan. Section 5.2.1 presents our solution for this case.

Upon encountering changes in optimizer-insensitive parameters (e.g., unexpected
delays), the optimizer cannot reflect these changes in a new query execution plan.
In Section 5.2.2, we introduce a heuristic algorithm to enhance the performance of
the currently executing query or resolve blocking situations, where otherwise, no
progress can be achieved using the current plan.

Note that adaptive processing techniques can suffer from thrashing if we spend
most of the time adapting the plan to changes in the environment. Minimizing
thrashing can be achieved through several techniques, e.g., by limiting the number
of times reoptimization can be invoked [Markl et al. 2004], or by setting a minimum
number of tuples to be processed (or a time interval) between two consecutive
reoptimizations [Deshpande and Hellerstein 2004].

5.2.1 Optimizer-based Plan Altering. We describe a framework for progressive
optimization of pipelined ranking queries that adapts to changes in optimizer-
sensitive parameters. We summarize the general technique as follows:

(1) Continually check the running plan Pold for unexpected changes or fluctuations
in cost parameters.

(2) Stop plan execution.

(3) For all blocking subtrees, materialize the results and make them available for
reoptimization.

(4) Re-invoke the optimizer to reoptimize the query taking into account the ad-
justed statistics, to produce a new execution plan Pnew .

(5) Produce the rank-join plans from both plans (plans with rank-join operators
only), RPold and RPnew, from Pold and Pnew, respectively.

(6) Build the state information of RPnew by reusing old state information in RPold

according to the algorithms in Section 5.1.

(7) Resume execution using Pnew from where Pold stopped.

In Step 3, we use the same framework in POP [Markl et al. 2004] or in mid-
query reoptimization [Kabra and DeWitt 1998] taking advantage of the available
materialization points in the query plan, should one exist. We note that most
ranking plans are pipelined plans with ranking state information, as discussed in
Section 5.1. In Step 5, we limit our attention to the rank-join operators, where the
ranking state information is maintained. All rank-join operators use the adaptive
implementation of Section 2. Step 6 invokes the state transformation algorithms in
Section 5.1 to build the state information of the new query plan. A sketch of the
mid-query reoptimization framework is given in Figure 12.

5.2.2 Heuristic Plan Altering Strategy for Unexpected Delays. The current exe-
cution plan may become sub-optimal because of changes in the environment condi-
tions that do not affect the optimizer’s objective function. In this case, reoptimizing
the query according to the algorithm in Section 5.2.1 will not produce a new, more
efficient execution strategy. Rather, heuristic techniques are usually applied to
generate a more efficient execution strategy. One example of a heuristic to deal

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 31

Fig. 12. Mid-query reoptimization framework for ranking queries.

with unexpected delays and source disconnections is the Pair strategy in query
scrambling [Amsaleg et al. 1996]. The heuristic is designed to delay the execution
of stalled sources and generate useful sub-plans to mask these delays. Another
heuristic for optimizing rank-join operations is to take score correlations into ac-
count [Ilyas et al. 2003]. The idea is to greedily cluster similar score distributions
(based on the foot-rule similarity metric) together in the execution plan.

For example, consider the three-way rank-join plan depicted in Figure 13. The
RJi nodes are pipelined rank-join operators, and A, B, and C are three ranked
inputs from external sources. For simplicity, we place monitoring points [Kabra
and DeWitt 1998; Markl et al. 2004] (e.g., CHECK operators) on every edge in
the query plan. Now assume that Source B experiences long delays. The rank-join
operator that joins A and B (RJ1) tries to deal with the unexpected delays by
pulling more records from A than B. If the delays persist and more progress can
be achieved by rank-joining B with C first, the reoptimization logic will change the
execution strategy through a number of steps: (1) stop the execution of the current
plan; (2) swap the two inputs B and C; and (3) compute the computation state
of the new plan using the old state information. Note that after the shuffling of B
and C, the state information of RJ1 becomes invalid and needs to be rebuilt. The
goal of reusing the old state information is to simulate the scenario as if the new
plan were the original execution strategy.

The heuristic used in the previous example pushes the delayed data sources up
in the tree as close as possible to the root join operator. The problem in the
proposed heuristic occurs when dealing with source availability. Assume that Source
B becomes unavailable for a long period of time. Without assuming any non-
standard operator scheduling mechanism (e.g., as the one proposed in [Amsaleg
et al. 1996]), the plan will still block even after pushing B up in the plan tree.
Fortunately, the intra-operator adaptability of the rank-join operators will deal with
this problem, as described in Section 1.2. Effectively, the rank-join operator with
a delayed or non-responding input will cut this input from the currently executing
plan. Whenever the input can be accessed, it joins the current execution plan.

The following steps give the general framework to alter a running execution plan

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

32 · Ilyas et al.

Fig. 13. A simple reoptimization example.

that stalls or experiences large unexpected delays. For simplicity, we assume that
we monitor the execution of the plan by fixing monitoring points (e.g., CHECK
operators) on top of every data source and rank-join operator.

(1) Identify the sub-tree with the maximum experienced delay greater than a
threshold Tdelay. The threshold is set to allow the rank-join operators to
adapt to short, non-persistent delays experienced by remote sources and is
an application-dependent parameter.

(2) Stop the current execution and perform one swapping step to swap the sub-tree
with a child of the top rank-join operator.

(3) Transform the computation state of the current query evaluation plan to reflect
the new generated plan according to the algorithms in Section 5.1.

(4) Resume execution using the new generated execution plan.

The rationale behind the heuristic is to maximize the amount of work carried
out assuming the unavailability of the problematic part of the plan. In Section 6,
we experimentally evaluate the effect of this heuristic on performance.

5.3 Non-traditional Adaptive Techniques

In the literature, there have been several proposals for adaptive query processing
that do not follow the traditional optimizer design. We identify two of these tech-
niques, namely, query scrambling and eddies. In query scrambling [Amsaleg et al.
1996; Urhan et al. 1998], scheduling the execution of query operators activates dif-
ferent parts of the query plan to adapt to the high latency incurred by remote data
sources in a wide area network. The eddies architecture and its variants [Avnur and
Hellerstein 2000; Raman et al. 2003; Deshpande and Hellerstein 2004] continually
optimize a running query by routing tuples to various query processing operators,
eliminating the traditional query plan altogether. In this section, we show that how
to extend these techniques to adaptively process ranking and top-k queries.

Scrambling of Ranking Queries In general, the query scrambling framework
consists of two phases: a scheduling phase and an operator synthesis phase. The
scheduling phase does not change the query plan structure; rather, it allows for
different operators to be executed independently in their own execution threads.
Communication among operators is through queues that hold intermediate results.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 33

If an operator cannot proceed or experiences long delays, other operators in the plan
are scheduled to execute. The scheduling policy can be set to maximize the amount
of work that can be carried out before the plan completely stalls. In the second
phase, new operators are formed when the original plan structure cannot produce
any useful work. The authors in [Urhan et al. 1998] introduced several techniques to
alter the stalled execution plan depending on the type of the underlying optimizer.

The first phase of query scrambling is directly applicable to rank-aware query
processing and can be combined with our intra-operator adaptability. Our proposed
plan alteration technique can be considered as one approach to implement the
second phase in query scrambling.

Ranking Eddies Adaptive rank-aware query processing can be achieved by im-
plementing rank-join as an eddy. We show how to implement rank-join using eddies
state modules (STEMS) [Raman et al. 2003]. In contrast to rank query processing
in traditional database engines, all the ranking information is stored in the eddy;
no local rankings are kept among inputs. Effectively, an eddy can be viewed as
a multi-way rank-join operator with adaptive capabilities. All recently proposed
enhancements [Raman et al. 2003; Deshpande and Hellerstein 2004] can be applied
to minimize the run-time overhead of tuple routing.

For presentation clarity, we give an implementation of the rank-join algo-
rithm [Ilyas et al. 2003] to join ranked inputs with arbitrary join conditions. The
rank-join algorithm joins these inputs to produce the top-k join results. The total
score is computed according to some monotone functions that aggregate the object
scores from the input lists. We list the modifications to the eddy internal state to
support ranking the results according to a monotone function F as follows:

—A global ranking threshold T , which is an upper-bound of the final ranking score
of all unseen join results. The threshold can be computed according to the rank-
aggregation algorithms in [Fagin et al. 2001; Ilyas et al. 2003].

—A ranking queue Q, which is a priority queue of all seen join results with scores
less than the threshold, and hence cannot be reported as top-k answers.

Algorithm 3 gives a GetNext implementation of a rank-aware eddy. An example
execution is depicted in Figure 14, where we rank-join the three ranked inputs
of Example 3. Instead of forming a rank-join query plan, we construct an eddy
to retrieve the ranked inputs, route the inputs and intermediate results among
the STEMS and produce the output in the order of the ranking function (in this
example, the sum of individual scores). The STEMs are just hash tables on the join
attribute with insert and probe interfaces. At this point in the execution, the eddy
has retrieved the first two tuples from each input and the threshold is computed to
be 142. There is only one completed join result so far (B, B, B), with a total score
of 14 ≥ T . Hence, the result can be reported as a top-k result.

6. PERFORMANCE EVALUATION

In this section, we conduct two sets of experiments. In the first set, we experi-
mentally verify the accuracy of our model for estimating the depths (input size) of

2We apply the algorithm in [Ilyas et al. 2003] for threshold computations.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

34 · Ilyas et al.

Algorithm 3 Rank-join implementation in an eddy.

EddyRankJoin.GetNext()

1 let I be a set of ranked inputs
2 Initialize the ranking queue Q to be empty
3 Initialize ranking threshold T to a large number
4 if Q is not empty
5 let top be the top of Q
6 if Score(top) > T
7 Remove from Q and Return top
8 while true
9 do Retrieve next ranked tuples from inputs and insert them in corresponding STEMs

10 Adjust T with the input scores
11 Route input tuples and intermediate results according to the routing strategy
12 let j be a valid join result
13 Compute the score of j according to F
14 Insert j in Q
15 if Q is not empty
16 let top be the top of Q
17 if Score(top) > T
18 break
19 Remove top from Q
20 return top

Fig. 14. Rank-join in eddies.

rank-join operators and estimating an upper-bound of the buffer size maintained
by these operators. Estimating the input size and the space requirements of a rank-
join operator makes it easy to estimate the total cost of a rank-join plan according
to any practical cost model. In the second set of experiments, we evaluate the effect

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 35

of the proposed adaptive techniques on top-k query performance.

6.1 Implementation Issues and Setup

We implemented the rank join operators in [Ilyas et al. 2003] into PostgreSQL 7.4.3
running Linux with 4 XEON 2GHz processors and 4GB of memory.

For the first set of experiments, Figure 15 gives a ranking plan (termed Plan P)
that joins 4 sorted inputs. di labels on the edges represent the number of ranked
tuples flowing from the children of the rank-join operator. We compare the actual
(monitored) values of di to the estimated values according to our cost model.

Fig. 15. Example rank-join plan.

For the second set of experiments, we implemented the following simple monitors:

—Delay Monitors: Delay monitors are placed on top of all input relations. The
monitors report the time to retrieve one input record. If the monitored delay
exceeds a specified threshold value, we raise a need-to-reoptimize flag.

—Score Correlation Monitors: A correlation monitor is placed in each rank-join
operator in the query plan. The monitor computes the number of tuples retrieved
from each input to report one top-k result. If the number of tuples retrieved from
the operator inputs exceeds the expected input cardinality (computed according
to the cost estimation model), we raise a need-to-reoptimize flag.

We avoid thrashing by limiting the number of reoptimizations during query exe-
cution. In this set of experiments, the user query joins 3 to 10 ranked inputs and
asks for the top-k join results with respect to a monotone aggregating function. We
use the sum of the tuples’ scores as the aggregate function. The data is generated
synthetically to simulate web site popularity search. In this real scenario, a highly
ranked object in one input (relation), is likely to be highly ranked in other inputs
as well. We simulate this scenario by picking the difference between the rank of an
object in one relation and the rank of the same object in another relation from a
Zipfian distribution (α = 0.9). Each input provides a ranked list of objects with
several attributes, e.g., (id, JoinAttribute, score). The difference between the po-
sitions of an object in two lists is randomly drawn from a Zipfian distribution .
Each input can be accessed only through a sorted access path (a GetNext() in-
terface), i.e., no random access or indexes are allowed on the inputs. Hence, our
inputs act as external ranking sources. In the following sections, we elaborate on a
representative sample of the conducted experiments.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

36 · Ilyas et al.

6.2 Experiments Set 1: Verifying Input Cardinality Estimation

In this experiment, we evaluate the accuracy of the depth estimates of rank-join
operators. The results shown here represent the estimates for Plan P in Figure 15.
We use HRJN as the implementation of the rank-join operator. k ranked results
are required from the top rank-join operator in the plan.

Varying the Number of Required Answers (k) For different values of k,
Figure 16 (a) compares the actual values of d1 and d2 (refer to Figure 15) with two
estimates: (1) Any-k Estimate, the estimated values for d1 and d2 to get any k join
results (not necessary the top k), and (2)Top-k Estimate, the estimated values for
d1 and d2 to get the top k join results. Any-k Estimate and Top-k Estimate are
computed as in Section 4. The actual values of d1 and d2 are obtained by running
the query and counting the number of retrieved input tuples by each operator.
Figure 16 (b) gives similar results for comparing the actual values of d5 and d6 to
the same estimates. The figures show that the estimation error is less than 25%
of the actual depth values. For all conducted experiments, this estimation error is
less than 30% of the actual depth values. Note that the measured values of d1 and
d2 lie between the Any-k Estimate and the Top-k Estimate. The Any-k Estimate

can be considered a lower-bound on the depths required by a rank-join operator.

(a) (b)

Fig. 16. Estimating the input cardinality for different values of k.

Varying the Join Selectivity Figure 17 compares the actual and estimated
values for the depths of Plan P in Figure 15 for various join selectivities. For low
selectivity values, the required depths increase as the rank aggregation algorithm
needs to retrieve more tuples from each input to produce the top ranked join results.
The maximum estimation error is less than 30% of the actual depth values.

Estimating the Maximum Buffer Size Rank-join operators usually maintain
a buffer of all join results produced and cannot yet be reported as the top k results.
Estimating the maximum buffer size is important in estimating the total cost of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 37

(a) (b)

Fig. 17. Estimating the input cardinality for different values of join selectivity.

a rank-join operator. In this experiment, we use Plan P in Figure 15. The left
child rank-join operator in Plan P needs d1 and d2 tuples from its left and right
inputs, respectively, before producing the top k results. The worst case (maximum)
buffer size occurs when the rank-join operator cannot report any join result before
retrieving all the d1 and d2 tuples. Hence, an upper bound on the buffer size can be
estimated by d1d2s, where s is the join selectivity. We use our estimates for top-k
depths, d1 and d2, to estimate the upper bound of the buffer size. We compare the
actual (measured) buffer size to the following two estimates: (1) Actual upper-bound,
the upper bound computed using the measured depths d1 and d2, and (2) Estimated

upper-bound, the upper bound computed using our estimation of top-k depths.
Figure 18 shows that the estimated upper-bound has an estimation error less

than 40% of the actual upper-bound (computed using the measured values of d1

and d2). Figure 18 also shows that the actual buffer size is less than the upper-bound
estimates. The reason being that in the average case, the operator progressively
reports ranked join results from the buffer before completing the join between the
d1 and d2 tuples. The gap between the actual buffer size and the upper-bound
estimates increases with k, as the probability of the worst-case scenario decreases.

The Effect of Rank Correlation We conduct a simple experiment on a real data
set to show the effect of rank correlation on our estimation model. We used data
generated from a multimedia database system that ranks objects based on feature
similarity to a given query image. We used two correlated features (color histogram
and color layout). We apply the rank-join algorithm to get the top-k objects with
respect to both features (using sum of ranks as the aggregation function). Let d1

and d2 be the depths in the two ranked inputs, respectively. Figure 19 gives the
actual monitored values f d1 and d2 varying the number of required results k. Note
that in this simple rank-join scenario d1 = d2. Figure 19 also shows our estimated
value of the depths using two estimation models:(1) assuming join uniformity; and
(2) assuming a simple rank correlation following the model described in Section 4.5,
with θ = 50. Because of the strong positive correlation, we tend to overestimate the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

38 · Ilyas et al.

Fig. 18. Estimating the buffer size of Rank-join. Fig. 19. The effect of rank correlation.

depths if we assumed the uniformity of the join; however, much better estimates
can be obtained applying our simple rank correlation model.

6.3 Experiments Set 2: Adaptive Mid-query Reoptimization

In this section, we conduct a set of experiments to evaluate two issues: First, we
examine the overhead of the proposed mid-query reoptimization algorithm. We
would like to answer the question: When is it beneficial to reoptimize a running
query upon discovering a change in the optimality condition? Second, we evaluate
the efficiency of our mid-query plan alteration algorithms.

Overhead of Mid-query Reoptimization In this experiment, we start execu-
tion using a default sub-optimal plan (e.g., because of faulty estimates). Figure 20
compares the performance speedup achieved by reoptimizing the running ranking
query during execution using: (1) our adaptive plan alteration strategy to switch
to a new plan (Plan B) in run-time; and (2) by restarting the query using the new
plan (Plan B). We assume that we can restart the execution of a running pipelined
query although this may not always be possible (e.g., in the case of input streams).
The speedup is computed as the ratio of execution time of the original plan to that
of the new plan. The cost of plan alteration is included in the execution time of our
adaptive strategy. Several experiments with different data sets showed the same
behavior in Figure 20. Figure 20 shows that:

—Our adaptive execution strategy can achieve significant speedup over re-executing
the query using the new evaluation plan. This superiority is due to the aggressive
reuse of internal state information to minimize the amount of the repeated work.

—The benefit of reoptimizing the query diminishes as execution progresses due to
the overhead of state migration in our adaptive strategy, or due to repeating
work in the re-execution strategy. In fact, as the query gets closer to comple-
tion, re-executing the query can result in a significant performance degradation.
Our aggressive reuse of old state information significantly limits the performance
degradation with query progress. These results suggest adopting cost-based

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 39

mid-query reoptimization. For example, the following costs can be estimated:
(1) costA, the cost to complete execution using the current plan (after updating
the statistics); (2) costB, the cost to resume execution using the new generated
plan; and (3) coststate, the cost to transform the state between plans according
to the algorithms in Section 5.1. coststate can be easily computed since accurate
cardinality information is available. A simple cost-based decision is to reoptimize
whenever costA is significantly greater that costB + coststate.

Fig. 20. Mid-query reoptimization overhead.

Mid-query Plan Alteration PostgreSQL query optimizer is not sensitive to
correlations among input scores, and is not sensitive to source delays and discon-
nections. Since the focus of this paper is to provide a mid-query reoptimization
algorithm for ranking queries, the evaluation is independent from the source of
generating the new execution plan (by re-invoking the optimizer or by using an
optimization heuristic). In this section, we conduct two experiments: The first ex-
periment introduces delays and disconnections in the data sources; when the Delay

Monitors trigger the need to reoptimize the query, we apply the heuristic in Sec-
tion 5.2.2 by pushing the delayed (disconnected) source as close as possible to the
root of the rank-join tree. In the second experiment, we start executing the query
following a default join order (this is not uncommon in the absence of statistics
information in traditional optimizers). Upon discovering a bad execution strategy
using the Score Correlation Monitors, we use the rank-join order heuristic in [Ilyas
et al. 2004] to form a new plan strategy that takes into account the statistics on
score similarities that are now available on the inputs.

In both experiments, our plan transformation algorithm (described in Section 5.1)
transforms the internal state of the old execution plan to a valid state of the new
plan, allowing the executor to resume query evaluation with the new strategy.

Figure 21 gives an evaluation of the heuristic proposed in Section 5.2.2. The
plan used in Figure 21 is a left-deep tree with 10 ranked inputs. A large delay
is introduced in the farthest input from the root. The performance improvement

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

40 · Ilyas et al.

is evaluated for every possible swapping of the delayed input with other inputs.
The figure shows that better performance can be achieved by pushing delayed or
disconnected inputs as close as possible to the root in the rank-join plan.

Fig. 21. Heuristic for dealing with source delays.

Figure 22 compares the performance of two ranking queries in three different
scenarios: (1) Using Plan A, the default plan that is used when we do not have
prior knowledge about source delays or availability; (2) Using Plan B, the plan that
takes delay information into account by pushing the slowest source near the root;
and (3) By Changing Plan A to Plan B, which is our proposed strategy to start
execution using Plan A and to progressively switch to Plan B upon detecting large
source delays. Figures 22(a) and (b) give the execution time of two ranking queries
(normalized by dividing the execution time by the total query time) with respect
to the three different scenarios. The transition was decided around the point where
5 top results have been already reported to the user. After the transition, we follow
closely the performance of Plan B. The execution time includes the overhead of
performing the state transition. Notice that in Figure 22(b) the total execution time
according to our strategy is even less than starting execution using Plan B. Although
this is not always guaranteed (see Figure 22(a)), the reason can be explained as
follows. During a reuse of the state information to transform the execution strategy
to Plan B, we may be able to report many valid top-k results depending on how
many inputs we have already read from all inputs, which may exceed the number of
results that can be reported if we use Plan B to retrieve inputs from the beginning
of the execution. After the transition, the time to report each of the next top-k
results using our strategy is the same as that of Plan B. To further illustrate this
transition, Figure 23 gives the difference in the execution time per reported result
between our strategy and both Plan A and Plan B. Similar results are observed
in the second experiment, where we reoptimize the query upon detecting errors in
deciding the rank-join order. For space limitation, we only show a comparison of
the total number of retrieved tuples in Figure 22(c).

To test the effectiveness of our adaptive strategy in handling source disconnec-
tions and plan stalls, we conduct the following experiment: In a ranking query with

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 41

(a) (b)

(c)

Fig. 22. Mid-query alteration of execution plan.

4 ranked inputs shown in Figure 24(a) as Plan A, we disconnect source S during
the execution of Plan A, which causes the plan to stall. Upon discovering the plan
stall, we alter the execution plan to Plan B as shown in Figure 24(a). In Fig-
ure 24(b), we show the number of reported top-k results. Plan alteration gives the
opportunity for more “useful” work to be done by reusing the old state information
and by retrieving tuples from other inputs. As a result, 26 more top-k results are
reported, an 86% increase. The ranking plans in this experiment use the adaptive
implementation of the rank-join operator described in Section 5.1.

7. CONCLUSION

We introduced a framework for integrating rank-aware operators in real-world query
optimizers. Our framework was based on three key aspects: First, we extended the
enumeration phase of the optimizer to generate rank-aware plans. The extension
was achieved by providing rank-join operators as possible join choices, and by defin-
ing ranking expressions as a new physical plan property. The new property triggered

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

42 · Ilyas et al.

Fig. 23. Transiting between plans.

(a) (b)

Fig. 24. Mid-query alteration for source disconnections.

the generation of a new space of ranking plans for efficient top-k processing.
Second, we provided a probabilistic technique to estimate the minimum required

input cardinalities by rank-join operators to produce top k join results. Unlike
traditional join operators, rank-join operators do not need to consume all their
inputs. Hence, estimating the cost of rank-join operators depends on estimating
the number of tuples required from the input.

Third, we addressed adaptive processing of ranking queries in modern ubiquitous
computing environments. We proposed several techniques and progressive opti-
mization algorithms for ranking query plans. We also outlined general adaptive pro-
cessing frameworks based on the type of changes in the optimality conditions of the
current executing plan. We distinguished between two types of changes: (1) changes
and errors in the optimizer cost parameters (optimizer-sensitive changes) that re-
quire re-invoking the query optimizer during execution to produce a new optimal

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 43

ranking plan; and (2) changes and fluctuations in the computing environments
that are not factored in the optimizer cost model (optimizer-insensitive changes),
where heuristic techniques may be used to produce a better execution strategy. In
the core of these frameworks, we introduce a novel algorithm to alter the current
pipelined ranking plan in run-time and to resume with the new optimal (or better)
execution strategy. The plan alteration mechanism employs an aggressive reuse of
old ranking state from the current plan in building the state of the new plan. We
have also studied the application of other non-traditional adaptive query processing
techniques such as query scrambling and eddies in the context of ranking queries.

We conducted an extensive experimental study and we showed that our proposed
estimation model captured the “early-out” property with estimation error less than
30% of the actually measured input cardinality under some reasonable assumptions
on the score distributions. We also estimated the space needed by rank-join opera-
tors with estimation error less than 40%. The experiments also showed significant
performance gain by changing sub-optimal execution strategies in run-time (more
than 300% speedup and 86% more results in the case of source disconnection). The
experiments demonstrated the significant superiority over current reoptimization
techniques of pipelined query plans based on re-executing the whole query.

REFERENCES

Amsaleg, L., Franklin, M. J., Tomasic, A., and Urhan, T. 1996. Scrambling query plans to
cope with unexpected delays. In Distributed and Parallel Database Systems. 208–219.

Avnur, R. and Hellerstein, J. M. 2000. Eddies: Continuously adaptive query processing. In
Proc. ACM SIGMOD Int. Conf. on Management of Data. 261–272.

Bruno, N. and Chaudhuri, S. 2002. Exploiting statistics on query expressions for optimization.
In Proc. ACM SIGMOD Int. Conf. on Management of Data. 263–274.

Bruno, N., Chaudhuri, S., and Gravano, L. 2002. Top-k selection queries over relational
databases: Mapping strategies and performance evaluation. ACM Trans. Database Sys. 27, 2,
369–380.

Bruno, N., Gravano, L., and Marian, A. 2002. Evaluating top-k queries over web-accessible
databases. In Proc. 18th Int. Conf. on Data Engineering. 153–187.

Carey, M. J. and Kossmann, D. 1997. On saying “Enough already!” in SQL. In Proc. ACM
SIGMOD Int. Conf. on Management of Data. 219–230.

Carey, M. J. and Kossmann, D. 1998. Reducing the braking distance of an SQL query engine.
In Proc. 24th Int. Conf. on Very Large Data Bases. 158–169.

Chakrabarti, K., Ortega-Binderberger, M., Mehrotra, S., and Porkaew, K. 2004. Eval-
uating refined queries in top-k retrieval systems. IEEE Transactions on Knowledge and Data
Engineering 16, 2, 256–270.

Chang, K. C.-C. and Hwang, S.-W. 2002. Minimal probing: supporting expensive predicates
for top-k queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 346–357.

Deshpande, A. and Hellerstein, J. M. 2004. Lifting the burden of history from adaptive query

processing. In Proc. 30 Int. Conf. on Very Large Data Bases. 948–959.

Donjerkovic, D. and Ramakrishnan, R. 1999. Probabilistic optimization of top N queries. In
Proc. 25th Int. Conf. on Very Large Data Bases.

Dwork, C., Kumar, S. R., Naor, M., and Sivakumar, D. 2001. Rank aggregation methods for
the web. In Proc. 10th Int. World Wide Web Conference. 613–622.

Fagin, R. 1999. Combining fuzzy information from multiple systems. Journal of Computer and
System Sciences (JCSS) 58, 1 (Feb), 216–226.

Fagin, R., Lotem, A., and Naor, M. 2001. Optimal aggregation algorithms for middleware. In
Proc. 20th ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems. 102–113.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

44 · Ilyas et al.

Graefe, G. and DeWitt, D. J. 1987. The EXODUS optimizer generator. In Proc. ACM

SIGMOD Int. Conf. on Management of Data.

Graefe, G. and McKenna, W. J. 1993. The volcano optimizer generator: Extensibility and
efficient search. In Proc. 9th Int. Conf. on Data Engineering. 209–218.

Güntzer, U., Balke, W.-T., and Kießling, W. 2000. Optimizing multi-feature queries for
image databases. In Proc. 26th Int. Conf. on Very Large Data Bases. 419–428.

Güntzer, U., Balke, W.-T., and Kießling, W. 2001. Towards efficient multi-feature queries in
heterogeneous environments. In International Symposium on Information Technology (ITCC).
622–628.

Haas, P. J. and Hellerstein, J. M. 1999. Ripple joins for online aggregation. In Proc. ACM
SIGMOD Int. Conf. on Management of Data. 287–298.

Hong, W. and Stonebraker, M. 1993. Optimization of parallel query execution plans in XPRS.
Distributed and Parallel Database Systems 1, 1 (Jan.), 9–32.

Hristidis, V., Gravano, L., and Papakonstantinou, Y. 2003. Efficient IR-style keyword search
over relational databases. In Proc. 29th Int. Conf. on Very Large Data Bases.

Ilyas, I. F., Aref, W. G., and Elmagarmid, A. K. 2002. Joining ranked inputs in practice. In
Proc. 28th Int. Conf. on Very Large Data Bases. 950–961.

Ilyas, I. F., Aref, W. G., and Elmagarmid, A. K. 2003. Supporting top-k join queries in
relational databases. In Proc. 29th Int. Conf. on Very Large Data Bases. 754–765.

Ilyas, I. F., Aref, W. G., and Elmagarmid, A. K. 2004. Supporting top-k join queries in
relational databases. The VLDB Journal 13, 3, 207–221.

Ilyas, I. F., Shah, R., Aref, W. G., Vitter, J. S., and Elmagarmid, A. K. 2004. Rank-aware
query optimization. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 203–214.

Kabra, N. and DeWitt, D. J. 1998. Efficient mid-query re-optimization of sub-optimal query
execution plans. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 106–117.

Li, C., Chang, K. C.-C., Ilyas, I. F., and Song, S. 2005. Query algebra and optimization for
relational top-k queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data.

Lohman, G. M. 1988. Grammar-like functional rules for representing query optimization alter-
natives. In Proc. ACM SIGMOD Int. Conf. on Management of Data.

Markl, V., Raman, V., Simmen, D. E., Lohman, G. M., and Pirahesh, H. 2004. Robust
query processing through progressive optimization. In Proc. ACM SIGMOD Int. Conf. on
Management of Data. 659–670.

Natsev, A., Chang, Y.-C., Smith, J. R., Li, C.-S., and Vitter, J. S. 2001. Supporting in-
cremental join queries on ranked inputs. In Proc. 27th Int. Conf. on Very Large Data Bases.
281–290.

Nepal, S. and Ramakrishna, M. V. 1999. Query processing issues in image (multimedia)
databases. In Proc. 15th Int. Conf. on Data Engineering. 22–29.

Raman, V., Deshpande, A., and Hellerstein, J. M. 2003. Using state modules for adaptive
query processing. In Proc. 19th Int. Conf. on Data Engineering. 353–387.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G. 1979.
Access path selection in a relational database management system. In Proc. ACM SIGMOD
Int. Conf. on Management of Data.

Stillger, M., Lohman, G. M., Markl, V., and Kandil, M. 2001. LEO - DB2’s learning
optimizer. In Proc. 27th Int. Conf. on Very Large Data Bases. 19–28.

Urhan, T., Franklin, M. J., and Amsaleg, L. 1998. Cost-based query scrambling for initial

delays. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 130–141.

Wilschut, A. N. and Apers, P. M. G. 1993. Dataflow query execution in a parallel main-memory
environment. Distributed and Parallel Database Systems 1, 1, 68–77.

Zhu, Y., Rundensteiner, E. A., and Heineman, G. T. 2004. Dynamic plan migration for
continuous queries over data streams. In Proc. ACM SIGMOD Int. Conf. on Management of
Data.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Adaptive Rank-aware Query Optimization in Relational Databases · 45

A. DERIVATIONS OF USED FORMULAS

A.1 Estimating Any-k Depth with Rank Correlation

Since we have not relaxed the join independence assumption, we still can view the
join with window rank correlation (described in Section 4.5) as a set of independent
Bernoulli trials. However, the probability of success is not s, rather it is 1

θ within
the window and 0 elsewhere.

For simplicity, assume that cL = cR = c. We can visualize the process by plotting
depth in L along x axis and depth in R along y axis. Let Area A be the area that
falls between the lines y = x + θ/2, y = x − θ/2, x = c, and y = c. The area of
A represents the number of possible join combinations (trials) between cL = c and
cR = c.

We apply our analysis in Section 4.2 on Area A: The probability of success (a valid

join) = 1
θ . Hence, area(A) has to be greater that kθ. For θ < 2c, area(A) = cθ− θ2

4 ,
therefore, to get k valid join results, c has to be ≥ k + θ/4. This analysis changes
when θ grows bigger than 2c and approaches the case of uniform join discussed in
Theorem 1.

A.2 Estimating dL and dR in a Join Hierarchy

Let up be the sum of p distributions, each is a uniform distribution on [0, n]. Let
Xi’s, for i = 1, ..., j, be identical and independent random variables from u1. Then,
X =

∑j
1 Xi is a random variable from uj , which ranges from [0, jn]. Let Yi = n−Xi

and Y =
∑j

1 Yi = jn − X . By symmetry, the score decrement random variable Y
follows the same distribution of X . If we select m items from uj and select the ith
highest-score item, then score decrement of i, δ(i) = jn−S(i) satisfies the following
property: prob(Y ≤ δ(i)) = i/m. The left-hand term prob(Y1 +Y2 + ...+Yj) ≤ δ(i)
is actually the ratio of volume of simplex Y1 + Y2 + ... + Yj ≤ δ(i), δ(i) ≤ n to the
volume of hypercube with length n. The volume of the simplex is δ(i)j/j!, thus,
(δ(i)j/j!)/nj = i/m. This implies

S(i) = jn − (j!inj/m)1/j , when i ≤ m/j! (7)

Using the described distribution scores, we estimate the values of cL and cR that
give the minimum values of dL and dR for the general rank-join plan in Figure 6 (b).
Let L be the output of rank-joining l ranked relations and let R be the output
of rank-joining r ranked relations. For simplicity, assume that each of L and R
has n tuples. Let k be the number of output ranked results required from the
subplan, and s be the join selectivity. Using Equation 7, we set j = l, m = n, and
i = cL to get SL(cL). Similarly, we set j = r, m = n, and i = cR to get SR(cR).
Maximizing SL(cL) + SR(cR) (according to Theorem 2) amounts to minimizing
(l!cLnl−1)1/l + (r!cRnr−1)1/r. The minimization yields:

cr+l
L =

(r!)lklnr−llrl

sl(l!)rrrl
, cr+l

R =
(l!)rkrnl−rrrl

sr(r!)llrl

dL = cL[1 + r/l]l , dR = cR[1 + l/r]r

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

