
Managing Biological Data using bdbms

Mohamed Y. Eltabakh #1, Mourad Ouzzani ∗2, Walid G. Aref #3, Ahmed K. Elmagarmid #4, Yasin Laura-Silva #5,
Muhammad U. Arshad +6, David Salt $7, Ivan Baxter $8

#Dept. of Computer Science, Purdue University
West Lafayette, IN, USA

{1meltabak, 3aref, 4ake, 5ylaurasi}@cs.purdue.edu
∗Cyber Center, Purdue University

West Lafayette, IN, USA
2mourad@cs.purdue.edu

+Dept. of Electrical and Computer Engineering, Purdue University
West Lafayette, IN, USA

6marshad@ecn.purdue.edu
$Dept. of Horticulture & Landscape Architecture, Purdue University

West Lafayette, IN, USA
{7dsalt, 8ibaxter}@purdue.edu

1 Abstract— We demonstrate bdbms, an extensible database
engine for biological databases. bdbms started on the observation
that database technology has not kept pace with the specific
requirements of biological databases and that several needed
key functionalities are not supported at the engine level. While
bdbms aims at supporting several of these functionalities, this
demo focuses on: (1) Annotation and provenance management
including storage, indexing, querying, and propagation, (2) Local
dependency tracking of dependencies and derivations among data
items, and (3) Update authorization to support data curation.
We demonstrate how bdbms enables biologists to manipulate
their databases, annotations, and derivation information in a
unified database system using the Purdue Ionomics Information
Management System (PiiMS) as a case study.

I. INTRODUCTION

Life sciences are a case in point where biological databases
have become essential to keep track of various information
about experimentation and analysis. However, considerable
amounts of biological data are still stored in flat files and
spreadsheets and do not use DBMSs. This is mainly due to
current database systems lacking key functionalities needed for
biological data like efficient and native support for annotations,
provenance, and data dependencies. Furthermore, biological
databases often rely on community-based curation, evolve with
rapidly changing semantics, and lack absolute authority to
verify the correctness of information. Thus, the characteristics
of annotations that need to be attached to the base data cannot
be completely foreseen at design time.

We are building bdbms, an extensible prototype database
engine to support key functionalities needed by biological

1*The work of Mourad Ouzzani was partly supported by Lilly Endowment.
**Walid G. Aref acknowledges the support of the National Science Foundation
under grant number IIS-0093116.
***The work of Ahmed Elmagarmid was partly supported by Lilly Endow-
ment and NSF-ITR 0428168.

databases. These functionalities are implemented inside post-
greSQL. In this demo, we focus on the following features:
(1) annotation and provenance management, (2) local depen-
dency tracking, and (3) update authorization. bdbms makes
fundamental advances in the use of biological databases
through new native and transparent support mechanisms at the
database system level.

bdbms treats annotations as first class objects. bdbms allows
adding annotations at multiple granularities, i.e., table, tuple,
column, and cell levels, archiving and restoring annotations,
and querying the data based on the annotation values. We
extended SQL into A-SQL to support the processing and
querying of annotations. A-SQL allows annotations to be
seamlessly propagated with query answers with minimal user
intervention. bdbms also includes a systematic approach for
tracking dependencies among database items. When a database
item is modified, bdbms tracks and annotates any other item
that is affected by this modification and needs to be re-verified.
This feature is particularly desirable in biological databases
because many dependencies cannot be computed using coded
functions, e.g., stored procedures and functions. Content-based
authorization, i.e., the authorization is based not only on the
identity of the user but also on the content of the data, is
another feature that is integrated into bdbms.

We demonstrate the main features of bdbms using the Pur-
due Ionomics Information Management System (PiiMS) [1]
(http://www.purdue.edu/dp/ionomics), a web-based system
that collects and manages high throughput elemental profiling
data and associated metadata on the experimental treatment,
sample preparation, and instrument settings necessary to inter-
pret results of mass spectrometry analyses in ionomics. PiiMS
supports the entire process of planting, growing, harvesting,
drying, and analyzing plants.

������

� �

(a) Standard relation R (b) Annotated relation AR

���

�	
�����

Fig. 1. Annotated relations

GTGAAACTGGA…fruRJW0078

ATGAAAGTATC…yabPJW0055

ATGAAAGCAGC…ftsIJW0082

ATGATGGAAAA…mraWJW0080

GSequenceGNameGID

Gene

A3: Involved in methyltransferase activity

A1: These genes are published in …

A2: These genes were obtained from RegulonDB

Fig. 2. Annotations at multiple granularities

II. SYSTEM OVERVIEW

We give an overview of the main components of bdbms that
we will demonstrate. We briefly describe bdbms’ functional-
ities along with the extended SQL language (A-SQL). More
details can be found in [2], [3].

A. Annotation Management

Biologists use annotations as an important mean to com-
municate and share information about the base data generated
from experiments and analyses. Annotations may represent
comments about the data inside the database, the source of
the data, references to published literature, or the setup and
running of experiments. Despite their importance, annotations
are not systematically supported as first-class objects inside
current DBMSs. Most existing work in annotation manage-
ment focuses on the propagation of annotations along with the
query answer, e.g., [4], [5], [6], [7]. A key distinction of bdbms
is that it addresses several aspects of annotation management
including:

Storing and organizing annotations – Effective organiza-
tion and efficient storage of annotations are important features
for seamless handling of annotations. For example, distin-
guishing the annotations inserted by the public community
from those inserted by the lab members. bdbms allows users to
organize their annotations in logical entities called annotation
tables. Each user relation in the database, representing the base
data, may have one or more annotation tables attached to it
(See Figure 1). Users can reference specific annotation table(s)
at insertion and query times. To create an annotation table, we
provide the following command:

CREATE ANNOTATION TABLE <ann table name>
ON <user table name>
SCHEME [Off-table—In-table];

To achieve good storage and retrieval performance, we
provide three storage schemes to implement the annotation

tables based on the granularity of the annotations, namely,
Off-table, In-table, and Hybrid schemes.

Adding annotations at multiple granularities – Biologists
may need to annotate a single or multiple data items, or entire
rows or columns in a table. Figure 2 illustrates an example of
a table annotated at different granularities, e.g., A1 annotates
GID and GName in two rows. The command:

ADD ANNOTATION
TO <annotation table names>
VALUE <annotation body>
PROPAGATION MODE [SINGLY — ALWAYS]
ON <select statement>

allows users to easily add annotations at multiple granu-
larities. The annotation table names specifies the annotation
table(s) into which the annotation will be stored. The anno-
tation body allows annotations to be structured in XML and
later queried using XPath, The propagation mode specifies
the manner in which the annotation will be propagated, for
example, SINGLY means that the annotation will not be
propagated with the grouping, aggregation, or set operation
while ALWAYS mean that the annotation will be always
propagated. The output of the select statement specifies the
data to be annotated. For example, to add annotation A1
(Figure 2), we execute the following command:

ADD ANNOTATION
TO Gene.GAnnotation
VALUE ‘< Comment >

These genes are published in...
< /Comment >’

ON (Select G.GID, GName
From Gene G
Where GID IN (‘JW0082’, ‘JW0055’));

We do not expect most biologists to use A-SQL. Thus, we
provide a graphical interface, to be demonstrated, that allows
users to graphically select the cells they want to annotate
and then insert the annotation value. The highlighted cells are
mapped to one or more ADD ANNOTATION commands to
be executed by the bdbms engine.

Archiving and restoring annotations – In the course
of maintaining a biological database, some annotations may
become invalid or unnecessary for the functioning of the
database but may still be useful for historical reasons or
some possible future usage. Thus, we allow archiving and
restoring annotations without having to delete them. Archived
annotations will not be propagated to end-users along with the
query answers while restored annotations will be propagated
as usual. Users can issue the commands:

ARCHIVE ANNOTATION
FROM <annotation table names>
[BETWEEN <time1> AND <Time2>]
ON <select statement>

and
RESTORE ANNOTATION
FROM <annotation table names>
[BETWEEN <time1> AND <Time2>]
ON <select statement>

to archive and restore annotations, respectively. In the demon-
strated GUI, users can first query annotations and then select

… Gene_seq protein_seq

•Complex procedures
•Lab experiments
•Use of equipments

Chemical
reaction

Enzymes

Proteins

Product

(a) (b)

Fig. 3. Local dependency tracking

which specific annotations to archive or restore.
Propagating annotations with query answers – To facil-

itate the propagation of annotations, we introduce new query
operators and extend the semantics of the existing ones. The
general form of A-SQL select queries is:

SELECT [DISTINCT] Ci, Cj , ..., [PROMOTE(Ck , ...)]
FROM Relation name [ANNOTATION(S1, S2, ...)], ...
[WHERE <conditions>]
[GROUP BY <data columns>

[HAVING <condition>]
[FILTER <annotation condition>]

For example, the ANNOTATION operator specifies which
annotation table(s) to be considered in the query. The PRO-
MOTE operator allows to keep annotations from columns not
in the projection list to be propagated with the query answer.
The FILTER operator drops the annotations that do not satisfy
the filter condition.

For example, consider the following query:

SELECT GeneID, GeneName, PROMOTE(Sequence)
FROM GENE[ANNOTATION(Glab)]
WHERE GeneID IN (‘JW0080’, ‘JW0055’)
AND xpath bool(Glab,‘Root/Annotation/User =“ADMIN”’)
FILTER xpath bool(Glab,‘Root/Annotation/TimeStamp >“Jan-01-2007”’);

In this query, only annotations from Glab will be prop-
agated. The query selects the GeneID and GeneName from
base table GENE where (1) GeneID equals ‘JW0080’ or
‘JW0055’, and (2) the gene entry has annotations inserted
by user ’ADMIN’ in Glab. For each output tuple, the query
reports only the annotations inserted after ‘Jan-01-2007’. The
annotations on the Sequence column will be propagated with
the query answer although that column is not projected.

B. Local Dependency Tracking

It is often the case that data in biological databases are
dependent on or derived from other data. The challenge is
that most of these derivations cannot be simply modeled using
coded functions, e.g., stored procedures or database triggers.
For example in Figure 3, protein sequences are derived from
gene sequences using lab experiments and/or prediction tools
that cannot be coded as a function. If a gene sequence is
modified, the corresponding protein sequence(s) may become
invalid. Similarly, we may store information about chemical
reactions, e.g., substrates and reaction parameters. If any of
these information is modified, then products of the reaction
may become invalid. It is thus important to automatically track
such dependencies and maintain the consistency of the data
without burdening the users with extra checks.

bdbms enables the modeling of dependencies and
derivations using the new concept of Procedural Dependency,
an extension to Functional Dependencies. Procedural
dependency allows to specify the dependency module or
procedure and its characteristics, e.g., executable by the
database or not, and invertible or not. For example, the
following rule states that the protein sequence depends on the
gene sequence through the lab experiment E that is neither
executable by the database nor invertible:

Gene.Sequence
Lab experiment E

(non−exec,non−invert)Protein.Sequence

Such rules allows bdbms to track which items can be
automatically re-computed and which items need to be marked
as out-dated whenever a change occurs in the database. As
a result, bdbms provides two important functionalities: (1)
reporting out-dated data that needs to be re-evaluated, and (2)
annotating query answers to highlight any out-dated data that
is part of the results.

C. Content-based Authorization

In current DBMSs, users get permission to execute certain
operations based on their identity, i.e., grant/revoke access
model [8]. Biological databases are usually a community-
based and shared effort which may not fit with this model.
For example, if only the lab administrator can modify the
database, then (s)he becomes a bottleneck. Also, if all lab
members can modify the data without revision, the credibility
and authenticity of the data may be compromised.

bdbms provides a monitoring system, termed Content-based
Authorization, where the authorization is based on the identity
of the user as well as the content of the modified data. The
database administrator can turn the content-based approval
feature ON or OFF for a certain table using the two following
commands:

START CONTENT APPROVAL
ON <table name>
APPROVED BY <user/group>

and
STOP CONTENT APPROVAL
ON <table name>

The content-based approval mechanism maintains a log of
all update operations, i.e., INSERT, UPDATE, and DELETE.
All non-approved updates will be visible with an annota-
tion mentioning they were not approved yet. The logs are
then revised by authorized users to approve/disapprove the
operations. If an operation is disapproved, bdbms executes
an inverse operation that negates the effect of the original
operation. This inverse operation is automatically generated
and stored when the original operation is executed.

III. DEMONSTRATION SCENARIOS

We demonstrate the functionalities of bdbms in the context
of PiiMS [1] by replacing its underlying database engine by
bdbms. PiiMS helps understand how plants take up, transport
and store their nutrient and toxic elements, collectively known

Fig. 4. Adding Annotations

as the ionome. PiiMS main functionalities include: (i) col-
lecting and managing elemental profiling data and associated
metadata on the experimental treatment, sample preparation,
and instrument settings, (ii) supporting the entire process of
planting, growing, harvesting, drying, and analyzing of plants;
(iii) providing integrated workflow control and analysis to
facilitate high-throughput data acquisition, along with inte-
grated tools for data search and visualization for hypothesis
development.

We demonstrate bdbms through a web-based GUI that al-
lows to add/archive/restore annotations and query/browse base
data and annotations, define/track procedural dependencies,
and define tables subject to content-based authorization and
track/approve/disapprove updates.

Scientists in the ionomics lab while harvesting plants from
different pots noticed that some plants had their leaves with a
different color from the rest of the plants. Thus, they decided
to record this information in the database as an annotation to
the pot table potINFO. This information may be helpful in
explaining the concentration of the elements being tracked.
Using the GUI, we demonstrate how scientists can add new
annotations, i.e., highlighting certain cells in the query results
and attaching an annotation to them (Figure 4). We also show
how users can query the annotations.

PiiMS allows to perform several statistical analyses based
on the data being provided by the ICP-MS mass spectrometer
instrument. Results of these analyses are stored in different
tables. An example is the % differences in concentrations
for each element which are stored in table percentDIFF.
The settings of the ICP-MS spectrometer depends on several
information from the line catalog table lineCAT (a line defines
the seed being planted). If any of the information in lineCAT is
changed, the information in percentDIFF may become invalid
and another run of the mass spectrometer may be required.
We demonstrate how the corresponding rule(s) are defined and
how data is tracked.

In the analysis stage, data from the instrument is uploaded

Fig. 5. Approving/Disapproving Updates

into PiiMS. This important stage consists of several steps
where different parameters set by the lab technician are used
to perform the analysis including the generation of z-score
values and % difference in concentrations for each element.
Any lab technician can perform this stage and upload the data
to PiiMS. This data will be then readily available for other
users. However, due to its importance and the risk of errors
in setting the different parameters of the analysis this data is
flagged as not validated yet. This data stays flagged until an
authorized user validates or invalidates these updates. In the
demo, we demonstrate the logging mechanism of the database
operations of non-authorized users and how authorized users
can approve/disapprove the operations (Figure 5).

REFERENCES

[1] I. Baxter, M. Ouzzani, S. Orcun, B. Kennedy, S. S. Jandhyala, and D. E.
Salt, “Purdue Ionomics Information Management System. An Integrated
Functional Genomics Platform,” Plant Physiol., vol. 143, no. 2, 2007.

[2] M. Eltabakh, M. Ouzzani, and W. Aref, “bdbms: A database management
system for biological data,” in CIDR, 2007, pp. 196–206.

[3] M. Eltabakh, M. Ouzzani, W. Aref, A. Elmagarmid, and Y. Lura-silva,
“Supporting annotated relations,” Purdue University, Technical Report,
CSD TR07-025, 2007.

[4] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya, “An annotation
management system for relational databases,” 2004, pp. 900–911.

[5] P. Buneman, A. P. Chapman, and J. Cheney, “Provenance management
in curated databases,” in SIGOMD, 2006.

[6] P. Buneman, S. Khanna, and W.-C. Tan, “On propagation of deletions
and annotations through views,” in PODS, 2002, pp. 150–158.

[7] W.-C. Tan, “Containment of relational queries with annotation propaga-
tion,” in DBPL, 2003.

[8] P. P. Griffiths and B. W. Wade, “An authorization mechanism for a
relational database system,” ACM Transactions on Database Systems
(TODS), vol. 1, no. 3, pp. 242–255, 1976.

