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Abstract1 

To achieve more efficient video indexing and access, we 
introduce a video content structure and event mining 
framework. A video shot segmentation and key-frame 
selection strategy are first utilized to parse the continuous 
video stream into physical units. Video shot grouping, group 
merging, and scene clustering schemes are then proposed to 
organize the video shots into a hierarchical structure using 
clustered scenes, scenes, groups, and shots, in increasing 
granularity from top to bottom. Then, audio and video 
processing techniques are integrated to mine event 
information, such as dialog, presentation and clinical 
operation, among the detected scenes. Finally, the acquired 
video content structure and events are integrated to construct 
a scalable video skimming tool which can be used to visualize 
the video content hierarchy and event information for 
efficient access. Experimental results are also presented to 
evaluate the performance of the proposed algorithms. 

1. Introduction 

As a result of decreased costs for storage devices, increased 
network bandwidth, and improved compression techniques, 
digital videos are more accessible than ever. To help users 
find and retrieve relevant video effectively and to facilitate 
new and better ways of entertainment, advanced technologies 
must be developed for indexing, filtering, searching, and 
mining the vast amount of videos now available on the web. 
While numerous papers have appeared on video analysis and 
retrieval, few deal with video database management and 
mining [1-6]. There has recently been much interest in video 
database mining [7-9], however, most existing data mining 
techniques work on structured data, but video data are 
unstructured [7]. The existing data mining tools suffer from 
the following problems when applied to video database:  
• Database Model Problem: Most traditional data mining 

techniques work on the relational database [1-3]. 
Unfortunately, video documents are generally 
unstructured in semantics and cannot be represented 
easily via the relational data model. A good video 
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database model is necessary and critical to support more 
efficient video database management and mining. 

• Objective Problem: Existing video retrieval systems 
first partition videos into a set of access units such as 
shots, objects, or regions [10, 17], and then follow the 
paradigm of representing video content via a set of 
feature attributes (i.e., metadata) such as color, texture, 
shape, motion and layout. Thus, video data mining can be 
achieved by performing the data mining techniques on 
the metadata directly. Unfortunately, there is a semantic 
gap between low-level visual features and high-level 
semantic concepts. The capability of bridging the 
semantic gap is the first requirement for existing data 
mining tools to be used for video data mining [7]. 
There are several widely accepted data mining techniques 
[1-4], but most of them are unsuitable for video database 
mining because of the semantic gap. Classification via 
machine learning is an attractive technique for video 
database mining [7]. However, decision tree classifiers 
may consist of hundreds of thousands of internal nodes, 
which are consequently very difficult to comprehend and 
interpret. Moreover, the constructed tree structures do not 
make sense to the video database indexing. Detecting 
similar or unusual patterns is not the only objective for 
video data mining. The current challenge is to determine 
what type of outcome is most suitable for video data 
mining. The capability of supporting more efficient video 
database indexing is the second requirement for existing 
data mining tools to be applicable to video data mining. 

• Secur ity Problem: As more and more techniques are 
developed to access video data, there is an urgent need 
for video data protection [4, 11]. For example, one of the 
current challenges is to protect children from accessing 
inappropriate videos on the Internet. In addition, video 
data are often used in various environments with very 
different objectives. An effective video database 
management structure is needed to maintain data 
integrity and security. User-adaptive database access 
control is becoming an important topic in the areas of 
networks, database, national security, and social studies. 
Multilevel security is needed for access control of various 
video database applications. The capability of supporting 
a secure and organized video access is the third 



requirement for the existing data mining tools to be 
applied to video data mining. 
In this paper, we introduce our framework, ClassMiner, 

which makes some progress in addressing these problems. In 
Section 2, we present a database management model and our 
system architecture.  A video content structure mining scheme 
is proposed in Section 3, and the event mining strategy among 
detected scenes is introduced in Section 4. Based on the 
acquired content structure and event information, a scalable 
video skimming tool is proposed in Section 5. Section 6 
presents the results of algorithm evaluation and we conclude 
in Section 7.  

2. Database management framework and 
system architecture 

There are two widely accepted approaches for accessing 
video in databases: shot-based and object-based. In this paper, 
we focus on the shot-based approach. In order to meet the 
requirements for video data mining (i.e., bridging the 
semantic gap, supporting more efficient video database 
management, and access control), we classify video shots into 
a set of hierarchical database management units, as shown in 
Fig. 1. To support efficient video database mining, we need to 
address the following key problems: (a) How many levels 
should be included in the video database model, and how 
many nodes should be included in each level? (b) What kind 
of decision rules should be used for each node? (c) Do these 
nodes (i.e., database management units) make sense to human 
beings? In order to support hierarchical browsing and access 
control, the nodes in the database indexing tree must be 
meaningful to human beings. 

We solve the first and third problems by deriving the 
database model from the concept hierarchy of video content. 
Obviously, the concept hierarchy is domain-dependent; a 
medical video domain is given in Fig. 2. This concept 
hierarchy defines the contextual and logical relationships 
between higher level concepts and lower level concepts. The 
lower the level of a node, the narrower is its coverage of the 
subjects; thus, database management units at a lower level 
characterize more specific aspects of the video content and 
units at a higher level describe more aggregated classes of 
video content. From the database model proposed in Fig.1 and 
Fig.2, we find that the most challenging task in solving the 
second problem is to determine how to map the physical shots 
at the lowest level with various predefined semantic scenes. 
In this paper, we will focus on mining video content structure 
and event information to attain this goal.  

As shown in Fig. 3, we first utilize the general video shot 
segmentation and key-frame selection scheme to parse the 
video stream into physical units. Then, the video group 
detection, scene detection and clustering strategies are 
executed to mine the video content structure. Various visual 
and audio feature processing techniques are utilized to detect 
slides, face and speaker changes, etc. within the video, and 
these detection results are joined together to mine three types 
of events (presentation, dialog, clinical operation) from the 

detected video scenes. Finally, a scalable video skimming tool 
is constructed by utilizing mined video content structure and 
event information to help the user visualize and access video 
content effectively.  
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Figure 1. The proposed hierarchical video database model, where the 
cluster may include multiple levels according to the concept 
hierarchy, and a video scene consists of sequence of shots. 

 Database Root Node 

Health care Medical Education Medical report 

Medicine Nursing Dentistry 

Presentation Dialog Clinical Operation 

Video Shot 1 Video Shot k Video Shot Nc 

······· ······· 

······· 

······· 

······· ······· 

······· 

······· 

Database Level 

Cluster 

Subcluster 

Scene 

Shot and Object 

Figure 2. The concept hierarchy of video content in the medical 
domain, where the subcluster may consist of several levels 
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Figure 3. System architecture 

3. Video content structure mining 

The simplest way to parse video data for efficient browsing, 
retrieval and navigating is to segment the continuous video 
sequence into physical shots, and then select one or more 
representative frames for each shot to depict its content 
information [12-13]. We use the same approach in our 



strategy. Video shots are first detected from a video using our 
shot detection techniques [10]. For the sake of simplicity, the 
10th frame of each detected shot is selected as its 
representative frame.  

As we know, a video shot is a physical unit, and is 
usually incapable of conveying independent semantic 
information. Hence, various approaches are proposed to parse 
video content or scenario information. Zhong et. al [12] 
proposes a strategy which clusters visually similar shots and 
supplies the viewers with a hierarchical structure for 
browsing. However, since spatial shot clustering strategies 
consider only the visual similarity among shots, the video 
context information is lost. To address this problem, Rui et. al 
[14] presents a method which merges visually similar shot 
into groups, then constructs a video content table by 
considering the temporal relationships among groups. The 
same approach is reported in [16]. In [15], a time-constrained 
shot clustering strategy is proposed to cluster temporally 
adjacent shots into clusters, and a Scene Transition Graph is 
constructed to detect the video story unit by utilizing the 
acquired cluster information. A temporally time-constrained 
shot grouping strategy has also been proposed [17].  

Generally, most videos from daily life can be represented 
using a hierarchy of five levels (video, scene, group, shot and 
frame)* , increasing in granularity from top to bottom. Hence, 
the most efficient way to address video content is to construct 
a video content hierarchy. As shown in Fig. 1, our video 
content structure mining is executed in three steps: (1) group 
detection, (2) scene detection, and (3) scene clustering. The 
video shots are first grouped into semantically richer groups. 
Then, similar neighboring groups are merged into scenes. 
Beyond the scene level, a pairwise cluster scheme is applied 
to eliminate repeated scenes in the video. And finally, the 
video content structure is constructed successfully. 

*Remark: In this paper, the video group and scene are 
defined as follows: (1) A video group is an intermediate entity 
between the physical shots and semantic scenes; examples of 
groups are temporally related shots or spatially related shots. 
(2) A video scene is a collection of semantically related and 
temporally adjacent groups depicting and conveying a high-
level concept or story. 

3.1 Video group detection 

The shots in one group generally share a similar background 
or have a high correlation in time series. Therefore, to 
segment the spatially or temporally related video shots into 
groups, a given shot is compared with shots that precede and 
succeed it (using no more than 2 shots) to determine the 
correlation between them, as shown in Fig.4. Since closed 
caption and speech information is not available in our 
strategy, visual features such as color and texture play a more 
important role in determining the similarity between shots. 
We adopt a 256-bin dimensional HSV color histogram and 10-
bin dimensional tamura coarsness texture for visual features. 
Suppose Hi ,j, j∈[0,255] and Ti ,j,j∈[0,9] are the normalized 

color histogram and texture of the key frame i. The similarity 
between shot i, j is defined by Eq. (1). 
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where Si, Sj denote shot i and j respectively, WC and WT 
indicate the weight of color and tamura texture. For our 
system, we set WC=0.7, WT=0.3.  

In order to detect the group boundary by using the 
correlation among adjacent video shots, we define the 
following similarity distances: 

CLi =Max{  StSim(Si,Si -1), StSim(Si,Si -2)}       (2) 

      CRi =Max{  StSim(Si,Si+1), StSim(Si,Si+2)}             (3) 

CLi+1 =Max{  StSim(Si+1,Si -1), StSim(Si+1,Si -2)}         (4) 

CRi+1 =Max{  StSim(Si+1,Si+2), StSim(Si+1,Si+3)}       (5) 

Given video shot Si, if it is the first shot of a new group, it 
will have larger correlations with shots on its right side (as 
shown in Fig. 4) than shots on its left side, since we assume 
the shots in the same group usually have large correlations 
with each other. A separation factor R(i) for shot Si is defined 
by Eq. (6) to evaluate a potential group boundary. 

R(i)=(CRi+CRi+1)/(CLi+CLi+1)         (6) 

The shot group detection procedure then takes the following 
steps: 
1. Given any shot Si, if CRi is larger than T2-0.1: 

a. If R(i) is larger than T1, claim that a new group starts 
at shot Si.. 

b. Otherwise, go to step 1 to process other shots. 
2. Otherwise: 

a. If both CRi and CLi are smaller than T2, claim that a 
new group starts at shot Si. 

b. Otherwise, go to step 1 to process other shots. 
3. Iteratively execute step 1 and 2 until all shots are parsed 

successfully. 
As the first shot of a new group, both CRi and R(i) of shot Si 
are generally larger than predefined thresholds. Step 1 is 
proposed to handle this situation. Moreover, there may be 
shot that is dissimilar with groups on its both sides, with itself 
acting as a group separator (like the anchor person in a News 
program.) Step 2 is used to detect such boundaries. 

The threshold T1 and T2 can be automatically determined 
via a fast entropy technique [10]. 

 

 i -1 i+1 Shot i  i+2 i -2 i+3 

 
Figure 4. Correlations among video shots 

With the strategy above, two kinds of shots are absorbed 
into a given group: (1) shots related in temporal series, where 
similar shots are shown back and forth. Shots in this group are 
referred to as temporally related, and (2) shots similar in 
visual perception, where all shots in the group are similar in 
visual features. Shots in this group are referred to as spatially 
related. 



3.1.1 Group classification and representative shot  
         selection 

Given any detected group, Gi, we will classify it in one of two 
categories: temporally vs. spatially related group. Assume that 
there are T shots (Si, i=1,..,T) contained in Gi. The group 
classification strategy is as follows:  
Input: Video group Gi and shots Si (i=1,..,T) in Gi. Output: 
Clusters (CNc, Nc=1,..U) of shots in Gi. 
Procedure: 
1. Initially, set variant Nc=1; cluster CNc has no members. 
2. Select the shot (Sk) in Gi with the smallest shot number as 

the seed of cluster CNc, and subtract Sk from Gi. If there 
are no more shots contained in Gi, go to step 5. 

3. Calculate the similarity between Sk and shot Sj in Gi, If 
StSim(Sk,Sj) is larger than threshold Th, absorb shot Sj into 
cluster CNc, and subtract Sj from Gi. 

4. Iteratively execute step 3, until there are no more shots 
that can be absorbed into the current cluster CNc. Increase 
Nc by 1 and go to step 2. 

5. If Nc is larger than 1, we claim Gi is a temporally related 
group, otherwise it is a spatially related group. 

In order to support hierarchical video database indexing and 
summarization, the representative shot(s) of each group are 
selected to represent and visualize the content information in 
Gi. We denote this procedure as SelectRepShot(). 

[SelectRepShot] 
The representative shot of group Gi is defined as the shot that 
represents the most content in Gi. Since semantic content is 
not available, we use visual features in our strategy. With the 
technique above, all shots in Gi are merged into Nc clusters, 
and these clusters will help us to select the representative 
shots for Gi. Given group Gi with Nc clusters (Ci) , we denote 
by ST(Ci) the number of shots contained in cluster Ci. The 
representative shot of Gi is selected as follows: 
1. Given Nc clusters Ci  (i=1,..,Nc) in Gi, use steps 2, 3 and 4 

to extract one representative shot for each cluster Ci. In 
all, Nc representative shots will be selected for Gi. 

2. Given any cluster Ci which contains more than 2 shots, 
the representative shot of Ci (denote by RS(Ci)) is 
obtained from Eq. (7) 
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3. If there are 2 shots contained in Ci, the shot with larger 
time duration usually conveys more content information, 
and hence is selected as the representative shot of Ci.  

4. If there is only 1 shot contained in cluster Ci, it is selected 
as the representative shot for Ci. 

3.2 Video group similarity evaluation 
As we stated above, video scenes consist of semantically 
related adjacent groups. To merge video groups for scene 
detection, the similarity between video groups must be 
determined. We first consider the similarity between the shot 
and group. Based on Eq. (1), given shot Si and group Gj, the 
similarity between them is defined by Eq. (8). 
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This implies that the similarity between Si and Gj is the 
similarity between Si and the most recent shot in Gj.  

In general, when we evaluate the similarity between two 
groups using the human eye, we usually take the group with 
fewer shots as the benchmark, and then determine whether 
there are any shots in the second group similar to shots in the 
benchmark group. If most shots in the benchmark group are 
similar enough to the other group, they are treated as similar. 

Given group Gi and Gj, assuming jiG ,
ˆ represents the group 

containing fewer shots, and 
jiG ,

~ denotes the other group. 

Suppose NT(x) denotes the number of shot in group x, then, 
the similarity between Gi and Gj is given by Eq. (9). 
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That is, the similarity between Gi and Gj is the average 
similarity between shots in the benchmark group and their 
most similar shots in the other group.  

3.3 Group merging for scene detection 

Since our shot grouping strategy places more emphasis on the 
details of the scene, one scene may be parsed into several 
groups. However, groups in the same scene generally have 
higher correlation with each other when compared with other 
groups in different scenes. Hence, we introduce a group 
merging method as follows: 
1. Given groups Gi, i=1,..,M, calculate similarities between 

all neighboring groups (SGi, i=1,..,M-1) using Eq. (10), 
where GpSim(Gi,Gj) denotes the similarity between group 
Gi and Gj (given in Eq. (9) 

SGi=GpSim(Gi, Gi+1)  i=1,..,M-1 (10) 
2. Collect all similarities SGi, i=1,..,M-1, and apply the fast 

entropy technique [10] to determine the merging 
threshold TG.  

3. Adjacent groups with similarity larger than TG are 
merged into a new group.  If there are more than 2 
sequentially adjacent groups with  similarities larger than 
TG, all are merged into a new group. 

4. Those reserved and newly generated groups are formed 
as video scenes. Scenes containing less than three shots 
are eliminated, since they usually convey less semantic 
information than scenes with more shots. The 
SelectRepGroup() strategy is then used to select the 
representative group for each scene. 

[SelectRepGroup] 
For any scene, SEi, the representative group is defined as the 
group in SEi that contains the most content information of SEi. 
As noted previously, the low-level features associated with 
each group are used in our strategy: 
1. For any scene SEi that contains three or more groups, Gj 

(j=1,..,Ni), the representative group of SEi, Rp(SEi), is 
given by Eq. (11) 
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 That is, Rp(SEi) is the group in SEi which has the largest 
average similarity to all other groups. 

2. If there are only two groups in SEi, we use the number of 
shots and time duration in the group as the measurement. 
Usually, a group containing more shots will convey more 
content information, hence it is chosen as the 
representative group. If more than one group is selected, 
the group with longer time duration is selected as the 
representative group. 

3. If there is only one group in SEi, this group is selected as 
the representative group for SEi. 

In the sections below, the selected representative group 
Rp(SEi) is also taken as the centroid of SEi. 

3.4 Video scene clustering 

Using the results of group merging, the video scene 
information is constructed. In most situations, many scenes 
are shown several times in the video. Clustering similar 
scenes into one unit will eliminate redundancy and produces a 
more concise video content summary. Since the general K-
meaning cluster algorithm needs to seed the initial cluster 
center, and furthermore the initial guess of cluster centroids 
and the order in which feature vectors are classified can affect 
the clustering result, we therefore introduce a seedless 
Pairwise Cluster Scheme (PCS) for video scene clustering. 
Input: Video scenes (SEj, j=1,..,M) and all member groups 
(Gi, i=1,..,NG); Output: Clustered scene structure (SEk, 
k=1,..,N). 
Procedure: 
1. Given video groups Gi, i=1,..,NG, we first calculate the 

similarities between any two groups Gi and Gj (i=1,..,NG-
1; j=1,..,NG-1). The similarity matrix SMi j for all groups 
is then constructed using Eq. (12). 

SMi j(Gi,Gj)=GpSim(Gi,Gj), i=1,..,NG-1; j=1,..,NG-1     (12) 

 where GpSim(Gi,Gj) denotes the similarity between Gi 
and Gj which is given by Eq. (9). Since any scene SEj 
consists of one or more groups, the similarity matrix of 
all scenes ( i jMS ′ ) can be derived from the group 

similarity matrix (SMi j) using Eq. (13) 
jiMjiSERSERGpSimSESEMS jpipjiij ≠∈=′ ],,0[,));(),((),(  (13) 

2. Find the largest value in matrix
i jMS ′ . Merge the 

corresponding scenes into a new scene, and use 
SelectRepGroup() to find the representative group (scene 
centroid) for the newly generated scene. 

3. If we have obtained the desired number of clusters, go to 
the end. If not, go to step 4. 

4. Based on the group similarity matrix SMi j and the updated 
centroid of the newly generated scene, update the scene 
similarity matrix 

ijMS ′ with Eq. (13) directly, then go to 

step 2. 

To determine the end of scene clustering at step 3, the number 
of clusters N must be explicitly specified. Our experimental 
results suggest that for a significant number of interesting 
videos, if we have M video scenes, then using a clustering 
algorithm to reduce the number of scenes by 40% produces a 
relatively good result with respect to eliminating redundancy 
and reserving important scenario information. However, a 
fixed threshold often loses the adaptive ability of the 
algorithm. Therefore, to find an optimal number of clusters, 
we employ cluster validity analysis [21]. The intuitive 
approach is to find clusters that minimize intra-cluster 
distance while maximizing the inter-cluster distance. 
Assuming N denotes the number of clusters. Then the optimal 
cluster would result in measuring ρ(N) with the smallest 
value, where ρ(N) is defined in Eq. (14) 
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and Ni is the number of scenes in cluster i, and ui  is the 
centroid of the i th cluster (Ci). Hence, ςi is the intra-cluster 
distance of the cluster i, while ξi j is the inter-cluster distance 
of cluster i and j, and Cmin, Cmax are the ranges of the cluster 
numbers we seek for optimal values. We set these two 
numbers Cmin=[M⋅0.5]  and Cmax=[M⋅0.7] , where M is the 
number of scenes for clustering, and the operator [x] indicates 
the greatest integer which is not larger than x. That is, we seek 
optimal cluster number by eliminating 30% to 50% of the 

original scenes. Hence, the optimal number of cluster N̂  is 
selected as: 

))((ˆ
maxmin

NMinN
CNC

ρ
≤≤

=   (16) 

 
Figure 5. Video scene detection results 

Fig. 5 presents the experimental results of video scene 
detection strategy. By utilizing the shot grouping and group 
merging, most scenes can be correctly detected.  

4. Event mining among video scene 

After video shots have been parsed into scenes, the event 
mining strategy is applied to detect the event information 
among the scenes. A successful result would satisfy a query 
such as “Show me all dialogs within the video.”  Since 
medical videos are mainly used for educational purposes, the 



video content is usually recorded or edited using the style 
formats described below: 
• Using presentations of the doctor or experts to express 

the general topics about the video.  
• Using clinical operations (such as the diagnosis, surgery, 

organ pictures, etc.) to present details of the disease, their 
symptoms, comparisons and surgeries, etc. 

• Using dialog between the doctor and patients to acquire 
other knowledge about the disease. 

In this section, visual/audio features and rule information are 
integrated to mine these three types of events. 

4.1 Visual feature processing  

Visual feature processing is executed among all representative 
frames to extract semantically related visual cues. Currently, 
five types of special frame and regions are detected: slides or 
clip art frame, black frame, frame with face, frame with large 
skin area and frame with blood-red regions. Due to lack of 
space, we describe only the main idea; the algorithm details 
can be found in [18-20]. Since the slides, clip art frames and 
back frames are man-made frames, they contain less motion 
and color information when compared with other natural 
frame images. They also generally have very low similarity 
with other natural frames, and their number in the video is 
usually small. These features are utilized to detect slides, clip 
art and black frames. Following this step, the videotext and 
gray information are used to distinguish the slides, clip art and 
black frames from each other. To detect the faces, skin and 
blood-red regions, the Gaussian models are first utilized to 
segment the skin and blood-red regions, and then a general 
shape analysis is executed to select those regions that have 
considerable width and height. For skin-like regions, the 
texture filter and morphological operations are implemented 
to process the detected regions. A facial feature extraction 
algorithm is also introduced. Finally, a template curve-based 
face verification strategy is utilized to verify whether a face is 
in the candidate skin region.  

4.2 Audio feature processing 

Audio signals are a rich source of information in the video. It 
can be used to separate different speakers, detect various 
audio events, etc. In this paper, our objective is to verify 
whether speakers in different shots are the same person. The 
entire classification can be separated into two steps: (1) select 
the representative audio clip for each shot, and (2) compare 
whether representative clips of different shots belong to the 
same speaker. 

For each video shot, we will separate the audio stream 
into adjacent clips, such that each is about 2 seconds long (a 
video shot of length less than 2 seconds is discarded), and 
then compute 14 audio features from each clip [22]. We 
classify each clip using the Gaussian Mixture Model (GMM) 
classifier into two classes: clean speech vs non-clean speech, 
and select the clip most like the speech clip as the audio 
representative clip of the shot. Given any audio representative 
clip of the shot Si, a set of 14 dimensional mel frequency 

coefficients (MFCC) },..,{ 1 iNi xxX = are extracted from 30 ms 

sliding windows with an overlapping of 20 ms. Then, the 
Bayesain Information Criterion (BIC) procedure is performed 
for comparison [23]. 

The BIC is a likelihood criterion penalized by the model 
complexity. Given },..,{ 1 nxx=χ , a sequence of 

χN acoustic 

vectors, and ),( ML χ , the likelihood of χ for the model M, the 

BIC value is determined by: 
χλχ N

m
MLMBIC log

2
),(log)( −= , where m 

is the number of parameters of the model M and λ is the 
penalty factor. We assume that χ is generated by a multi-
Gaussian process. Given shot Si, Sj and their acoustic vectors 

},..,{ 1 iNi xxX = and },..,{ 1 jNj xxX = , we consider the following 
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The variation of BIC between hypothesis H0 (no speaker 
change) and H1 (speaker change) is defined by Eq. (18): 
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where 
ji NNN +=ℜ
, 

i
χχ ΣΣ , and

j
χΣ are, respectively the 

covariance matrices of the feature sequence },..,,..,{ 1 jii NNN xxx +
, 

},..,{ 1 iNxx and },..,{ 1 jNxx . The penalty is given by 

ℜ++= NpppP log))1(
2
1

(
2
1 , where p is the dimension of the 

acoustic space, and λ is the penalty factor. If BIC∆ is less 
than zero, we claim a change of speaker between shots Si and 
Sj. 

4.3. Event mining strategy 

Given any mined scene SEi, our objective is to verify whether 
it belongs to one of the following event categories:  
1. A “Presentation”  scene is defined as a group of shots that 

contain slides or clip art frames. At least one group in the 
scene should consist of temporally related shots. Moreover, 
at least one shot should contain a close-up face (human face 
with size larger than 10% of the total frame size), and there 
is no speaker change between adjacent shots.  

2. A “Dialog”  scene is a group of shots containing both face 
and speaker changes. Moreover, at least one group in the 
scene should consist of spatially related shots. The speaker 
change should take place at adjacent shots, which both 
contain the face. At least one speaker should be duplicated 
more than once. 

3. The “Clinical operation”  scene includes three kinds of 
medical events, such as surgery, diagnosis, symptoms, etc. 
In this paper, we define the “Clinical operation”  as a group 
of shots without speaker change, where at east one shot in 
SEi contains blood-red or a close-up of a skin region (skin 
region with its size is larger than 20% of the total frame 



size) or where more than half of shots in SEi contain skin 
regions. 

Based on the above definitions, the event mining is executed 
as follows. 
1. Input all shots in SEi and their visual/audio preprocessing 

results.  
2. Test whether SEi  belongs to a “Presentation”  scene: 

a. If there is no slide or clip art frame contained in SEi, 
go to step 3. If there is no close-up face contained in 
SEi, go to step 3. 

b. If all groups in SEi consist of spatially related shots, 
go to step 3. 

c. If there is any speaker change between adjacent 
shots of SEi, go to step 3,  

d. Assign the current group to the “Presentation”  
category; go to end or process other scenes. 

3. Test whether SEi belongs to “Dialog” : 
a. If there is either no face or no adjacent shots which 

both contain faces in SEi, go to step 4. 
b. If all groups in SEi consist of spatially related shots, 

go to step 4. 
c. If there is no speaker change between all adjacent 

shots which both contain faces, go to step 4. 
d. Among all adjacent shots which both contain face 

and speaker change, if there are two or more shots 
belonging to the same speaker, SEi is claimed as a 
“Dialog” , otherwise, go to step 4. 

4. Test whether SEi belongs to “Clinical Operation” : 
a. If there is a speaker change between any adjacent 

shots, go to step 5. 
b. If there are any close-up skin region or blood-red 

regions detected, SEi is assigned to “Clinical 
Operation” . 

c. If more than half of representative frames of all shots 
in SEi contain skin regions, then SEi is assigned as 
“Clinical Operation.”  Otherwise, go to step 5. 

5. Claim the event in SEi cannot be determined and process 
another scene. 

5.Scalable video skimming system 

Based on mined video content structure and events, a scalable 
video skimming tool has been developed to visualize an 
overview of the video and help the user access the video 
content effectively, as shown in Fig. 6. Currently, a four layer 
video skimming is constructed, with the level 4 to level 1 
video skimming consisting of representative shots of clustered 
scenes, all scenes, all groups, and all shots respectively. 
Hence, the granularity of video skimming increases from 
level 4 to level 1. A user can change to different levels of 
video skimming by clicking the up or down arrow. While 
video skimming is playing, only those selected skimming 
shots are shown, and all other shots are skipped. A scroll bar 
indicates the position of the current skimming shot among all 
shots in the video. The user can drag the tag of the scroll bar 
to fast-access the interesting video unit.  

To help users visualize the mined events, understand 
video content structure, and access the video more effectively, 
a color bar with each color representing one event type has 
been constructed, as shown in Fig. 6.  

6. Experimental results 

To illustrate the performance of the proposed strategies, two 
types of experimental results, video scene detection and event 
mining, are presented in this section. Our dataset consists of 
approximately 6 hours of MPEG-I encoded medial videos 
which describe face repair, nuclear medicine, laparoscopy, 
skin examination, and laser eye surgery. Fig.7 presents the 
experimental results and comparisons between our scene 
detection algorithm and other strategies [14, 17]. To judge the 
quality of the detected results, the following rule is applied: 
the scene is judged to be rightly detected if and only if all 
shots in the current scene belong to the same semantic unit 
(scene), otherwise the current scene is judged to be falsely 
detected. Thus, the scene detection precision (P) in Eq. (19) is 
utilized for performance evaluation. 

P= Rightly detected scenes / All detected scenes  (19) 
Clearly, without any scene detection (that is, treating each 
shot as one scene), the scene detection precision would be 
100%. Hence, a compression rate factor (CRF) is defined in 
Eq. (20). 

CRF=Detected scene number / Total shot number      (20) 
To show both CRF and P in the same figure, we multiply 
CRF by 10. We denote our method as A, and the two methods 
from the literature [14] and [17] as B and C respectively. 
From the results in Fig. 6, some observations can be made: (1) 
our scene detection algorithm achieves the best precision 
among all three methods, about 65% shots are assigned to the 
appropriate semantic unit, (2) method C achieves the highest 
compression rate, unfortunately the precision of this method 
is also the lowest, and (3) as a tradeoff with precision, the 
compression ratio of our method is the lowest (CRF=8.6%, 
each scene consists of about 11 shots). We believe that in 
semantic unit detection, it is worse to fail to segment distinct 
boundaries than to over-segment a scene. From this point of 
view, our method is better than other two methods. 

After the video content structure has been mined, we 
manually select scenes which distinctly belong to one of the 
following event categories: presentation, dialog and clinical 
operation, and use them as a benchmark. We then apply the 
event mining algorithm to automatically determine their event 
category. The experimental results are shown in Table 1, 
where PR and RE represent the precision and recall which are 
defined in Eq. (21) and Eq. (22), respectively. On average, 
our system achieves relatively good performance (72% in 
precision and 71% in recall) when mining these three types of 
events.  

PR= True Number / Detected Number  (21) 
RE= True Number / Selected Number  (22) 



7.Conclusion 

In this paper, we have addressed video mining techniques for 
efficient video database indexing and access. To achieve this 
goal, a video database management framework is first 
proposed. Then, a video content structure mining strategy is 
adopted to parse the video shots into a hierarchical structure 
using shots, groups, scenes, and clustered scenes by applying 
a shot grouping and clustering strategy. Meanwhile, both 
visual and audio feature processing techniques are proposed 
to extract the semantic cues within each scene. Afterward, a 
video event mining algorithm is then introduced by 
integrating visual and audio cues to detect three types of 
events: presentation, dialog and clinical operation. Finally, by 
integrating the mined content structure and events 
information, a scalable video skimming and content access 
prototype system is constructed to help the user visualize the 
overview and access video content more efficiently.  
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Figure 6. Scalable video skimming tool 
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Figure 7. Scene detection performance  

Table 1. Video event mining results 

Events Selected 
number 

Detected 
number 

True 
number 

PR RE 

presentation 15 16 13 0.81 0.87 
dialog 28 33 24 0.73 0.85 
clinical 

operation 
39 32 21 0.65 0.54 

average 82 81 58 0.72 0.71 
 


