
Composing and Maintaining Web-based Virtual Enterprises

Boualem Benatallah1 and Brahim Medjahed2 and Athman Bouguettaya2

and Ahmed Elmagarmid3 and James Beard4

1 School of Computer Science and Engineering

University of New South Wales, Australia

boualem@cse.unsw.edu.au

2 Department of Computer Science

Virginia Tech, USA

fbrahim,athmang@vt.edu

3 Department of Computer Sciences

Purdue University, USA

ake@cs.purdue.edu

4 CiTR Pty Ltd, Australia

j.beard@citr.com.au

Abstract

Electronic commerce (E-commerce) is evolving from the simple notion of electronic catalogs to the notion of
virtual enterprises (VEs). Existing enterprises form alliances, joining their services in order to share their costs,
skills and resources in o�ering a value-added service. Ad-hoc and proprietary solutions on the one hand, and
lack of a canonical model for composing and managing VEs on the other hand, have largely hampered a faster
pace in deploying Web-based VEs. In this paper, we propose a generic framework for creating and maintaining
VEs. We introduce a language, WebBIS-SDL, to cater for the de�nition and maintenance of VEs. To provide
an early feasibility of the proposed framework, we have implemented a prototype that allows easy de�nition and
maintenance of VEs. The implementation architecture is based on CORBA and provenWeb technologies including
Java and database APIs.

1 Introduction

Business-to-Business (B2B) E-commerce is a prime candidate to take advantage of the information revolution the
Web has brought about [14, 15, 28]. All predictions agree that B2B E-commerce will be worth billions of dollars in
new investment. The recent forecast by Forrester [17] estimates E-commerce to be a US$ 2.7 trillion market in the
year 2004. It is also estimated that more than 60% of all businesses will move their main operations to the Web
in the year 2002. Cheap connectivity and ease of advertising of data and services on the Web created tremendous
opportunities for organizations of any size to diversify their customer-base and become truly global [7, 10]. By
service, we refer to a semantically well de�ned functionality that allows users to access and perform tasks o�ered by
business applications. Examples of services include electronic catalogs, order procurement, customer relationship
management (CRM), �nance, billing, accounting, human resources, supply chain and manufacturing [14, 15, 28].

The ability to eÆciently and e�ectively share services across the Web is a critical step towards the development
of the new on-line economy driven by the B2B E-commerce. Organizations will be able to integrate their services
across boundaries to form what is known as Virtual Enterprises (VEs) [19]. Briey stated, a VE is a conglomeration
of core and outsourced services working in tandem to achieve the business goals of the enterprise. Existing
enterprises form alliances, joining their services in order to share their costs, skills and resources in o�ering a
value-added service. An example of a VE is a computer company that o�ers sophisticated and complete computer
con�gurations. Services are outsourced from several business partners. The trading community is composed
of autonomous companies producing hardware and software parts (monitors, processors, compilers, etc.) Upon
reception of an order from a customer, the computer company sends requests to its partners for the needed parts
(or services). VE architectures will depend on the relationships between the business partners:

� Centralized: a central organization forms a long term relationship with its partners in a tightly coupled mode.
The organization controls the global business process of the enterprise. A typical example of a centralized
VE is a value-added service that provides an integrated access to all customer information systems of an
organization (e.g., an organization may have several independent customer information systems which are
developed for di�erent purposes).

� Federated: the participants are loosely coupled and form a long term relationship. A participant may inde-
pendently collaborate with other services in order to play a role in multiple VEs. A typical example of a
federated VE is a product manufacturing value chain. A participant would focus on one activity in the value
chain and partners with multiple services in other value chains.

1

� On-the-y: the participants are loosely coupled and form a transient relationship. They may need to form a
fast and short term partnership (e.g., for one business transaction), and then disband when it is no longer
pro�table to stay together. In contrast to the previous forms, a participant does not assume an a priori
de�ned trading relationship with other partners. Instead, it needs to dynamically discover the partners to
team up with to deliver the required service.

Now that the Web has made services readily accessible, the challenge is to automatically compose them to
create VEs. However, there has been little success to achieve this objective [19]. Indeed, the development of
integrated VEs is still ad-hoc, time-consuming and requires enormous e�ort of low-level programming [1]. This
task is obviously tedious and hardly scalable because the Web is large, distributed, heterogeneous, volatile, and
highly dynamic. First, enabling a VE developer to locate relevant services for composition is a key challenge.
The existing Web tools give very little support for the logical organization of the service space, which makes the
e�ective use of services enormously complex. Another barrier is the lack of underlying frameworks to describe and
advertise services with semantically meaningful abstractions so that they can be eÆciently discovered, accessed,
and composed. Second, since the services to be integrated are most likely autonomous and heterogeneous, building
a VE with appropriate inter-service coordination is diÆcult. More signi�cantly, the fast and dynamic integration
of services is an essential requirement for organizations to adapt their business practices to the highly volatile and
dynamic nature of the Web. Third, VEs require exibility to dynamically adapt components and relationships as
required such as changing partnerships in order to o�er similar services to the customers in a more cost-e�ective
way.

Conventional point-to-point integration techniques such as EDI [28], component-based E-commerce systems
(e.g., integrated electronic catalogs [14, 15] and cross-organizational workows [13, 19, 20, 21]) are usually appro-
priate to integrate small numbers of services with static relationships. In fact, these techniques provide interesting
foundations to support centralized and to some degree federated partnerships. VEs, particularly on-the-y part-
nerships, require more exible integration techniques. More signi�cantly, the existing techniques are ine�ective in
large and highly dynamic environments.

Database research has undeniably made large strides towards integrating data on the Web [8, 9, 16]. However,
database solutions are in need to be revisited to cater for VE requirements. There is evidence that current
database techniques are inadequate to cope with the fast increase in data and transaction volumes on the Web
[10]. In addition, VE support di�ers from structured data support in at least two ways. First, a VE service1

usually provides a pre-de�ned interface to access and perform tasks o�ered by applications (e.g., Java programs,
CORBA servers) including those implemented on top of databases (e.g., CGI scripts) [25]. The provision of a
well-de�ned interface is essential for VE services to interact and exchange business information with other services
(and end-users). In contrast, a database provides an SQL-like language to access and query data. Second, a VE
service usually requires a sequence of operations and multiple interactions to ful�ll a task [19, 23]. For instance,
in order for a VE to monitor the execution status and availability of a component service, it must be possible to
interact with this service during the provision of the required operation. In contrast, interactions with databases
are rather simple (i.e., send query/get results).

Recently, a working group of the VLDB Endowment [2] suggested to distinguish between two main research
directions: core database technology and infrastructures for developing next generation of information systems.
While the �rst direction has been enormously successful over its 30-year history, it is clearly stated that the
second direction is currently under-developed [2, 5]. A primary objective of research in the second direction is to
promote database technology as an essential component of the infrastructure that will support the management
of all forms of data and application services (e.g., workows, distributed components and objects, agents, legacy
systems) available on the Web. Virtual enterprises are particularly emerging as new Web-based applications that
illustrate this direction [27]. In this paper, we present our work in the WebBIS (WebBase of Internet-accessible
Services) ongoing project. The fundamental aim is to provide a framework for the eÆcient and e�ective creation
and management of VEs. The current focus of WebBIS project is on providing support for scalable, extensible,
and exible integration of VE services. For this purpose, the proposed framework provides constructs to organize,
abstract, search, compose, evolve, monitor, and access VE services. Our approach is based on a three-folded
premises:

� It caters for the creation of dynamic, transient, as well as long-term relationships among services. To deal
with the volatility of the Web, our approach provides means to create virtual communities that bring together
variety of providers and requesters around a common interest. A virtual community is de�ned by describing

1In the remainder of this paper, we will use the terms service and VE service interchangeably.

2

the desired service (e.g., buying computers). Actual providers can register with any community of interest.
They join and leave communities at their own discretion. The participants in a community may thus form
temporary alliances and then disband when it is no longer pro�table to stay together.

� It uses an ontological organization of the space into meaningful subspaces (virtual communities) to �lter
interactions and accelerate service searches. An ontology de�nes taxonomies based on the semantic proximity
of terms [6]. In our case, an ontology is de�ned on VE services.

� It provides support for the maintenance of VE services. In a distributed environment, new services could
come on-line, existing services might be removed, the content and capabilities of an existing service may be
updated, etc. Our approach features the support for reporting and propagating VE service changes.

We propose two complementary declarative languages to cater for the de�nition (WebBIS-SDL) and manip-
ulation (WebBIS-QL) of VE services. WebBIS-SDL (WebBIS Service De�nition Language) allows to describe
and evolve the semantics of services and their interactions, wrap proprietary VE services, compose, and evolve
VEs. WebBIS-QL (WebBIS Query Language) caters for the search of relevant VE services. This paper presents
the WebBIS features for de�ning and maintaining VEs. Due to space constraints, the service search capabilities
of WebBIS are outside the scope of this paper. Details about these aspects can be found in [4]. To provide an
early feasibility of the proposed framework, we have implemented a prototype that allows transparent access to a
network of services. The implementation architecture is based on Java, CORBA, and database APIs.

The remainder of this paper is organized as follows. Section 2 gives an overview of the WebBIS framework.
Section 3 introduces WebBIS-SDL's constructs for wrapping proprietary/legacy services. Section 4 describes
WebBIS primitives to compose VEs. Section 5 discusses maintenance issues in WebBIS. Section 6 is devoted to
the WebBIS implementation. Related work and concluding remarks are presented in Section 7.

2 Overview of the WebBIS Framework

The current information infrastructure allows phenomenal exibility for producing Web-accessible services. What
is lacking is a framework to organize, abstract, search, compose, and evolve VEs. The support of exible and
eÆcient creation and maintenance of VEs requires the ability to:

� Model complex, autonomous, and heterogeneous services.

� Quickly develop and deploy new VEs from existing component services.

� EÆciently discover and exploit VE services in a dynamic and constantly growing environment.

� Dynamically adapt components and relationships of VEs. For example, it should be possible to change
partnerships in order to o�er similar services to the customers in a more cost-e�ective way or to maintain
user speci�ed quality of service despite changes in the operating conditions.

In order to address the above issues, we propose to model VE services using wrapped services, pull-communities,
and push-communities. Wrapped services are objects that provide means to abstract proprietary services from their
physical organization. This has the important advantage that they can be used as basis for further manipulations
(e.g., query, reuse, and customization). Pull- and push-communities provide means to create VEs by allowing
organizations to form partnerships and leverage their core services. It should be noted that we focus on federated
and on-the-y partnerships. The reason is that building VEs over the Web requires the support of (fast) integration
of loosely coupled, potentially dynamic, and autonomous component services. Pull-communities provide means
to create federated VEs. Push-communities are introduced for two reasons. First, they provide means to create
on-the-y VEs. Second, they provide means for an ontological organization of the cyberspace in order to reduce
the overhead of searching VE services. Indeed, each push-community is specialized in a single area of interest. In
a nutshell, push-communities can be used as a basis to establish online marketplaces for VE services. A push-
community can be seen as an online market for all consumers and providers in a given domain (e.g., computer
manufacturing, car manufacturing, supply chain, healthcare, etc.) To provide an end-to-end solution, our approach
provides support for the maintenance of VE services.

In the remainder of the paper, we use an example of a computer manufacturing VE (Figure 1) to illustrate
our approach. In this example, the trading community is composed of autonomous companies providing hardware
parts such as motherboards, CPUs, keyboards, memory storage devices, and so on.

3

2.1 Wrapped Services

A uniform model is central to represent service sharing. We adopt an object-oriented model to represent VE
services. Objects are suitable to represent complex structures and relationships among services and allow the
expression of their behavior using operations. In order to manipulate a proprietary service and abstract it from
its physical organization, we wrap it by a WebBIS compliant service, called wrapped service. This has the im-
portant advantage that VEs can integrate proprietary and legacy services. A wrapped service is an object that
encapsulates the content and capabilities of the underlying service. As depicted in Figure 1, companies providing
hardware parts are represented by the wrapped services processorprovider 1, ..., processorprovider n and
peripheralprovider 1, ..., peripheralprovider n.

A VE service can be represented by an object with an identi�er (the URI), attributes,methods, and noti�cations.
The attributes describe the service's relevant information including general (e.g., owner), access (e.g., public key
certi�cate), selection (e.g., documentation), and control (e.g., service observable states like running, completed,
etc.) information. Methods describe the service operations including valid requests to access, monitor (e.g.,
supervision of execution), and control the service (e.g., abort invocations). Noti�cations describe the events that
can be sent by the service to its requesters. For example, if a user orders a processor from processorprovider 1,
the latter may reply by a noti�cation when the order is completed. Event-driven systems are now becoming the
paradigm of choice for organizing many classes of loosely coupled and dynamic distributed applications [12, 20,
21, 22, 24]. In our approach, events are typically used to monitor (e.g., changes tracking) and provide awareness
(e.g., notifying users about changes in services) about speci�c situations. The support of event monitoring and
awareness results in providing pro-active and adaptive VEs that have the ability to notify their requesters about
relevant events, receive and automatically process appropriate actions in reaction to these events.

Legend

Composed of

Registered with......

processorprovider-1 processorprovider-n

......

peripheralprovider-nperipheralprovider-1

computerservice softwareservice

Push-communities

Pull-communities

Wrapped

processors hardwarecircuits peripherals PCshopping

Services

Figure 1: VE Services in WebBIS

In order to access the operations of proprietary/legacy services, we use translators. A translator is mainly used
to map WebBIS operations into the format understood by the underlying proprietary service. The corresponding
results are also translated into the format used by WebBIS. Assume that the processorprovider service provides
an operation called display image() that displays an image of a given processor. A corresponding translator,
say processorprovider translator, associates display image() with a routine that calls a Java class method
from the application that implements the underlying service.

We adopt the ECA (Event-Action-Condition) model [12] as a basis for the declarative speci�cation of the
business logic of VE services (i.e., constrains, contracts, policies, etc.) Briey, the basic semantics of an ECA
rule is as follows: when an event occurs, a condition is evaluated. If the condition evaluates to true, then an
action is activated. Encoding the business logic of services as ECA rules is especially attractive to support the
customization and increase in the exibility of VEs. For instance, rules can be added, modi�ed, or removed to
reect changes in both operational (e.g., server load) and market environments (e.g., user requirements).

4

2.2 Pull-communities

A pull-community provides a federated VE obtained from a collection of existing component services (wrapped
services, push-, and other pull-communities). The assembly of a federated VE from existing services requires the
location of the component services to be composed as well as their combination in a certain way. Requests to a
pull-community are performed by invoking internal operations or translated into requests to component services.
ECA rules are used to specify interactions between the community and its components.

As an illustration, the pull-community computerservice (Figure 1) o�ers sophisticated and complete
computer con�gurations by outsourcing products from di�erent wrapped services processorprovider 1 and
peripheralprovider 1. The computerservice community can also use operations of another pull-community
softwareservice (o�ering computer software) to get the needed software (operating systems, compilers, etc.)

Although workows can be used to specify the business logic of VEs, ECA rules o�er several advantages over
workows. Workows interleave the description of the content and capabilities of services, operations ow, and
integration of components [20, 21, 13]. This makes the reuse and evolution of VE services very complex. In our
approach, the clear separation of the components and ECA rules of a VE, makes changes in the business logic
transparent to the underlying components.

2.3 Push-communities

When assembling a federated VE using a pull-community, the developer needs to locate and understand the
meaning of the component services. Even if this approach seems especially suited to build an integrated VE
from a small number of loosely coupled services, it is however inappropriate in environments characterized by the
presence of a large number of dynamic services. We use the concept of push-community to address this issue.

A push-community (e.g., processors) describes the content and capabilities of a desired service without re-
ferring to any actual provider. In order to be accessible through a push-community, a provider (i.e, a wrapped
service, pull- or push-community) can register with this community to (fully or partially) o�er the desired service.
This involves the de�nition of the mappings between properties and operations de�ned in the community and
those de�ned in the service. For instance, the method testperformance() (resp., buy processor()) of the push-
community processors is mapped to the method display processor benchmark() (resp., order processor())
of the wrapped service processorprovider 1(). A service can register with one or several push-communities of in-
terest. It can also leave these communities at any time. In Figure 1, the wrapped services processorprovider 1,
..., processorprovider n are registered with the push-community processors which is itself registered with
the push-community hardwarecircuits. The pull-community computerservice is registered with the push-
community PCshopping.

A push-community is typically used for the creation of on-the-y VEs where providers form alliances to o�er
a desired service and then disband when it is no longer pro�table to stay together. It creates a virtual space that
provides a means to combine a collection of actual services (wrapped services, pull or other push-communities)
into a single unit. In addition, a push-community allows dynamic selection of services and provides for orderly
interaction with participant services. It may be organized around a common service o�ered by all providers. It may
also be used by providers who o�er parts of complex services. For example, if the push-community processors

provides operations that allow searching and buying processors, a member of this community may register for
both operations or alternatively for only one (e.g., searching processors).

In addition to providing a basis for composing a potentially large number of loosely coupled and dynamic
component services, push-communities provide means for an ontological organization of the cyberspace. Each
push-community is specialized in a single area of interest that essentially de�nes an ontology. In a nutshell, an
ontology de�nes taxonomies based on the semantic proximity of terms [6]. A push-community provides domain-
speci�c information as well as terms for interacting within the community and its underlying services. For example,
peripherals describes a collection of actual services that o�er online peripheral shopping such as monitors,
keyboards, etc. Such an organization would aim at reducing the overhead of discovering services.

Modeling VE services as push-communities results in providing online marketplaces (e.g., computer manu-
facturing, car manufacturing, supply chain, healthcare, etc.) that facilitate the dynamic search of partners and
on-the-y collaboration with participants of the marketplaces. The selection of a partner is based on the available
services, characteristics, organizational policies and resources that are needed to accomplish the integrated service.

5

3 Wrapping VE Services

We propose a uniform declarative language, calledWebBIS-SDL (WebBIS Service De�nition Language), for wrap-
ping proprietary/legacy services and composing VEs. This language uses the concepts of objects and active rules
as a basis for modeling VE services. This section focuses on wrapping VE services. The composition of VEs is
presented in the next section. The provider �rst speci�es the content and capabilities of a wrapped service in the
Provider-de�ned class. This class is compiled by the WebBIS system into another class called theWebBIS-extended
class. The latter is a sub-class of a generic class called WrappedService which is in turn a sub-class of the generic
class Service (Figure 2). These generic classes provide a minimal set of features required for accessing, monitoring,
and controlling services. A wrapped service is an instance of a WebBIS-extended class. In this section, we describe
the main features of the Provider-de�ned (Table 1.(a)) and the WebBIS-extended (Table 1.(b)) classes for wrapped
services.

WebBIS Generated
Classes

WebBIS-extended Class WebBIS-extended ClassWebBIS-extended Class

PullService ClassWrappedService Class PushService Class

Service Class

Wrapped Services

Provider-defined Class

Legend

Inherits from

Compilation

Instance of

......

Classes
WebBIS Pre-defined

WebBIS Services

Pull-communities Push-communities

Figure 2: Service Classes in WebBIS

Wrapped Provider-de�ned Class class-name Wrapped WebBIS-extended Class class-name

f P-properties list-of-properties f W-properties list-of-properties

P-operations list-of-operations W-operations list-of-operations

P-noti�cations list-of-notifications W-translators list-of-translators

g W-rules list-of-rules

g

(a) Provider-de�ned Class (b) WebBIS-extended Class

Table 1: Wrapped Service Classes

3.1 Provider-de�ned Features

The provider-de�ned class is composed of three clauses (Table 1.(a)): P-properties (P for Provider), P-operations,
and P-noti�cations. The P-properties clause describes service-speci�c information (e.g., warranty of a hardware
part) expressed by attributes of the provider-de�ned class. For instance, the attribute warranty is de�ned using
the following WebBIS-SDL statement:

P-properties

attribute integer warranty;

.........

6

The P-operations clause introduces the list of operations o�ered by a VE service. These operations are expressed
by methods (the terms method and operation will be used interchangeably) of the provider-de�ned class. Input
and output parameters are given for each method. A pre-condition is also speci�ed. It de�nes the constraints
that must be satis�ed to use the method. In addition, an activation mode of the method can be speci�ed. It
can be either a request, temporal, or both mode. A request mode means that the method is activated only if
explicitly requested (e.g., by end-users or in the business logic of another service). A temporal mode means that
the method is activated automatically at a speci�ed time (e.g., each �rst date of the month at noon). Note that
the model we use to specify temporal modes is subject to future work. A both mode includes the two previous
modes. By default, the activation mode of an operation is request.

The method order processor() of the processorprovider class is, for example, de�ned using the following
WebBIS-SDL statement:

method order processor

pre-condition subscribed;

input string product name, string store name;

output before string delivery note, after string orderID;

abort string failed;

The method order processor() requires two input values: the product and store names. The use of this
method is restricted to current subscribers. The output of this method is an identi�er of the order. A method
may also have alternative outputs. An abort output is an indication that the method has failed. Note that the
value of some outputs may be produced before the completion of the execution. In this case, the de�nition of
the parameter is pre-�xed by the keyword before. Outputs are by default after parameters (i.e., their values
are produced after the completion of the execution). The value of the output parameter delivery note can be
available before the completion of the order processor() method. Thus, a part of an operation result can be
requested before its completion. This feature is particularly useful for long-lived services [23]. Since no activation
mode is speci�ed, the request mode is considered by default.

The P-noti�cations clause speci�es the events that can be sent by a VE service to its requesters. These events
can be used to inform the requester about the service state and situations produced during operation execu-
tions. In WebBIS, noti�cation events correspond to observable state transitions (e.g., notready, ready, frozen,

running, completed, aborted). Disclosing state information allows to capture service-speci�c behavior, provide
a comprehensive modeling of VE interactions, and facilitate the coordination of VE operations as in workow sys-
tems [20, 13]. For example, processorproviderwould raise a noti�cation event order processor termination()

when the execution of the method order processor() is completed. Each noti�cation event has a name and a
list of parameters and is an instance of a particular class called Event. Its values contain information that
must be sent with the event. For example, the order processor termination() event has one parameter called
completion status. It indicates the output produced by the execution of order processor(). This is speci�ed
using the following WebBIS-SDL statement:

noti�cation order processor termination

type string completion status;

3.2 WebBIS-extended Features

The WebBIS-extended class includes four clauses (Table 1.(b)): W-properties (W for WebBIS), W-operations,
W-translators, and W-rules.

W-properties

Each attribute declared in this clause is either generated from those de�ned in the provider-de�ned class (e.g.,
warranty) or inherited from the WrappedService class (e.g., documentation, demonstration, servicestate,
logmode). A documentation is a human-readable description (e.g., textual or HTML document) about the VE
service including legal conditions, agreements, etc. A demonstration (e.g., a Java applet that plays a video
clip) provides means for understanding the content, capabilities, requirements and terminology of the VE. While

7

preparing documentation and demonstration involves additional overhead, we believe that providing these facilities
is necessary for controlling the creation of accurate and high-quality VEs. The creation of a VE is accomplished
mainly via a reuse process. So, it is extremely important to understand the semantics of a component service
before incorporating it as a part in a VE. It is also important (if needed) for a consumer to understand the behavior
of a service before requesting it.

The servicestate attribute determines the possible states of a VE service. It takes values from
the set f`notready', `ready', `frozen', `running', `completed', `aborted'g. Initially, the value of
servicestate is `notready'. State transitions (e.g., from running to aborted) are caused by the execution
of operations and controlled by ECA rules of the service. The logmode attribute determines the logging strategy.
The logging concerns events such as operation invocations. The default value of this attribute is the empty set
(i.e., no events will be logged).

Note that a provider can change the de�nition of an attribute. For example, the domain of the attribute
servicestate can include other states (e.g., `processorcompatibilitytested') to capture service-speci�c be-
havior. This state indicates that the processor compatibility has been tested, but the whole service is not completed
yet.

W-operations

This clause introduces both invoked operations intended to be called synchronously and noti�cation (or event-
based) operations which can be asynchronously executed in reaction to noti�cations.

Invoked Operations. Invoked operations are either generated from operations de�ned in the provider-de�ned
class or inherited from the WrappedService class. They include three types of methods: request, monitoring, and
control methods.

Request methods are used to invoke the available operations (e.g., start operation(),

get operation result()). For instance, start operation() starts the execution of an operation. Its input
parameters are the name of the operation (e.g., order processor()), the inputs of this operation, and the re-
quester identi�er. It returns the identi�er of an invocation object that can be used to get the result of the operation,
the execution status, and so on. Monitoring methods can be used to supervise the execution and measure the
performance of a VE service (e.g., get service status(), get operation status(), get operation cost(),

get operation progress()). The method get operation cost() can be used to estimate the cost of an opera-
tion execution. Its interpretation is provider dependent. For example, it may return the estimated execution time
or the size of the results. Control methods (e.g., open service(), cancel operation(), log operation()) can
be used to start a service, preempt its execution, or keep a log about method executions.

Two other types of operations get and set are implicitly de�ned for retrieving and updating the service prop-
erties respectively. Default implementations for most of the operations are provided.

Noti�cation Operations. Allowing noti�cation events requires support for event detection, construction,
and communication. The WebBIS-extended class includes a set of operations to deal with these issues. The
subscribe to notifications() method is used to subscribe to the advertised noti�cation events of a service.
The set servicestate()method is used to change the value of a service state (i.e., the servicestate attribute).
The event notification() is a remote method (in the sense of Java RMI [26] or remote calls in [1]). When
activated, it noti�es the target service about the occurrence of an event (e.g., change the value of an attribute that
determines event occurrence states). The after operation() method is used to perform some post-processing of
a given operation (e.g., call another operation). It is systematically triggered after the completion of the related
operation. It is especially useful for adding speci�c processing to an operation whose source code is not accessible.

Recall that operation executions may cause state transitions. For instance, the execution of the method
open service() will trigger the initialization of the attribute servicestate to `ready' (i.e., transition from the
state notready to ready). As noti�cation events correspond to observable state transitions, it is important to
maintain the list of operations whose execution may trigger the occurrence of this event. This task is performed
by the notification triggers() operation.

Now, let us explain the technique that allows to detect, construct, and communicate noti�cations. Given an
event E and a service S, the completion of an operation op that belongs to the list S.notification triggers(E),
triggers the operation S.after operation(op) which performs some post-processing of op including check-
ing the occurrence of E (based upon the results of op). If the event is detected then the operation
S.set servicestate(new-state) is invoked. This triggers the initialization of the object that represents the

8

noti�cation event (an instance of the class Event), and the invocation of event notification() for each service
that belongs to the list of the subscribers to the noti�cation event E. In fact, the proposed technique is encoded
as a set of ECA rules.

W-translators

The business logic of a wrapped service includes the declaration and instantiation of translators. As indicated
in Section 2.1, a translator is used to map WebBIS operations into the format understood by the underlying
proprietary service, and the corresponding results into the format used by WebBIS. A translator must supply
a concrete implementation for, at least, the following operations: open service(), start operation(), and
close service().

Another function of a translator is to support event noti�cations. As explained before, WebBIS o�ers a set
of methods to monitor and control noti�cations. These methods provide the necessary features to customize a
translator behavior in order to support noti�cations (e.g., adding post-processing code to the implementation of a
method via the after operation() method). The proposed technique is independent of the underlying services.
Whether an underlying service has built-in noti�cation capabilities or not, the interface of the WebBIS-extended
class is exible enough for a translator to provide noti�cation support. However, this technique does not use
the built-in noti�cation capabilities of the underlying services (e.g., services based upon OMG Event Service [26],
JavaBeans [26], trigger-enabled DBMSs such as Oracle, Informix or DB2). We are currently investigating the
use of techniques in the area of distributed event management (e.g., event management capabilities of underlying
services [12], change detection [24], etc.)

WebBIS allows any number of translators for a given proprietary/legacy service. These translators may use
alternative resources of the proprietary service. For example, if a translator provides delayed processing of a
speci�c operation, we might prefer to use a translator that provides faster processing, although both provide the
same functionality. Allowing multiple translators for a given proprietary/legacy service gives a strong abstraction
for VE exibility and customization. In essence, this provides a mechanism to incorporate new behavior or to
replace the behavior of a VE service. The selection of a speci�c translator is speci�ed by the ECA rules (e.g., use
one translator instead of another if certain conditions are satis�ed).

W-rules

Typically, ECA rules specify constraints on the service properties and methods (e.g., access rights). They also
specify the reaction to requests and responses from translators including noti�cation support. Their general form
is as follows:

rule rule-name

event event condition condition action action

An event is a method invocation (e.g., request method, control method, monitoring method), a noti�cation,
a service state transition (e.g., termination of an action), or a combination of events via logical operators (AND,
OR, NOT). A condition is a boolean expression over the service state. An action can be a method invocation,
noti�cation, or a group of actions to be sequentially or concurrently executed. For example, assume that the
processorprovider class contains a method called testcompatibility() and that the invocation of this method
triggers the execution of a local native application via the translator processorprovider translator. The
following WebBIS-SDL statement is used to specify how the system reacts when this method is invoked:

rule R1

event start operation(testcompatibility());

action processorprovider translator::start operation(testcompatibility());

4 Composing Virtual Enterprises

TheWebBIS-SDL language provides primitives to create pull-communities (resp., push-communities). The provider
�rst speci�es the Provider-de�ned class which is compiled into theWebBIS-extended class. The latter is a sub-class
of a generic class called PullService (resp., PushService) which is in turn a sub-class of the generic class Service

9

(Figure 2). A pull-community (resp., push-community) is an instance of a WebBIS-extended class. The provider-
de�ned class of pull and push-communities is de�ned in the same manner as for wrapped services. The di�erence
between wrapped services and pull/push-communities lies in the WebBIS-extended class. In the following, we
focus on presenting features that are speci�c to pull and push-communities.

Pull WebBIS-extended Class class-name Push WebBIS-extended Class class-name

f W-properties list-of-properties f W-properties list-of-properties

W-operations list-of-operations W-operations list-of-operations

W-components list-of-components W-rules list-of-rules

W-rules list-of-rules g
g

(a) Pull WebBIS-extended Class (b) Push WebBIS-extended Class

Table 2: WebBIS-extended Classes for Pull and Push-Communities

4.1 Federated Virtual Enterprises

As pointed out in Section 2, pull-communities provide a means to build federated VEs. The WebBIS-extended
class of a pull-community (Table 2.(a)) is composed of four clauses: W-properties, W-operations, W-components,
and W-rules. In this section, we focus on W-components and W-rules. The other clauses are described in the
same manner as for wrapped services. Note also that some of the ECA rules, we present here, are relevant to all
types of services (i.e., wrapped services, pull- and push-communities).

The W-components clause introduces the WebBIS compliant components of a federated VE. The composition
of computerservice from motherboards and processors is speci�ed using the following WebBIS-SDL statement:

W-components

component motherboards subscribe all;

component processors subscribe all;

.........

Subscription to noti�cations is introduced by the clause subscribe. The keyword all is used to specify that
the VE subscribes to all noti�cations of the component service. Subscription to an event speci�ed by giving the
name of the events and a constraint. The constraint is a condition on the values of the event parameters. It is
used to �lter the event instances that the subscriber is interested to be noti�ed about. Thus, when an instance
of the event occurs at the component side, the subscriber is noti�ed only if the instance satis�es the subscription
constraint.

A federated VE uses ECA rules to invoke operations provided by its partners (i.e., components) and coordinate
their execution. In our example, to process a customer order, computerservice invokes the checkavailability()
method of motherboards and processors. This can be speci�ed by the following rule in computerservice:

rule R2

event start operation(order computer());

action processors::start operation(checkavailability());

motherboards::start operation(checkavailability());

It should be noted that, it is possible to choose among multiple components to perform a method. The selection
of a speci�c component for performing a method is speci�ed by the ECA rules (similarly to choosing a translator
in a wrapped service).

4.2 On-the-Fly Virtual Enterprises

The WebBIS-extended class (Table 2.(b)) of a push-community includes three clauses, namely W-properties, W-
operations, and W-rules. In contrast to pull-communities, push-communities do not explicitly refer to WebBIS

10

components. However, a push-community can subscribe to noti�cation events of other services including its
members and other push-communities to which the community refers to. Reaction to noti�cations from the
underlying services is speci�ed in ECA rules of the push-community. In what follows, we introduce the main
features of push-communities. We focus on the novel aspects designed speci�cally to provide a basis for VE
marketplaces.

Ontological Organization of Virtual Enterprises

The WebBIS-extended class of a push-community contains a set of properties that constitute an important part
of the metadata that is used to facilitate the discovery of VE services. They provide a means for an ontological
organization of the available service space. These properties include the attributes domain type, synonyms,
overlapping communities, members, and sub-communities, which are inherited from the PushService class.

The attribute domain type is a string that de�nes the meaning of the push-community (e.g., selling peripherals
for the push-community peripherals). It provides a means to dynamically clump consumers and providers
together based on a common domain of interest (e.g., computer manufacturing, car manufacturing, supply chain,
healthcare, etc.) The attribute synonyms describes the set of alternative descriptions of each domain (e.g., CPU
is a synonym of processors).

The attribute overlapping communities contains all push-communities whose domains overlap with the do-
main of the current community. It de�nes an intersection relationship between the related communities. If a push-
community is not relevant to the received request, requesters can use the attribute overlapping communities

to �nd other push-communities. It should be noted that, it is the responsibility of a push-community provider
to identify the other push-communities that have related areas of interests and initialize the value of the at-
tribute overlapping communities. For instance, assume that a user is looking for push-communities that are
relevant to the speci�c domain of interest `selling processors'. The system �nds processors as a relevant push-
community. Let us assume also that, the value of the attribute overlapping communities of processors is
f`hardwarecircuits'g. This attribute can be used to �nd the push-community hardwarecircuits if the user
is not interested in the community processors. The attribute overlapping communities is used to provide a
peer-to-peer topology for connecting push-communities with similar domains. Communities that are connected
together form a consortium. Communities in a consortium can forward requests to each other. This topology
ensures that if one process community does not have the capabilities to process a given request, the request can
be forwarded to another community in the consortium.

The attribute members represents the collection of services which are members of the push-community. The
attribute sub-communities describes specialization relationship between push-communities. Note that services
which are members of a given push-community are not necessarily members of its super-community. However, a
push-community can register its members with its super-community.

Joining Push-communities

Providers can, at any time, locate and register with a push-community of interest using the
register with community() method (which is inherited from the PushService class). The method
register with community() is the interface a service uses to register with a push-community. Providers use
the WebBIS-QL to locate push-communities of interest. WebBIS-QL, an SQL-like language, provides primitives
for educating requesters about the available space, exploring service relationships, locating services based on con-
straints over their metadata, as well as accessing and manipulating VE services. Discovery and selection of services
in WebBIS-QL is based on semantics (e.g, ontological meta-data), quality of service, available control operations,
logs, and noti�cations. Service descriptions are stored in XML-based repositories. Due to space constraints, the
presentation of WebBIS-QL is outside the scope of this paper. Details about WebBIS-QL can be found in [4].

A service can register with one or several push-communities. This has the advantage that a service can still
be available even if one of the communities this service is registered with, is not available. The registration of
a service with a push-community requires to de�ne the mappings between properties as well as operations. The
mappings are stored as part of the value of the attribute members of the push-community. For instance, the service
processorprovider 1 can be registered with processors by using the following WebBIS-SDL statement:

Join Service source processorprovider 1 s target processors t

Mappings method t.testperformance() is s.display processor benchmark();
method t.buy processor() is s.order processor();
.........

11

The method testperformance() (respectively, buy processor()) of the push-community processors is
mapped to the method display processor benchmark() (respectively, order processor()) of the wrapped ser-
vice processorprovider 1(). It should be noted that registration may concern only a subset of the properties and
operations of a push-community. By featuring registration to a speci�c part of a push-community, our approach
allows the creation of push-communities which have several activities. Thus, VE services have the exibility to
register only for the activities they can provide. For instance, the community peripherals provides operations
for searching and buying monitors. Some of the actual services can provide either searching or buying (but not
both), and thus, register only for the part they can provide. A push-community provider can specify constraints
that must be satis�ed to be registered with its community. These constraints de�ne the pre-condition of the
register with community() method. For example, the peripherals push-community might require that the
registration for the buy monitor() operation requires the registration for the search monitor() operation.

A push-community can also register with another push-community. By doing so, the members of the �rst
push-community become members of the second push-community too. A push-community does not need to be
sub-community of another to register with. For consistency reasons, the following constraint is de�ned as a
part of the pre-condition of the register with community() method: a push-community cannot register with
its sub-communities. This is natural as it is implicit that members of a push-community can be members of its
super-community and not the opposite.

The registration of a service with a push-community involves a start-up cost to de�ne the mappings. However,
this cost is not signi�cant because the provider has only to understand the speci�cation of the push-community.
WebBIS helps providers with mechanisms to document services in a way that makes them understandable to users.

Dynamic Selection of Services

A push-community can be seen as an online marketplace for all consumers and providers in a given domain.
As such, it must provides support for dynamic selection of services through the marketplace. In our approach, a
request to a push-community is performed by (i) �nding a combination of actual services that satisfy the requester's
requirements and (ii) invoking the appropriate operations of the relevant services. To this end, appropriate
methods are de�ned in the class PushService including query() and apply operation(). The method query()

is the interface a push-community uses to search for members that satisfy some given conditions. The input
parameters of this method include a string which represents a query in the WebBIS-QL language [4]. The method
apply operation() is the interface a push-community uses to ask the underlying services to perform an operation.
The input parameters include the operation to be performed and the set of services which the push-community
wants to apply the operation to.

For example, let us assume that the pull-community computerservice uses the push-community processors

as a component instead of a wrapped service or a pull-community. The interesting part in this example
is that actual services (e.g., processorprovider 1, processorprovider 2, ..., processorprovider n) which
are members of processors can be dynamically selected to perform operations (e.g., search processor(),
order processor()) of computerservice. At runtime, it is possible to select an VE service according to a
given criteria (e.g., quality of service, cost). This selection is speci�ed in the ECA rules of computerservice by
means of the query() method of processors.

5 Change Management in Virtual Enterprises

Virtual enterprises operate in a highly dynamic environment. To cope with changes in this environment, it is
necessary to support the recon�guration of services. Mechanisms are needed to enable the addition, modi�cation,
relocation, and deletion of services in an eÆcient and controlled manner. This aspect is particularly important
for Web-based VEs, whereby both operational (e.g., server load) and market (e.g., changes of service availability,
changes of user's requirements) environment are not predictable. In our case, providers may delete, modify, and
relocate their services. For instance, a provider may delete an operation or an event from the de�nition of its
service. Changes can be initiated to adapt the current service to actual business climate (e.g., economic, politic,
organizational, or personal changes). All changes performed to a service should be propagated to other services
that rely on it to ensure global consistency. For instance if a component service is deleted, operations or events of
pull-communities depending on it become unavailable. A mechanism to propagate change propagation should be
devised. This section focuses on change management for VEs within the WebBIS framework.

12

5.1 Monitoring Services

In our approach, change propagation is facilitated by means of meta-services calledmonitoring services. Monitoring
services are pre-de�ned and extensible objects that surround each service. They contain operational knowledge
such as location, availability, and change control policies related to actual services. They also provide operations
for changing and monitoring services, subscribing to and notifying changes. Rules can be associated to change
related events as a part of the operational knowledge of monitoring services. Each service has a monitoring
service attached to it. Monitoring services reason and act upon evolution regarding services they are attached to.
They communicate among themselves and with the system in order to manage change propagation. Thus, the
combination of a service and its monitoring meta-object forms a synergy to model the life-cycle of that service.

A monitoring service maintains information about the availability of the related service. Service availability is of
particular importance for managing VEs. During its lifespan, a VE service can be available, temporarily unavailable
(e.g., due to a network problem or an explicit request from the service provider), or permanently unavailable (e.g.,
the service is deleted) [18]. A monitoring service contains an attribute called availability status. This attribute
takes values from the set f`perm unavailable', `temp unavailable', `available'g. Hence, the monitoring
service may exist even after the deletion of the related service. The system can, for example, periodically check
the availability of services, and delete all the monitoring services of the permanently unavailable services. A
modi�cation of the attribute availability status results in generating an instance of the event availability()
of the monitoring service. The reaction to this event may trigger some change operations as described in the
following subsection (e.g., freezing or deleting the service). It should be noted that a monitoring service and its
related service can be located in di�erent locations.

5.2 Change Operations and Events

The evolution of a service is accomplished through change operations of the monitoring service. Table 3 summarizes
basic change operations supported by WebBIS (for clarity reason, operation parameters are not speci�ed). Change
operations can be performed manually by service providers or automatically by monitoring services in reaction to
changes in other services. A change event is associated to each change operation (Table 3). Monitoring services
subscribe to and notify change events. The consequences of a change event occurrence are captured in rules that
can be de�ned in the sender or/and requester of the event. High level services (push and pull-communities) that
use other services must subscribe to the changes that they are interested in. Whenever a change event occurs,
information about the corresponding change is noti�ed to the subscribers. The subscribers react to the noti�ed
changes using their own change control policies via local rules. Thus, the reaction to changes can be customized
to the peculiarities of each VE. In what follows, we use simple examples to illustrate change propagation.

Operation Meaning Associated Event
freeze service() The service is made temporarily unavailable service frozen()

delete service() The service is made permanently unavailable service deleted()

resume service() The service (frozen formerly) is made available service resumed()

relocate service() Change the location of a service service relocated()

freeze operation() The operation is frozen (it cannot be invoked) operation frozen()

resume operation() The operation (frozen formerly) is resumed operation resumed()

add operation() The operation is added in the service operation added()

delete operation() The operation is removed from the service operation deleted()

modify operation() The de�nition of the operation is changed operation modified()

freeze event() The event is frozen (it cannot occur) event frozen()

add event() The event is added to the service event added()

resume event() The event (frozen formerly) is resumed event resumed()

delete event() The event is deleted from the service event deleted()

modify event() The de�nition of the event is changed event modified()

Table 3: Change Operations and Events

Let us assume that a provider decides to freeze its service (e.g., to operate local changes). The operation

13

freeze service() is used for this purpose (Figure 3). This operation allows the provider to freeze the service for
a period of time starting at a speci�ed date and time. The service can be frozen for an unlimited period of time
and then resumed afterwards. A service is reported as temporarily unavailable once it is is frozen. Consequently,
no requests are accepted from users. Di�erent scenarios are possible for the running instances of the service. For
example, they are allowed to �nish their execution, canceled, or frozen. The appropriate strategy is de�ned as ECA
rules of the monitoring service. The appropriateness of one scenario over another depends on the varying situations
and the nature of services. Whenever a decision to freeze a service is taken, a corresponding service frozen()

event occurs. Note that the event can occur before freezing the service, in order to inform subscribers in advance.
This event goes through a �ltering process to extract values of the event parameters and determine the relevant
subscribers of the event instance. Event parameters may encapsulate information about when the service will
be frozen, for how long, the alternative services (if any) that can be used while the service is frozen, and so
on. The identi�ed subscribers are then noti�ed. The information carried out with the event depends on what
subscribers registered for. For instance, the monitoring service of the pull-community computerservice which
uses processorprovider 1 as a component may register for information on when processorprovider 1 will be
frozen, how long it will be frozen, and the alternative services that can be used while it is frozen. In contrast, the
monitoring service of the push-community processors in which processorprovider 1 is a member, may register
for only information on when and how long processorprovider 1 will be frozen. It should be noted that the
subscribers react to the event using a local policy which speci�ed as ECA rules. For instance, the monitoring
service of computerservice may react by performing the operation freeze service() on computerservice;
whereas the monitoring service of processors may react by excluding processorprovider 1 from its members
while processorprovider 1 is frozen.

 1

 2

 3

 3

 4

 4

Monitoring
Service

Service
Monitoring processors

Service
Monitoring computerservice

Is a monitor of

Is a monitor of

Is a monitor of

Notification

Notification

Service
Provider

availability_status =
‘temp_unavailable’

freeze_service()

freeze_service()

delete_service()

processorprovide_1

Figure 3: Change Propagation in WebBIS

The deletion of a service results in updating the attribute availability status to make the service per-
manently unavailable and generating an instance of the event service deleted(). The event parameters may
encapsulate information about when the service will be deleted, the alternative services (if any) that can be used
to provide the same functionality, etc. Similarly to freezing a service, an appropriate strategy must be devised
and de�ned in the monitoring service to deal with the running instances of the deleted (or to be deleted) service.
Subscribers react to this event using local policies. For instance, the monitoring service of the pull-community
computerservicewhich uses processorprovider 1 as a component reacts by freezing computerservice; whereas
the monitoring service of the push-community processors in which processorprovider 1 is member may react
by removing processorprovider 1 from the list of its members.

Similar procedures are performed when a service provider withdraws an operation from its capabilities, changes
the de�nition of an operation, withdraws an event, or changes the de�nition of an event. For instance, the
modi�cation of an operation (resp. event) is noti�ed to subscribers only if the new de�nition of the operation
(resp. event) is not compatible with the old one in the sense of subtyping relationships (i.e., the new signature of
operation/event is not a sub-type of the old one) [3]. Monitoring services of push-communities may not register for
the deletion of an operation. Monitoring services of virtual enterprises may, for example, react to event deletion by

14

removing the rules associated to the event. The relocation of a service results in updating the repositories where
the service is advertised to include the new location. Contrary to previous changes, the relocation of a service is
not propagated to other services that depend on it (e.g., push-communities with which the service is registered).

In addition to the basic change operations mentioned in Table 3, monitoring services o�er operations to deal
with changes that may occur in the composition of a pull-community. The operations delete component(),
add component, and replace component allow to remove, add, and change a component respectively. The asso-
ciated events are component deleted(), component added(), and component replaced() respectively. Change
propagation is also performed whenever a service provider uses the previous operations. For example, assume that
(Figure 3) the pull-community computerservice is subscribed to the event service frozen()with its component
processorprovider 1. If the pull-community's provider decides to remove processorprovider 1 from its com-
ponents, the monitoring service of processorprovider 1 is noti�ed so that it can unsubscribe computerservice
from the service frozen() event.

6 Implemention Status

To illustrate the viability of the proposed architecture, we have implemented a computer manufacturing application
(Figure 4). The implementation is currently built on top of WebFINDIT [9], a working prototype for describ-
ing, locating, and querying data in large network of databases. The wrapped services IBM, Sony, and Philips

are registered with the push-community peripherals. AMD and Intel are registered with the push-communities
hardwarecircuits, processors and motherboards. The pull-community computerservice outsources oper-
ations from the wrapped services and push-communities. Note that all services in Figure 4 are used for trial
purposes. An evaluation in real Web applications to study the performance and scalability of our approach is
subject to a future implementation.

Module
Querying
Module

Execution
Module

Log
Manager Manager

Rules

Administration

��

VisiBroker OrbixWeb Orbix

IIOP

ORBs

IBM Philips Sony IntelAMD

Wrapped

Oracle mSQL DB2 ObjectStore ObjectStore

Invocation
C++ Method Proprietary

service object
CORBA Wrapped

ORB

Database
Application

CORBA push-community
Legend

J D B C Services

Services

computerservice

Pull-communities

Push-communities

CORBA pull-community

object

object

processors peripherals motherboardshardwarecircuits

(OrbixWeb)
Local Broker

User Interface

Service Manager

Repository
Service

Figure 4: Implementation of a Computer Manufacturing Application

The user interface is implemented using Java applets and communicates with the service manager also written
in Java. Users' requests are forwarded either to the administration, querying or execution module depending on

15

their type (Figure 4). These modules rely on the log manager to record the executed requests in a persistent log.
The administration and querying modules implement WebBIS-SDL and WebBIS-QL languages respectively. The
execution module is used to access, monitor, and control services. It interacts with the rules manager which is
responsible of ECA rules management (each method invocation corresponds to an event). The service manager
relies on a service repository (ObjectStore database) to handle the di�erent users' requests. Although we are
currently using a centralized repository with which all providers must register, a distributed solution (associating
a repository with each push-community) is on-going. We are also investigating the use of XML-based repositories
to store service descriptions.

The implementation uses three di�erent IIOP compliant ORBs, namely VisiBroker for Java, OrbixWeb, and
Orbix. These ORBs connect eight (8) services (push, pull, and wrapped services) registered as CORBA server
objects. These objects are implemented in Java (VisiBroker for Java or OrbixWeb server objects) or C++ (Orbix
server objects). Database applications are used to represent proprietary services. Information about these services
(e.g., monitor size, CPU clock speed, price) is stored in �ve (5) relational (Oracle, mSQL, DB2) and object-
oriented (ObjectStore) databases. Wrapped services that are registered as VisiBroker server objects access to
database applications (written in Java) either locally or remotely using Java RMI. Access to relational databases
that support a Java interface is provided via a JDBC bridge. Wrapped services that are registered as Orbix server
objects access locally to object-oriented databases via C++ method invocation as both Orbix and ObjectStore
support C++.

The interface allows users to choose among three functions: administrating, querying, and executing services.
Figure 5 represents the interface during the de�nition of the push-community processors. The provider spec-
i�es service properties including domain type (selling processors), synonym (processing units and CPUs), and
overlapping (motherboards and hardwarecircuits) which are speci�c to push-communities. A user interested
in registering with processor would typically start by discovering communities relevant to selling processors.
For this purpose, a query based on domain is submitted through the service query tab. The user has also the
possibility to understand the meaning and functionality of processor by accessing to the documentation and
demonstration properties. Figure 6 (see Appendix) depicts a scenario where a VE (the computerservice pull-
community) is de�ned. Assume that the VE developer wants to outsource services that provide monitors and
processors. She/he would typically start by submitting queries to �nd push-communities related to the activity
of selling monitors or processors (using the query tab). The system returns processor (de�ned in Figure 5) and
peripherals as relevant communities. Then, the VE developer queries the system for the members of these two
communities. The system returns IBM, Sony, and Philips as members of peripherals and Intel and AMD as
members of processor. The VE developer may access to the documentation and demonstration of these services
and then decide to select IBM, Intel, and Sony as business partners. For each component, the VE developer has
the possibility to specify the noti�cations she/he wants to subscribe to. The default value is `all' which includes
subscription to all noti�cations.

7 Related Work and Concluding Remarks

There is a whole body of research related to service sharing in several �elds including EDI [14, 28], electronic
catalogs [14, 15], workow [13, 19, 20, 21], and databases [7, 16].

EDI aims at o�ering an automatic and standard way to transfer data among business partners. EDI investigated
static solutions that are appropriate if the services to be integrated belong to organizations with long-term and
static trading relationships. Several existing e�orts such as CBL (Common Business Library) [14] promote the
use of XML to represent common interactions among VE services. While this approach promises features to help
in building integrated VEs, the related e�orts are still in their infancy.

Existing techniques for integrating electronic catalogs [14, 15, 28] typically rely on component-based middleware
technologies such as COBRA and DCOM [26]. They focus on the integration of a small number of tightly coupled
services. However, they present several limitations that make them ine�ective when the service space is large and
highly dynamic (e.g., the cost to set up a new business relationship is very high, it is not presently possible to
dynamically integrate new VEs, etc.)

Current workow systems are based on the premise that the success of an enterprise requires the management
of business processes in their entirety. Indeed, an increasing number of organizations have already automated their
internal process management using workows and enjoyed substantial bene�ts in doing so. However, one of the
most signi�cant weaknesses of existing workow systems, is the lack of exible mechanisms to adequately cope with
cross-enterprises relationships. Emerging projects in the workow area focuses on interoperability among a known

16

Figure 5: De�ning a Push-Community in WebBIS

and small number of business processes [19, 20, 21, 13]. In addition, current workow techniques are not exible and
rich enough to adapt to the ever expanding requirements of eÆciently running modern Internet-aware applications.
Current business processes within an organization are integrated and managed either using ERP systems such as
SAP/R3, Baan, PeopleSoft or various workow systems like IBM's MQ Series Workow or integrated manually on
demand-basis. The eFLOW [11] project proposes an interesting workow-based approach for composing business
processes. It focuses on the support of dynamic changes of processes to cope with exceptional situations as well as
the customization of process execution to the customer's needs. eFLOW does not consider the issue of wrapping
proprietary services. A similar approach for composing business processes is proposed in [20]. Both [11] and [20]
do not consider the issues of change propagation and building online marketplaces for virtual enterprises.

Traditional techniques in multidatabases focus on data sharing among a small number of heterogeneous
databases [7]. Web information integration systems [9, 7, 16] (e.g., SIMS, InfoSleuth, COIN, TSIMMIS, Informa-
tion Manifold, WebSemantics, DISCO) propose interesting capabilities for wrapping data sources and providing
uniform and declarative interfaces for querying and restructuring Web data sources. However, they do not consider
the establishment of dynamic communities. In addition, they have not dealt with the integration of VE services.

Other projects, namely ActiveViews [1] and CHAIMS [23] are also related to our work. ActiveViews proposes a
declarative language for specifying views that describe data and activities of di�erent users working interactively on
shared data which is stored in a centralized XML repository. ActiveViews primarily focuses on change management,
i.e., propagating changes from the repository to the views and vise-versa. However, it does not consider the problem
of sharing a large number of VE services. In the CHAIMS project, a protocol called CPAM (CHAIMS Protocol
for Autonomous Megamodules) has been developed for wrapping autonomous services. WebBIS goes beyond the
approach used in CPAM in that it provides support for dynamic communities, change propagation, and awareness
which is important to deal with VEs in large and dynamic environments.

The major di�erence of the WebBIS approach compared to the above mentioned techniques lies in the goals and
means of achieving service sharing over the Web. Simple access to and advertisement of VEs are key features when
querying them on the Web. WebBIS presents an incremental and self-documenting approach. It provides support
for educating users about the available service space. Since scalability and exibility are of great importance
in Web-based environments, WebBIS features appropriate abstractions. First, the ontological-like organization
and segmentation of the cyberspace in meaningful subspaces makes service search and sharing more eÆcient.
Second, the support of dynamic, transient, as well as long-term relationships enables more exible integration
of VE services. Third, the support of incremental and declarative integration provides for fast development and
deployment of new VEs. Fourth, the support of noti�cation management provides for pro-active deployment of
VEs. Finally, WebBIS supports change monitoring and propagation to deal with the volatility and dynamics of

17

Web environments.
We note that the approach described in this paper is a �rst step towards devising a framework for building

and managing virtual enterprises. More importantly, the proposed framework needs to be evaluated in real Web
applications in order to study the performance and scalability of the proposed techniques. We are currently
investigating another implementation prototype based on XML and EJB (Enterprise Java Beans) technologies.

Acknowledgments

The work of Prof. Athman Bouguettaya was supported by HP grant.

References

[1] Serge Abiteboul, Bernd Amann, Sophie Cluet, Anat Eyal, Laurent Mignet, and Tova Milo. Active views for
electronic commerce. In Proceedings of the 25th International Conference on Very Large Databases (VLDB),
Edinburgh, Scotland, September 1999.

[2] R. Agrawal, M. Brodie, M. Carey, U. Dayal, J. Gray, Y. Ioannidis, J. Mylopoulos, H. Schek, K.-Y. Whang,
and J. Widom. Future Directions of Database Research - Changes in the VLDB Conference PC Structure -.
Working Group of the VLDB Endowment, http://www.vldb.org/future.html, 1998.

[3] B. Benatallah. A Uni�ed Framework for Supporting Dynamic Schema Evolution in Object Databases. 8th
International Conference Conceptual Modeling - ER'99, Paris, France. Springer-Verlag (LNCS series), Novem-
ber 1999.

[4] B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elmagarmid, and J. Beard. Discovering and Integrating
Web-based Services. Technical report, School of Information Systems, QUT, Brisbane, Australia, February
2000.

[5] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J. Gray, J. Held, J. Hollerstein,
H. V. Jagadish, M. Lesk, D. Maier, J. Naughton, H. Pirahesh, M. Stonebraker, and J. Ullman. The Asilomar
Report on Database Research. Asilomar, California, September 1998.

[6] A. Bouguettaya, editor. Ontologies and Databases. Kluwer Academic Publishers (ISBN-0-7923-8412-1), 1999.

[7] A. Bouguettaya, B. Benatallah, and A. Elmagarmid. Interconnecting Heterogeneous Information Systems.
Kluwer Academic Publishers (ISBN 0-7923-8216-1), 1998.

[8] A. Bouguettaya, B. Benatallah, L. Hendra, Beard J, K. Smith, and M. Ouzzani. World Wide Database -
Integrating the Web, CORBA and Databases. In Proceedings of the ACM SIGMOD'99 (Demo). ACM Press,
June 1999.

[9] Athman Bouguettaya, Boualem Benatallah, Mourad Ouzzani, and Lily Hendra. Using Java and CORBA for
Implementing Internet Databases. In Proceedings of the 15th International Conference on Data Engineering,
Sydney, Australia, March 1999.

[10] Michael Brodie. Que Sera, Sera: The Coincidental Conuence of Economics, Business, and Collaborative
Computing (Key note talk). ICDE99, Sydney, Australia, 1999.

[11] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and Dynamic Service Composition
in eFlow. Technical report, HP technical Report, HPL-2000-39, April 2000.

[12] C. Collet, T. Coupaye, and T. Svensen. Naos: EÆcient and modular reactive capabilities in an object-
oriented database system. In Proceedings of the 20th International Conference on Very Large Databases
(VLDB), Santiago, Chile, September 1994.

[13] P. Dadam and M. Reichert, editors. Proceedings of the Informatik'99 Workshop on Enterprise-wide and
Cross-enterprise Workow Management: Concepts, Systems, Applications, Paderborn, Germany, October
1999.

[14] A. Dogac, editor. ACM SGMOD Record: Special Issue on Electronic Commerce, ACM SIGMOD RECORD.
ACM, December 1998. 27(4).

[15] A. Dogac, editor. Special Issue of Distributed and Parrallel Databases on Electronic Commerce, Distributed
and Parallel Databases Journal. Kluwer Publishers, 1999. 7(2).

18

[16] D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World-Wide Web: A Survey. ACM
SIGMOD, 27(3), September 1998.

[17] Forrester. EMarketplaces Boost B2B Trade. Forrester Research Inc., Cambridge, USA, February 2000.

[18] A. Gal and J. Mylopoulos. Towards Web-Based Application Management Systems. to appear in IEEE
Transactions on Knowledge and Data Engineering, 2000.

[19] D. Georgakopoulos, editor. Information Technology for Virtual Enterprises, Proc. of the 9th Int. Workshop
on Research Issues on Data Engineering. IEEE Computer Society, March 1999.

[20] D. Georgakopoulos and al. Managing Process and Service Fusion in Virtual Enterprises. Information Systems,
24(6):429{456, 1999.

[21] A. Geppert and D. Tombros. Event-based Distributed Workow Execution with EVE. In Proc. of Middleware
'98 Workshop, Sept. 1998.

[22] H. Lam and S. Su. Component Interoperability in a Virtual Enterprise using Events/Triggers/Rules. Vancou-
ver, Canada, Oct. 1998. Proc. of OOSPLA '98 Workshop on Objects, Components, and Virtual Enterprise.

[23] M. Laurence, D. Beringer, N. Sample, and G. Wiederhold. CPAM: A Protocol for Software Composition. In
Advanced Information Systems Engineering (CAISE 11) (Editors: M. Jarke and A. Oberweis), volume 1626.
Springer LNCS, Heidelberg Germanya, June 1999.

[24] L. Liu, C. Pu, and C. Hsu. Continual Queries for Internet Scale Event-Driven Information Delivery. IEEE
Transactions on Knowledge and Data Engineering, 11(4):610{628, 1999.

[25] R. Munz. Usage Scenarios for DBMS. In Proceedings of the VLDB'99 (invited talk). Morgan Kaufmann
Publishers, Inc., Sept. 1999.

[26] R. Orfali and D. Harkey. Client/Server Programming with JAVA and CORBA. John Wiley & Sons, Inc.,
1997.

[27] A. Silberschatz, S. Zdonik, J. Blakeley, P. Buneman, U. Dayal, T. Imielinski, S. Jajodia, H. Korth, G. Lohman,
D. Lomet, D. Maier, F. Manola, T. Ozsu, R. Ramakrishnan, K. Ramamritham, H. Schek, R. Snodgrass, J. Ull-
man, and J. Widom. Strategic Directions in Database Systems-Breaking Out of the Box. ACM Computing
Survey, 28(4):764{778, December 1996.

[28] A. Whinston, editor. Electronic Commerce: A Shift in Paradigm, IEEE Internet Computing. IEEE, November
1997. Special Issue on Electronic Commerce 1(6).

19

A Additional Screen-shot for the Computer Manufacturing Applica-

tion

Figure 6: De�ning a Pull-Community in WebBIS

20

