
1

Supporting Views in Data Stream
Management Systems

THANAA M. GHANEM

University of St. Thomas

AHMED K. ELMAGARMID

Purdue University

PER-ÅKE LARSON

Microsoft Research

and

WALID G. AREF

Purdue University

In relational database management systems, views supplement basic query constructs to cope with

the demand for “higher-level” views of data. Moreover, in traditional query optimization, answering

a query using a set of existing materialized views can yield a more efficient query execution plan.

Due to their effectiveness, views are attractive to data stream management systems. In order

to support views over streams, a data stream management system should employ a closed (or

composable) continuous query language. A closed query language is a language in which query

inputs and outputs are interpreted in the same way, hence allowing query composition.

This article introduces the Synchronized SQL (or SyncSQL) query language that defines a data

stream as a sequence of modify operations against a relation. SyncSQL enables query composition

through the unified interpretation of query inputs and outputs. An important issue in continuous

queries over data streams is the frequency by which the answer gets refreshed and the conditions

that trigger the refresh. Coarser periodic refresh requirements are typically expressed as sliding

windows. In this article, the sliding window approach is generalized by introducing the synchroniza-

tion principle that empowers SyncSQL with a formal mechanism to express queries with arbitrary

T. M. Ghanem and A. K. Elmagarmid’s research was partially supported by Lilly Endowment,

NSF-ITR 0428168, NSF IIS 9983249, and US DHS PURVAC. W. G. Aref ’s research was partially

supported by NSF Grant Number IIS-0811954.

Authors’ addresses: T. M. Ghanem, Department of Computer and Information Sciences, Univer-

sity of St. Thomas-Minnesota, OSS 402, 2115 Summit Avenue, Saint Paul, Minnesota 55105;

email: ghan6402@stthomas.edu; A. K. Elmagarmid, Department of Computer Science, Purdue Uni-

versity, Office LWSN 2142A, West Lafayette, IN 47907; email: ake@cs.purdue.edu; P.-Å. Larson,

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399; email: palarson@microsoft.com;

W. G. Aref, Department of Computer Science, Purdue University, West Lafayette, IN 47907; email:

aref@cs.purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0362-5915/2010/02-ART1 $10.00

DOI 10.1145/1670243.1670244 http://doi.acm.org/10.1145/1670243.1670244

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:2 • T. M. Ghanem et al.

refresh conditions. After introducing the semantics and syntax, we lay the algebraic foundation for

SyncSQL and propose a query-matching algorithm for deciding containment of SyncSQL expressions.

Then, the article introduces the Nile-SyncSQL prototype to support SyncSQL queries. Nile-SyncSQL

employs a pipelined incremental evaluation paradigm in which the query pipeline consists of a set

of differential operators. A cost model is developed to estimate the cost of SyncSQL query execution

pipelines and to choose the best execution plan from a set of different plans for the same query. An

experimental study is conducted to evaluate the performance of Nile-SyncSQL. The experimental

results illustrate the effectiveness of Nile-SyncSQL and the significant performance gains when

views are enabled in data stream management systems.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query
language

General Terms: Language, Experimentation, Performance

Additional Key Words and Phrases: Data streams, query language, expression matching, incre-

mental evaluation, views

ACM Reference Format:
Ghanem, T. M., Elmagarmid, A. K., Larson, P.-Å., and Aref, W. G. 2010. Supporting views in data

stream management systems. ACM Trans. Datab. Syst, 35, 1, Article 1 (February 2010), 47 pages.

DOI = 10.1145/1670243.1670244 http://doi.acm.org/10.1145/1670243.1670244

1. INTRODUCTION

In relational database management systems, views on database tables provide
a basic query construct to cope with the demand for “higher-level” views over
the base data. A view defines a function from a set of base tables to a derived
table. The derived table (or the view) can be used as input to other functions
or queries. Views are needed because the actual schema of the database is usu-
ally normalized for various reasons and queries are more intuitive using one
or more denormalized relations that better represent the real world. At the
same time, the emergence of data streaming applications calls for new data
management technologies to cope with the characteristics of continuous data
streams. Examples of data streaming applications include: environmental and
road traffic monitoring through sensors, online data feeds [Chen et al. 2000],
and online analysis of network traffic [Cranor et al. 2003]. A data stream is de-
fined as a continuous sequence of tuples. Unlike traditional snap-shot queries
over data tables, queries over data streams are continuous. A continuous query
is issued once and may remain active for hours or days. The answer to a contin-
uous query is constructed progressively as new input stream tuples arrive. To
support views over data streams means the ability to express derived streams
as a function of one or more input streams. The derived streams are then used
as inputs to other continuous queries.

To support views is an attractive property for data stream management for
the following reasons.

(1) More intuitive query expressions. Data streams are usually received from
a distributed set of data sources (e.g., sensors). A query is more intuitive
if expressed using a derived stream (or a view) that better represents the
real world. The view can be expressed as a function over one or more input
streams.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:3

(2) Answering multiple (concurrent) continuous queries using views. Views can
be beneficial in streaming environments that are characterized by a large
number of concurrent overlapping queries. For a set of overlapping queries,
a view can be defined to represent the overlapped part among the queries.
Then, the shared execution of the overlapped part can be used in optimizing
the query execution cost.

(3) Data privacy. An input stream may contain attributes or tuples that should
not be seen by a certain group of users. Restricted access to stream at-
tributes can be achieved by defining a view that projects out the pri-
vate attributes. Then, users are given access only to the view. Multiple
views can be defined depending on the privileges of the different user
groups.

(4) Answering ad hoc queries over data streams. In addition to continuous
queries, ad hoc queries over data streams form another important class
of queries in Data Stream Management Systems (DSMS). An ad hoc query
over data streams is interested in knowing the current status of the un-
derlying streams. A view can be continuously maintained and is used in
answering an ad hoc query that is frequently issued.

In order to support views over streams, a DSMS should employ a closed (or
composable) continuous query language. A closed query language is a language
in which query inputs and outputs are interpreted in the same way, hence allow-
ing query composition. Query composition means the ability to express a query
in terms of one or more subqueries (or views). In this article, we propose the
Synchronized SQL query language (SyncSQL for short), a closed query language
that enables supporting views over streams. We introduce the Nile-SyncSQL
prototype server that supports SyncSQL, and hence supports views over data
streams. We evaluate the performance of Nile-SyncSQL via an extensive set of
experiments. The experimental results illustrate that views over streams have
a tremendous effect on the performance of a DSMS.

1.1 New Challenges to Continuous Query Languages

A closed continuous query language is needed in order to support query com-
position, and hence to support views over streams. Query composition is a fun-
damental property of query languages (e.g., SQL), and it requires that query
inputs and outputs be interpreted in the same way. The current approaches
for continuous query languages (e.g., Arasu et al. [2006], Abadi et al. [2003],
Chandrasekaran et al. [2003], Cranor et al. [2003]) suffer from the following:
(1) Semantics of query composition is complex and it is difficult to understand
the exact meaning of the composed queries, and (2) the set of queries that can
be composed is limited. In this article, we propose the SyncSQL query language
that gives a general and clear semantics for continuous query composition,
and hence gives a framework for supporting views over streams. Basically, we
address the following challenges.

Challenge 1: Using streams to represent the output of continuous queries that
produce nonappend-only output. A continuous query may not be able to produce

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:4 • T. M. Ghanem et al.

an append-only output relation even when the input streams represent append-
only relations. For example, consider an application that monitors a parking
lot where two sensors continuously monitor the lot’s entrance and exit. The
sensors generate two streams of identifiers, say S1 and S2, for vehicles enter-
ing and exiting the lot, respectively. A reasonable query in this environment
is P1:“Continuously keep track of the identifiers of all vehicles inside the park-
ing lot”. The answer to P1 is a view that at any time point, say T, contains the
identifiers of vehicles that are inside the parking lot. S1 can be modeled as a
stream that inserts tuples into an append-only relation, say �(S1), and sim-
ilarly, S2 inserts tuples into the append-only relation �(S2). Then, P1 can be
regarded as a materialized view that is defined by the set-difference between
the two relations �(S1) and �(S2). As tuples arrive into S1 and S2, the cor-
responding relations are modified, and the relation representing the result of
P1 is updated to reflect the changes in the inputs. The result of P1 is updated
by inserting identifiers of vehicles entering the lot and deleting identifiers of
vehicles exiting the lot. Notice that although the input relations in P1 change
by only inserting tuples (i.e., are append only), the output of P1 changes by both
insertions and deletions. In order to represent P1’s output as a single stream,
we should be able to represent two different types of stream tuples (one type
of stream tuples to represent the insertions in the output and the other type of
stream tuples to represent the deletions).

Challenge 2: Similar interpretation of query inputs and output. To enable
query composition, query inputs and output should be interpreted in the same
way so that the output of one query can be used as input to another query.
Consider the following query from the same application P2: “Group the vehicles
inside the parking lot by type (e.g., trucks, cars, or buses). Continuously keep track
of the number of vehicles in each group”. By analyzing the two queries, P1 and
P2, it is obvious that P2 is an aggregate query over P1’s output. This observation
motivates the idea of defining P1 as a view, say V1 and then expressing both P1

and P2 in terms of V1. Notice that the output of P1 is a stream that represents the
changes (i.e., insertions and deletions) in the parking-lot state. P1’s incremental
output is interpreted in the same way as inputs, namely, as a stream that
represents modifications to an underlying relation. However, P1’s incremental
output stream consists of two different types of tuples.

Challenge 3: Expressing ad hoc queries over data streams. An ad hoc query
is a transient query that, once launched, computes and promptly returns the
query result. An ad hoc query will not come alive again until the query is
again launched by the user. Ad hoc queries form another important class of
queries over data streams. For example, consider the following query from the
parking-lot monitoring application, P3:“Is Joe Doe’s car in the parking lot right
now?”. Answering P3 requires knowing the whole history of S1 and S2. However,
maintaining the total history of the infinite S1 and S2 is impossible. Hence,
P3 can be answered using the view V1. Basically, a view can be created and
maintained for each ad hoc query that is frequently issued, for example, the
current time’s view, that is, the NOW view, with some update or refresh time
granularity (see Challenge 4 that follows).

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:5

Challenge 4: Expressing general refresh conditions (other than time- or tuple-
based refresh conditions). Another important issue in data stream query lan-
guages is the frequency by which a query answer gets refreshed as well as
the conditions that trigger the refresh. In streaming applications with high
tuple arrival rates, an issuer of continuous queries may not be interested in
refreshing the answer in response to every tuple arrival. Instead, coarser re-
fresh periods may be desired. For example, instead of reporting the count of
vehicles with every change in the parking lot, P2 may be interested in updating
the count of vehicles in each group every four minutes. This refresh condition is
temporal. However, a powerful language should allow a user to express more
general refresh conditions based on time, tuple arrival, events, relation state,
etc. For example, P2 may be interested in updating the count of vehicles in each
group whenever a police car enters the parking lot. In this case, the refresh
condition is event based where the event is defined as “the entrance of a police
car”.

Challenge 5: Expressing queries over streams that do not represent append-
only relations. Streams from different domains may be interpreted differently
by different applications [Maier et al. 2005]. For example, one sequence of tuples
can represent an infinite append-only relation (e.g., S1 in P1). On the other hand,
another sequence of tuples may represent an update stream in which an input
tuple is an update over the previous tuple with the same key value. For example,
consider a temperature-monitoring application in which sensors are distributed
in rooms and each sensor continuously reports the room temperature. A reason-
able query in this environment is T1: “Continuously keep track of the rooms that
have a temperature greater than 80”. Neither the input nor the output streams in
T1 represent append-only relations. The input in T1 is an update stream in which
a room identifier is considered a key and an input tuple is an update over the pre-
vious tuple with the same key value. Notice that although an update stream is
also represented as a sequence of tuples, the interpretation of an update stream
is different from the interpretation of an append-only stream. The output tu-
ples from T1 represent an incremental answer that includes insertions and
deletions for rooms that switch between satisfying and not satisfying the query
predicate.

1.2 Illustrative Example

In this section, we give an example to illustrate that the semantics of query
composition, and hence views, is difficult to express by a language that restricts
the stream definition to the append-only model. Consider the following query
from the same application as that of P1 in Section 1.1. P4: “Continuously keep
track of the identifiers of all vehicles inside the parking lot, report changes in the
answer every 2 minutes”. In the following, we use CQL [Arasu et al. 2006] as a
representative for the class of languages that use the append-only model. CQL
uses sliding windows to express the coarser refresh periods where a sliding
window is defined by two parameters, namely range and slide. Assume that
the schema of the input streams consists of two attributes, VID that represents

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:6 • T. M. Ghanem et al.

the vehicle identifier, and VType that represents the vehicle type (i.e, car, bus,
or truck). CQL can express P4 in four different ways as follows.

Case 1. Relational output:

SELECT R1.VID, R1.VType
FROM S1[range ∞ slide 2] R1 − S2[range ∞ slide 2] R2

In this case, the output of P4 is a relation (not a stream). The output relation
gives the complete query answer and is refreshed every 2 minutes. The output
is not incremental, which means that every 2 minutes, the query issuer sees
all identifiers of vehicles inside the lot.

Case 2. Streamed relational output:

SELECT RStream(R1.VID, R1.VType)
FROM S1[range ∞ slide 2] R1 − S2[range ∞ slide 2] R2

The output in this case is a stream that represents the concatenations of Case 1’s
output relation. Basically, whenever the output relation is modified (i.e., every
2 minutes), the whole output relation is streamed out (or pushed) to the query
issuer. Notice that the output representation is different than Case 1 in which
the output relation is stored and the query issuer needs to pull the modified
query answer from the stored relation. Notice also that the output stream, say
So, is interpreted differently from the input streams. An input tuple in any of
the input streams (i.e., S1 or S2) represents an insertion into the corresponding
relations. However, a tuple in So may represent a repetition for a previous So

tuple. For example, vehicles that are inside the lot for more than 2 minutes are
reported several times in So.

Case 3. Stream of insertions to the output relation:

SELECT IStream(R1.VID, R1.VType)
FROM S1[range ∞ slide 2] R1 − S2[range ∞ slide 2] R2

The IStream (or insert stream) operation produces a tuple in the output stream
whenever a tuple is inserted in the output relation (i.e., whenever a vehicles
enters the lot). Notice that because of the slide parameter of length 2, the
inserted tuples are accumulated and are produced in the output stream every
2 minutes. Although IStreams’s output stream is incremental, it gives only a
partial answer for P4 because it does not include any information about vehicles
exiting the lot.

Case 4. Stream of deletions from the output relation:

SELECT DStream(R1.VID, R1.VType)
FROM S1[range ∞ slide 2] R1 − S2[range ∞ slide 2] R2

The DStream (or delete stream) operation produces a tuple in the output stream
whenever a tuple is deleted from the relation (i.e., whenever a vehicles exits the
lot). Notice that because of the slide parameter of length 2, the deleted tuples are
accumulated and are produced in the output stream every 2 minutes. DStream’s
output is an incremental but partial answer for P4 because it does not include
information about vehicles entering the lot.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:7

Notice that outputs in both Case 1 and Case 2 give nonincremental answers
for P4. On the other hand, for Case 3 and Case 4, the outputs give incremental
but partial answers for P4. However, CQL cannot produce a single stream that
represents the whole incremental answer to P4 that includes both insertions into
and deletions from the parking lot state. P4’s output incremental stream should
include two different types of tuples to distinguish between the insertions and
deletions.

Consider another query P5 that is similar to Query P2 however P5’s answer
need to be refreshed every 4 minutes. Basically, P5 is as follows:“Group the
vehicles inside the parking lot by type (e.g., trucks, cars, or buses). Continuously
keep track of the number of vehicles in each group, report the changes in the
answer every 4 minutes”. Careful analysis of P4 and P5 shows that: (1) P5 is
an aggregate over the output of P4, and (2) P5’s refresh time points form a
subset of P4’s refresh points. As a result, in a powerful language, P5 should be
easily expressed over the output of P4. However, none of the four CQL’s outputs
for P4 (i.e., Cases 1 to 4) can be used as input to express P5 for the following
reasons.

—Case 1’s output is a relation (not a stream) and windows (of range and slide)
cannot be expressed over relations. As a result, P5’s sliding window (that
slides every 4 minutes) cannot be expressed over Case 1’s output relation.

—Case 2’s output stream is not incremental and does not represent an append-
only relation. However, sliding window semantics are defined for streams
that represent append-only relations. As a result, P5’s window cannot be
expressed over Case 2’s output stream.

—Both Case 3’s and Case 4’s output streams represent partial answers for P4.
As a result, expressing P5 over a Case 3 (or Case 4) output stream does not
give the correct answer for P5.

1.3 Nile-SyncSQL: Supporting Views over Data Streams

This article presents the Nile-SyncSQL prototype server, an engine to support
views over data streams. Nile-SyncSQL is based on the Synchronized SQL query
language, a closed language to express composable queries over data streams.
The contributions of this article are as follows.

—We motivate the need for views over streams and discuss challenges that
need to be addressed by a query language in order to support views over
streams.

—We propose the SyncSQL query language, a closed stream query language that
enables views over streams. We define concise semantics, syntax, data types,
operators, algebra, and transformation rules for SyncSQL. (Sections 4, 5,
and 6).

—Based on SyncSQL’s algebraic foundation, we propose a query-matching algo-
rithm to deduce containment relationships among SyncSQL expressions. The
algorithm is then used to answer queries using views (Section 7).

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:8 • T. M. Ghanem et al.

—We give an analytical cost model to estimate the cost of a given SyncSQL
execution pipeline. The cost model can be used to choose the best execution
plan from a set of possible execution pipelines for a given query (Section 9).

—We design and implement the Nile-SyncSQL prototype to support SyncSQL
queries. We conduct an experimental study to evaluate the performance of
Nile-SyncSQL. The experimental results are twofold: (1) show the effective-
ness of Nile-SyncSQL to support continuous queries over data streams; and
(2) show significant performance gains when views are enabled in DSMSs
(Sections 8 and 10).

2. RELATED WORK

2.1 Continuous Query Semantics and Languages

The unique characteristics of data streams and continuous queries impose new
requirements on query languages. Many research efforts have developed se-
mantics and query languages for continuous queries over data streams, for
example, Arasu et al. [2006], Bonnet et al. [2001], Abadi et al. [2003], Chan-
drasekaran et al. [2003], Cranor et al. [2003], and Zaniolo et al. [2002]. The
existing continuous query languages define a stream as a representation of
an append-only relation. The append-only stream definition limits the set of
queries that can produce streams as output. This is because, even if the in-
put streams represent append-only relations, a continuous query may produce
nonappend-only output. Different languages follow different approaches in or-
der to handle the nonappend-only output as follows.

Continuous Query Language-CQL [Arasu et al. 2006]. CQL is the query lan-
guage that is used by the STREAM DSMS. The nonappend-only query output is
either: (1) divided into two streams using the IStream and DStream operators,
or (2) represents concatenation of time-varying versions of the output using the
RStream operator. RStream’s output cannot be used as input stream to another
continuous query.

Expressive Stream Language (ESL) [Zaniolo et al. 2002]. ESL is used by
the ATLaS DSMS [Zaniolo et al. 2002]. In order to avoid the nonappend-only
output streams, ESL limits the set of operators that can be used to produce
output streams to include only unary operators (e.g., selection and projec-
tion). Since a window function produces a nonappend-only output, window
queries produce concrete views as output. A concrete view is stored and is
continuously modified as the input changes. A query issuer, or an ad hoc
query pulls the current complete answer from the stored view. Join is defined
between streams and concrete views, but the modifications in the view af-
fect only the future join outputs and do not affect the already-produced join
output.

GSQL [Cranor et al. 2003]. GSQL is used in the Gigascope stream database
that is used for network monitoring. GSQL put some restrictions over SQL to
guarantee that a query cannot produce a nonappend-only output.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:9

StreaQuel [Chandrasekaran et al. 2003]. StreaQuel is used in the Tele-
graphCQ stream database system. A StreaQuel query is expressed in SQL
syntax and is followed by a for-loop construct to express windows over in-
put streams. The output of a StreaQuel query is a sequence of time-stamped
sets where each set corresponds to the answer of the query at the time
that is indicated by the attached timestamp (similar to CQL’S RStream
operator).

StreamSQL[http://www.StreamSQL.org]. StreamSQL is a query language
that has been developed by computer science and data management ex-
perts from various universities in conjunction with StreamBase Systems
(http://www.streambase.com). StreamSQL extends SQL by adding new oper-
ations in order to manipulate streams. The output stream from a StreamSQL
query is append only and does not include delete or update tuples. However,
the StreamSQL’s language specifications do not address how nonappend-only
query output (e.g., output from an aggregate query or a sliding window query)
is interpreted for query composition purposes. For example, the output from a
sliding window query will not reflect the tuples that expire when the window
slides.

2.2 Views in Database Management Systems

Views have been widely used in database management systems. Once defined,
the view can be used as input to other queries or views. Views are needed be-
cause usually the actual schema of the database is normalized for implementa-
tion reasons and the queries are more intuitive using one or more denormalized
relations that represent the real world [Gupta and Mumick 1999]. A material-
ized view is a view that is materialized by storing the tuples of the view in the
database. Materialized views provide fast access to data since the view is com-
puted once and is stored. Then, any query can use the stored results without
recomputing the view. Materialized views have been widely used in query opti-
mization, since answering queries using an existing view yields more efficient
query execution plans.

A materialized view becomes out of date when the underlying base relations
are modified. Hence, view maintenance is the process of updating the view in
response to changes in the underlying relations. In most cases, it is wasteful
to maintain a view by recomputing it from scratch [Gupta and Mumick 1999].
Thus, it is usually less expensive to compute only changes in the view to up-
date its materialization. Algorithms that compute changes to a view are called
incremental view maintenance algorithms.

View exploitation is the process of making efficient use of materialized views
to speed up query processing [Goldstein and Larson 2001]. Given a query ex-
pression, an optimizer uses a view-matching algorithm to see which one of
the existing views can be used to rewrite the given expression. The query
optimizer then chooses the rewriting that gives the most efficient execution
plan. In Nile-SyncSQL, we investigate how to apply the various material-
ized concepts (e.g., incremental maintenance and view matching) over data
streams.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:10 • T. M. Ghanem et al.

2.3 Processing Continuous Queries over Data Streams

The emergence of data streaming applications calls for new query processing
techniques to cope with the high rate and the unbounded nature of data streams.
A sliding window query is one of the most popular types of queries over append-
only streams [Babcock et al. 2002; Golab and Ozsu 2003]. A sliding window
query is a continuous query over n input data streams where each input data
stream Sj is assigned a window of size wj . At time T, the current window
for stream Si contains the tuples arriving between times T − wi and T . Two
approaches have been conducted to support sliding window queries, namely,
query reevaluation [Abadi et al. 2003; Ryvkina et al. 2006] and incremental
evaluation [Arasu et al. 2006; Ghanem et al. 2007]. In the query reevaluation
approach, the query is reevaluated over each window independent from all
other windows. Basically, buffers are opened to collect tuples belonging to the
various windows. Once all the tuples in the window are received, the completed
window buffer is processed to produce the complete window answer [Abadi
et al. 2003]. On the other hand, in the incremental evaluation approach, when
the window slides, only the changes in the window are processed to produce the
answer of the next window. As the window slides, the changes in the window are
represented by two sets of inserted and deleted tuples. Incremental operators
are used in the pipeline to process both the inserted and deleted tuples and
to produce the incremental changes to the query answer [Arasu et al. 2006;
Ghanem et al. 2007].

Notice that streams of insert and delete tuples are frequently used when
addressing continuous query processing [Ryvkina et al. 2006; Babu et al.
2005; Ghanem et al. 2007]. However, query languages do not consider ex-
pressing queries over these modify streams. This conflict between the lan-
guage and internal streams is the main obstacle in achieving continuous query
composition.

2.4 Shared Execution of Continuous Queries

A typical streaming environment has a large number of concurrent overlapping
continuous queries. Sharing the query execution is a primary task for query op-
timizers to address scalability. The current efforts for shared query execution
focus on sharing execution at the operator level. For example, shared aggre-
gates are addressed in Arasu and Widom [2004] where an aggregate operator
is shared among multiple queries with different window ranges. An algorithm
for shared execution of window join operators is proposed in Hammad et al.
[2003] where the join execution is shared among queries that are similar in the
join predicate but with different window clauses. NiagraCQ [Chen et al. 2000]
proposes a framework to share the execution among SPJ queries. However, the
queries addressed by NiagraCQ use a restricted set of operators and cannot
include windows.

In this article, we use views as a means for the shared execution of continuous
queries. Sharing the execution through views is distinguished from the existing
approaches in that: (1) it does not require the design of new window-aware
operators. However, views are supported using differential operators that are

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:11

general and can support the various types of windows; (2) queries are examined
for sharing based on a whole query expression not only at the operator level; and
(3) the framework is general and is not restricted to a specific class of queries
or operators.

3. SUMMARY OF QUERIES IN THE ARTICLE

This section introduces the queries that we use in the rest of the article to
demonstrate the semantics and syntax of SyncSQL. The illustrative queries are
drawn from two different applications: a parking-lot monitoring application
and a room temperature monitoring application.

3.1 Parking-Lot Monitoring Application

The first set of queries is drawn from the parking-lot monitoring application
that is discussed in Section 1. The goal of this application is to show that the
output of a continuous query over streams may not be append only, even if the
input streams are append only. As discussed in Section 1, there are two sensors
that generate two streams of identifiers, say S1 and S2, for vehicles entering
and exiting the lot, respectively. Both S1 and S2 follow the same schema that
has three attributes as follows: <VID, VType, VOwner>, where “VID” gives the
vehicle’s identifier, “VType” gives the vehicle type (e.g., car, bus, or truck), and
“VOwner” gives the car’s owner name. We use seven example queries over the
input streams. The queries P1, P2, P3, P4, and P5 are as explained in Section 1.
In addition, consider the following queries.

—P6 is a query that involves an event-based refresh condition, where P6 is
similar to P2 but needs to be refreshed when a police car enters the parking
lot.

—P7 is a sliding window query as follows:“Continuously monitor the identifiers
of cars that entered the parking lot in the last 5 time units.”

3.2 Room Temperature Monitoring Application

The room temperature monitoring application is an application in which input
stream tuples represent modifications to the temperatures of the various rooms.
The input stream follows a schema of two attributes as follows: <RoomID,
Temperature>, where “RoomID” gives the room identifier that represents the
primary key for the input stream. In other words, an input stream tuple is
an update over the previous tuples with the same “RoomID” value. The “Tem-
perature” attribute gives the room’s current temperature. The goal of the tem-
perature monitoring application is to show that some data stream applications
cannot be supported by a query model that assumes append-only semantics. We
use five example queries over the input temperature stream. The first query,
T1: “Continuously keep track of the rooms that have a temperature greater
than 80”. The second query, T2: “Continuously keep track of the rooms that
have a temperature greater than 100”. Then, T3 is similar to T1 in the query
functionality but with different refresh requirements. The same is true for T2

and T4. Query T5 gives an example of an event-based refresh condition since it

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:12 • T. M. Ghanem et al.

is similar to T2 in the functionality but asks to refresh the answer whenever a
room reports a temperature greater than 120.

4. STREAM, QUERY, AND VIEW SEMANTICS

4.1 Stream Semantics

A data stream is defined as a sequence of tuples with a specified schema [Arasu
et al. 2006; Chandrasekaran et al. 2003; Zaniolo et al. 2002]. The semantics
of the stream is application dependent, that is, the different applications may
interpret the same stream in different ways [Maier et al. 2005]. For exam-
ple, one sequence of tuples may represent an infinite append-only relation
(e.g., S1 in the parking lot application as discussed in Section 3.1). On the
other hand, another sequence of tuples may represent a concatenation of time-
varying states of a fixed size relation (e.g., the RStream operator in CQL [Arasu
et al. 2006]). A query language for data streams should first clearly specify the
stream semantics, then explain the query operations given the specified stream
semantics.

In the streaming literature, query languages model a stream as a represen-
tation for an infinite append-only relation [Arasu et al. 2006; Chandrasekaran
et al. 2003; Zaniolo et al. 2002]. The append-only stream model effects the
following limitations: (1) It limits the applicability of the language since the
append-only model cannot represent streams from the various domains (e.g.,
update streams or streams that represent concatenation of the states of a fixed
size relation). (2) The append-only stream model limits the types of queries that
the language can express since only nonblocking queries can produce append-
only streams as output. (3) The semantics of query composition in the append-
only stream model is complex and the meaning of the composed queries is
difficult to understand.

To overcome the limitations of the append-only model, we introduce tagged
stream semantics as a model for representing streams in SyncSQL. Basically,
SyncSQL distinguishes between two types of streams: raw and tagged. A raw
stream is a sequence of tuples that is sent by remote data sources (e.g., sensors).
On the other hand, a tagged stream is a stream of modify operations (i.e., insert
(+), update(u), and delete(−)) against a relation with a specified schema. A raw
stream must be transformed into a tagged stream before being used as input in
a query. The raw-to-tagged stream transformation is similar to transforming
raw data into tables in traditional databases.

The function that transforms a raw stream to a tagged stream is application
dependent. For example, consider P1 in Section 1. Since the input streams in P1

(i.e., S1 and S2) represent append-only relations, the tagging function for S1 (or
S2) is to attach a “+” tag to every input tuple. The output of a SyncSQL query
over a tagged stream is another tagged stream. For example, the output of P1

is a tagged stream with “+” and “−” tuples, where a “+” tuple is produced in
P1’s output for every vehicle entering the lot and a “−” tuple is produced for
every vehicle exiting the lot. P1’s tagged output gives an incremental answer
for P1, and hence, can be used as input to another query (e.g., P2). The tagged

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:13

stream model enables SyncSQL to be a powerful and a general-purpose language
for the following reasons: (1) query composition is achieved due to the unified
interpretation of query inputs and outputs as tagged streams, and (2) a wider
class of applications can be supported since the tagged stream model is general
and can represent streams from various domains.

Consider two different temperature-monitoring applications, say
Application1 and Application2. Assume both application have a raw in-
put stream with the following schema “<RoomID,Temperature>Timestamp”.
Assume also that Application1 treats the input as an update stream over the
various rooms’ temperatures (Application1 is the application that is discussed
in Section 3.2). In this case, RoomID is considered a key and a tuple is considered
an update over the previous tuple with the same key value. On the other hand,
Application2 treats the input stream as a series of temperature readings and
the RoomID attribute is ignored. Given that the two streams have the same
schema, the job of the tagging function is to tell the query processor that the
two streams are interpreted differently.

In the query processing phase, the transformation (or tagging) function is
implemented inside an operator, called Tagger. For example, in Application1,
the input stream tuples are correlated based on the key (i.e., RoomID), hence
the Tagger needs to keep a list of all the observed key values (i.e., RoomID) so
far. In Application1, the output from the Tagger operator is a tagged stream,
say RoomTempStr, that consists of insert and update operations. Notice that in
Application1, the functionality of the Tagger operator is similar to that of the
MERGE (or UPSERT) operator in the SQL:2003 standard [Eisenberg et al. 2004].
On the other hand, in Application2, the Tagger operator does not need to keep
any state since tuples are not correlated. In Application2, the output from the
Tagger operator is a tagged stream, say TempStr, that consists of a sequence of
insert operations.

The following is the SyncSQL syntax for defining raw streams.
REGISTER SOURCE < raw − stream − name > (< schema >)
FROM < portnum >,

where < raw-stream-name > is the name of the stream, <schema> is the schema
of the input stream tuples, and <portnum> is the port at which the stream
tuples are received. For example, the raw stream TemperatureSource is defined
in SyncSQL by the following statement:

REGISTER SOURCE TemperatureSource (int RoomID, int Temperature)
FROM port5501

The following is the SyncSQL syntax for defining tagged streams over raw
streams.

CREATE TAGGED STREAM < tagged-stream-name >

OVER <raw-stream-name> KEY <attrname>,
where <tagged-stream-name> is the name of the tagged stream and
raw-stream-name> is the name of the base raw stream. Notice that the raw
stream should be defined first before being used in defining a tagged stream.
The <attrname> is the name of the attribute (or list of attributes) that repre-
sents the primary key of the input stream.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:14 • T. M. Ghanem et al.

The tagging function is very simple in the case of streams that represent
append-only relations. The tagging function is more complex in the case of
update streams because Tagger needs to keep a state in order to correlate the
input tuples. However, the size of the Tagger’s state has an upper bound that
equals the number of distinct objects. For example, in Application1 the Tagger’s
state size cannot exceed the maximum number of rooms. Moreover, Tagger does
not need to store rooms that do not report temperature updates. Notice that
Tagger’s state is limited by the domain of the key attribute. As a result, SyncSQL
is more efficient for applications with small domain streams. However, some
applications may not need Tagger’s state if the input stream represents append-
only data with no notion of update. On the other hand, in case of applications
that require a tagging state, optimizations can be applied in order to minimize
the Tagger’s state size, as will be discussed in Section 10.

Moreover, implementing the tagging function as an operator opens the room
for the query optimizer to reorder the pipeline and optimize memory consump-
tion. The cost of processing one tuple by the Tagger operator can be estimated
by running Tagger for a transient period. For example, we can run Tagger
for T time units and count the number of tuples that can be processed in T
time units. The cost of processing one tuple is estimated from this transient
period and then is used by the optimizer to produce the best query execution
plan. Moreover, a selection predicate can be pushed into a tagger if there is an
agreed-upon interface for doing so. Such an interface can take many forms. For
example, the predicate could be passed in as pointer to a function that takes a
row (or column values) as inputs and returns true or false. As we show in the
experimental evaluation in Section 10, the overhead of the tagging transfor-
mation can be minimized by merging the functionality of the Tagger operator
with the Select operator. For example, in Application1, the Tagger operator
can be merged with the Select operator so that only rooms that qualify the
selection predicate are stored in the state. Notice that new applications may
require the introduction of new tagging transformations and new tagging syn-
tax. Each new tagging syntax requires the definition and implementation of a
new Tagger operator.

The relational view of a tagged stream. In order to adopt the well-known
semantics of relational operators, SyncSQL queries are expressed over the
tagged streams’ corresponding relations. Basically, any tagged stream, say
S, has a corresponding time-varying relation, termed �(S), that is continu-
ously modified by S’s tuples. An input tuple in a tagged stream is denoted by
“Tag<Attributes>Timestamp”, where Tag can be either insert (+), update (u),
or delete(−), and Timestamp indicates the time at which the modification takes
place. The relational view is modified by the stream tuples as follows: an insert
tuple modifies the relation by inserting a new record, an update tuple modifies
the relation by changing the attributes of an existing record, while a delete tu-
ple modifies the relation by deleting an existing tuple. �(S)’s schema consists
of two parts as follows: (1) a set of attributes that corresponds to S’s Attributes,
and (2) a timestamp attribute, termed TS, that corresponds to the Timestamp

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:15

Fig. 1. Illustrating time-varying relations.

field of S’s tuples. Timestamp is mapped to �(S) in order to be able to express
time-based windows over S, as will be discussed in Section 4.4. At any time
point, say T, �(S) is denoted by R[s(T)] and is the relation resulting from ap-
plying S’s operations with timestamps less than or equal to T in an increasing
order of timestamp.

Example 1. This example demonstrates the mapping from RoomTempStr
to a time-varying relation. Figure 1(a) gives the following input tu-
ples: “+<a,99>1, +<b,75>2, +<c,80>3, u<a,95>4”. Figure 1(b) gives
�(RoomTempStr) with a schema of three attributes: RoomID, Temperature, and
TS. Figure 1(b) illustrates that at time 1, the tuple for Room “a” is inserted into
�(RoomTempStr) with temperature 99. At time 4, �(RoomTempStr) reflects the
update of Room “a”s temperature to 95.

4.2 Query Semantics

A continuous query over n tagged streams, S1 . . . Sn, is semantically equiv-
alent to a materialized view that is defined by an SQL expression over the
time-varying relations, �(S1) . . . �(Sn). Whenever any of the underlying re-
lations is modified by the arrival of a stream tuple, the modify operation is prop-
agated to produce the corresponding set of modify operations in the answer in a
way similar to the incremental maintenance of materialized views [Griffin and
Libkin 1995]. The output of a query can be provided in two forms as follows:
(1) COMPLETE output, where, at any time point, the query issuer has access to a
table that represents the complete answer of the query. The answer’s table is
modified whenever any of the input relations is modified. Notice that the out-
put in this case is nonincremental; (2) STREAMED output, where the query issuer
receives a tagged stream that represents the deltas (i.e., incremental changes)
to the answer.

Example 2. This example illustrates the syntax of SyncSQL. We use the
keyword STREAMED to indicate that the query asks for an incremental output.
The parking lot monitoring query P1, from Section 3.1, is expressed as follows.
P1 : SELECT STREAMED R1.VID R1.VType

FROM �(S1) R1 − �(S2) R2
P1’s output is a tagged stream that includes a “+” tuple whenever a vehicle en-
ters the parking lot and a “−” tuple whenever a vehicle exits the lot. P1 gives an
example for expressing queries over append-only streams. As another example
for expressing queries over update streams, the temperature-monitoring query
T1, given in Section 3.2, is expressed as follows.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:16 • T. M. Ghanem et al.

T1 : SELECT STREAMED RoomID, Temperature
FROM �(RoomTempStr) R
WHERE R.Temperature > 80

4.3 Views over Streams

The unified interpretation of SyncSQL query inputs and outputs enables SyncSQL
to exploit views over streams. Basically, a view over streams is a function that
maps a set of input streams into a derived output stream. Then, a query can ref-
erence the derived stream in a way similar to referencing base streams. Notice
that the view is defined once and then can be referenced by any other query
if the view’s expression is contained in the query’s expression. In Section 6,
we give an algorithm to deduce the containment relationships among SyncSQL
expressions.

Example 3. This example demonstrates answering queries using views. As
discussed in Section 1, P2 is an aggregate over P1’s output. Hence, we can define
a view, say ParkLot, as follows.

CREATE STREAMED VIEW ParkLot AS
SELECT R1.VID, R1.VType
FROM �(S1) R1 − �(S2) R2

Then, both P1 and P2 can be rewritten in terms of ParkLot. For example, P2 is
rewritten as follows.
P2: SELECT STREAMED P.VType, Count(P.VID)

FROM �(ParkLot) P
GROUP BY P.VType

4.4 Window Queries

In this section, we demonstrate the ability of SyncSQL to express sliding window
queries over append-only streams. A sliding window is defined by two parame-
ters as follows: (1) range that specifies window size, and (2) slide that specifies
the step by which the window moves. In existing query languages, windows are
defined using special constructs and may be assigned to streams (e.g., Arasu
et al. [2006], Chandrasekaran et al. [2003]) or to operators (e.g., Abadi et al.
[2003], Zaniolo et al. [2002]). One limitation of the specific window semantics is
that a language that assumes the window-per-stream semantics, for example,
cannot express a query with window-per-operator semantics and vice versa.

Unlike other languages, SyncSQL does not assume a specific window assign-
ment. Instead, SyncSQL employs a predicate-window model [Ghanem et al.
2006] in which the window range is expressed as a regular predicate in the
where clause of the query. The window’s slide is expressed using the synchro-
nization principle as explained in Section 5. The predicate-window model is a
generalization of the existing window models, since all types of windows (e.g.,
window-per-stream and window-per-operator) can be expressed as predicate
windows. For example, a window join (i.e., a window-per-operator) between two
streams, say Si and S j , where two tuples are joined only if they are at most
5 time units apart, can be expressed by the following predicate: �(Si).TS -
5 < �(Sj ).TS < �(Si).TS+5. Similarly, a time-based sliding window over an

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:17

append-only stream, say S, (i.e., a window-per-stream) is expressed as a predi-
cate over �(S)’s TS attribute as shown in the following example.

Example 4. Consider the query P7 as explained in Section 3. P7 is a sliding
window query and is essentially a view that, at any time point T, contains the
identifiers of vehicles that entered the parking lot between times T - 5 and T.
Such a window view is expressed in SyncSQL as follows.

CREATE STREAMED VIEW FiveUnitsWindow AS
SELECT ∗
FROM �(S1) R
WHERE Now − 5 < R.TS ≤ Now

The view FiveUnitsWindow is refreshed when either �(S1) is modified or Now
is changed. Notice that although the input stream S is append only, delete op-
erations are produced in FiveUnitsWindow’s output to represent expired tuples
that fall behind the window boundaries.

4.5 Ad Hoc Queries over Data Streams

Consider the ad hoc query P3 as discussed in Section 1. P3 can be answered
by maintaining a COMPLETE (not STREAMED) view that contains the cars that are
currently in the parking lot as follows.

CREATE COMPLETE VIEW CompParkLot AS
SELECT R1.VID, R1.VType, R1.VOwner
FROM �(S1) R1 − �(S2) R2

Then, P3 is expressed as follows:

SELECT ∗
FROM CompParkView C
WHERE C.VOwner = ′JOE DOE′

5. THE SYNCHRONIZATION PRINCIPLE

If we follow the traditional materialized view semantics, a SyncSQL query an-
swer is refreshed whenever any of the input relations is modified. Unlike mate-
rialized views, in streaming applications, modifications may arrive at a higher
rate. A continuous query issuer may be interested in having coarser refresh
periods for the answer. For example, as we discuss in Section 3.1, P4’s issuer is
interested in getting an update of the answer every two minutes independent
of the rate of change in the parking lot state. The coarser refresh periods are
achieved using sliding windows in other query languages and are restricted to
be either time or tuple based [Arasu et al. 2006; Chandrasekaran et al. 2003;
Li et al. 2005].

In this section, we introduce the synchronization principle as a generaliza-
tion of sliding windows. The idea of the synchronization principle is to formally
specify synchronization time points at which the input stream tuples are pro-
cessed by the query pipeline. Input tuples that arrive between two consecutive
synchronization points are not propagated immediately to produce query out-
puts. Instead, the tuples are accumulated and are propagated simultaneously
at the following synchronization point. The synchronization principle distin-
guishes SyncSQL by being able to: (1) express queries with arbitrary refresh

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:18 • T. M. Ghanem et al.

Fig. 2. Illustrating synchronized relations.

conditions, and (2) formally reason about the containment relationships among
queries with different refresh periods.

5.1 Synchronized Relations

For each input stream in the query, the query issuer specifies time points at
which the input stream tuples need to be reflected in the output. Basically,
instead of mapping an input stream, say S, into a time-varying relation, S is
mapped to a synchronized relation, say �S ync(S). S’s tuples are reflected in
�S ync(S) only at those time points that are specified by the synchronization
stream, Sync. Notice that �S ync(S) is of coarser granularity than �(S).

Example 5. This example illustrates expressing queries with coarser re-
fresh periods. Consider Query T3 from Section 3.2 that is interested in refresh-
ing the query answer every two time units. To achieve the coarser refresh
requirement of T3, we use the synchronized relation �S ync2

(RoomTempStr)
as input. The synchronization stream Sync2 is defined as: 0, 2, 4, 6, . . . .
Figure 2 illustrates that �S ync2

(RoomTempStr) is modified by RoomTempStr tu-
ples every two time units. For example, at Time 1, �S ync2

(RoomTempStr) is empty
and “+<a,99>1” is not inserted in �S ync2

(RoomTempStr) until Time 2. T3 is ex-
pressed as a view, say HotRooms2, as follows.

CREATE STREAMED VIEW HotRooms2 AS
SELECT RoomID, Temperature
FROM �Sync2 (RoomTempStr) R
WHERE R.Temperature > 80

Notice that HotRooms2 is not refreshed between the synchronization time
points. For example, in Figure 2, at Time 3, the contents of the relation
�S ync2

(RoomTempStr) are the same as the contents of the relation at Time 2
and “+<c,80>3” is not inserted in �S ync2

(RoomTempStr) until Time 4.

5.2 Discussion

The idea of accumulating the tuples of an input stream and propagating them
in the query pipeline at once is similar in spirit to the idea of heartbeats [Sri-
vastava and Widom 2004]. In Srivastava and Widom [2004], heartbeats are
defined as a special type of tuples that are embedded in the stream such that,
at any instant, a heartbeat τ for a set of streams provides a guarantee to the
system that all tuples arriving on those streams after that instant will have
a timestamp greater than τ . If the stream sources do not provide heartbeats,
the DSMS needs to deduce them based on the given stream characteristics.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:19

The context and objectives of heartbeats is totally different than those of syn-
chronization time points. Basically, heartbeats are low-level constructs that
are automatically generated by the query processor based on the underlying
stream characteristics [Srivastava and Widom 2004]. In other words, the query
issuer has no control over the generation of the heartbeats. Basically, chang-
ing the heartbeats does not change the semantics nor the output of a given
query. On the other hand, synchronization is a high-level concept that is ex-
pressed through the query language. Unlike heartbeats, the synchronization
principle affects the semantics of a query since the same query has different
outputs under different synchronization time points. The synchronization prin-
ciple and heartbeats are orthogonal, which means that the query processor
can use heartbeats in order to generate a correct output for a given SyncSQL
query.

Punctuation is another mechanism for expressing continuous queries over
data streams [Tucker et al. 2003]. A punctuation marks the end of a subset of
the data and is used to purge state and to unblock blocking operators. Similar
to heartbeats, punctuations are low-level constructs that are not expressed
through the query language. However, prior knowledge of the input stream
characteristics is utilized in order to generate the appropriate punctuations.

5.3 Synchronization Streams

Before proceeding to the algebraic foundation of SyncSQL, this section dis-
cusses synchronization streams in more detail. A synchronization stream (e.g.,
Sync2) specifies a sequence of time points. However, a synchronization stream
is represented and is treated as a tagged stream. The tagged representa-
tion of a synchronization stream is characterized by the following: (a) The
underlying stream schema has only one attribute, termed TimePoint, and
(b) tuples in the stream are insert operations, where a tuple of the form
“+<TimePoint>Timestamp” indicates a synchronization time of value TimePoint
where TimePoint = Timestamp. Like any other stream, a synchronization
stream Sync has a corresponding time-varying relation �(Sync). The fact that
synchronization streams are treated as tagged streams allows SyncSQL to com-
pose synchronization streams in order to define a larger class of synchroniza-
tion streams. The default clock stream, clockStr: +<0>0, +<1>1, +<2>2,
+<3>3, . . . , is the finest granularity synchronization stream. Coarser synchro-
nization streams can be constructed using SyncSQL expressions over clockStr.

Example 6. The synchronization stream that has a tick at every i time
point (e.g., i=2 for Sync2) is constructed from clockStr as follows.

CREATE STREAMED VIEW Synci AS
SELECT C.TimePoint
FROM �(clockStr) C
WHERE C.TimePoint mod i = 0

For i=2, a tuple is produced in the output of Sync2 whenever an input tu-
ple, say c, is inserted in �(clockStr) and c.TimePoint qualifies the predicate
“c.TimePoint mod 2 = 0”. The output of Sync2 is as follows: +<0>0, +<2>2,
+<4>4,. . . , which indicates the time points: 0,2,4,. . . .

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:20 • T. M. Ghanem et al.

Event-based synchronization. The synchronization principle enables SyncSQL
to express queries with event-based refresh conditions. Synchronization
streams for event-based conditions can be constructed as in the following ex-
ample.

Example 7. Consider Query P6 from Section 3.1 that is to be refreshed only
when a police car enters the parking lot. We use the tagged stream S1 to generate
a synchronization stream, say PoliceSync, such that PoliceSync includes time
points that correspond to the entrance of a police car into the lot. PoliceSync
is constructed as follows.

CREATE STREAMED VIEW PoliceSync AS
SELECT R.TS
FROM �(S1) R
WHERE R.VType = POLICE

An S1 tuple, of the form “+<VID,VType>Timestamp”, results in producing a tu-
ple of the form “+<Timestamp>Timestamp” in PoliceSync’s output if “VType” is
POLICE. As discussed in Section 4.1, the attribute R.TS reflects the Timestamp
attribute of the input stream tuple which corresponds to the time at which a
police car is reported in S1. Notice that, assuming no delays, a police car is
reported in PoliceSync’s output at the same time instant at which the car is
reported in S1 (i.e., at time Timestamp).

6. ANSWERING CONTINUOUS QUERIES USING VIEWS OVER STREAMS

In this section, we lay the algebraic foundation for SyncSQL as the basis for
efficient query execution.

6.1 Data Types

As discussed in Section 4, although the inputs in SyncSQL expressions are tagged
streams, SyncSQL queries are expressed over the input streams’ corresponding
relations. The output from a SyncSQL expression is another relation that can
be mapped into a tagged stream. Basically, a synchronized relation is the main
data type over which SyncSQL expressions are expressed. A synchronized rela-
tion �S ync(S) possesses two logical properties:

—data that is represented by the tuples in the relation, where data is extracted
from the input stream S; and

—time that is represented by the time points at which the relation is modified
by the underlying stream S, where time is extracted from the synchronization
stream Sync.

A tuple of the form “+<TimePoint>Timepoint” in the synchronization stream
indicates a synchronization time with value TimePoint. Time points along the
relation lifetime can be classified into two classes in the following way.

—Full Synchronization Points. A point in time T is termed a full synchronization
time point iff �S ynci(Si) reflects all Si ’s tuples up to Time T (i.e., �S ynci(Si)
is up to date with Si). Basically, the time points T ∈ Synci represent the full
synchronization points for �S ynci(Si).

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:21

—Partial Synchronization Points. A point in Time T is termed a partial syn-
chronization point if �S ynci(Si) does not reflect all Si tuples up to Time T
(i.e., �S ynci(Si) is not up to date with Si). Basically, the time points that lie
between two consecutive Synci represent the partial synchronization points
for �S ynci(Si).

The distinction between “full” and “partial” synchronization points is essen-
tial to judge the relationship between the synchronized relation �S ynci(Si) and
the underlying stream Si.

6.2 Operators

In this section, we discuss the logical SyncSQL operators. Logical operators in
SyncSQL are classified into three classes: Stream-to-Relation (S2R), Relation-
to-Relation (R2R), and Relation-to-Stream (R2S). This operator classification
is similar to the classification used by CQL [Arasu et al. 2006], but with different
instantiations of the operators in each class.

6.2.1 The Stream-to-Relation Operator �. The same tagged stream can
be mapped to different synchronized relations using different synchronization
streams. The operator � takes a synchronization stream Sync as a parameter
and maps an input stream S to a synchronized relation �S ync(S). As discussed in
Section 4, if an input tuple from S is denoted by “Tag<Attributes>Timestamp”,
then �S ync(S)’s schema is as follows: “<Attributes,TS>”, where TS corresponds
to the Timestamp field of S’s tuples. � performs the following: (1) buffers S’s tu-
ples, (2) modifies the output relation by the buffered tuples at every Sync’s point,
where the output relation at Sync’s Point T is denoted by R[S(T)]. According
to the tags of the buffered tuples, � can modify �S ync(S) by three different
operations as follows: (1) an insert “+” tuple causes � to insert a new tuple
into �S ync(S), (2) an update “u” tuple causes � to change the values of some
attributes of an existing tuple in �S ync(S), and (3) a delete “−” tuple causes �
to delete a tuple from �S ync(S). Notice that update and delete operations can
be defined only for relations that have a primary key (specified by the create
tagged stream KEY clause as explained in Section 4).

6.2.2 The Relation-to-Stream Operator ξ . The operator ξ is responsible for
producing a STREAMED (or incremental) output of a relation. Any synchronized
relation �S ync(S) can be transformed into only one tagged stream that repre-
sents the modifications to the relation.

Generation of delta tuples. ξ works as follows. At the ith synchronization time
point Ti, ξ generates the delta tuples between �[S(Ti−1)] and �[S(Ti)] as fol-
lows. For every key value k, perform the following: (1) If there is a tuple in
�[S(Ti−1)] with key k but there is no tuple in �[S(Ti)] with key k, then gener-
ate a delete tuple for the key k. (2) If there is no tuple in �[S(Ti−1)] with key
k but there is a tuple in �[S(Ti)] with key k, then generate an insert tuple for
the key k. (3) If there is a tuple with key k in both �[S(Ti−1)] and �[S(Ti)]
but with different attribute values, then generate an update tuple for the
key k.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:22 • T. M. Ghanem et al.

Fig. 3. The relation-to-stream operator.

ξ produces the minimum possible set of tuples that can represent the delta
between two states of the relation. For example, one update tuple is produced
for each key value k if k has different attribute values between the two consec-
utive �S ync(S) states although k may have been modified by a chain of update
operations. For example, in the temperature-monitoring application, the same
room may report more than one temperature update in the same synchroniza-
tion period. However, the set of delta tuples that is generated by ξ at the later
synchronization point includes only one update tuple per room that represents
the latest temperature update. Basically, in this article, we assume that ξ gen-
erates the minimum possible set of tuples that can represent the delta between
the two states of the relation.

Example 8. Figure 3 gives the mapping from �S ync2
(RoomTempStr) that

is given in Figure 2, to the corresponding stream, Sout (i.e., Sout =
ξ(�S ync2

(RoomTempStr))). For example, at Time 4, ξ produces +<c,80,3>4 and
u<a,95,4>4 as the differences which have occurred since the previous synchro-
nization point, 2. Notice that ξ assigns timestamps to the output stream tuples
so that the output stream can be used as input in another continuous query.

6.2.3 Extended R2R Operators. The R2R class of operators includes ex-
tended versions of the traditional relational operators (e.g., σ , π , �, ∪, ∩, and
-). The semantics of R2R operators in SyncSQL are the same as in the traditional
relational algebra. The difference in SyncSQL is that an operator is continuously
running to reflect the continuous modifications in the input relations. As with
materialized views, the output from an R2R operator is refreshed whenever
any of the input relations is modified. For a unary operator (e.g., σ , π ), the out-
put relation is modified at the input relation’s synchronization points. In other
words, the synchronization points (full and partial) for the output are the same
as those for the input relation. However, for a binary operator, say O, that has
two input synchronized relations, RS ync1

(S1) and RS ync2
(S2), the input relation

RS ync1
(S1) is modified at every time point in Sync1 while RS ync2

(S2) is modified
at every point in Sync2. As a result, the output of O is modified at every point
T ∈ (Sync1 ∪ Sync2).

Definition 1 (Unary Operators). The output of a unary R2R operator � over
a synchronized relation �S ync(S) is another synchronized relation, denoted by
�(�S ync(S)), such that:
∀ T ∈ Sync, T is a full synchronization point, and
�(�Sync(S)) = �(R[S(T )]) , while

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:23

Fig. 4. Joining relations with different synchronization.

∀ T /∈ Sync, T is a partial synchronization point, and
�(�Sync(S)) = �(R[S(T̃ )])
where T̃ = max (t ∈ Sync and t < T ).

Definition 2 (Binary Operators). The output of a binary R2R operator �

over two synchronized relations �Synci
(Si) and �Sync j

(Sj ) is a synchronized re-
lation, denoted by �Synci

(Si) � �Sync j
(Sj ), such that:

(1) ∀ T ∈ Synci
⋂

Sync j , T is a full synchronization point, and
�Synci

(Si) � �Sync j
(Sj ) = R[Si(T )] � R[Sj (T )],

(2) ∀ T ∈ (Synci − Sync j ), T is a partial synchronization point, and
�Synci

(Si) � �Sync j
(Sj ) = R[Si(T )] � R[Sj (T̃ )],

where T̃ = max(t ∈ Sync j and t < T ),
(3) ∀ T ∈ (Sync j − Synci), T is a partial synchronization point, and
�Synci

(Si) � �Sync j
(Sj ) = R[Si(T̃ )] � R[Sj (T )],

where T̃ = max(t ∈ Synci and t < T )
(4) ∀ T /∈ (Sync j ∪ Synci), T is not a synchronization point, and
�Synci

(Si) � �Sync j
(Sj ) is not modified.

Example 9. This example demonstrates a join query between two relations,
�S ync2

(S2) and �S ync3
(S3), where Sync2 ticks every 2 units while Sync3 ticks

every 3 units. The SyncSQL expression is as follows.
select STREAMED ∗
from �Sync2 (S2) R2, �Sync3 (S3) R3
where R2.ID = R3.ID

Notice that the join output, say O, is refreshed at time points 2, 3, 4, and 6.
Figure 4 illustrates the pipeline. The output at 2 is equal to R[S2(2)]�R[S3(0)]
and hence 2 is a partial synchronization point since it reflects S3 only up to time
0. Similarly, 3 is a partial synchronization point since 3 reflects S2 up to time
2. Also, 4 is a partial synchronization point since 4 reflects S3 up to time 3. In
contrast, 6 is a full synchronization point for the output since 6 reflects all input
tuples up to time 6. Notice that in practice it makes more sense to use the same
synchronization stream with all the join inputs to indicate the time points at
which the query issuer is interested in the query output.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:24 • T. M. Ghanem et al.

6.3 Equivalences and Relationships

In this section, we introduce preliminary relationships that are required by a
query optimizer to enumerate the query plans.

6.3.1 Containment Relationship among Synchronization Streams. A syn-
chronization stream, say Sync1, is contained in another synchronization stream,
say Sync2, if every time point in Sync1 is also a time point in Sync2 (i.e., �(Sync1)
⊆ �(Sync2)). For example, the synchronization stream that is defined over
clockStr by the predicate “TimePoint mod 4=0” is contained in the stream that
is defined by the predicate “TimePoint mod 2=0”.

PROPOSITION 1. �(Sync1) ⊆ �(Sync2) if
∀ I (I ∈ Sync1 ⇒ I ∈ Sync2), where I is an insert tuple of the form “+<T>T”.

6.3.2 Containment Relationships among Synchronized Relations. Reason-
ing about containment relationships between two synchronized relations must
consider the two logical properties, state and time, of the relation. For example,
consider two synchronized relations, say �S ynci(S) and �S ync j (S), that are de-
fined over the same stream S. Notice that the states of �S ynci(S) and �S ync j (S)
may not be equal at every time point if Synci and Sync j are not the same. How-
ever, if Synci is contained in Sync j , then �S ynci(S) is contained in �S ync j (S).
The containment relationship means that every full synchronization time point
of �S ynci(S) is also a full synchronization point of �S ync j (S). The containment
relationship is important since �S ynci(S) can be computed from �S ync j (S) with-
out accessing S. The containment relationship is judged based only on the full
synchronization time points of the relation because these are the time points at
which the synchronized relation is completely up to date with the underlying
streams.

THEOREM 1. If �(Synci) ⊆ �(Sync j), then
�Synci

(S) can be derived from �Synci
(ξ (�Sync j

(S))).

PROOF. (1) Based on the functionality of Operator �, applying � with a
synchronization stream Sync j to a stream S maps S’s existing tuples into
�Sync j

(S) without inserting, updating, or deleting any of the existing tuples
of S. Then, �Sync j

(S) exactly represents S ∀ T ∈ Sync j . (2) Similarly, based on
the functionality of Operator ξ , applying ξ to a relation �sync j

(S) transforms
the existing tuples of �sync j

(S) into S. Hence, ξ (�sync j
(S)) exactly represents

�sync j
(S) ∀ points in time. (3) From 1 and 2 given before, ξ (�sync j

(S)) exactly
represents S ∀ T ∈ Sync j . (4) For a synchronization stream Synci such that
�(Synci) ⊆ �(Sync j ), then, ∀ T ∈ Synci ⇒ T ∈ Sync j . (5) From 3 and 4 given
previously, ξ (�sync j

(S)) exactly represents S ∀ T ∈ Synci, hence �Synci
(S) can be

derived from �Synci
(ξ (�Sync j

(S))).

Theorem 1 means that �S ynci(S) can be derived from �S ync j (S) by applying
Synci over the output stream from ξ(�S ync j (S)).

6.3.3 Commutability between Synchronization and R2R Operators. R2R
operators in a SyncSQL expression are executed over synchronized relations. In

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:25

this section, we show that the order of applying the synchronization and R2R
operators can be switched. The commutability between the synchronization and
R2R operators allows executing the query pipeline over finest granularity rela-
tions and hence allows sharing the execution among queries that have similar
R2R operators but with different synchronization.

THEOREM 2. For any unary R2R operator �, ∀ T such that T is a full
synchronization point of �(�S ync(S)), T is a full synchronization point of
�S ync(ξ (�(�(S)))).

PROOF. (1) From the definition of R2R operators, the full synchronization
points of �(�Sync(S)) are the full synchronization points of �Sync(S). In other
words, the full synchronization points of �(�Sync(S)) are the time points that
belong to the synchronization stream S ync. (2) Since applying the synchro-
nization stream Sync is the outermost operation in �Sync(ξ (�(�(S)))), then the
full synchronization points of �Sync(ξ (�(�(S)))) are the time points that belong
to the synchronization stream Sync. (3) From 1 and 2, the full synchronization
points of �(�Sync(S)) and �Sync(ξ (�(�(S)))) are the same and are the time points
of Sync.

THEOREM 3. For any binary R2R operator �, ∀ T such that T is a full syn-
chronization point of �Sync1

(S1) � �Sync2
(S2), T is a full synchronization point of

�Sync1

⋂
Sync2

(ξ (�(S1) � �(S2))).

PROOF. (1) From the definition of a nonunary R2R operator, the full syn-
chronization points of �Sync1

(S1) � �Sync2
(S2) are the time points that are full

synchronization points for both �Sync1
(S1) and �Sync2

(S2), then, the full syn-
chronization points of �Sync1

(S1) � �Sync2
(S2) are the time points that belong to

Sync1

⋂
Sync2. (2) Since applying the synchronization stream Sync1

⋂
Sync2

is the outermost operation in �Sync1

⋂Sync2
(ξ (�(S1) � �(S2))), then the full syn-

chronization time points of �Sync1

⋂Sync2
(ξ (�(S1) � �(S2))) are the time points

that belong to Sync1

⋂
Sync2 . (3) From 1 and 2, the full synchronization

points of both �Sync1
(S1) � �Sync2

(S2) and �Sync1

⋂Sync2
(ξ (�(S1) � �(S2))) are

the same and equal the time points that belong to the synchronization stream
Sync1

⋂
Sync2.

The main idea of Theorems 2 and 3 is that we can pull the synchronization
streams out of an R2R operator. Basically, an R2R operator can be executed
over the finest granularity relations and produce the finest granularity output.
Then, the desired synchronization is applied over the fine granularity output.

7. SYNCSQL QUERY MATCHING

In this section, we introduce a query-matching algorithm for SyncSQL expres-
sions. The goal of the algorithm is that, given a SyncSQL query, say Qi, the
algorithm determines whether Qi (or a part of it) is contained in another view,
say Q j . If such Q j exists, the algorithm rewrites Qi in terms of Q j in a way similar
to answering queries using views in traditional databases.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:26 • T. M. Ghanem et al.

7.1 Peeling SyncSQL Expressions

To reason about the containment of SyncSQL expressions, we isolate the synchro-
nization streams out of the expression’s data. The containment relationship is
then tested in two separate steps: one step to test data containment, and an-
other step to test synchronization containment. We term the resulting form of
the expression a peeled form.

Definition 3 (Peeled SyncSQL Expression). The peeled form of a SyncSQL ex-
pression is a derived synchronized relation that is defined with: (a) state, which
is a SQL expression over the finest granularity relations, and (b) time, which is
a global synchronization stream that specifies the full synchronization points
of the expression.

Theorems 2 and 3 are used to transform any SyncSQL expression into the
corresponding peeled form. Notice that we can match two expressions only at
the full synchronization points because they are the points at which the query
answer is up to date with all the input streams.

Example 10. This example derives the peeled form for the SyncSQL expres-
sion Q = σ (�Sync1

(S1) � �Sync2
(S2)). The derivation is performed in two steps as

follows.

—Using Theorem 3, pull the synchronization streams out of the join operator.
Q = σ (�Sync1

⋂ Sync2
(ξ (�(S1) � �(S2)))).

—Using Theorem 2, pull the synchronization stream out of the selection oper-
ator.
Q = �Sync1

⋂ Sync2
(ξ (σ (�(S1) � �(S2)))).

The constructed peeled form indicates that Q is equivalent to a synchronized
relation with the following: (1) data: σ (�(S1) � �(S2)), and (2) full synchroniza-
tion time points: Sync1

⋂
Sync2 that gives the full synchronization points for

the expression.

7.2 Query-Matching Algorithm

SyncSQL query matching is similar to view exploitation in materialized
views [Goldstein and Larson 2001; Larson and Yang 1985]. However, a matching
algorithm for SyncSQL expressions matches the two parts of the peeled forms:
state and time. In the following, we give the high-level steps of the SyncSQL
query matching algorithm. The input to the algorithm is a SyncSQL query ex-
pression, say Q, and a set of peeled forms for the concurrent views.

Example 11. This example illustrates the matching of the temperature
monitoring query T4 with the view HotRooms2 that is created in Example 5.
Assume that the input expressions are as follows.
HotRooms2 = σTemp > 80(�Sync2

(RoomTempStr))
T4 = σTemp > 100(�Sync4

(RoomTempStr))
The corresponding peeled forms for the two expressions are as follows.
HotRooms2 = �Sync2

(ξ (σTemp > 80(�(RoomTempStr))))
T4 = �Sync4

(ξ (σTemp > 100(�(RoomTempStr))))

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:27

Algorithm. SyncSQL-Expression-Matching.

(1) Using Theorems 2 and 3, transform Q to a peeled form by constructing the two

components: (1) Q’s data, Qd , and (2) Q’s synchronization, SyncQ ;

(2) Match Qd with data parts of the other input peeled forms using a view-matching

algorithm from the materialized view literature (e.g., Goldstein and Larson [2001]). The

result of the matching is a peeled form (if any) for a matching expression, say Q̃, such

that Q̃ consists of a data part Q̃d with synchronization stream SyncQ̃.

(3) If such a Q̃ exists, use Proposition 1 to check the containment relationship between

the synchronization streams SyncQ and SyncQ̃;

(4) If �(SyncQ ) ⊆ �(SyncQ̃), then Query Q can be rewritten in terms of Q̃ as follows. First,

rewrite Qd in terms of Q̃d using the same algorithm used in step 2 given before. In other

words, find the function F such that Qd = F(Q̃d).

(5) Apply Q’s synchronization SyncQ to the result of the rewrite in order to get the desired

Q’s output. In other words, we have Q = �SyncQ
(ξ (F (Q̃))).

By comparing the two peeled forms we can conclude that: (1) �(Sync4) ⊂
�(Sync2), and (2) using a view matching algorithm (e.g., [Goldstein and Lar-
son 2001]) shows that the “Temp > 100” ⇒ “Temp > 80”. Then, the algorithm
concludes that T4 ⊂ HotRooms2. Then, the data part of T4 can be re-written in
terms of HotRooms2 as follows:
T4 = σTemp > 100(ξ (�(Hot Rooms2))).
Then, T4’s synchronization is applied to the output of the re-write as follows:
T4 = �sync4

(ξ (σTemp > 100(ξ (�(Hot Rooms2)))))

8. THE NILE-SYNCSQL PROTOTYPE

In this section, we present the design of Nile-SyncSQL, a prototype server to
support SyncSQL queries. Nile-SyncSQL uses a pipelined queuing model for the
evaluation of continuous SyncSQL queries. Query operators in the pipeline are
connected via first-in-first-out queues. An operator, say p, is scheduled once
there is at least one input tuple in p’s input queue. Upon scheduling, p processes
its input and produces output tuples in p’s output queue, which is the input
queue for the next operator in the pipeline.

The physical implementation of SyncSQL pipelines follows an incremental
evaluation approach in order to avoid the reexecution of the pipeline with ev-
ery input stream tuple. In the incremental evaluation approach, only modifi-
cations in the input relations are processed by the query pipeline in order to
produce a corresponding set of modifications in the output. Basically, an in-
cremental query pipeline is constructed using differential operators instead of
the relational operators. Each R2R operator (e.g., σ and �) has a correspond-
ing incremental (or differential) operator (e.g., σ d and �d ). We can say that
the physical SyncSQL operators are incremental operators that form a class
of Stream-to-Stream (S2S) operators. Some of the incremental operators need
to keep an internal state to be used to process the input modifications and
produce the corresponding modifications in the output. In effect, the function-
ality of an S2S operator combines three functions as follows: (1) takes an input

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:28 • T. M. Ghanem et al.

modification tuple (i.e., +, u, or -) and applies the modification to the operator’s
internal state (if any), (2) performs the relational operator’s function over the
internal state, then (3) reports the output modifications as an output tagged
stream. SyncSQL’s differential operators use the same semantics of differen-
tial operators that are used in the incremental maintenance of materialized
views [Griffin and Libkin 1995]. Two equations are given for every operator.
One equation gives the semantics when the input changes by inserting a tuple
and the other equation gives the semantics when the input changes by deleting a
tuple. There are no specific equations for the semantics when the input changes
by updating a tuple, since the “update” semantics can be derived as the compo-
sition of two operations: “deletion of the old values” and “insertion of the new
values”.

Tuples in the pipeline are Tagged tuples and can be either insertion (+), up-
date (u), or deletion (-) tuples. The tagged tuple’s attributes follows the stream’s
defined schema. An update tuple has an additional part to hold the old attribute
values. The old attribute values are first attached by the Tagger operator that
is the first operator to produce update tuples in the pipeline. As the update tu-
ples propagate in the pipeline, the old attributes are processed by the various
operators. If an operator is to produce an update tuple as output, the operator
is responsible for attaching the old attributes to the output tuple according to
the operator’s semantics. An operator gets the old attributes either from the in-
put tuple’s old attributes or from the operator’s stored state. The old values are
needed by the various operators in the pipeline in order to maintain a correct
query answer.

In addition to the incremental operators, two new operators are needed to
implement the tagging and synchronization principles. The tagging principle is
implemented via a Tagger operator. A Tagger operator is needed to transform
the input raw streams into tagged streams. Notice that the tagging function
is application dependent and different Tagger operators may need to be im-
plemented. On the other hand, the synchronization principle is implemented
via the Synchronizer operator. A synchronizer operator is needed if the query
has coarser refresh requirements. Synchronizer is a buffering operator that
buffers the input stream tuples and only releases them to the query pipeline
at specified synchronization points. For tagged streams, the Synchronizer op-
erator performs summarization on the input tuples. For example, if an object,
say O, is inserted then deleted in the same synchronization period, then O is
not of interest to the query issuer and hence the processing of O’s tuples can
be avoided. Hence, the Synchronizer operator digests both O’s insert and delete
tuples and does not produce them in the output. Moreover, if another object
receives two updates in the same synchronization period, then the processing
of the earlier update can be avoided since it is not of interest to the query is-
suer. Such summarizations reduce the number of tuples in the pipeline without
affecting the correctness of the answer.

Operators in Nile-SyncSQL are push based. The push-based nature of con-
tinuous operators helps avoid deadlocks in case of shared execution of contin-
uous queries. A traditional multiquery optimization pipeline may encounter a
deadlock because the operators depend on the pull-based approach [Dalvi et al.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:29

Fig. 5. Example SyncSQL query pipeline.

2001]. Basically, a deadlock happens if an operator does not pull tuples from the
shared buffers. Hence, the shared buffers remain full and the shared pipeline
cannot produce more tuples in the shared buffers. However, in the case of con-
tinuous queries, the shared pipeline pushes the output tuples to all queries.
Each query pipeline has input queues to hold the tuples that are pushed to the
query. Operators always read tuples from the input queues and store the tu-
ples in the operator’s private state (if needed). For example, Join continuously
reads tuples from the Join’s input queues. If one of the Join’s input queues is
empty, Join keeps on reading tuples from the other input queue, hence, the
input queues will not be full. A problem might appear if Join’s internal state is
full. However, this problem is addressed by using windows and expiration. For
example, a tuple is deleted from Join’s state when the corresponding negative
tuple is received.

Figure 5 gives the pipeline for the parking-lot monitoring view ParkLot2 and
the subsequent query P5. Figure 5 illustrates that ParkLot2’s pipeline consists
of the following operators: (1) A Tagger operator is attached with each one of the
input streams. Tagger’s output is a stream of “+” tuples since the input streams
(i.e., S1 and S2) represent append-only relations; (2) A Synchronizer operator is
placed on top of each Tagger operator. The Synchronizer’s job is to buffer the
input tagged tuples and to produce them in the output every 2 time units when a
synchronization point is received from Sync2; (3) A Set-difference operator that
processes the input “+” tuples and produces a tagged stream as output. The
Set-difference’s output stream represents ParkLot2’s output that includes “+”
tuples for vehicles entering the parking lot and “−” tuples for vehicles exiting

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:30 • T. M. Ghanem et al.

the parking lot. Query P4 is expressed in terms of the ParkLot2 view. As a
result, ParkLot2’s output is used as input in P5’s pipeline which consists of two
operators, a Synchronizer and a Group-by. P5’s output stream is a tagged stream
that includes a “+” tuple for each new group, a “u” tuple for a group whenever
the number of vehicles in the group changes, and a “−” tuple whenever a group
needs to be deleted because all vehicles in that group exit the lot.

8.1 Discussion

Some data streams have high arrival rates. Load-shedding techniques are pro-
posed to discard some fraction of the unprocessed data when the DSMS cannot
process the tuples as fast as they arrive (e.g., see Abadi et al. [2003]). The effect
of load shedding is that the produced query answer is just an approximation of
the accurate answer. An example of a load-shedding technique in Nile-SyncSQL
is to limit the number of updates per object per unit of time. When the system
is overloaded, the load shedder chooses tuples to drop from objects that have
the largest number of updates. Similar to the load-shedding techniques, apply-
ing load shedding in Nile-SyncSQL will result in the production of approximate
query answers. If load shedding is to be used, the incremental operators should
be furnished with some new rules to maintain the correctness of the operators’
state. Basically, the following rules need to be considered: (1) When an update
tuple is dropped from the pipeline, this update will not be reflected in the query
answer. (2) When Insert tuples are to be dropped, then operators should accept
update tuples for nonexisting keys. Basically, an update tuple for a nonexisting
key is treated as an insert of the new attributes while the old attributes are
ignored. (3) Delete tuples cannot be dropped. Hence, when a tuple is deleted
without a corresponding insert (if the insert was dropped), then that delete tu-
ple is ignored. This previous item is just a sample load-shedding policy. Other
more sophisticated policies can be explored. However, this issue is beyond the
scope of this article.

9. COST ANALYSIS OF SYNCSQL QUERY PIPELINES

In this section, we present a cost model to be adopted by the query optimizer
to estimate the cost of a given SyncSQL execution pipeline. The task of a query
optimizer is to find the best execution plan for a given query or a given set of
queries. Usually, this goal is accomplished by examining a large space of possi-
ble execution plans and comparing these plans according to their “estimated”
execution cost. The cost model takes several inputs such as the input arrival
pattern, the estimated input size, and the estimated selectivity of the individual
operations.

Traditional database management systems use selectivity information to
estimate the cost of a given execution plan up to completion. However, this
cost metric does not apply to continuous queries, where the time to complete
the query is infinite [Kang et al. 2003]. Hence, the cost model presented in
this section finds the cost of executing a given pipeline for a specified period of
time. The CPU cost of executing a given plan depends on the following: (1) the
number and the organization of operators in the pipeline, (2) the number of

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:31

tuples processed by each operator, and (3) the CPU cost of processing one tuple
in each operator. Basically, the CPU cost of executing a pipeline that consists
of n operators for t time units can be estimated as follows.

Cpipeline(t) =
∑n

i=1 COi (t)
where COi (t) is the CPU cost of running operator Oi for t time units. COi (t) can
then be estimated as follows.

COi (t) = Tin
i (t) ∗ ci

where Tin
i (t) is the number of input tuples that arrive to Oi during the execution

period of t time units and ci is the CPU cost of processing one tuple in Oi. Notice
that ci is an input parameter that depends on both the system parameters and
the implementation. Let T out

i (t) be the number of output tuples from Oi during
the execution period. Then Tin

i (t) = T out
i−1 (t). Notice that Tin

1 (t) is also an input
parameter that gives the estimated number of input tuples during t time units.
If the bottommost operator is a nonunary operator, then Tin

1 (t) is the summa-
tion of all the input tuples from all the input streams. Notice also that the
output cardinality of an operator depends on the number of input tuples (i.e.,
Tin) and on the operator functionality. The reader is referred to the Electronic
Appendix that can be accessed through the ACM Digital Liberary for a com-
plete analysis of the relationship between Tin and T out for the various types of
operators.

10. EXPERIMENTAL EVALUATION OF NILE-SYNCSQL

In this section, we give an experimental evaluation of the Nile-SyncSQL proto-
type. The goal of the experimental evaluation is to (1) analyze the factors that
affect the performance of SyncSQL queries, and (2) demonstrate the effectiveness
of supporting views in DSMSs.

10.1 Experimental Setup

The Nile-SyncSQL prototype is implemented on Intel Pentium 4 CPU 2.4 GHz
with 512MB RAM running Windows XP. A continuous query is evaluated via a
pipeline of operators where each operator in the pipeline runs as an indepen-
dent thread. The threads communicate with each others via FIFO queues. A
producer-consumer locking mechanism is implemented to control the queue ac-
cess in a way that a queue is accessed by at most one thread at a time. Operators’
threads are scheduled using a round-robin scheduling.

10.1.1 Workload Queries. We use queries from the temperature-
monitoring application (that is discussed in Section 4) to evaluate the perfor-
mance of Nile-SyncSQL. The temperature-monitoring application facilitates the
study tagging performance since a tagging function is defined to transform the
input streams into tagged streams by correlating the input tuples based on the
key attribute, RoomID. Hence, the temperature-monitoring application facili-
tates testing the performance while three different types of tuples (i.e., insert,
update, and delete) flow in the query pipeline. Two input streams are gener-
ated, namely TemperatureSource and HumiditySource. TemperatureSource is
a stream that reports the various rooms’ temperature and has a schema of

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:32 • T. M. Ghanem et al.

three attributes as follows: (RoomID, Building, Temperature), where RoomID
is an integer attribute that gives the room identifier, Building is an integer at-
tribute that represents the building in which the room resides, and Temperature
is an integer attribute that gives the temperature reading of the given room.
Similarly, Humiditysource is a stream that reports the various rooms’ hu-
midity and has a schema of three attributes as follows: (RoomID, Building,
Humidity). The RoomID is the key attribute for both the TemperatureSource and
HumiditySource streams, and an input stream tuple is an update over the pre-
vious tuple with the same RoomID value. A tagging transformation is defined
to transform TemperatureSource and HumditiySource streams into the tagged
streams RoomTempStr and RoomHumStr, respectively. We use the following opera-
tors to construct various query pipelines: Tagger, Synchronizer, Select, Project,
Join, Group-by, and Aggregate.

10.1.2 Data Generation. We use randomly generated synthetic data in our
experiments. To generate the TemperatureSource stream, we specify the num-
ber of distinct identifiers (i.e., number of rooms) and the number of buildings,
where the rooms are evenly distributed among buildings. Then, we specify the
input stream’s arrival rate which is defined as the number of stream tuples to
be received in one second. The interarrival time between two data items fol-
lows the exponential distribution with mean λ tuples/second. The arrival rate
of the input streams is changed by varying the parameter λ. We generate the
stream tuples such that the arrival rate is evenly distributed among the rooms
(if not mentioned otherwise). For example, in a stream that reports readings
from 200 rooms with an arrival rate of 20000 tuples/second, each room reports
its temperature 100 times/second. The temperature readings are varied from
73 to 100.

10.2 NILE-SYNCSQL vs. Traditional Window Processing Techniques

It is important to note that processing different types of tuples is addressed
when discussing continuous query processing [Ryvkina et al. 2006; Babu et al.
2005; Ghanem et al. 2007], however, SyncSQL is the first language to address
the different types of tuples from the query language (not query processor) point
of view. Comparing the performance of incremental evaluation of sliding win-
dow queries with the traditional approach is addressed in Ghanem et al. [2007].
The conclusion from Ghanem et al. [2007] is that the straightforward incre-
mental evaluation of sliding window queries (similar to what we have in Nile-
SyncSQL) has some advantages and some disadvantages. The advantage is
providing accurate query answer independent from the input stream character-
istics. However, the disadvantage is the overhead of processing different types
of tuples. However, Ghanem et al. [2007] shows that the incremental evaluation
opens a room for optimizing query performance. Then, Ghanem et al. [2007] il-
lustrates that performance of incremental evaluation along with optimizations
is better than the traditional sliding window evaluation approaches. In the ar-
ticle at hand, we focus on evaluating the performance of Nile-SyncSQL as an
incremental evaluation approach. However, the performance of Nile-SyncSQL
can be further enhanced by applying similar optimizations as the ones proposed

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:33

Fig. 6. Effect of arrival rate.

in Ghanem et al. [2007]. It would be repetitious to repeat these here. The reader
is referred to Ghanem et al. [2007] for further detail.

10.3 Performance of the Tagger Operator

In this section, we analyze the factors that affect the performance of the Tag-
ger operator and propose optimizations to minimize the overhead of tagging.
We first run an experiment to measure the Tagger’s throughput, where the
throughput is defined as the maximum number of tuples that can be processed
by the Tagger operator per time unit. Notice that the Tagger’s throughput de-
pends on the complexity of the tagging transformation. We run a query pipeline
that consists of only a Tagger operator where TemperatureSource is used as
input. We run the experiment several times while varying the number of dis-
tinct room identifiers in TemperatureSource. The pipeline works as follows:
Tagger reads a tuple from TemperatureSource, uses the tuple to maintain the
state, attaches the corresponding tag, and produces the tagged tuple in the
output.

Figure 6 gives the effect of the input arrival rate on the query execution time.
We measure the time taken by the pipeline to process 1.2 million input tuples
while varying the arrival rate from 6000 to 20000 tuples/second. The graphs
in Figure 6 give the input and execution times. The “Input Times” graph illus-
trates that for the same number of input tuples, the input time decreases as the
arrival rate increases. However, the “Execution Times” graphs illustrate that
the execution time initially decreases with the increase in the arrival rate, then
saturates when the arrival rates reaches 14000 tuples/second. Two “Execution
Times” graphs are given to illustrate the execution time when the updates in
TemperatureSource are sent by 200 and 600 rooms. Before saturation (i.e., for
arrival rates less than 14000 tuples/second) the execution time is the same
as the input time, which means that the system is not overloaded and that
the input tuples are processed as fast as they arrive. At saturation, the exe-
cution time is fixed at 90 seconds even if the arrival rate is larger than 14000
tuples/second. The conclusion is that the maximum throughput of the Tagger
operator is around 14000 tuples/second. The graphs in Figure 6 also illustrate
that the Tagger’s throughput is almost the same when the number of rooms is

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:34 • T. M. Ghanem et al.

200 or 600. The throughput is independent of the number of distinct key values
because both streams have the same number of input tuples, and each input
tuple takes the same amount of time to be processed independent of how many
tuples are processed for the same room identifier.

10.3.1 Merged Select-Tagger Operator. In the temperature-monitoring ap-
plication, the Tagger operator maintains information for all the distinct room
identifiers in order to correlate the input tuples. At the same time, a query may
be interested in only a small number of rooms (e.g., by having a selection pred-
icate on the RoomID attribute). As a result, the overhead of the Tagger operator
can be reduced if the Tagger is aware of the query’s selection predicate. In order
to minimize the tagging overhead, we propose to merge the tagging functional-
ity with the Select operator. The merged Select-Tagger operator receives the
raw input stream tuples, evaluates the selection predicate, and assigns appro-
priate tags to the output tuples. The merged Select-Tagger operator stores
only rooms that qualify the selection predicate. Moreover, a room is deleted
from the state once the room reports a temperature update that disqualifies
the selection predicate.

We use the HotRooms2 view from Example 5 (in Section 4) to evalu-
ate the performance of the merged Select-Tagger operator. The straight-
forward HotRooms1’s pipeline consists of two operators: Tagger and Select.
TemperatureSource is the input stream to HotRooms1’s pipeline and the output
is a stream that represents the rooms with temperature > 80. Tagger maintains
a state that contains one entry for each distinct room identifier and produces
insert and update tuples for the various rooms. The output from the Tagger op-
erator is then used as input to Select. When processing an update tuple, Select
applies the selection and projection predicates twice, once on the old values and
once on the new values. If we apply the merged Select-Tagger optimization, the
optimized HotRooms1’s pipeline will consist of one operator, namely the merged
Select-Tagger operator. The merged operator improves both the memory and
CPU consumption as follows.

—Memory. Only rooms that qualify the selection predicate are stored in the
state. Memory savings can be considerable when the query employs highly
selective predicates.

—CPU. The merged Select-Tagger operator reduces the CPU cost of the query
pipeline due to the following: (1) avoids updating the state by tuples which
correspond to rooms that do not qualify the selection predicate, and (2) avoids
the reexecution of select and project predicates on the old part of an up-
date tuple by getting the old part processing result from the stored tagging
state.

Figure 7 gives the execution times that are taken to process different input
sizes to HotRooms1’s view. The number of rooms is set to 200 and the arrival rate
is fixed to 20000 tuples/second, while the input size is varied from 400000 to 1.2
million tuples. The three graphs in Figure 7 compare three cases: (1) a pipeline
of two operators, namely Tagger and Select, (2) a pipeline with one operator,
namely the merged Select-Tagger operator, and (3) a pipeline with a Select

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:35

Fig. 7. Cost of the tagging operation.

operator only. The pipeline in Case (3) does not give the desired query seman-
tics, since the input tuples are not correlated based on the RoomID attribute.
However, we include this case to quantify the tagging overhead. Figure 7 gives
the throughput of the three different pipelines as follows: (1) 12K tuples/second
(2) 14K tuples/second, and (3) 16K tuples/second. These throughput values in-
dicate that the merged Select-Tagger results in a 15% increase in throughput
compared to the separate Tagger. The increase in throughput is due to the
reduction in the numbers of state modifications, selection, and projection eval-
uations. Moreover, Figure 7 illustrates that the tagging overhead reduces the
throughput by 10% in contrast to the no-tagging pipeline (i.e., Pipeline 3). The
conclusion is that although processing update tuples doubles the number of
selection and projection evaluations, it does not double the execution time be-
cause it does not double the communication cost nor the cost of constructing
the output tuples.

10.3.2 Effect of Selectivity. In this section, we study the effect of selectivity
on the performance of the merged Select-Tagger operator. We divide this study
into two sections as follows: key selectivity and nonkey selectivity. In Key-
selectivity queries, the selection predicate is defined on the key attribute of
the input stream (e.g., RoomID). In contrast, in nonkey selectivity queries, the
selection predicate is on a nonkey attribute (e.g., Temperature). In the case
of key selectivity, once an object (i.e., room) qualifies the predicate, the object
continues to qualify the predicate for as long as the query is running. As a result,
once a qualified object is inserted in the Select-Tagger’s state, the object will
not be deleted and the size of the Tagger’s state will be fixed during the query
runtime. On the other hand, for nonkey selectivity, an object may fluctuate
between qualifying and disqualifying the query predicate. As a result, the size
of the Select-Tagger’s state will vary during the query runtime.

Effect of key selectivity. Figure 8 gives the effect of key selectivity on the
tagging cost. This experiment is performed for a pipeline that is similar to that
of HotRooms1’s view pipeline while changing the selection predicate. The graphs
in Figure 8 compare the performance of the same three pipelines in Figure 7.
Figure 8(a) gives the effect of selectivity on execution time, while Figure 8(b)

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:36 • T. M. Ghanem et al.

Fig. 8. Effect of key selectivity on Tagger’s performance.

gives the effect of selectivity on memory consumption. The input size in this
experiment is 1.2 million tuples. The selection predicate is on RoomID attribute
and selectivity is varied from 0 to 1. Figure 8(a) illustrates that the merged
Select-Tagger operator achieves a 30% improvement in the execution time
if compared to the separate Tagger. The reason for this improvement is that
the separate Tagger performs many unneeded state maintenance operations,
since all room identifiers are stored and used to update the Tagger’s state.
Figure 8(a) also illustrates that for low selectivity values (less than 0.5) the
tagging overhead is almost zero and the merged Select-Tagger pipeline has the
same execution time as the No-Tagging pipeline. The tagging overhead started
to appear from selectivity values larger than 0.5 when the merged operator
performs slightly worse than the append-only performance because of the state
maintenance.

Figure 8(b) gives the effect of the selectivity on the memory. For the sepa-
rate Tagger pipeline, the memory requirement is independent from the selec-
tivity and equals to the maximum number of rooms because Tagger stores
all rooms, even the rooms that do not qualify the query predicate. For the
merged Select-Tagger operator, the state size is proportional to the selectiv-
ity because only rooms that qualify the selection predicate are stored. In other
words, the merged Select-Tagger operator has the minimum possible mem-
ory requirement for the correct query evaluation. For the append-only stream
semantics, no tagging is needed, and hence the memory requirements equal
zero. However, in this case, the output stream does not convey the required
semantics.

Effect of nonkey selectivity. In this section, we illustrate the difference be-
tween key and nonkey selectivity. We use a pipeline that consists of one merged
Select-Tagger operator. Notice that the number of output tuples may exceed
the selectivity factor if the selection predicate is on a nonkey attribute. The ex-
tra, basically negative, tuples are produced because some rooms may be deleted
from the output several times depending on the object update pattern. The
number of output tuples gives an indication to the query execution time.

Figure 9 compares the performance of the Select-Tagger pipeline in the case
of the key and nonkey selectivities. Moreover, Figure 9 illustrates the effect of

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:37

Fig. 9. Effect of nonkey selectivity on Tagger’s performance.

the input data distribution on the performance. We run the same query with
a nonkey selectivity predicate on two different input streams. The two input
streams differ in the update pattern of each room. For example, assume that
a certain room, say Ri, reports 4 temperature readings in the following order:
89, 87, 79, and 78. Assume further that the selection predicate is as follows:
Temperature > 80. As a result, Room Ri will result in producing three output
tuples as follows: +, u, -. However, assume that in another distribution, Room
Ri reports the same four readings, but in a different order as follows: 89, 79,
87, 78. In this latter distribution, Room Ri will result in producing four output
tuples as follows: +, -, +, -. Notice that although Room Ri has the same number
of qualified readings (i.e., 0.5 selectivity), the number of output tuples depends
on the distribution of the qualified tuples.

Figure 9(a) and Figure 9(b) give the effect of data distribution on the execu-
tion time and memory, respectively. The input size is 1.2 million tuples and the
selectivity is varied from 0 to 1. The graphs illustrate that for the same selec-
tivity value, a query with a nonkey predicate may encounter more processing
time and memory than a query with a key predicate. Moreover, the execution
time of the nonkey predicate varies from one data distribution to another. For
example, for nonkey distribution 2, objects fluctuate in and out of the query
boundary more than the fluctuation in distribution 1. As a result, distribution
2 causes more deletions and insertions into the state and hence results in more
processing of negative tuples.

Figure 9(b) illustrates that the merged Select-Tagger’s state size may reach
the maximum number of distinct key values which is the same as the separate
Tagger’s state size. This occurs due to the possibility that all the rooms might
satisfy the query predicate at the same time. However, the CPU cost of the
merged operator is always better than that of the separate operator, due to the
savings in the number of selections and projections.

10.4 Performance of the Synchronizer Operator

In this section, we analyze the factors that affect the performance of the Syn-
chronizer operator and study the effect of synchronization on query perfor-
mance. In the first experiment, we studied the effect of the following two factors

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:38 • T. M. Ghanem et al.

Fig. 10. Effect of number of objects.

on the performance of the Synchronizer operator: (1) the synchronization pe-
riod, and (2) the number of distinct key values. We run a query pipeline that
consists of Tagger and Synchronizer, where TemperatureSource is used as in-
put to the Tagger, and the Tagger’s output is used as input to the Synchronizer.
The pipeline works as follows: Tagger reads a tuple from TemperatureSource,
attaches the corresponding tag, and produces the tagged tuple in the output.
Then, Synchronizer reads a tagged tuple, performs the corresponding sum-
marizations in the buffer, and produces the buffered tuples as output when a
synchronization tuple is received. Firgure 10 illustrates that as the synchro-
nization period increases, the number of output tuples decreases. The reason
for this decrease is that, in a bigger synchronization period, a larger number
of update tuples are digested (i.e., summarized) by the Synchronizer operator,
and hence a fewer number of tuples are processed by the upper Tagger oper-
ator. At every synchronization step, at most one output tuple can be produced
for each room. For example, when the synchronization period is 0.1 second, one
tuple is produced for each room every 0.1 second. However, when the synchro-
nization step is 0.2, one tuple is produced for each room every 0.2 second. As a
result, the number of output tuples for synchronization step 0.2 is almost half
the number of tuples for synchronization step 0.1. The number of output tuples
from the Synchronizer operator gives an indication for the required query re-
sources, since these output tuples are processed by the upper operators in the
pipeline. The conclusion is that although the synchronizer operator has its own
cost, it reduces the number of tuples that are processed by the query pipeline.
Hence, the cost of processing tuples by the synchronizer operator is balanced
by reducing the number of tuples that are to be processed by other operators in
the pipeline.

Figure 10 illustrates also that the number of distinct key values (e.g., number
of rooms) affects the number of output tuples from Synchronizer. The reason
is that at every synchronization point, Synchronizer produces at most one out-
put tuple for every distinct key value. As a result, for the same number of
input tuples and the same synchronization step, the number of output tuples
from Synchronizer increases as the number of distinct key values increases.
Figure 10(a) gives a comparison of the number of output tuples from Synchro-
nizer when the number of objects in the input stream is 200 and 600, while

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:39

the synchronization step is varied from 0.1 to 1 second. Synchronizer produces
more tuples when the underlying stream has 600 identifiers. Figure 10(b) gives
a summary of the relationships among the number of key values, the syn-
chronization step, and the number of tuples. From the figure, we notice that:
(1) For the same synchronization step, as the number of distinct key values
increases, the number of tuples in the pipeline increases, and (2) for the same
number of key values, as the synchronization step increases, the number of
tuples flowing in the pipeline decreases. Notice that in append-only streams,
each tuple in the stream has a distinct key value, hence the synchronization
step has no effect on the number of tuples flowing in the pipeline. However,
synchronizing an append-only stream has the effect of refreshing the query an-
swer at regular time intervals, independent of the arrival pattern of the input
tuples.

10.5 Aggregate Queries and Presynchronization

Consider the following aggregate query from the temperature-monitoring ap-
plication: “ Find the number of hot rooms in each building, report modifications
in the answer every 2 time units”. This aggregate query is expressed in SyncSQL
in two steps as follows. First, we need to define a view that finds the number of
hot rooms in each building as follows.

CREATE STREAMED VIEW BuildHotRooms AS
SELECT R.Building, Count(R.RoomID) as cntRooms
FROM �(RoomTempStr) R
WHERE Temperature > 85
GROUP BY R.Building

Notice that Attribute Building represents the key attribute for the output
stream from the BuildHotRooms view. An update tuple is produced in the output
from the BuildHotRooms view whenever a room enters or exits the query range.
Notice that the same building receives several updates if the building has more
than one hot room. Notice also that the query issuer asks to be notified by the
modifications in each building “once” every two time units. In order to get the
desired output, we apply the desired synchronization (i.e., every 2 time units)
on BuildHotRooms’s output as follows.

SELECT V.Building, V.cntRooms
FROM �Sync2 (BuildHotRooms) V

The output stream from the last query includes at most one update tuple for
each building on every synchronization time point, hence achieving the desired
query semantics. Figure 11(c) gives the query pipeline for BuildHotRooms view
and the subsequent query. Notice that the Synchronizer’s state size equals the
maximum number of buildings because R.Building represents the key field for
the output stream tuples BuildHotRooms.

The presynchronization optimization. In the room temperature-monitoring
application, each room sends temperature updates more than once in every
time unit as explained in Section 10.1. As a result, the same room may result
in producing several update tuples in BuildHotRooms’s output stream for the
corresponding building. The update tuples that are produced from the same

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:40 • T. M. Ghanem et al.

Fig. 11. Effect of presynchronization.

building are summarized by Synchronizer to produce a single output for each
building in every synchronization step. Notice that all the updates that result
from the same room belong to the same building, and hence are also summa-
rized by Synchronizer. This observation highlights the possibility of presumma-
rizing the updates for each room and includes only one update from each room
in the final building summarization. The presummarization can be achieved
by performing a presynchronization on the RoomTempStr stream before being
processed by BuildHotRooms’s pipeline. Figure 11(c) gives the optimized query
pipeline by adding an additional Synchronizer operator at the bottom of the
pipeline. With the added Synchronizer, each room has at most one update tu-
ple to be processed by the aggregate operator in each synchronization period.
Presynchronization results also in reducing the CPU time taken by the ag-
gregate operator, since less tuples flow in the pipeline. Presynchronization is
similar in spirit to eager aggregation in traditional databases [Yan and Larson
1995].

Figure 11 gives a performance comparison of the pipeline in Figure 11(c)
before and after adding the bottommost Synchronizer, when processing an input
stream of 1.2 million tuples. The input stream has 200 distinct key values
and the arrival rate is 20000 tuples/second. Figure 11(a) gives the number of
tuples processed by the aggregate operator while varying the synchronization
step from 0 to 1. All the input tuples are processed by the aggregate operator
when no presynchronization is performed. However, the number of tuples is
reduced significantly when pre-synchronization is applied, since the bottom
Synchronizer digests many input tuples. Figure 11(b) gives the query execution
time that is proportional to the number of tuples processed by the pipeline,
hence, presynchronization reduces the execution time by about 50%.

10.6 Experimental Verification of the Cost Model

In this section, we experimentally verify the accuracy of the proposed cost model
to estimate the CPU cost of SyncSQL pipelines. The experiments are conducted
over a given set of concurrent SyncSQL queries. First, we enumerate several exe-
cution pipelines for the given set of queries. Then, we estimate the cost of execut-
ing the different pipelines while changing the following parameters: the input
update pattern, the input data distribution, the synchronization period, and the

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:41

Fig. 12. Possible execution plans for two concurrent aggregate queries.

number of queries. Next, we run the query pipelines in the Nile-SyncSQL proto-
type and measure the execution times. The cost model is verified by matching
the measured results with the estimated results.

10.6.1 Workload Queries and Plan Enumeration. Experiments in this sec-
tion are conducted over a set of Group-by queries from the temperature-
monitoring application. The goal of these experiments is to illustrate the ben-
efits of using views for the shared execution of continuous queries. The results
in this section are conducted from the shared execution of the following two
queries (including more queries is straightforward).

—BuildingGroups: For each building, find the number of rooms with a tem-
perature greater than 80. Report modifications in the answer every i time
units.

—TemperatureGroups: For each temperature value t that is greater than 80,
find the number of rooms that have t as the room’s temperature. Report
modifications in the answer every j time units.

Both the BuildingGroups and the TemperatureGroups queries are aggregate
queries over the stream RoomTempStr. However, Query BuildingGroups groups
the input tuples based on Attribute Building while Query TemperatureGroups
groups the input tuples based on Attribute Temperature. Also, the two
queries differ in the refresh granularity (i.e., require different synchronization
streams). The options for sharing the execution of the two queries are worth
exploring, since the two queries are executed over the same input stream (i.e.,
RoomTempStr). In the following we examine two possible execution paradigms
for the concurrent queries (the corresponding query pipelines are given in
Figure 12).

(1) Nonshared execution: where the two queries are executed independently
without sharing any operations as shown in Figure 12(a), and (2) Shared syn-
chronization and preaggregation: Another shared pipeline where both aggre-
gation and synchronization are shared between the two queries is shown in
Figure 12(b). The shared view’s Synchronizer uses a synchronization stream

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:42 • T. M. Ghanem et al.

that represents the union of the two queries’ synchronization streams. The
shared views’ Aggregate (the operator that is labeled “GBY:Building, Temper-
ature” in Figure 12(b)) groups the input tuples based on both the Building and
Temperature attributes and counts the number of tuples in each group. The out-
put groups from the shared view are then aggregated by the upper Group-by op-
erators (the operators that are labeled “GBY:Building” and “GBY:Temperature”
in Figure 12(b)) to produce the required building and temperature groups. No-
tice that “GBY:Building” and “GBY:Temperature” add up the number of tuples
in the subgroups to produce the count of tuples in the final group. Notice also
that the output stream from the “GBY:Building, Temperature” operator has a
primary key that consists of two attributes, namely the Building and Temper-
ature attributes. If the number of Building-Temperature groups is less than
the number of rooms, then the number of tuples processed by the upper Group-
by operators is less than those of the corresponding operators in Pipeline a.
However, the shared aggregate operator is an additional overhead in Pipeline
b. Then, the output groups from the shared view are aggregated by the upper
Group-by operators. The shared Synchronizer performs presynchronization and
hence reduces the number of input tuples to the view’s Aggregate.

The pipelines in Figure 12 consist of two types of operators, Synchronizer
and Group-by. Notice that two synchronizer operators are used with each ag-
gregate operator to apply the presynchronization optimization as described in
Section 10.5. In order to estimate the cost of executing the pipelines in Fig-
ure 12, we need to estimate two numbers as follows: (1) N S: the number of
tuples processed by the Synchronizer operators, and (2) NG: the number of
tuples processed by the Group-by operators. Assume that the cost of processing
one tuple in any Synchronizer equals c1 while the cost of executing one tuple
in any Group-by equals c2. Hence, using the equations in Section 9, the cost of
executing a pipeline is

CPipeline = N S ∗ c1 + NG ∗ c2.

The values of N S and NG differ from one pipeline to another and depend on
the following parameters: (1) the input streams update patterns, (2) the number
of key values in the input streams, (3) the number of Groups that are produced
by the Group-by operators, and (4) the synchronization periods. In the following
section, we study the effect of the various parameters on the execution cost.

10.6.2 Improving the Performance Using Views. In this section, we study
the effect of using views for the shared execution of queries. We run an ex-
periment to compare the performance of the nonshared execution pipeline in
Figure 12(a) and the shared execution pipeline in Figure 12(b) using following
parameters.

—Number of rooms is 2000, number of buildings is 20, the number of differ-
ent temperature values is 10. As a result, the maximum possible number of
building-temperature groups is 200.

—Rooms report temperature updates in a uniform pattern where each room
reports an update every 1 time unit.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:43

Fig. 13. Nonshared vs. shared execution of aggregate queries.

—BuildingGroups’s synchronization is every 12 time units, and
TemperatureGroups’s synchronization is every 15 time units.

Using the cost model that is presented in Section 9, the execution costs of
the nonshared paradigm in Pipeline a and the shared paradigm in Pipeline b
for 650 time units can be estimated by the following equations.

—Ca(650) = 2798000 ∗ c1 + 198000 ∗ c2

—Cb(650) = 1841300 ∗ c1 + 191800 ∗ c2

The cost equations show that the shared execution in Pipeline b causes a 40%
reduction in N S and a 10% reduction in NG. The reason for the reduction in N S
is that, in Pipeline b, the input tuples are processed by only one Synchronizer
operator (i.e., the shared Synchronizer operator) in contrast to being processed
twice in Pipeline a. The reason for the reduction in NG is that in Pipeline b, the
upper Group-by operators process only one tuple for each building-temperature
group at every synchronization point in contrast to processing one tuple for each
room in Pipeline a. Notice that, in this experiment, the update rate of the objects
(i.e., every 1 time unit) is much higher than the rate of the synchronization
points. This means that at every synchronization point, several updates for the
same object are accumulated, hence causing a big reduction in the number of
tuples that are processed by the upper operators in the query pipeline.

Effect of the grouping factor. If we change the input parameters such that
there are 200 buildings, then the number of building-temperature groups can
reach up to 2000 at which the cost of Pipeline a is not affected, while the cost
of Pipeline b is estimated by the following equation.

Cb(650) = 2069000 ∗ c1 + 370000 ∗ c2

When the number of building-temperature groups is 2000, the shared execution
pipeline consumes 25% less of the synchronization operations and 1.8% more
aggregations than the nonshared execution in Pipeline a. Hence the preference
between the two pipelines depends on the values of c1 and c2.

Figure 13 gives a comparison of the execution times of Pipeline a, Pipeline
b with 200 building-temperature groups, and Pipeline b with 2000 building-
temperature groups while changing the cost of aggregation, c2. The experimen-
tal results show that when the number of groups is 200, the shared execution

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:44 • T. M. Ghanem et al.

Fig. 14. Effect of input parameters.

can achieve up to a 50% savings in the execution time as compared to the
nonshared execution. However, when the number of groups is 2000, the shared
execution performs better than the nonshared execution only for small values
of c2 (i.e., for inexpensive aggregate functions). As the cost of aggregation in-
creases, the execution time of the shared pipeline increases and the nonshared
execution is preferred, since it can achieve up to a 70% reduction in the execu-
tion time. The conclusion is that the preference whether to share the execution
or not depends on (1) the grouping factor (i.e., in the number of groups in each
Group-by operator), and (2) the cost of the aggregation function.

Effect of the input parameters. The experiment in this section illustrates the
effect of the input parameters on the performance. Assume that we run the
same experiment as before but with the following parameters.

—Number of rooms is 5000, number of buildings is 100, number of different
temperatures is 20. Then, the maximum number of building-temperature
groups is 2000.

—Rooms report temperature updates in a uniform pattern, but different rooms
have different intervals between the updates as follows: 2500 rooms each
report an update every 2 time units, 1500 rooms each report an update every
10 time units, and 100 rooms each report an update every 15 time units.

—BuildingGroups’s synchronization is every 6 time units, while
TemperatureGroups’s synchronization is every 12 time units.

Figure 14 illustrates that the shared execution pipeline improves the execu-
tion time over that of the independent execution pipeline. However, the percent-
age of execution time reduction is less than that in Figure 13. The percentage of
reduction in execution time is 40% in contrast to a 70% in Figure 13. The reason
for the difference in the performance gain is that in the earlier parameter set-
tings, the update rate is much higher than the frequency of the synchronization
points. However, in the parameters in this section, the synchronization points
are as frequent as the object update rate. Hence, not too many updates are ac-
cumulated by the Synchronizer operator. As a result, synchronization has only
a small effect on the number of tuples that flow in the query pipeline.

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:45

Fig. 15. Effect of using views.

10.6.3 Stream Views Can Worsen the Performance. The experiments of the
previous section illustrate that using views improves the query performance.
However, the improvement factor depends on the query settings. In this section,
we show that for some input parameters, using views may worsen the query
performance. Consider two queries, BuildingGroups and TemperatureGroups,
with the following input parameters.

—Number of rooms is 2000, number of buildings is 100, number of different
temperature values is 20. Then, the number of building-temperature groups
is 2000.

—Rooms report temperature updates in a uniform pattern but with different
intervals as follows: 500 rooms each report an update every 10 time units,
500 rooms each report an update every 13 time units, and 1000 rooms each
report an update every 17 time units.

—BuildingGroups’s synchronization is every 15 time units while
TemperatureGroups’s synchronization is every 12 time units.

Using the proposed cost model and the equation that is presented in Sec-
tion 10.6.1, the execution cost of the nonshared execution pipeline (Pipeline a)
and the shared execution pipeline (Pipeline b) for 650 time units can be esti-
mated by the following equations.

—Ca(650) = 444924 ∗ c1 + 171886 ∗ c2

—Cb(650) = 743007 ∗ c1 + 288318 ∗ c2

The cost equations show that the shared execution paradigm requires
more synchronization operations and more aggregation operations than the
nonshared execution. As a result, in this case, nonshared execution is always
preferred over shared execution. The analytical results are confirmed by the
experimental results that are given in Figure 15. The graphs in Figure 15 illus-
trate that nonshared execution achieves up to 50% reduction in the execution
time. The reason for the winning performance of nonshared execution is that
the update rates for most of the rooms are slower than that of the synchroniza-
tion rate. As a result, synchronization does not result in any accumulation of
updates and hence does not reduce the number of tuples to be processed. More-
over, the number of intermediate building-temperature groups is the same as

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



1:46 • T. M. Ghanem et al.

the number of rooms. Hence, shared execution does not result in any reduction
in the number of tuples. The shared view is nothing but an additional overhead,
hence causing bad execution times.

11. CONCLUSIONS

This article introduces a framework to support views in data stream man-
agement systems. First, the article proposes the SyncSQL query langauge that
expresses composable queries (or views) over streams. SyncSQL uses the tagged
stream model in which a data stream is a sequence of modifications over a rela-
tion. Then, the article introduces the synchronization principle that empowers
SyncSQL by a mechanism to express queries with arbitrary refresh conditions.
The article introduces an algebraic framework for SyncSQL queries in which syn-
chronized relations are the main data type over which queries are expressed.
Several new equivalences and transformation rules are given to govern the
relationship among SyncSQL operators. The transformation rules are needed
by a query optimizer to enumerate the query plans. Then, based on the intro-
duced algebraic framework, the article introduces a query-matching algorithm
to judge the containment relationship among SyncSQL expressions. Then, the
Nile-SyncSQL prototype server is introduced to support SyncSQL queries over
streams. In addition, a cost model is proposed to estimate the CPU cost of
executing a SyncSQL query. The cost model is used by the query optimizer to
choose the best execution plan for a given set of queries. An experimental study
is provided to evaluate the performance of Nile-SyncSQL. The experimental
results illustrate that sharing the execution using views can achieve up to a
70% improvement in performance. At the same time, views may worsen the
performance for some query settings. The decision as to whether to share the
execution using views or not can be made in advance with the proposed cost
model.

REFERENCES

ABADI, D. J., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., STONE-BRAKER, M., TATBUL,

N., AND ZDONIK, S. B. 2003. Aurora: A new model and architecture for data stream management.

VLDB J. 12, 2, 120–139.

ARASU, A., BABU, S., AND WIDOM, J. 2006. The CQL continuous query language: Semantic founda-

tions and query execution. VLDB J. 15, 2, 121–142.

ARASU, A. AND WIDOM, J. 2004. Resource sharing in continuous sliding-window aggregates. In

Proceedings of the International Conference on Very Large Databases (VLDB).
BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in data

streams. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS).

BABU, S., MUNAGALA, K., WIDOM, J., AND MOTWANI, R. 2005. Adaptive caching for continuous queries.

In Proceedings of the International Conference on Data Engineering (ICDE).
BONNET, P., GEHRKE, J. E., AND SESHADRI, P. 2001. Towards sensor database systems. In Proceedings

of the Internationa Conference on Mobile Data Management (MDM).
CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN, M. J., HELLERSTEIN, J. M., HONG, W., KRISH-

NAMURTHY, S., MADDEN, S., RAMAN, V., REISS, F., AND SHAH, M. A. 2003. TelegraphCQ: Continuous

dataflow processing for an uncertain world. In Proceedings of the Conference on Innovative Data
Systems Research (CIDR).

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.



Supporting Views in Data Stream Management Systems • 1:47

CHEN, J., DEWITT, D. J., TIAN, F., AND WANG, Y. 2000. NiagaraCQ: A scalable continuous query

system for internet databases. In Proceedings of the ACM SIGMOD Intenational Conference on
Management of Data.

CRANOR, C. D., JOHNSON, T., SPATSCHECK, O., AND SHKAPENYUK, V. 2003. Gigascope: A stream

database for network applications. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data.

DALVI, N. N., SANGHAI, S. K., ROY, P., AND SUDARSHAN, S. 2001. Pipelining in Multi-Query Optimiza-

tion. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

EISENBERG, A., MELTON, J., KULKARNI, K., MICHELS, J.-E., AND ZEMKE, F. 2004. SQL:2003 has been

published. SIGMOD Rec. 33, 1, 119–126.

GHANEM, T. M., AREF, W. G., AND ELMAGARMID, A. K. 2006. Exploiting predicate-window semantics

over data streams. SIGMOD Rec. 35, 1, 3–8.

GHANEM, T. M., HAMMAD, M. A., F. MOKBEL, M., AREF, W. G., AND ELMAGARMID, A. K. 2007. Incremen-

tal evaluation of sliding-window queries over data streams. IEEE Trans. Knowl. Data Engin. 19,

1, 57–72.

GOLAB, L. AND OZSU, M. T. 2003. Issues in data stream management. SIGMOD Rec. 32, 2, 5–14.

GOLDSTEIN, J. AND LARSON, P.-Å. 2001. Optimizing queries using materialized views: A practical,

scalable solution. In Proceedings of the ACM SIGMOD International Conference on Management
of Data.

GRIFFIN, T. AND LIBKIN, L. 1995. Incremental maintenance of views with duplicates. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.

GUPTA, A. AND MUMICK, I. S., EDS. 1999. Materialized Views: Techniques, Implementation, and
Applications. MIT Press.

HAMMAD, M. A., FRANKLIN, M. J., AREF, W. G., AND ELMAGARMID, A. K. 2003. Scheduling for shared

window joins over data streams. In Proceedings of the International Conference on Very Large
DataBases (VLDB).

KANG, J., NAUGHTON, J. F., AND VIGLAS, S. 2003. Evaluating window joins over unbounded streams.

In Proceedings of the International Conference on Data Engineering (ICDE).
LARSON, P.- A. AND YANG, H. Z. 1985. Computing queries from derived relations. In Proceedings

of the International Conference on Very Large DataBases (VLDB).
LI, J., MAIER, D., TUFTE, K., PAPADIMOS, V., AND TUCKER, P. 2005. Semantics and evaluation tech-

niques for window aggregates in data streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data.

MAIER, D., LI, J., TUCKER, P., TUFTE, K., AND PAPADIMOS, V. 2005. Semantics of data streams and

operators. In Proceedings of the International Conference on Database Theory (ICDT).
RYVKINA, E., MASKEY, A. S., CHERNIACK, M., AND ZDONIK, S. 2006. Revision processing in a stream

processing engine: A high-level design. In Proceedings of the International Conference on Data
Engineering (ICDE).

SRIVASTAVA, U. AND WIDOM., J. 2004. Flexible time management in data stream systems. In Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS).

TUCKER, P., MAIER, D., SHEARD, T., AND FEGARAS, L. 2003. Exploiting punctuation semantics in

continuous data streams. IEEE Trans. Knowl. Data Engin. 15, 3, 555–568.

YAN, W. P. AND LARSON, P.-A. 1995. Eager aggregation and lazy aggregation. In Proceedings of the
ACM SIGMOD International Conference on Management of Data.

ZANIOLO, C., LUO, R., WANG, H., BAI, Y., AND THAKKAR, H. 2002. An introduction to the ex-

pressive stream language. WEB Information System Laboratory, UCLA, CS Department.

http://wis.cs.ucla.edu/stream-mill.

Received April 2009; Accepted July 2009

ACM Transactions on Database Systems, Vol. 35, No. 1, Article 1, Publication date: February 2010.


