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ABSTRACT 

 
Hierarchical video browsing and feature-based video retrieval are two standard methods for accessing video 
content. Very little research, however, has addressed the benefits of integrating these two methods for more 
effective and efficient video content access. 

In this paper we introduce InsightVideo, a video analysis and retrieval system, which joins video content 
hierarchy, hierarchical browsing and retrieval for efficient video access. We propose several video processing 
techniques to organize the content hierarchy of the video. We first apply a camera motion classification and 
key-frame extraction strategy that operates in the compressed domain to extract video features. Then, shot 
grouping, scene detection and pairwise scene clustering strategies are applied to construct the video content 
hierarchy. We introduce a video similarity evaluation scheme at different levels (key-frame, shot, group, 
scene, and video.) By integrating the video content hierarchy and the video similarity evaluation scheme, 
hierarchical video browsing and retrieval are seamlessly integrated for more efficient video content access. 
We construct a progressive video retrieval scheme to refine user queries through the interaction of browsing 
and retrieval. Experimental results and comparisons of camera motion classification, key-frame extraction, 
scene detection, and video retrieval are presented to validate the effectiveness and efficiency of the proposed 
algorithms and the performance of the system.  
 
Keywords:  Hierarchical video content organization, video browsing, video retrieval, camera motion 
classification, key-frame extraction, scene detection, video similarity assessment. 
 

1. INTRODUCTION 

Recent advances in high-performance networking and improvements in computer hardware have led to the 

emergence and proliferation of video and image-based applications. Database management techniques for 

traditional textual and numeric data cannot handle video data; therefore, new models for storage and retrieval 

must be developed. In general, a video database management system should address two different problems: 

(1) the presentation of video content for browsing, and (2) the retrieval of video content based on user 

queries.  

Some methods have been developed for presenting video content by hierarchical video shot clustering 

[1][2], organizing video storyboards [3] or joining spatial-temporal content analysis and progressive retrieval 

for video browsing [4]. These methods allow a viewer to rapidly browse through a video sequence, navigate 

from one segment to another, and then either get a quick overview of video content or zoom to different 

levels of detail to locate segments of interest. These systems may be efficient in video browsing and content 



presentation, however they fail either in detecting semantically related units for browsing [1,2,4] or in 

integrating efficient video retrieval with video browsing [3]. 

Compared with video content presentation, more extensive research has been done in the area of video 

retrieval. Several research and commercial systems have been developed which provide automatic indexing, 

query and retrieval based on visual features, such as color and texture [5-12], and others execute queries on 

textual annotation [13]. Elmagarmid, et al. [14] has published a comprehensive overview of this topic. 

The first video parsing, indexing and retrieval framework was presented by Zhang, et al. [2], it uses the 

annotations and visual features of key-frames for video browsing and retrieval. QBIC [12] supports shape 

queries for semi-manually extracted objects. The Virage [8] system supports feature layout queries, and users 

can assign different weights to different features. The Photobook system [9] enables users to plug in their 

own content analysis procedures. Cypress [11] allows users to define concepts using visual features like 

color. VisualSEEk [10] allows localized feature queries and histogram refinements for feedback using a web-

based tool. Systems such as CVEPS [15] and JACOB [16] support automatic video segmentation and video 

indexing based on key-frames or objects.  The web-based retrieval system, WebSEEK [17], builds several 

indexes for images and video based on visual features and non-visual features. The Informedia digital video 

library project [18] has done extensive research in mining video knowledge by integrating visual features, 

closed caption, speech recognition etc. A more advanced content-based system, VideoQ [7], supports video 

query by single or multiple objects, using many visual features such as color, texture, shape and motion.  

However, the video retrieval approaches introduced above usually just add the functionalities for shot 

segmentation and key-frames extraction to existing image retrieval systems. After shot detection and key-

frame extraction, they merely apply similarity measurements based on low-level features of the video frames 

or shots. This is not satisfactory because video is a temporal media, the sequencing of individual frames 

creates new semantics that may not be present in any of the individually retrieved shots. 

A naïve user is interested in querying at the semantic level, rather than having to use features to describe 

his (her) concept. In most cases it is difficult to express concepts using feature matching, and even a good 

match in terms of feature metrics may yield poor query results for the user. For example, in multiple domain 

recall, a query for 60% green and 40% blue may return an image of a grass and sky, a green board on a blue 

wall or a blue car parked in front of a park, as well as many others. Helping users to find query examples and 

refine their queries is also an import feature for video retrieval systems. However, instead of integrating the 

efficient video browsing and retrieval together, the systems described above emphasize either browsing or 

retrieval. A progressive strategy should be developed to join the video browsing and retrieval schemes 

together to improve the effectiveness and efficiency of both. 

Based on these observations, we propose a novel video content organization and accessing model for 

video browsing and retrieval. A progressive video retrieval scheme is formed by executing the browsing and 

retrieval iteratively. The distinct features of our system are the following: (1) several novel video processing 

techniques are introduced which improve existing algorithms in important areas, (2) a video content 

hierarchy is constructed which allows hierarchical video browsing and summarization to be executed directly 



and efficiently, (3) by addressing video similarity at different levels and granularity, our retrieved results 

mostly consist of visually and semantically related units, and (4) the seamless integration of video browsing 

and retrieval allows users to efficiently shrink and refine their queries. 

 

 Hierarchical video content organization

Hierarchical video content table 

Video browsing Video retrieval 

Video content database, video feature database

Query Refine Users 

Video Shot segmentation Camera motion 
classification 

Key-frame 
extraction 

Shot grouping Scene detection Scene clustering

Video feature extraction 

Video analysis and feature extraction 

Progressive video content access

 

Figure 1. System flow for InsightVideo 

2. THE SYSTEM OVERVIEW  

The process flow for the InsightVideo system is illustrated in Figure 1. The system consists of three parts:(1) 

video analysis and feature extraction, (2) hierarchical video content organization, and (3) progressive video 

content access. To extract video features, a shot segmentation algorithm is applied to each input video. Then, 

for each segmented shot, the camera motion classification strategy is utilized to qualitatively classify camera 

motions. Based on identified motion information, key-frame extraction is executed to select the key-frame(s) 

for each shot. The detected camera motions and low-level features are utilized for video similarity evaluation. 

After the video features have been extracted, the video content table is constructed by shot grouping, scene 

detection, and scene clustering strategies to generate a three layer video content hierarchy (group, scene, 

clustered scene). 

Based on this video content hierarchy and extracted video features, we propose a progressive video 

content access scheme in which we first address the video similarity evaluation scheme at different levels and 

then integrate the hierarchical video browsing and retrieval for video content access and progressive retrieval. 

Using hierarchical video browsing, a user is provided with an overview of video content from which a query 

example can be selected. Then, video retrieval is invoked to produce a list of similar units, and the user can 

browse the content hierarchy of retrieved results to refine the query. By iteratively executing the retrieval and 

browsing, a user’s query can be quickly refined to retrieve the unit of interest. 

The remainder of this paper is organized as follows. Section 3 presents several video analysis and feature 

extraction techniques, including camera motion classification and key-frame extraction schemes. Then, based 

on extracted video features, Section 4 introduces techniques for hierarchical video content organization. In 

Section 5, the video similarity assessment scheme is applied at different levels of the video content hierarchy. 

Section 6 presents techniques that joint hierarchical video browsing and retrieval for efficient video content 

access.  The conclusion and remarks are given in Section 7.  



3. VIDEO ANALYSIS AND FEATURE EXTRACTION 

Most schemes for video feature extraction begin by segmenting contiguous frames into separate shots, and 

then selecting key-frames to represent shot content. With this scheme, a video database is treated somewhat 

like an image database, because the motion information in the video (or shot) is missed. In our system, the 

motion information in the video is detected and extracted as a shot feature to help in identifying video 

content. We first apply shot segmentation to the video. Then the camera motion classification scheme is 

executed. Based on extracted motion information, a key-frame extraction scheme is proposed and the camera 

motion in the shot will also be utilized as the features to evaluate similarity between shots. 

A great deal of research has been done in shot boundary detection, and many approaches achieve 

satisfactory performance [1][19]. In previous work, we have developed a shot segmentation approach with an 

adaptive threshold selection for break and gradual shot detection [20]. In the next sections, we will introduce 

the camera motion classification and key-frame extraction schemes. 

3.1 Camera Motion Classification 

Motion characterization plays an important role in content-based video indexing. It is an essential step in 

creating compact video representation automatically. For example, a mosaic image can represent a panning 

sequence [21]; the frames before and after a zoom can represent the zoom sequence. As the research work in 

[53] has demonstrated, in addition to various visual features, the motion information in video shots can also 

be explored for content-based video retrieval. Thus, an effective characterization of camera motion greatly 

facilitates the video representation, indexing and retrieval tasks. And the proposed multimedia content 

description standard MPEG-7 [59] has also adopted various descriptors (DS) to qualitatively (different types 

of motions) and quantitatively (the amount of motions) describe the camera motion in each shot [57-58]. 

To extract the camera motion, Ngo et al. [22] proposed a method using temporal slice analysis for 

motion characterization, however, to distinguish different motion patterns in the slice is a challenging task for 

videos with cluttered background or containing moving objects. Srinivasan et al. [24] introduced a qualitative 

camera motion extraction method that separates the optical flow into two parts, parallel and rotation, for 

motion characterization. Xiong et al. [23] presented a method that analyzed spatial optical flow distribution. 

However, these last two methods can only be used when the Focus of Expansion (FOE) or Focus of 

Contraction (FOC) [25] is at the center of the image, and this is not always the case in generic videos.  

To analyze camera motion in the compressed domain, Tan et al. [26], Kobla et al. [27] and Dorai et al. 

[28] presented three methods based on motion vectors in MPEG streams. In [26], a 6-parameters 

transformation model is utilized to classify camera motions into panning, tilting and zooming. The methods 

in [27][28] map motion vectors in current frame into eight directions. Motion classification was developed 

based on the values in these eight directions. However, these strategies are sensitive to noise in motion 

vectors and fail to detect the camera rolling. Furthermore, extracted optical flow or motion vectors may 

contain considerable noise or error, which significantly reduces the efficiency of their strategies.  



We have found that the statistical information for the mutual relationship between any two motion 

vectors is relatively robust to noise (see Figure 3.) For a given type of camera motion contained in the current 

frame, the statistical mutual relationship in the frame will show a distinct distribution tendency. Based on this 

observation, we propose a qualitative camera motion classification method. In addition to detecting most 

common camera motions (pan, tilt, zoom, still), our method can also detect camera rolling, and various 

detected camera motions will directly comply with the motion descriptors in MPEG-7 standard [59]. 

3.1.1 Problem Formulation 

Our objective is to efficiently process videos stored in MPEG format for camera motion classification. As 

shown in Figure 2, the syntax of MPEG-1 video defines four types of coded pictures: intracoded pictures (I-

frames), predicted pictures (P-frames), bidirectionally predicted pictures (B-frames), and DC encoded frames 

(which are now rarely used). These pictures are organized into sequences of groups of pictures (GOP). Each 

video frame is divided into a sequence of nonoverlapping macroblocks (MB), such that each MB is then 

either intracoded or intercoded. An I-frame is completely intracoded, and the MB in P-frame may be 

separated into two types: intracoded (containing forward prediction motion vectors) and intercoded 

(containing no motion vectors). In this paper, we use only the motion vectors from P-frames, that is, we are 

sampling the camera motion. For example, if the MPEG video is coded at a rate of 30 frames per second 

using the GOP in Figure 2, there are 8 P-frames per second in the video. We will require the underlying 

camera motion rates (per frame) to have a bandwidth of less than 4 Hz. For most videos, this is a reasonable 

assumption. Using the motion vectors from both the P and B-frames has the potential to yield better 

accuracy, but at the cost of increased computation. In our classification scheme, we assume that there is no 

large object motion or the motion caused by large objects can be ignored. Thus, only the dominant camera 

motion is detected. 

3.1.2 The mutual relationship between motion vectors 

Given two points A, B in current frame Pi with positions pA=(xA, yA), pB= (xB, yB) and motion vectors 

VA=(uA,vA) and VB=(uB,vB), we denote the vector from point A to B as ABV
�

, and the line cross point A and B 

as 
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VA and VB: approach, parallel, diverging and rotation.  

To classify the mutual relationship between VA and VB, we first measure whether they are on the same 

side (Figure 3(A)) or different sides (Figure 3(B)) of vector ABV
�

. Based on the geometry relationship among 

the four points (xA, yA), (xA+uA, yA+vA), (xB, yB) and (xB+uB, yB+vB), it is obvious that if VA and VB are on the 

same side of vector ABV
�

, both points (xA+uA, yA+vA) and (xB+uB, yB+vB) should be above or below the line 

which crosses point A and B at the same time. Hence, we multiple y1 and y2 (from Eq. (1)).. If the product is 



non-negative, we will claim VA and VB are on the same side of vector ABV
�

; otherwise, AV and BV are on 

different sides of vector ABV
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As shown in Figure 3, if we assume that α denotes the angle between ABV
�

 and VA, and β denotes the angle 

between VB and ABV
�

, if VA and VB are on the same side of ABV
�

, then their mutual relationship is classified as 

follows: 

• If α+β  < 180° - TPARA, the mutual relationship between VA and VB is approach.  

• If α+β  > 180° + TPARA, the mutual relationship between VA and VB is diverging. 

• Otherwise, the mutual relationship between VA and VB is parallel. 

If VA and VB are on different sides of ABV
�

, then their mutual relationship is classified as follows: 

• If α+β  < TCLOSE, the mutual relationship between VA and VB is approach.  

• If α+β  > TFAR, the mutual relationship between VA and VB is diverging. 

• Otherwise, the mutual relationship between VA and VB is rotation. 

In our system, we set TPARA, TCLOSE and TFAR to 15°, 60° and 250° respectively. 

3.1.3 The relationship between camera motion and motion vectors 

Figure 4 shows the relationship between the camera motion and motion vectors contained in the frame: 

• If the camera pans or tilts, most motion vectors’ mutual relationships in the frame are parallel. 

• If the motion of the current frame is zooming, most motion vectors’ mutual relationships in current 

frame either approach to (zoom out) FOC or diverge from (zoom in) FOE.  

• If the camera rolls, most vertical vectors’ (defined in Section 3.1.4.4) mutual relationship in the 

frame either approach to (Roll_Clockwise) FOC or diverge from (Roll_AntiClockwise) FOE. 

Based on these observations, a motion feature vector is constructed to characterize the motion vectors. 
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Figure 4. The relationship between camera motion and motion vectors. The column (a), (b), (c), (d) and (e) 

indicate the current P-frame (Pi), motion vectors in Pi, the succeeding P-frame (Pi+1), motion vectors in Pi+1, 

and the 14-bin motion feature vector distribution for (d) respectively.  The black block in motion vectors 

indicate the “intracoded macroblock”; hence, no motion vector is available for those blocks. 

3.1.4 Motion feature vector construction 

In this subsection, we introduce four histograms to characterize motion vectors in each frame. A 14-bin 

feature vector is then formed by packing these four histograms sequentially from bin 1 to bin 14. 

3.1.4.1 Motion vector energy histogram (Hme) 

For any P-frame Pi and its motion vectors, we assume there are N MB contained in Pi. We denote APi as the 

aggregation of all available motion vectors (intercoded MB) in Pi, and the number of motion vectors in APi is 

denoted by Nmv. Given point A (PA=(xA,yA)) in Pi and its motion vector VA=(uA,vA), then Eq. (2) defines the 

energy of VA. 

 222
AAA vuV +=    (2) 



Assuming SPi denotes the aggregation of motion vectors in APi with energy smaller than a given threshold 

TSMALL, the number of vectors in SPi is denoted by Nsmall. We calculate the mean µ and variance δ of the 

motion vectors in SPi. If we assume LPi denotes the aggregation of motion vectors in APi whose distance to µ 

is larger than TLOC, and the number of vectors in LPi is denoted by Nloc. The motion vector energy histogram 

(Hme) is constructed using Eq. (3).  
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In our system, we set TLOC=1.5δ and TSMALL=2 respectively. In the next section, the motion vectors in 

aggregation VPi, VPi= )( iii LPSPAP ∪∩ , is referred to as the valid motion vectors in Pi, i.e., the valid motion 

vectors are those with relatively high energy and low variance.  

3.1.4.2 Motion vector orientation histogram (Hmo) 

Clearly, the orientations of the valid motion vectors VPi in Pi will help us determine the direction of the 

camera motion. For each motion vector ),( AAA vuV =  in VPi, we denote D(VA) as its orientation, and then divide 

all valid motion vectors’ orientations into four categories: (-45°, 45°), (45°, 135°), (135°, 225°), (225°, 315°). 

The motion vector orientation histogram is constructed using Eq. (4). 
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3.1.4.3 Motion vector mutual relationship histogram (Hmr) 

Given two motion vectors in VPi, their mutual relationship is classified with the strategy given in Section 

3.1.2. The histogram of the mutual relationships in Pi are then calculated and put into different bins of 

histogram Hmr, with Hmr[0], Hmr[1], Hmr[2] and Hmr[3] corresponding to approach, diverging, rotation and 

parallel, respectively. 

3.1.4.4 Motion vector vertical mutual relationship histogram (Hmvr) 

As described in Section 3.1.3, if the camera rolls, the mutual relationships of most motion vectors’ vertical 

lines will approach to FOC or diverge from FOE. Hence, given any motion vector VA=(uA,vA) in VPi, its 

vertical vector is defined by ),( AAA uvV −=′ , and we can use the strategy in Section 3.1.2 to calculate the 

mutual relationship for any two vertical vectors AV ′ and BV ′ in VPi. The histogram constructed in this way is 

denoted as the vertical mutual relationship histogram (Hmvr) with Hmvr[0], Hmvr[1], Hmvr[2] and Hmvr[3] 

representing approach, diverging, rotation and parallel, respectively. 

3.1.5 Camera motion classification 

The experimental results in Figure 4 (e) show that for any type of camera motion, the 14-bin motion feature 

vector will have a distinct distribution mode. For example, when the camera pans, Hmr[3] will contain the 

largest value in Hmr, and the bin with the largest value in Hmo will indicate the direction of the panning. For 



zooming operations, either Hmr[0] or Hmr[1] will have the largest value in Hmr. If the camera rolls, Hmr[2] 

will have the largest value in Hmr, and either Hmvr[0] or Hmvr[1] have the largest value in Hmvr. Hence, based 

on the 14-bin vector, a qualitative camera motion classification strategy is presented: 

Input:  14-bin motion feature vector of current P-frame Pi.  

Output: The motion category (pan left, pan right, tilt up, tilt down, zoom in, zoom out, roll_clockwise,  

roll_anticlockwise, still, unknown) Pi belongs to, denoted as “Pi ← ? ”. 

Procedure: 

1. If Hme[0] is larger than threshold TUNK, Pi ← “unknown”, otherwise go to step 2. 

2. If Hme[1] is larger than threshold TSTILL, Pi ← “still”, if not go to step 3. 

3. If Hme[0]+Hme[1] is larger than threshold TUNION, Pi ← “unknown”, otherwise, go to step 4. 

4. Find the largest and second largest values among Hmr and denote them as max
mrH and sec

mrH  respectively. 

If the ratio between sec
mrH and max

mrH is larger than threshold TREL, Pi ← “unknown”, otherwise, the 

steps below is used for classification. 

• If max
mrH = Hmr[0], then Pi ← “zoom out”; else if max

mrH = Hmr[1], Pi ← “zoom in”. 

• If max
mrH =Hmr[2], go to step 6;  else if max

mrH = Hmr[3], go to step 5. 

5. Find the maximal value among Hmo and denote it as max
moH : 

• If max
moH = Hmo[0], Pi ← “panning left”; else if max

moH equals Hmo[1], Pi ← “tilting down”. 

• If max
moH = Hmo[2], Pi ← “panning right”; else if max

moH equals Hmo[3], Pi ← “tilting up”. 

6. Find the maximal value among Hmvr and denote it as max
mvrH : 

• If max
mvrH =Hmvr[0], Pi ← “roll_anticlockwise”; else If max

mvrH = Hmvr[1], Pi ← 

“roll_clockwise”; Otherwise, Pi ← “unknown”. 

The thresholds TUNK, TSTILL, TREL and TUNION may be determined by experiments; in our system we set 

them to 0.55, 0.5, 0.8 and 0.8, respectively.  

There is little doubt that some conditions could exist which might result in an incorrect classification of 

the camera motion. Since the camera motion should be consistent over a certain length of time, the temporal 

filter operation is used to eliminate those errors, that is, any camera motion lasting less than 3 P-frames is 

absorbed by preceding or succeeding camera motions. The filtered camera motion information is then stored 

as the motion feature of the shot. 

3.2 KEY-FRAME EXTRACTION 

Key-frame(s) summarize the content of a video shot. Other research has addressed the problem of key-frame 

extraction [30-35], and the recent survey can be found in [29] and [55]. A first attempt in key-frame 

extraction was to choose the frame appearing at the beginning of each shot as the key-frame [35]. However, 



if the shot is dynamic, this strategy will not provide good results. In order to address this problem, clustering 

techniques [31] and low-level features [30] are utilized for key-frame extraction by clustering all frames in 

the shot into M clusters or calculating accumulated frame differences. Due to the fact that the motions in 

video shots imply the content evolution and change, a motion activity-based key-frame extraction method has 

been proposed in [54-55], where the MPEG-7 motion intensity in each shot is used to guide the key-frame 

selection. Given a user specified number, the system selects the corresponding number of key-frames by 

using the cumulative motion intensity, where more key-frames are extracted from the high motion frame 

regions. However, determining the number of key-frames that optimally addresses the video content change 

is a difficulty. On the other hand, if there is large camera or object motion in the shot, the selected key-frames 

may be blurred, and thus not suitable for the key-frame. 

The authors in [34] and [32] avoid these problems by proposing threshold-free methods for extracting 

key-frames. In [34], the temporal behavior of a suitable feature vector is followed along a sequence of 

frames, and a key-frame is extracted at each place of the curve where the magnitude of its second derivative 

reaches the local maximum. A similar approach is presented in [32], where the local minima of motion is 

utilized for key-frame extraction. However, two problems remain: (1) locating the best range to find the local 

minimum is also determined by a critical threshold, and (2) since the small motion of the video can cause the 

optical flow have large variations, these methods may address more details when compared with generating 

shot content overview.  

To extract key-frames using these strategies, the video must be fully decoded. In the next section, we 

introduce a threshold-free method that extracts key-frames in the compressed domain. Our method is based 

on the method from literature [32], however, there are several distinguishing elements: (1) our method is 

executed in the compressed domain (only a very limited number of frames need to be decoded), (2) instead of 

using optical flow, we use motion vectors from the MPEG video, and (3) instead of using the threshold, we 

use camera motions in the shot to determine the local maximum or minimum.  

3.2.1 The Algorithm 

Our key-frame extraction algorithm is executed using the following steps: 

1. Given any shot Si, use the camera motion classification and temporal motion filter to detect and 

classify the camera motions, as shown in Figure 5.  

2. Find the representative frame(s) for each type of motion (see Figure 5), and the collection of all 

representative frames is taken as the key-frames for Si.  

From the start frame to the end frame in shot Si, for any given P-frames (Pi) we denote APi as the 

aggregation of all available motion vectors in Pi. Then Eq. (5) is used to calculate the motion magnitude of Pi 
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where Vk denotes the motion vectors in Pi. Given Pi, its M(Pi) is influenced by two factors:  

• The motion information contained in Pi. The smaller the amount of motion, the smaller M(Pi) is. 



• The number of intracoded MB in Pi. The more intracoded MB, the smaller M(Pi) is. 

We then determine the motion magnitude for each P-frame in Si. These values will help us select the 

representative frame for each type of camera motion in Si. As shown in Figure 5, from the start frame of Si to 

the end frame, we sequentially select one type of camera motion and execute the steps below: 

1. If the camera motion is still (As shown in Figure 5 range (b)), find the smallest value of M(Pi) 

among all frames in that range, and denote it as Mmin. The corresponding P-frame is selected as the 

representative fame for all frames in this range. 

2. For all other types of camera motion, find the largest value of M(Pi) among all frames in that range 

(As shown in Figure 5 range (a)). Denote this value as Mmax. We then use Mmax to separate the 

frames in this range into two separate and consecutive parts, PL and PR , as shown in Figure 5. 

3. For any part of PL and PR, find the smallest value of M(Pi) among all frames in that part, and use the 

corresponding P-frame as the representative frame. Denote the selected representative frame for part 

PL and PR as 
LPR and

RPR respectively. 

4. Some small camera motions may cause very little frame difference, and two representative frames 

from this range might be redundant. Hence, we calculate the visual feature based frame difference 

between 
LPR and

RPR  (Using the Eq. (27) introduced in Section 6.1). If this value is smaller than 

threshold Tmerg (Tmerg=0.35 in our system), only 
RPR  is used as the representative frame in the range. 

Otherwise both 
LPR and

RPR are selected as the representative frames. 

5. Iteratively execute steps 1-4 until all camera motions in Si have been processed successfully, these 

representative frames are considered the key-frames for Si. 
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Figure 5. Camera motion based key-frame selection 

Since content changes in shots are usually caused by camera motions, we first use the camera motion 

classification strategy to separate the frames in Si into different ranges, with each range containing one 

distinct camera motion. The collection of representative frames for all ranges forms the set of key-frames for 

the shot. Furthermore, the representative frames are selected with the local minimal M(Pi), the selected key-

frames will have higher definition and more “fresh” content.  



By adopting motion activity in camera motion selection, our method is also similar to the scheme in [54-

55]. However, there are two key distinctions: (1) with the method in [54-55], it’s the authors but not the 

system to determine the number of key-frames to be extracted from each shot. Given a video that contains 

hundreds of shots, it would be very hard (or even unreasonable) for users to specify the number of key-

frames for each shot. Consequently, the naïve users may simply specify a constant key-frame number for all 

shots. In that case, the proposed scheme may introduce redundancy in low motion shots and miss the content 

change in high motion shots; (2) the method in [54-55] don’t consider the local motion minimum but use 

only the accumulative motion activity, as a result, the select key-frames may be blurred and not clear enough 

for the content presentation purpose. 

3.3 Experimental Results 

3.3.1 Camera motion classification result 

Table 1 shows the results produced by our camera motion detection algorithm. We evaluated the efficiency 

of our algorithm (denoted by A) through an experimental comparison with transformation model based 

method [26]* (denoted by B). Several standard MPEG-I streams (about 11711 frames) were downloaded 

from http://www.open-video.org and used as our test bed. One edited MPEG-I file (about 16075 frames) 

containing a large number of zooming and roll motions was also used as a test dataset. For better evaluation, 

the precision defined in Eq. (6) is used, where nc,nf denote the correctly and falsely detected camera motion 

in the P-frames.  

Precision=nc / (nc+nf)     (6) 

Among all 27786 frames in the video, the sequential frame regions with a distinct camera motion (pan, 

tilt, zoom, roll, still) are selected as our ground truth. These frames (about 20011 frames) occupy about 72% 

of the entire the video, with about 5201 P frames contained in the 20011 frames. Our experiment is executed 

with these 5201 P-frames. From Table 1, we find that, on average, our method has a precision of 

approximately 80.4%, about 5% higher transformation model based method [26]. In detecting pure panning 

and tilting, both methods have about the same precision. However, while some abnormal motion vectors 

caused by objects motion or other reasons contained or FOE/FOC is not at the center of the image, the 

efficiency of this method is rather reduced, since those motion vectors cannot be characterized by the 

proposed transformation model. However, our method is a statistical strategy, the abnormal or distorted 

motion vectors would have not much influence in unfolding the dominant camera motion in the frames, thus 

resulting in a relatively higher precision. Furthermore, while method B is not able to detect roll motion, our 

method produces a precision of 68% for roll detection.   

On a PC with PIII 900MHz CUP, the average time to process one P-frame is three times faster than real 

time and four times faster than method B. 

*Remark: We compare our method with the method in literature [32], since it also works in compressed 

domain and utilizes only the motion vector of P-frame for classification. 



Table 1. Camera motion classification Result 

Camera Motion Frame Numbers P-Frame Numbers Precision (A) Precision (B) 
Pan 7780 2022 0.84 0.82 
Tilt 2004 501 0.85 0.81 

Zoom 2948 761 0.73 0.65 
Rotation 890 233 0.65  

Still 4589 1684 0.87 0.84 
Average 20011 5201 0.804 0.756 

3.3.2 Key-frame extraction results 

Since there is no comprehensive user study that validates the applicability of key-frames extracted with 

different methods, a quantitative comparison between our method and other strategies is not available. We 

thus present some pictorial experimental results. Figure 6 illustrates a comparison of our strategy with the 

literature [32] (Instead of using optical flow, we use motion vector to calculate M(t)). Figure 6(C) denotes the 

sampled frames in shot Si with a stepsize of 15 frames. The shot starts with a still camera motion focusing on 

the two children playing the ring.  Then, the camera zooms in to emphasis the ring. Finally, some close up 

frames of the ring are shown. With our camera motion classification strategy, this shot was separated into 

three motion ranges: still, zoom in, irregular (due to the motion of the hands) sequentially. Hence, 4 key-

frames (As shown in Figure 6(A)) are extracted with our method: the first key-frame is produced by still, the 

second and third are produced by zoom in, and the last one is produced by irregular motion (since the two 

representative frames in the irregular motion range are similar, only one is used.) Using the strategy in [32], 9 

key-frames are extracted, as shown in Figure 6(B), where most of the details of the shot have also been 

addressed, even the movement of the hand; Although our strategy did lose some detail information, the 

content information is very well maintained. We believe that key-frames should be used to get the overview 

of the video shot content (not the details), and hence, we believe our method maintains a relatively good 

balance between overall shot content and details. 

  

 
 

  
  

(A)

(B)

(C)  
Figure 6. Key-frame extraction results. (C) represents the sampling of the shot with 15 frames stepsize, from 

top left to bottom right; (B) indicates results with the method in [32]; (A) indicates the results of our method. 



4. HIERARCHICAL VIDEO CONTENT ORGANIZATION 

Generally, videos can be represented using a hierarchy of five levels (video, scene, group, shot, and key-

frame)*, increasing in granularity from top to bottom. Much research has addressed the problem of 

constructing semantically richer video entities by visual feature based shot grouping [35-38] or joint semantic 

rules and knowledge information for scene detection [39-41][50]. However, these strategies only solve the 

problem of semantic units detection and visualization. Since similar scenes may appear repeatedly in a video, 

redundant scene information should be reduced by clustering beyond the scene level. In this way, a concise 

video content table can be created for hierarchical browsing or summarization. Instead of using the semantic 

unit for video content table construction, other strategies utilize the video shot (or key-frames) based 

clustering strategy [1-2][42] to construct the video content hierarchy. However, the constructed hierarchy just 

addresses some low-level feature based frame differences.  

To address this problem, we generate a three level hierarchy from clustered scenes to groups. By 

integrating video key-frames and shots, a five level video content hierarchy (clustered scene, scene, group, 

shot, key-frame) is successfully constructed.  

As shown in Figure 1, we construct the video content hierarchy in three steps: (1) group detection, (2) 

scene detection, and (3) scene clustering. The video shots are first grouped into semantically richer groups. 

Then, similar neighboring groups are merged into scenes. Beyond the scene level, a pairwise cluster scheme 

is utilized to eliminate repeated scenes in the video, thus reducing the redundant information. Using the 

content structure constructed by this strategy, the hierarchical video browsing and summarization is accessed 

directly. In addition, we have also addressed the problem of the representative unit selection for groups, 

scenes, and clustered scene units for visualizing the generated video content information.  

Generally, the quality of most proposed methods is heavily based on the selection of thresholds [36-38], 

however, the content and low-level features among different videos vary greatly.  Thus, we use the entropic 

threholding technique to select the optimal threshold for video group and scene detection; it has been shown 

to be highly efficient for the two-class data classification problem. 
*Remark: In this paper, the video group and scene are defined as in [37]: (1) A video scene is a 

collection of semantically related and temporally adjacent shots, depicting and conveying a high-level 

concept or story; (2) A video group is an intermediate entity between the physical shots and semantic scenes; 

examples of groups are temporally or spatially related shots. 

4.1 Video group detection 

The shots in one group usually share similar background or have a high correlation in time series. Therefore, 

to segment the spatially or temporally related video shots into groups, a given shot is compared with the shots 

that precede and succeed it (no more than 2 shots) to determine the correlation between them, as shown in 

Figure 7. Assume StSim(Si, Sj) denotes the similarity between shot Si and Sj, which was given in Eq. (33). Our 

group detection procedure is stated as below: 



Input: Video shots.  Output: Video groups 

Procedure: 

1. Given any shot Si, if CRi is larger than TH2-0.1: 

a. If R(i) is larger than TH1, claim a new group starts at shot Si.. 

b. Otherwise, go to step 1 to process other shots. 

2. Otherwise: 

a. If both CRi and CLi are smaller than TH2, claim a new group starts at shot Si. 

b. Otherwise, go to step 1 to process other shots. 

3. Iteratively execute step 1 and 2 until all shots are parsed successfully. 

The definitions of CRi, CLi, R(i) are given in Eq.(7),(8),(9). 

CLi =Max{ StSim(Si,Si-1), StSim(Si,Si-2)};    CRi =Max{ StSim(Si,Si+1), StSim(Si,Si+2)}  (7) 

CLi+1 =Max{ StSim(Si+1,Si-1), StSim(Si+1,Si-2)};  CRi+1 =Max{ StSim(Si+1,Si+2), StSim(Si+1,Si+3)}    (8) 

    R(i)=(CRi+CRi+1)/(CLi+CLi+1).           (9) 

Since closed caption and speech information is not available in our strategy, the visual features such as color 

and texture play a more important role in determining the shots in one group. Hence, to calculate the 

similarity between Si and Sj with Eq. (33), we set WH, WM, WF and WL equal to 0.5, 0.0, 0.5 and 0.0 

respectively, that is, we use only the visual features for similarity evaluation. Meanwhile, to evaluate the 

similarity between key-frames Ki and Kj with Eq. (27), we set Wc, WT equal to 0.7 and 0.3 respectively. 

Using the shot grouping strategy above, two kinds of shots are absorbed into a given group (as shown in 

Figure 8): (1) shots related in temporal series, where similar shots are shown back and forth. Shots in this 

group are temporally related; (2) shots similar in visual perception, where all shots in the group are similar in 

visual features. Shots in this group are spatially related. 
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Figure 7. Shot grouping strategy 

4.1.1 Group classification and represent shot selection 

Given any group Gi, we assign it to one of two categories: temporally vs spatially related group. Assuming 

there are T shots (Si, i=1,..,T) contained in Gi, the group classification strategy is described below.  

Input: Video group Gi, and shots Si (i=1,..,T) in Gi. Output: Clusters (CNc, Nc=1,..,U) of shots in Gi. 

Procedure: 

1. Initially, set variant Nc=1, cluster CNc has no members. 

2. Select the shot (Sk) in Gi with the smallest shot number as the seed for cluster CNc, and subtract Sk 

from Gi. If there are no more shots contained in Gi, go to step 5. 



3. Calculate the similarity between Sk and other shot Sj in Gi, If StSim(Sk,Sj) is larger than threshold Th, 

absorb shot Sj in cluster CNc. Subtract Sj from Gi. 

4. Iteratively execute step 3, until there are no more shots that can be absorbed in current cluster CNc. 

Increase Nc by 1 and go to step 2. 

5. If Nc is larger than 1, we claim Gi is a temporally related group, otherwise, it is a spatially related 

group. 

After the video group has been classified, the representative shot(s) of each group are selected to represent 

and visualize the content information in Gi. We denote this procedure as SelectRepShot().The key-frames of 

all representative shot(s) are selected as representative frames for the video group.  

[SelectRepShot] 

The representative shot of group Gi is defined as the shot that represents the most content in Gi. Since 

semantic content is not available in our system, visual features information is used to select representative 

shots. We have merged all shots in Gi into Nc clusters, and these clusters help us to select the representative 

shots. Given group Gi with Nc clusters (Ci) , we denote by ST(Ci) the number of shots contained in cluster Ci. 

The representative shot of Gi is selected as follows: 

1. Given Nc clusters Ci (i=1,..,Nc) in Gi, use steps 2, 3 and 4 to extract one representative shot for each 

cluster Ci. In all, Nc representative shots will be selected for each Gi. 

2. Given any cluster Ci with more than 2 shots, the representative shot of Ci (RS(Ci)) is obtained from 

Eq. (10) 

},);,(
)(

1{maxarg)(
)(1

)(

1
i

i

j

CSTj

CST

k
ikijkj

i
Sis CSCSSSStSim

CST
CR

≤≤
=
∑ ⊂⊂=   (10) 

3. If there are 2 shots contained in Ci, the shot that has more key-frames usually has more content 

information, and hence is selected as the representative shot for Ci. If all shots in Ci have the same 

key-frame numbers, the shot with larger time duration is selected as the representative shot. 

4. If there is only 1 shot contained in cluster Ci, it is selected as the representative shot for Ci. 

4.2 Group Merging for Scene Detection 

Since our shot grouping strategy places more emphasis on the details of the scene, one scene may be grouped 

into several groups, as shown in Figure 8. However, groups in the same scene usually have higher correlation 

with each other when compared with other groups in different scenes. Hence, a group merging method is 

introduced to merge adjacent groups with higher correlation into one scene: 

 

 

 

 



Input: Video groups (Gi, i=1,..,M)  Output: Video scenes (SEj, j=1,..,N). 

Procedure: 

1. Given groups Gi, i=1,..,M, calculate similarities between all neighboring groups (SGi, i=1,..,M-1) 

using Eq. (11), where GpSim(Gi,Gj) denotes the similarity between group Gi and Gj (defined in Eq. 

(35)) 

SGi=GpSim(Gi, Gi+1)  i=1,..,M-1   (11) 

2. Use the automatic threshold detection strategy in Section 4.4 to find the best group, merging 

threshold (TG) for SGi, I=1,..,M-1, with TG=ATD(SGi). 

3. Adjacent groups with similarity larger than TG are merged into a new group.  If there are more than 

2 sequentially adjacent groups with larger similarity than TG, all are merged into a new group. 

4. The reserved and newly generated groups are formed as a video scene. Scenes containing only two 

shots are eliminated, since they usually convey less semantic information than scenes with more 

shots. The SelectRepGroup() strategy is used to select the representative group for each scene. 

 

[SelectRepGroup] 

For any scene SEi, the representative group is the group in SEi that contains the most content information for 

SEi. As noted previously, we use the low-level features associated with each group in our strategy.  

1. For any scene SEi that contains 3 or more groups Gj (j=1,..,Ni), the representative group of SEi 

(Rp(SEi)) is given by Eq. (12) 
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That is, Rp(SEi) is the group in SEi which has the largest average similarity with all other groups. 

2. If there are only 2 groups in SEi, we use the average motion information and the time duration of the 

group as the measurement. Usually, a group containing more motion will have more key-frames. 

Hence, we calculate the ratio between the sum of key-frame numbers and shot numbers in each 

group, and choose the group with the highest ratio as the representative group. If both groups have 

the same ratio, the group with longer time duration is selected as the representative group. 

3. If there is only 1 groups in SEi, this group is selected as the representative group of SEi. 

In the sections below, the selected representative group Rp(SEi) is also taken as the centroid of SEi. 

4.3 Video Scene Clustering 

Using the results of group merging, video scene information can be constructed. However, in most situations, 

many similar scenes would appear for several times in the video. Clustering those similar scenes into one unit 

eliminates the redundancy and produces a more concise video content summary. Since the general K-

meaning cluster algorithm needed to seed the initial cluster center, and the initial guess of cluster centroids 

and the order in which feature vectors are classified can affect the clustering result, we introduce a seedless 

Pairwise Cluster Scheme (PCS) for video scene clustering:  



Input: Video scenes (SEj, j=1,..,M) and all member groups (Gi, i=1,..,NG) . 

Output: Clustered scene structure (SEk, k=1,..,N). 

Procedure: 

1. Given video groups Gi, i=1,..,NG, we first calculate the similarities between any group Gi and Gj 

(i=1,..,NG-1; j=1,..,NG-1). The similarity matrix (SMij) for all groups is computing using Eq. (13). 

SMij(Gi,Gj)=GpSim(Gi,Gj), i=1,..,NG-1; j=1,..,NG-1    (13) 

where GpSim(Gi,Gj) denotes the similarity between Gi and Gj given by Eq. (35). For any scene SEj, 

it consists of either one or several groups. Hence, the similarity matrix of all scenes ( ijMS ′ ) can be 

derived from the group similarity matrix (SMij) with Eq. (14) 

));(),((),( jpipjiij SERSERGpSimSESEMS =′  i=1,..,M; j=1,..,M    (14) 

2. Find the largest value in matrix ijMS ′ , and merge the corresponding scenes into a new scene, and 

use SelectRepGroup() to find the representative group (scene centroid) for newly generated scene. 

3. After we have obtained the desired number of clusters, go to end; if not, go to step 4. 

4. Based on the group similarity matrix SMij and the updated centroid of the newly generated scene, 

update the scene similarity matrix ijMS ′ with Eq. (14) directly, then go to step 2. 

In order to determine the end of the scene clustering at step 3, the number of clusters N needs to be 

explicitly specified. Our experimental results have shown that for a great deal of interesting videos, if we 

have M video scenes, then using a clustering algorithm to reduce the number of scenes by 40% produces a 

relatively good result with respect to eliminating the redundancy and reserving important video scenes. 

However, a fixed threshold often loses the adaptive ability of the algorithm. Hence, to find an optimal 

number of clusters, we have employed the cluster validity analysis [49]. The intuitive approach is to find 

clusters that minimize intra-cluster distance while maximizing the inter-cluster distance. Assume the N 

indicates the number of clusters. Then the optimal cluster would result in measurement ρ(N) with the 

smallest value, where ρ(N) is defined in Eq. (15) 
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and Nj is the number of scenes in cluster j, uj is the centroid of the cluster j. ςi is the intra-cluster distance of 

the cluster i, while ξij is the inter-cluster distance of clusters i and j, and Cmin, Cmax are the range of the cluster 

number we seek for optimal values. We set these two numbers Cmin=[M⋅0.5] and Cmax=[M⋅0.7], where the 

operator [x] indicates the maximal integer which is not larger than x. That is, we seek optimal cluster number 

by clustering 30% to 50% of the original scenes (M). Hence, the optimal number of cluster N̂  is selected as: 
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4.4 Automatic threshold detection (ATD) 

As we discussed in sections above, thresholds TH1, TH2 and TG are the key elements for obtaining good 

results for group and scene detection. An entropic threshold technique is applied in this section to select the 

optimal thresholds for these three factors. A fast entropy calculation method is also presented. To illustrate, 

assume the maximal difference of R(i) in Eq. (9) is in the range [0,M]. In an input MPEG video, assume there 

are fi shots whose R(i) has the value i (i∈[0,M]). Given a threshold, say T, the probability distribution for the 

group-boundary and non-group-boundary shots can be defined. Since they are regarded as independent 

distributions, the probability for the non-group-boundary shots Pn(i) and group-boundary shots Pe(i) can be 

defined as Eq. (18) and (19) respectively. 
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 gives the total number of shots with ratio R(i) in the range 0 ≤ R(i) ≤ T. The entropies for these 

two classes are then given by: 

)(log)()(;)(log)()(
10

iPiPTHiPiPTH e

M

Ti
ee

T

i
nnn ∑∑

+==
−=−=   (20) 

The optimal threshold vector TC for classification has to satisfy the following criterion function [52]. 
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To find the global maximum of Eq.(21), the computational burden is bounded by O(M2). To reduce the 

search burden, a fast search algorithm is proposed which exploits the recursive iterations for the probability 

calculations for Pn(i), Pe(i) and the entropies Hn(T), He(T), where the computational burden is induced by 

calculating the re-normalized part repeatedly. We first define the total number of the pairs in the non-group-

boundary and group-boundary classes (the re-normalized parts used in Eq.(18) and (19)) when the threshold 

is set to T. 
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The corresponding total number of pairs at global threshold T+1 can be calculated as: 
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The recursive iteration property of the two corresponding entropies can then be exploited as: 
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The recursive iteration is reduced by adding only the incremental part, and the search burden is reduced 

to O(M). We denote the above automatic threshold selection strategy as ATD. The optimal threshold for Th1 

is determined with Th1=ATD(R(i)). The same strategy can be applied to find the optimal threshold for Th2 

and TG, with Th2=Min(ATD(CRi),ATD(CLi)) and TG=ATD(SGi). 

Figure 8 and Figure 9 present the experimental results for video group and scene detection. By utilizing 

the automatic threshold detection, most groups and scenes are correctly detected.  

4.5 Scene Detection Experimental Results 

Table 2 presents the experimental results and comparisons between our scene detection algorithm and other 

strategies [36][37]. The scene detection is executed among two medical videos and four news programs. 

Since scene is a semantic level concept, an absolute scene boundary cannot be concretely defined in common 

videos (especially in medical videos, where the story unit boundary is not distinct). However, we believe that 

in semantic unit detection, it is often worse to fail to segment distinct boundaries than to oversegment a 

scene. Hence, to judge the quality of the detected results, the following rule is applied: the scene is judged to 

be correctly detected if and only if all shots in the current scene belong to the same semantic unit (scene), 

otherwise the current scene is judged to be falsely detected. Thus, the scene detection precision (P) in Eq. 

(25) is utilized for performance evaluation. 

P= The number of correctly detected / The number of detected scenes   (25) 

Clearly, without any scene detection (treating each shot as one scene), the scene detection precision would be 

100%, and hence another compression rate factor (CRF) is defined in Eq. (26). 

CRF=Detected scene number / total shot number in the video   (26) 

To distinguish our method with others, we denote our method as A, the other two methods in [37][36] as 

B and C respectively. From the results in Table 2, some observations can be made: (1) our scene detection 

algorithm achieves the best precision among all three methods, about 67% shots are assigned in the right 

semantic unit, (2) method C [36] achieves the highest compression rate, unfortunately the precision of this 

method is also the lowest. On the other hand, this strategy is a threshold based method, and hence there is no 

doubt that some scenes are over segmented or missed, and (3) as a tradeoff with the precision, the 

compression ratio of our method is the lowest (8.6%) (Each scene consists of about 11 shots). However, as 

previously mentioned, during video browsing or retrieval, it is worse to fail to segment distinct boundaries 

than to oversegment a scene. From this point of view, our method is better than other two methods. 



 

Figure 8. Examples of detected video groups 

 

Figure 9. Examples of detected video scenes 

Table 2. Video scene detection results 

Method A Method B Method C Movie 
content Shots 

Scenes P CRF Scenes P CRF Scenes P CRF 

Medical 1 265 29 0.69 0.23 23 0.63 0.13 21 0.52 0.098 
Medical 2 221 26 0.54 0.32 21 0.57 0.17 17 0.50 0.081 

News 1 189 25 0.71 0.31 22 0.76 0.12 16 0.64 0.074 
News 2 178 19 0.65 0.26 13 0.68 0.15 14 0.60 0.101 
News 3 214 36 0.72 0.27 24 0.63 0.11 17 0.55 0.107 
News 4 190 27 0.68 0.31 21 0.59 0.14 14 0.57 0.100 
Average 1889 162 0.665 0.086 124 0.643 0.0656 99 0.563 0.052 

5. VIDEO SIMILARITY ASSESSMENT 

In measuring the similarity between videos, Dimitrova et al. [44] regarded the average distance of 

corresponding frames between two videos as the similarity measure, and took the temporal order of the 

frames into account. Lienhart et al. [45] considered the video similarity from different hierarchies, and 

defined the measure by different degrees of aggregation based on either a set or a sequence representation. 

Adjeroh et al. [43] formulated the problem of video sequence-to-sequence matching as a pattern matching 



problem and introduced new “string edit” operations required for the special characteristics of video 

sequences. Zhao et al. [46] presented a method to use feature lines [47] to evaluate the distances between the 

query image and video shot. To consider the influencing factors of the subjectivity of humans, Liu et al. [48] 

presents a video retrieval system to simulate the visual judgment of a human. 

Unfortunately, all these methods ignore the fact that video not only consists of shots and frames, it is 

also constructed with video groups and scenes that vary in semantic content and visual features. Hence, the 

video similarity evaluation should consider the similarity between groups and scenes.  

5.1 Frame Level Similarity Evaluation 

At the frame level, two types of visual features are extracted: 256-bin dimensional HSV color histogram and 

10-bin dimensional tamura coarseness texture. Given frame Fi, we denote its normalized color histogram and 

texture as l
Fi

H , k
Fi

T , where l∈[0,255], k∈[0,9]. Then the similarity between Fi and Fj is given by Eq. (27). 
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5.2 Shot Level Similarity Evaluation 
At the shot level, four kinds of low-level features were extracted: average color histogram, camera motion, 

key-frame information, and shot length. Given shot Si and Sj, while calculating their similarity, both match 

degree and match order of these features are taken into account.  

5.2.1 Average Color Histogram Matching 

An average color histogram 
iSH (in HSV space) defined by Eq. (28) is used to describe the average color 

information of Si, where M is the number of frames in Si and l
Fk

H is the color histogram of frame Fk in Si. 

The average color histogram matching degree, H(Si,Sj), between Si and Sj is determined by Eq. (29). 
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5.2.2 Shot Length Matching 
To measure the differences between the longer or shorter edition of similar shots, the length of the shot is 

considered as one feature. Length matching degree between Si and Sj is determined by Eq. (30). 
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where
iSL and

jSL are the frame numbers of the Si and Sj respectively.  



Table 3. Camera motion matching degree 

Camera 
Motion 

Panning 
left 

Panning 
right 

Tilting 
up 

Tilting 
down 

Zoom 
in 

Zoom 
out R_C R_AC Still Irregular 

Panning left 1 0 0.2 0.2 0.5 0.5 0 0 0 0.1 
Panning right 0 1 0.2 0.2 0.5 0.5 0 0 0 0.1 

Tilting up 0.2 0.2 1 0 0.5 0.5 0 0 0 0.1 
Tilting down 0.2 0.2 0 1 0.5 0.5 0 0 0 0.1 

Zoom in 0.5 0.5 0.5 0.5 1 0 0 0 0 0.1 
Zoom out 0.5 0.5 0.5 0.5 0 1 0 0 0 0.1 

R_C 0 0 0 0 0 0 1 0 0.8 0.1 
R_AC 0 0 0 0 0 0 0 1 0.8 0.1 
Still 0 0 0 0 0 0 0.8 0.8 1 0.1 

Irregular 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 

where R_C and R_AC denote Roll_Clockwise and Roll_AntiClockwise respectively 

5.2.3 Camera Motion Matching 
Since the camera motion in a shot may imply some semantic information (especially within some specific 

domains, such as sports videos), a video shot similarity evaluation scheme based on camera motion will help 

to construct a motion based video index structure [51] or retrieval system. In [53], various motion matching 

strategies have been proposed, where the motion activities from the global or small regions of each frame are 

used to facilitate content-based retrieval. However, these mechanisms only support the retrieval at the frame 

level, i.e., the query motions are from each single frame. To support motion retrieval at the shot (or even 

higher) level, we need to explore a new motion matching strategy. In MPEG-7 [59] the amount of camera 

motion in each frame has also been characterized, however, we believe when compared with the quantitative 

motion matching, the naïve users may more concern about the qualitative matching (finding the similar types 

of camera motions), therefore, we adopt a shot level qualitative motion matching scheme. 

Given shot Si and Sj, if iSM is the number of camera motion types in Si from start frame to end frame, 

we denote the shot with minimal number of camera motion types by M
jiS ,

ˆ , and the other shot is denoted by 
M
jiS ,

~
. As Figure 10 illustrates, M

jiS ,
ˆ =Si, 

M
jiS ,

~
=Sj. We then will use M

jiS ,
ˆ  as the benchmark to find camera 

motion matching in M
jiS ,

~
: 

• For each camera motion in M
jiS ,

ˆ , use Table 3 to find the closest matching motion in M
jiS ,

~
.  

• If there is a motion in M
jiS ,

~
that exactly matches current camera motion in M

jiS ,
ˆ  (the matching degree 

is 1), the current matching process will stop.  
• If there is no exact match for the current motion in M

jiS ,
ˆ , the camera motion in M

jiS ,
~

which has the 
largest matching degree is treated as the match. 

• If any motion in M
jiS ,

~
 has been exactly matched with the motion in M

jiS ,
ˆ , any other matching 

operation will start from the next motion in M
jiS ,

~
.  

• For any motion in M
jiS ,

ˆ , start from the last exactly matched camera motion in M
jiS ,

~
 to seek the next 

match. If there is no more camera motion in M
jiS ,

~
, the algorithm is terminated. 

After the matching process, Eq. (31) is used to get the uniform camera motion matching degree. L+ and L- are 

the number of camera motions matched “in order” and “in reverse order”, as shown in Figure 10.  
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where D(k) denotes the matching degree between matched camera motions in Si and Sj (according to Table. 

3), αM denotes the weight of the matching order in similarity evaluation, we set αM=0.7 in our system. 

5.2.4 Key-frame Matching 

The key-frame matching degree between shots Si and Sj. is given by Eq. (32), where
iSNK is the key-frame 

number in shot Si and ),(
ji SS NKNKMin  is the minimal key-frame number in Si and Sj. αF denotes the 

weight of the matching order in similarity evaluation, we set αF=0.8 in our system. We denote the shot with 

minimal key-frame number as F
jiS ,

ˆ , and the other shot is denoted as F
jiS ,

~
. As shown in Figure 11, 

i
F

ji SS =,
ˆ , j

F
ji SS =,

~
. F+ and F- are the numbers of key-frames matched in order and reverse order 

respectively. FmSim(k) is the similarity between matched key-frames in Si and Sj which is given in Eq. (27). 
Then, the key-frames matching strategy can be expressed as follows: 

• For each key-frame in F
jiS ,

ˆ , the most similar key-frame in F
jiS ,

~
 is selected as the matched frame. 

• If any key-frame in F
jiS ,

~
 has been matched, it will never be used to match with another key-frame.  

• After all key-frames in F
jiS ,

ˆ  have been matched, Eq. (32) is used to get the matching degree.  
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       Figure 10. Camera motion matching   Figure 11. Key-frame matching 

Based on the four types of shot features and their matching degrees, the similarity between Si and Sj is 

computed as the weighted sum of the four matching degrees, as shown in Eq. (33), where WH, WS, WF, WL are 

the user-specified weights for each of the features. 

),(),(),(),(),( jiLjiFjiMjiHji SSLWSSFWSSMWSSHWSSStSim ⋅+⋅+⋅+⋅=  (33) 



5.3 Group Level Similarity Evaluation  

Based on Eq. (33), given a shot Si and a group Gj, the similarity between them is defined with Eq. (34). 

jj GS
jiji SSStSimMaxGSStGpSim

∈

= )},({),(       (34) 

This implies that the similarity between Si and Gj is the similarity between Si and the most similar shot in Gj.  

In general, when we compare similarity between two groups using the human eye, we usually take the 

group with fewer shot numbers as the benchmark, and then find whether there are any shots in the other 

group similar enough to shots in benchmark group. If most shots in the benchmark group were similar 

enough to the other group, they would be treated as similar, as shown in Figure 12. Therefore, given group Gi 

and Gj, assume jiG ,
ˆ indicates the group with fewer shot numbers, and jiG ,

~
denotes the other group. Suppose 

NT(x) denotes the number of shot in group x, then, the similarity between Gi and Gj is given by Eq. (35). 
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Hence, the similarity between group Gi and Gj is the average similarity between shots in the benchmark 

group and their most similar shots in the other group.  
 

 
G1

G2

 

Figure 12. Group similarity evaluation (the arrows indicate the most similar shots between G1 and G2) 

5.4 Scene Level Similarity Evaluation 

A video scene consists of visually similar groups, given two scenes SEi and SEj, the similarity between them 

is derived from the similarity among the groups they contain. Assume Gi and Gj are the representative groups 

in scenes SEi and SEj, then the similarity between SEi and SEj is given by Eq. (36). 
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That is, the similarity between two scenes is the similarity between their representative groups.  

5.5 Video Level Similarity Evaluation 

Assuming NS(x) indicates the number of scenes in video x. Then, based on video similarity evaluation at the 

scene level, Eq. (37), is used to evaluate the distance between two videos Vi and Vj. 
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That is, the distance between Vi and Vj is the distance between the most similar scenes among them. Hence, if 

videos Vi and Vj are very similar to each other, the similarity evaluated from Eq. (37) would be large; 

however, if Vi and Vj are not similar to each other, their similarity may also be relatively large, since they 

may contain just one similar scene. Hence, Eq. (37) is utilized as the first step for video similarity evaluation 

to find those relatively similar videos, and then the similarity evaluation strategy at the scene, group and shot 

levels is utilized to refine the retrieval result. 

6. JOINT CONTENT HIERARCHY FOR PROGRESSIVE VIDEO ACCESS 
With the constructed video content hierarchy and the video similarity assessment at various levels, our video 

browsing and retrieval can be integrated and with great benefit to both. The user can also refine his query by 

progressively executing the browsing and retrieval processing. For example, the user executes the retrieval at 

the video level, and then adopts Eq. (37) to find the similar video sequences. Since the semantic and low-

level features in the query video sequence may vary, it is relatively difficult to tell which part the user is 

mostly interested in. Hence, by hierarchically browsing the content of the retrieved video sequences, the user 

can refine his query by selecting a scene (or a group) as the query. Iterative execution operations guide the 

user in finding the unit he is most interested in. In general, the progressive video content access strategy of 

Insightvideo is executed as follows: 

1. A hierarchical video browsing interface is first utilized to help the user browse, delivering an 

overview of the video or video database, as shown in Figure 13. During video browsing, the user 

may select any video unit as the query to query the database. That is, either the key-frame, group, 

scene even the whole video may be selected as the query. 

2. The user can also submit an example that is not in the database as the query. In that case, the video 

analysis strategies are used to construct its content hierarchy. The hierarchical browsing interface is 

utilized to help the user browse the content table of the query example and refine the query. 

3. After the user has selected the query example, the system will utilize the similarity evaluation 

scheme that corresponds to the same level as the query instance to find similar instances, and 

present the results to the user, as shown in Figure 14. Users can click the “Up” or “Down” buttons to 

view other retrieved units. 

4. The user may also browse the content hierarchy of the retrieved video unit by double clicking. Then, 

figure 15 will show the hierarchical content structure of the selected video unit. The first row shows 

the summary of the current video, and all other rows illustrate the scene information in the video 

(each row represents one scene). The row with the magnifier icon image on the left indicates that it 

was ranked as one of the retrieved results. The user can click the magnifier icon image to browse 

more details in the unit. Then, the user may select any unit in current interface as the new query. In 

this way, the retrieval and hierarchical browsing capabilities are integrated to benefit each other in 

helping the user to access the video content and refine his query efficiently.  

5. Iteratively execute the step 3 and 4 until the user finds the satisfactory results or halts the current 

retrieval operation at any time. 



6.1 System Performance 
Two types of video retrieval results, retrieval at the shot level and video level, are executed in our system. 

The experimental results are shown in Table 4 and Table 5 respectively. Our video database consists of 16 

videos (about 6 hours) from various sources (5 film abstracts, 4 News and 7 medical videos). All videos were 

processed with the techniques described above to extract their feature and content table. Then, InsightVideo 

was used to hierarchical browse and progressively retrieve videos from the database.  

While executing video retrieval at the shot level, two factors, precision and recall are defined to evaluate 

the efficiency of the system. Precision specifies the ratio of the number of relevant shots to the total number 

of returned shots. Recall specifies the ratio of the number of relevant video sequences found to the total 

number of relevant video sequences in the database. While evaluating the similarity between shots, we set 

WF, WM, WH and WL equal to 0.5, 0.1, 0.3 and 0.1 respectively. That is, we put heavy emphasis on the 

matching of visual features. During the retrieval process, the relevant shots retrieved in the top 20 are 

returned as the results. Performance is measured by comparing results produced by the assessment strategy 

on the 5 queries for each type of video against human relevance judgment. From Table 4, we can see that our 

system achieved rather good performance (76.8% in recall and 72.6% in precision) on different kinds of 

video. However, since the camera motion, content and background of film abstracts are more complex than 

other videos, the performance results of the film abstracts are somewhat worse. A more reliable and efficient 

method may be needed for film evaluation. 

Another experiment is executed to evaluate the efficiency of video similarity evaluation model at the 

video level. In this experiment, each of 16 videos in the database is first manually separated into three nearly 

equal clips (the entire video database contains 16×3=48 clips, no scene overlaps with the manually 

segmented boundaries). Then, randomly select one clip from database as the query, and retrieve results from 

the database. The ranks of the other two clips that are in the same video as the query are used to evaluate the 

system performance. 

We randomly select 24 retrieval results (with 8 for each), and show them in Table 4. To evaluate the 

similarity between the videos, we set WF, WM, WH and WL equal to 0.4, 0.0, 0.5, 0.1 respectively. From Table 

5, we see that our retrieval strategy achieved relatively good results, the average location of the retrieved 

clips that are in the same video as the query is 4.27 (out of 47 clips, since the query clip is excluded from the 

database). However, we find the retrieval results for News are worse than for the other two types of video. 

This is because News programs are usually different from general video data: in common videos, a similar 

scene may be shown repetitively in the video, however, in News program, most story units are reported only 

once, hence, the three clips of the same News video may have large variety in content and visual features. 

This can cause our system to falsely locate the related clips with the query example.  



     

         Figure 13. Hierarchical video content browsing         Figure 14. Video retrieval interface 

 

Figure 15. Content hierarchy of the retrieved result 

Table 4. System retrieval performance at shot level (From top 20 results) 

Content of the video database Shots in the video Recall Precision 

Film Abstracts 526 0.62 0.65 

News Programs 771 0.85 0.78 

Medical Videos 1286 0.81 0.74 

Average Performance 2583 0.768 0.726 

Table 5. System retrieval performance at video level 

Videos Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Query7 Query8 
Medical videos 2 1 3 2 3 1 4 2 1 3 1 4 6 8 1 3 
News program 6 7 5 3 7 11 8 3 7 2 4 7 8 13 4 12 
Film Abstract 4 3 2 6 1 5 4 1 6 2 3 1 6 4 3 2 

Average 4.27 



7. CONCLUSION 

In this paper we have presented the InsightVideo system, which constructs the video content hierarchy for 

efficient video content access. A progressive video retrieval scheme is proposed which seamlessly integrates 

hierarchical video browsing and retrieval. To create the video content table, several video analysis techniques 

are introduced: (1) a statistical information based camera motion classification method, (2) a compressed 

domain key-frame extraction method which is based on detected camera motions in each shot, and (3) video 

group and scene detection and scene clustering strategies which organize the video content hierarchy. Video 

similarity assessment at different levels (frame, shot, group, scene, video) is addressed. Based on constructed 

video content hierarchy and the video similarity evaluation strategy, the hierarchical video browsing and 

retrieval are seamlessly integrated together.  

Unlike most other video retrieval systems that execute the video retrieval at the shot level, the retrieval 

results of the InsightVideo are the units likely related to the query example in low-level features and 

semantics. In contrast to other video browsing systems, we join the hierarchical video browsing with video 

retrieval. This benefits both processes, and produces an effective progressive video retrieval system. The 

features that distinguish our system from others are the following: (1) the integration of several novel video 

processing techniques which improve existing algorithms in important ways, (2) constructing the video 

content hierarchy allows the hierarchical video content browsing and summarization to be executed directly, 

(3) addressing the video similarity at different levels to support the retrieval at various content levels, and  (4) 

a progressive retrieval which integrates the video browsing and retrieval processes, allowing users to shrink 

and refine queries efficiently.  
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