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Abstract—Two research efforts have been conducted to realize sliding-window queries in data stream management systems, namely,

query reevaluation and incremental evaluation. In the query reevaluation method, two consecutive windows are processed

independently of each other. On the other hand, in the incremental evaluation method, the query answer for a window is obtained

incrementally from the answer of the preceding window. In this paper, we focus on the incremental evaluation method. Two

approaches have been adopted for the incremental evaluation of sliding-window queries, namely, the input-triggered approach and the

negative tuples approach. In the input-triggered approach, only the newly inserted tuples flow in the query pipeline and tuple expiration

is based on the timestamps of the newly inserted tuples. On the other hand, in the negative tuples approach, tuple expiration is

separated from tuple insertion where a tuple flows in the pipeline for every inserted or expired tuple. The negative tuples approach

avoids the unpredictable output delays that result from the input-triggered approach. However, negative tuples double the number of

tuples through the query pipeline, thus reducing the pipeline bandwidth. Based on a detailed study of the incremental evaluation

pipeline, we classify the incremental query operators into two classes according to whether an operator can avoid the processing of

negative tuples or not. Based on this classification, we present several optimization techniques over the negative tuples approach that

aim to reduce the overhead of processing negative tuples while avoiding the output delay of the query answer. A detailed experimental

study, based on a prototype system implementation, shows the performance gains over the input-triggered approach of the negative

tuples approach when accompanied with the proposed optimizations.

Index Terms—Data stream management systems, pipelined query execution, negative tuples.

Ç

1 INTRODUCTION

THE emergence of data streaming applications calls for
new query processing techniques to cope with the high

rate and the unbounded nature of data streams. The sliding-
window query model is introduced to process continuous
queries in-memory. The main idea is to limit the focus of
continuous queries to only those data tuples that are inside
the introduced window. As the window slides, the query
answer is updated to reflect both new tuples entering the
window and old tuples expiring from the window. Two
research efforts have been conducted to support sliding-
window queries in data stream management systems,
namely, query reevaluation and incremental evaluation.

In the query reevaluation method, the query is

re-evaluated over each window independent from all other

windows. Basically, buffers are opened to collect tuples

belonging to the various windows. Once a window is

completed (i.e., all the tuples in the window are received),

the completed window buffer is processed by the query
pipeline to produce the complete window answer. An input
tuple may contribute to more than one window buffer at the
same time. Examples of systems that follow the query
re-evaluation method include Aurora [1] and Borealis [2].
On the other hand, in the incremental evaluation method,
when the window slides, only the changes in the window
are processed by the query pipeline to produce the answer
of the next window. As the window slides, the changes in
the window are represented by two sets of inserted and
expired tuples. Incremental operators are used in the
pipeline to process both the inserted and expired tuples
and to produce the incremental changes to the query
answer as another set of inserted and expired tuples.
Examples of systems that follow the incremental evaluation
approach include STREAM [3] and Nile [20].

In this paper, we focus on the incremental evaluation
method. Two approaches have been adopted to support
incremental evaluation of sliding-window queries, namely,
the input-triggered approach and the negative tuples ap-
proach. In the input-triggered approach (ITA for short),
only the newly inserted tuples flow in the query pipeline.
Query operators (and the final query output) rely on the
timestamps of the inserted tuples to expire old tuples [5],
[23]. However, as will be discussed in Section 3.1, ITA may
result in significant delays in the query answer. As an
alternative, the negative tuples approach (NTA for short) is
introduced as a delay-based optimization framework that
aims to reduce the output delay incurred by ITA [4], [21]. A
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negative tuple is an artificial tuple that is generated for
every expired tuple from the window. Expired tuples are
generated by a special operator, termed EXPIRE, placed at
the bottom of the query pipeline (EXPIRE is a general-
ization of the operators SEQ-WINDOW in [4] and W-EXPIRE

in [21]). For each inserted tuple in the window (i.e., positive
tuple), say t, EXPIRE forwards t to the higher operator in
the pipeline. EXPIRE emits a corresponding negative
tuple t� once t expires from the sliding window. As the
expired tuple flows through the query pipeline, it undoes the
effect of its corresponding inserted tuple.

Although the basic idea of NTA is attractive, it may not
be practical. The fact that a negative tuple is introduced for
every expired input tuple means doubling the number of
tuples through the query pipeline. In this case, the overhead
of processing tuples through the various query operators is
doubled. This observation opens the room for optimization
methods over the basic NTA. Various optimizations would
mainly focus on two issues: 1) reducing the overhead of
processing the negative tuples and 2) reducing the number
of negative tuples through the pipeline.

In this paper, we study the realization of the incremental
evaluation approaches in terms of the design of the
incremental evaluation pipeline. Based on this study, we
classify the incremental relational operators into two classes
according to whether an operator can avoid the processing
of expired tuples or not. Then, we introduce several
optimization techniques over the negative tuples approach
that aim to reduce the overhead of processing negative
tuples while avoiding the output delay of the query answer.
The first optimization, termed the time-message optimiza-
tion, is specific to the class of operators that can avoid the
processing of negative tuples. In the time-message optimiza-
tion, when an operator receives a negative tuple, the
operator does not perform exact processing but just
“passes” a time-message to upper operators in the pipeline.
Whenever possible, the time-message optimization reduces
the overhead of processing negative tuples while avoiding
the output delay of the query answer.

Furthermore, we introduce the piggybacking approach as
a general framework that aims to reduce the number of
negative tuples in the pipeline. In the piggybacking
approach, negative tuples flow in the pipeline only when
there is no concurrent positive tuple that can do the
expiration. Instead, if positive tuples flow in the query
pipeline with high rates, then the positive tuples purge the
negative tuples from the pipeline and are piggybacked with
the necessary information for expiration. Alternating
between negative and piggybacked positive tuples is
triggered by discovering fluctuations in the input stream
characteristics that are likely to take place in streaming
environments. Basically, the piggybacking approach always
achieves the minimum possible output delay independent
from the stream or query characteristics. In general, the
contributions of this paper can be summarized as follows:

1. We study, in detail, the realization of the incremental
evaluation approach in terms of the design of the
incremental evaluation pipeline. Moreover, we
compare the performance of the two approaches,
ITA and NTA, for various queries. This comparison

helps identify the appropriate situations in which to
use each approach.

2. We give a classification of the incremental operators
based on the behavior of the operator when
processing a negative tuple. This classification
motivates the need for optimization techniques over
the basic NTA.

3. We introduce the time-message optimization techni-
que that aims to avoid, whenever possible, the
processing of negative tuples while avoiding the
output delay of the query answer.

4. We introduce the piggybacking technique that aims to
reduce the number of negative tuples in the query
pipeline. The piggybacking technique allows the
system to be stable with fluctuations in input arrival
rates and filter selectivity.

5. We provide an experimental study using a prototype
data stream management system that evaluates the
performance of the ITA, NTA, time-message, and
piggybacking techniques.

The rest of the paper is organized as follows: Section 2
gives the necessary background on the pipelined query
execution model in data stream management systems.
Section 3 discusses and compares ITA and NTA for the
incremental evaluation of sliding-window queries. A
detailed realization of the various operators is given in
Section 4. A classification for the incremental operators
along with the optimizations over the basic NTA are
introduced in Section 5. Section 6 introduces the piggyback-
ing technique. Experimental results are presented in
Section 7. Section 8 highlights related work in data stream
query processing. Finally, Section 9 concludes the paper.

2 PRELIMINARIES

In this section, we discuss the preliminaries for sliding-
window query processing. First, we discuss the semantics
of sliding-window queries. Then, we discuss the pipelined
execution model for the incremental evaluation of sliding-
window queries over data streams.

2.1 Sliding-Window Query Semantics

A sliding-window query is a continuous query over n input
data streams, S1 to Sn. Each input data stream Sj is assigned
a window of size wj. At any time instance T , the answer to
the sliding-window query is equal to the answer of the
snapshot query whose inputs are the elements in the
current window for each input stream. At time T, the
current window for stream Si contains the tuples arriving
between times T � wi and T . The same notions of semantics
for continuous sliding-window queries are used in other
systems (e.g., [24], [27]). In our discussion, we focus on the
time-based sliding window that is the most commonly used
sliding window type. Input tuples from the input streams,
S1 to Sn, are timestamped upon the arrival to the system.
The timestamp of the input tuple represents the time at
which the tuple arrives to the system. The window wi
associated with stream Si represents the lifetime of a tuple t
from Si.

Handling timestamps. A tuple t carries two timestamps,
t’s arrival time, ts, and t’s expiration time, Ets. Operators in
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the query pipeline handle the timestamps of the input and
output tuples based on the operator’s semantics. For
example, if a tuple t is generated from the join of the two
tuples t1ðts1; Ets1Þ and t2ðts2; Ets2Þ, then t will have ts ¼
maxðts1; ts2Þ and Ets ¼ minðEts1; Ets2Þ. In this paper, we
use the CQL [4] construct RANGE to express the size of the
window in time units.

2.2 Data Stream Queuing Model

Data stream management systems use a pipelined queuing
model for the incremental evaluation of sliding-window
queries [4]. All query operators are connected via first-in-
first-out queues. An operator, p, is scheduled once there is
at least one input tuple in its input queue. Upon scheduling,
p processes its input and produces output results in
p’s output queue. The stream SCAN (SSCAN) operator acts
as an interface between the streaming source and the query
pipeline. SSCAN assigns to each input tuple two time-
stamps, ts, which is equal to the tuple arrival time, and Ets,
which is equal to tsþ wi. Incoming tuples are processed in
increasing order of their arrival timestamps.

Stream query pipelines use incremental query operators.
Incremental query operators process changes in the input as
a set of inserted and expired tuples and produce the changes
in the output as a set of inserted and expired tuples. Algebra
for the incremental relational operators has been introduced
in [18] in the context of incremental maintenance of
materialized views (expiration corresponds to deletions).
In order to process the inserted and expired tuples, some
query operators (e.g., Join, Aggregates, and Distinct) are
required to keep some state information to keep track of all
previous input tuples that have not expired yet.

3 PIPELINED-EXECUTION OF SLIDING-WINDOW

QUERIES

In this section, we discuss two approaches for the
incremental evaluation of sliding-window queries, namely,
ITA and NTA. As the window slides, the changes in the
window include insertion of the newly arrived tuples and
expiration of old tuples. ITA and NTA are similar in
processing the inserted (or positive) tuples but differ in
handling the expired (or negative) tuples. Basically, the
difference between the two approaches is in: 1) how an
operator is notified about the expiration of a tuple, 2) the
actions taken by an operator to process the expired tuple,
and 3) the output produced by the operator in response to
expiring a tuple. In this section, we discuss how each
approach handles the expiration of tuples along with the
drawbacks of each approach.

3.1 The Input-Triggered Approach (ITA)

The main idea in ITA is to communicate only positive tuples
among the various operators in the query pipeline.
Operators in the pipeline (and the final query sink) use the
timestamp of the positive tuples to expire tuples from the
state. Basically, tuple expiration in ITA is as follows: 1) An
operator learns about the expired tuples from the current
time T that is equal to the newest positive tuple’s timestamp.
2) Processing an expired tuple is operator-dependent. For
example, the join operator just purges the expired tuples

from the join state. On the other hand, most of the operators
(e.g., Distinct, Aggregates, and Set-difference) process every
expired tuple and produce new output tuples. 3) An
operator produces in the output only positive tuples which
are a result of processing the expired tuple (if any). The
operator attaches the necessary time information in the
produced positive tuples so that upper operators in the
pipeline perform the expiration accordingly.

A problem arises in ITA if the operator does not produce
any positive tuples in the output although the operator has
received input positive tuples and has expired some tuples
from the operator’s state. In this case, the upper operators in
the pipeline are not notified about the correct time
information, which results in a delay in updating the query
answer. Note that upper operators in the pipeline should
not expire any tuples until the operator receives an input
tuple from the lower operator in the pipeline. Operators
cannot voluntarily expire tuples based on a global system’s
clock. Voluntary expiration based on a global clock can
generate incorrect results because an expired tuple, t1, may
co-exist in the window with another tuple, t2, but t2 may get
delayed at a lower operator in the pipeline. An example
demonstrating this incorrect execution when using a global
clock is given in the Appendix.

The delay in the query answer is a result of not
propagating the time information that is needed to expire
tuples. The delay is unpredictable and depends on the input
stream characteristics. In a streaming environment, a delay
in updating the answer of a continuous query is not
desirable and may be interpreted by the user as an
erroneous result. As it is hard to model the input stream
characteristics, the performance of the input-triggered
approach is fluctuating.

Example. Consider the query Q1 “Continuously report the
number of favorite items sold in the last five time units.”
Notice that, even if the input is continuously arriving, the
filtering condition, favorite items, may filter out many of
the incoming stream tuples. In this case, the join operator
will not produce many positive tuples. As a result, the
upper operators in the pipeline (e.g., COUNT in Q1) will
not receive any notification about the current time and,
hence, will not expire old tuples.

Fig. 1 illustrates the behavior of ITA for Q1. The
timelines S1 and S2 correspond to the input stream and
the output of JOIN, respectively. S3 and C represent the
output stream when using ITA and the correct output,
respectively. The window w is equal to five time units. Up
to time T4, Q1 matches the correct output C with the result
4. At T5, the input “2” in S1 does not join with any item in
the table FavoriteItems. Thus, COUNT is not scheduled to
update its result. S3 will remain 4 although the correct
output C should be 3 due to the expiration of the tuple that
arrived at time T0. Similarly, at T6, S3 is still 4 while C is 2
(the tuple arriving at time T1 has expired). S3 keeps having
an erroneous output until an input tuple passes the join and
triggers the scheduling of COUNT to produce the correct
output. This erroneous behavior motivates the idea of
having a new technique that triggers the query operators
based on either tuple insertion or expiration.
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3.2 The Negative Tuples Approach (NTA)

The main goal of NTA is to separate tuple expiration from
the arrival of new tuples. The main idea is to introduce a
new type of tuples, namely, negative tuples, to represent
expired tuples [4], [21]. A special operator, EXPIRE, is
added at the bottom of the query pipeline that emits a
negative tuple for every expired tuple. A negative tuple is
responsible for undoing the effect of a previously processed
positive tuple. For example, in time-based sliding-window
queries, a positive tuple tþ with timestamp T from stream Ij
with a window of length wj will be followed by a negative
tuple t� at time T þ wj. The negative tuple’s timestamp is
set to T þ wj. Upon receiving a negative tuple t�, each
operator in the pipeline behaves accordingly to delete the
expired tuple from the operator’s state and produce outputs
to notify upper operators of the expiration.

3.2.1 Handling Delays Using Negative Tuples

Fig. 2b gives the execution of NTA for the example in Fig. 2a
(the negative tuples implementation of the query in Fig. 1a).
At time T5, the tuple with value 4 expires and appears in S1

as a negative tuple with value 4. The tuple 4� joins with the
tuple 4 in the FavoriteItems table. At time T5, COUNT
receives the negative tuple 4�. Thus, COUNT outputs a new
count of 3. Similarly, at time T6, COUNT receives the
negative tuple 5� and the result is updated.

The previous example shows that NTA overcomes the
output delay problem introduced by ITA because tuple
expiration is independent from the query characteristics.
Even if the query has highly selective operators at the
bottom of the pipeline, the pipeline still produces timely

correct answers. On the other hand, if the bottom operator
in the query pipeline has low selectivity, then almost all the
input tuples pass to the intermediate queues. In this case,
NTA may present more delays due to the increase of
waiting times in queues.

3.3 Invalid Tuples

In ITA, expired tuples are not explicitly generated for every
expired tuple from the window, but some tuples may expire
before their Ets due to the semantics of some operators
(e.g., set-difference) as will be explained in Section 4. In the
rest of the paper, we refer to tuples that expire out-of-order
as invalid tuples. Operators in ITA process invalid tuples in
the same way as negative tuples are processed by NTA and
produce outputs so that other operators in the pipeline
behave accordingly. This means that, even in ITA, some
negative tuples may flow in the query pipeline.

4 WINDOW QUERY OPERATORS

Window query operators differ from traditional operators
in that window operators need to process the expired tuples
as well as the inserted tuples. Two issues should be
distinguished when discussing window operators: operator
semantics and operator implementation. Operator semantics

defines the changes in the operator’s output when the input
is changed (by inserting or deleting a tuple), while operator
implementation defines the way the operators in the pipeline
are coordinated to achieve the desired semantics. Operator
semantics is independent from the approach (ITA or NTA)
used for query evaluation. Incremental semantics for
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Fig. 1. Input-triggered evaluation. (a) Query Q1 with the query pipeline. (b) Execution timeline.

Fig. 2. Negative tuples evaluation. (a) Query Q1 with the query pipeline. (b) Execution timeline.



various relational operators is defined in the context of
incremental maintenance of materialized views [18]. On the
other hand, operator implementation depends on whether
ITA or NTA is used for query evaluation. In this section, we
discuss the semantics and implementation issues for the
various relational operators under ITA and NTA.

4.1 Incremental Evaluation

In this section, we use the incremental equations from [18]
as a guide for discussing the semantics of the various
window operators. Two equations are given for every
operator; one equation gives the semantics when the input
changes by inserting a tuple and the other equation gives the
semantics when the input changes by deleting a tuple. In
stream operators, inputs are streams of inserted and expired
tuples. At any time point T , an input stream S can be seen
as a relation that contains the input tuples that have arrived
before time T and have not yet expired. After time T , an
input positive tuple sþ indicates an insertion to S,
represented as ðS þ sÞ, and an expired tuple s� indicates a
deletion from S, represented as ðS � sÞ. In the following, we
assume the duplicate-preserving semantics of the operators.
Tuples arriving to the system out-of-order can be stored in
buffers and can be ordered using heartbeats [25]. Ordering
tuples is beyond the scope of this paper.

4.2 Window Select �pðSÞ and Window Project �AðSÞ

�pðS þ sÞ ¼ �pðSÞ þ �pðsÞ �pðS � sÞ ¼ �pðSÞ � �pðsÞ
�AðS þ sÞ ¼ �AðSÞ þ �AðsÞ �AðS � sÞ ¼ �AðSÞ � �AðsÞ:

The incremental equations for Select and Project show
that both positive and negative tuples are processed in the
same way. The only difference is that positive inputs result
in positive outputs and negative inputs result in negative
outputs. The equations also show that processing an input
tuple does not require access to previous inputs, hence
Select and Project are nonstateful operators. An output tuple
carries the same timestamp and expiration timestamp as the
corresponding input tuple. In ITA, Select and Project do not
produce any outputs in response to an expired input tuple.

4.3 Window Join ðS ffl RÞ

ðS þ sÞ ffl R ¼ ðS ffl RÞ þ ðs ffl RÞ
ðS � sÞ ffl R ¼ ðS ffl RÞ � ðs ffl RÞ:

Join is symmetric, which means that processing a tuple is
done in the same way for both input sides. The incremental
equations for Join show that, like Select, Join processes
positive and negative tuples in the same way with the
difference in the output sign. Unlike Select, Join is stateful
since it accesses previous inputs while processing the newly
incoming tuples. The join state can be expressed as two
multisets, one for each input. An output tuple from Join
carries the semantics (windows) of two different streams.
The timestamp of the output tuples is assigned as follows:
The timestamp, ts, is equal to the maximum value of the
timestamps for all joined tuples. The expiration timestamp,
Ets, is equal to the minimum value of expiration time-
stamps for all joined tuples (output of the join should expire
whenever any of its composing tuples expires). In ITA, Join

does not produce any outputs in response to an expired

input tuple.

4.4 Window Set Operations

We consider the duplicate-preserving semantics of the set

operations as follows: If stream S has n duplicates of tuple a

and streamR hasm duplicates of the same tuple a, the union

stream ðS [RÞ has ðnþmÞ duplicates of a, the intersection

stream ðS \RÞ has minðn;mÞ duplicates of a, and the minus

stream ðS �RÞ has maxð0; n�mÞ duplicates of a.

4.4.1 Window Union ðS [RÞ

ðS þ sÞ [R ¼ ðS [ RÞ þ s ðS � sÞ [ R ¼ ðS [RÞ � s:

An input tuple to the union operator is produced in the

output with the same sign. In ITA, Union does not produce

any outputs in response to an expired tuple. Union is

nonstateful since processing an input tuple does not require

accessing previous inputs. An output tuple carries the same

timestamp and expiration timestamp as the input tuple.

4.4.2 Window Intersection ðS \RÞ

ðS þ sÞ \ R ¼ ðS \RÞ þ ðs \ ðR� SÞÞ
ðS � sÞ \ R ¼ ðS \RÞ � ðs� ðS � RÞÞ:

The intersection operator is symmetric. When a tuple s is

inserted into stream S, s is produced in the output only if s

has duplicates in the set “R� S” (“R� S” includes the

tuples that exist in R and does not exist in S). On the other

hand, when a tuple s expires, s should expire from the

output only if s has no duplicates in the set “S �R.”
When using ITA, Intersection needs to produce addi-

tional positive tuples in response to expiring a tuple. Fig. 3

gives an example to illustrate this case. Assume that S and

R are the two input streams and O is the output of

Intersection. When the tuple “1” arrives in stream S at

time T1, a corresponding tuple “1” is produced in the

output. At time T6, the tuple with value “5” arrives to S and

causes the expiration of the tuple “1.” When the tuple “5” is

propagated to the output stream, O, “5” causes the

expiration of the tuple “1” from O as well. In this case,

Intersection should produce another positive tuple with

value 1 in the output stream to replace the expired tuple. A

similar case happens in Distinct as will be described later.
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4.4.3 Window Minus ðS � RÞ

Case 1 : ðS þ sÞ � R ¼ ðS � RÞ þ ðs� ðR� SÞÞ;
Case 2 : ðS � sÞ � R ¼ ðS � RÞ � ðs \ ðS � RÞÞ;
Case 3 : S � ðRþ rÞ ¼ ðS � RÞ � ðr \ ðS � RÞÞ;
Case 4 : S � ðR� rÞ ¼ ðS � RÞ þ ðr� ðR� SÞÞ:

The minus operator is asymmetric, which means that
processing an input tuple depends on whether the tuple is
from S or R. The four cases for the input tuples are handled
as follows:

. Case 1: An input positive tuple, sþ, from stream S is
produced as a positive tuple in the output stream
only if s does not exist in the set “R� S.”

. Case 2: An input negative tuple, s�, from stream S is
produced in the output stream as a negative tuple
only if s exists in the set “S �R.” In ITA, the Minus
operator does not produce any output in response to
a tuple expiring from stream S.

. Case 3: An input positive tuple, rþ, from stream R
results in producing a negative tuple s� for a
previously produced positive tuple sþ when s is a
duplicate for r and s exists in the set “S �R.” Note
that the negative tuple s� is an invalid tuple and is
produced when using either ITA or NTA.

. Case 4: An input negative tuple, r�, from stream R
results in producing a positive tuple sþ when s is a
duplicate of r and s does not exist in the set “R� S.”
The positive tuple sþ is produced in both ITA and
NTA.

Minus is stateful since processing a positive or negative
input tuple requires accessing previous inputs. In Cases 1
and 2, the output tuple carries the same timestamp as the
input tuple. In Cases 3 and 4, the input tuple is from
stream R while output tuple s is from stream S and carries
timestamp from the stored s tuple.

4.5 Window Distinct �

�ðS þ sÞ ¼ �ðSÞ þ ðs� SÞ
�ðS � sÞ ¼ �ðSÞ � ðs� ðS � sÞÞ:

The semantics of the distinct operator states that an input
positive tuple, sþ, is produced in the output only if s has no
duplicates in S (i.e., s exists in the set “s� S”). An input
negative tuple, s�, is produced in the output only if s has no
duplicates in the set “S � s.” The Distinct operator is
stateful. Similar to Intersection, when using ITA, Distinct
may need to produce a positive tuple in response to
expiring a tuple.

4.6 Window Aggregates and Group-By

The group-by operator maps each input stream tuple to a
group and produces one output tuple for each nonempty
group G. The output tuples have the form < G; V al > ,
where G is the group identifier and V al is the group’s
aggregate value. The aggregate value V ali for group Gi is
updated whenever the set of Gi’s tuples changes by
inserting or expiring a tuple. Two tuples are produced to
update the value of the group: an invalid tuple to cancel the

old value and a positive tuple to report the new value. The
behavior of Group-By is the same for both ITA and NTA
and works as follows: When receiving an input tuple, sþ, or
when a tuple expires, s�, Group-By maps s to the
corresponding group, Gs, and produces an invalid tuple,
< Gs; oldV al >

� , to invalidate the old value of Gs, if Gs

exists before, and another positive tuple, < Gs; newV al >
þ ,

for the new value of Gs after aggregating s.
Aggregate operator’s state. When using ITA, the

aggregate operator stores all the input tuples in the
operator’s state. When using NTA, some aggregate opera-
tors (e.g., Sum and Count) do not require storing the tuples.
These aggregates are incremental and, when receiving a
negative tuple, the new aggregate value can be calculated
without accessing the previous inputs. Other aggregates
(e.g., MAX) require storing the whole input independent
from using ITA or NTA.

4.7 Result Interpretation

In ITA, the output of a sliding-window query is a stream of
positive tuples. Two timestamps are attached with each
output tuple: a timestamp, ts, and an expiration timestamp,
Ets. When a tuple with ts is equal to T and is received in
the output, all previously produced tuples with Ets less
than T should expire. The output of a sliding-window
query should be stored in order to identify the expired
tuples. In NTA, the output of a sliding-window query is a
stream of positive and negative tuples. Each negative tuple
cancels a previously produced positive tuple with the same
attributes.

5 NEGATIVE TUPLES OPTIMIZATIONS

Although the basic idea of NTA is attractive, it may not be
practical. The fact that we introduce a negative tuple for
every expired tuple results in doubling the number of
tuples through the query pipeline. In this case, the overhead
of processing tuples through the various query operators is
doubled. This observation gives rise to the need for
optimization methods over the basic NTA. The proposed
optimizations focus mainly on two targets: 1) reducing the
overhead of processing the negative tuples and 2) reducing
the number of negative tuples through the pipeline.

Based on the study of the window query operators in
Section 4, we classify the query operators into two classes
according to whether an operator can avoid the complete
processing of a negative tuple or not. Based on this
classification, we propose optimizations to reduce the
overhead of processing negative tuples whenever possible
(target item 1 above). In Section 6, we address optimizations
to reduce the number of negative tuples in the pipeline
(target item 2 above). Before discussing the proposed
optimizations, it is important to distinguish between two
types of negative tuples: 1) expired tuples that are
generated from the EXPIRE operator and 2) invalid tuples
that are generated from internal operators (e.g., Minus).
Invalid tuples are generated out-of-order and have to be
fully processed by the various operators in the pipeline. The
proposed optimizations aim to reduce the overhead of
expired tuples and, hence, are not applied to invalid tuples.
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5.1 Operator Classification

Based on the study of window operators in Section 4, we
classify the window operators into two classes according to
whether an operator can avoid the processing of negative
tuples or not while guaranteeing a limited output delay.

. Class 1. The first class of window operators includes
the operators in which an expired tuple repeats the
output that was previously produced by the corre-
sponding positive tuple. This class includes the
following operators: Select, Project, Union, and Join.
The only difference between the output in response
to processing an expired tuple and the output in
response to processing the corresponding positive
tuple is in the tuple’s sign. These operators can avoid
processing the expired tuples and just “pass” the
necessary time information to upper operators in the
pipeline so that upper operators expire the corre-
sponding tuples accordingly.

. Class 2. The second class of window operators
includes the operators in which processing an
expired tuple is different from processing the
corresponding positive tuple. Example operators
belonging to this class include: Intersection, Minus,
Distinct, and Aggregates. Processing an expired
tuple in this class may result in producing output
tuples (positive or negative) even if the correspond-
ing positive tuple did not produce any outputs. The
operators in this class must perform complete
processing of every expired tuple. One interesting
observation is that most of the operators in this class
are stateful operators, which means that the oper-
ator’s state has a copy of every input tuple that has
not expired yet. For such operators, it suffices to
notify the operator of the necessary time information
and the operator reads the expired tuples from the
operator’s state.

5.2 The “Time-Message” Optimization

The goal of the “time-message” optimization is to reduce
the overhead of processing negative tuples in Class-1
operators (especially Join) without affecting the output
delay. Mainly, when a Class-1 operator receives a negative
tuple (or a tuple expires from the operator’s state), instead
of processing the tuple, the operator performs the follow-
ing: 1) delete the corresponding tuple from the operator’s
state (if any) and 2) set a special flag in this tuple indicating
that this tuple is a time-message and produce the tuple as
output (an example demonstrating the time-message
approach is given later in Section 5.3). The time-message
tuple can be regarded as a special kind of heartbeat that is
generated when a tuple expires.

One problem in the time-message optimization as
described is that if an operator sends a time-message for
every expired tuple, then unnecessary messages may be
sent even if their corresponding positive tuples have not
produced any outputs before. This happens when, for
example, the join filter is highly selective (i.e., when most of
the input tuples do not produce join outputs). Filtering
operators (e.g., Select and Join) are the source for
unnecessary time-messages. Avoiding the unnecessary

time-messages in the join operator is addressed in the next
section (Section 5.2.1).

Avoiding the unnecessary time-messages in Select is
achieved by merging the Select and EXPIRE operators into
one operator. Mainly, in our implementation, Project and
Select are merged into one operator. Moreover, Select is
pushed down and is merged with the Expire operator. By
pushing the selection into the EXPIRE operator, we achieve
the following: 1) reducing the size of the EXPIRE state since
only tuples satisfying the selection predicate are stored and
2) producing negative tuples only for tuples satisfying the
selection predicate. This means that Select generates exact
negative tuples (and not just time-messages) without the
overhead of reapplying the selection predicate.

Union is not a filtering operator and, hence, Union is
not a source of unnecessary time-messages. Moreover,
negative tuples do not encounter processing overhead in
Union. These observations lead us to the fact that Join is
the only Class-1 operator that uses and benefits from the
time-message optimization. In the rest of the paper, we
will use the terms “time-message” and “join-message”
interchangeably.

5.2.1 Time-Messages in the Join Operator

The join operator is the most expensive operator in the
query pipeline. Without the time-message optimization,
Join would normally reprocess negative tuples in the same
way as their corresponding positive tuples. Given the fact
that a negative tuple joins with the same tuples as the
corresponding positive tuple and the high cost of the join
operation, the time-message technique aims to avoid
reexecuting the join with the negative tuples. To achieve
this, the join operator keeps some state information to avoid
unnecessary messages.

Algorithm and Data Structures. Upon receiving a
positive tuple t, the join operator inserts t in the join state
and joins the tuple with the other input(s). In addition to
processing t, the join operator keeps some information with
t in the state to indicate whether t has produced join results
or not. Upon receiving a negative tuple, instead of
reperforming the join operation, the time-message optimi-
zation performs the following steps: 1) removes the
corresponding positive tuple from the join state, 2) checks
whether the corresponding positive tuple has produced join
results before, and 3) if join results were produced, the join
operation sets a flag in this tuple indicating that this tuple is
a time-message and produces the message as output. The
information to be kept with every positive tuple depends on
the type of join operator as described below.

Joining a stream with a table. In this case, only stream
tuples will have negative counterparts. To process the
negative tuples efficiently, the join operator keeps a table
(Joined Tuples Table, JTT) in a sorted list (sorted on the
timestamp). When a positive tuple produces join results,
the expiration timestamp of this positive tuple is entered
in JTT. Only one copy of the expiration timestamp is
entered in JTT even if more than one tuple have the same
expiration timestamp. At most, the size of this table is
equal to the window size. When a negative tuple is to be
processed, the join operator checks whether there is an
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expiration timestamp in JTT that is equal to the expired
tuple timestamp. If found, then a time-message is sent and
the corresponding timestamp is removed from JTT. Note
that only one time-message is produced for every time-
stamp value. If the tuple timestamp is not in JTT, then the
negative tuple is simply ignored. Notice that a join-
message is more beneficial in the case when a stream
tuple joins with more than one tuple or when more than
one tuple has the same expiration timestamp.

Joining two streams. When the join operator joins two
tuples tþi from S1 and tþj from S2, the resulting tuple tþ

should expire whenever either tþi or tþj expire. Assume that
tþi expires first. To expire, tþ, only the join-message for tþi is
needed. To avoid unnecessary join-messages, a reference
count will be kept with every tuple tx in the corresponding
hash table in the join state. This reference count indicates
the number of output tuples that expire when tx expires.
The reference count of a tuple tx is incremented by one
when tuple tx joins with tuple ty and tx has the minimum
timestamp. When the join operator is scheduled and a
negative tuple is to be processed, the corresponding
positive tuple is deleted from the hash table and the
reference count associated with it is checked, if greater than
zero, then a join-message for this tuple is emitted. The
pseudocode for the join operator after adding the reference
count is given in Algorithm 1. Fig. 5 gives an example on
the reference count. When the join operator joins tuple ti
from Stream S1 (with timestamp T1) with tuple tj from
Stream S2 (with timestamp T3), the join operator increments
the reference count of ti. At time T6, tuple ti from S1 expires.
Since the reference count of ti is one, then a join-message
will be sent. No messages will be sent when tj expires since
tj’s reference count is zero.

Algorithm 1. The Modified W-Join Algorithm

Input: ti: Incoming tuple from stream Si. H1, H2: Hash tables

for S1 and S2 represent the join operator state.

Algorithm

1) If ti is a positive tuple

2) Bx ¼ hashðtiÞ
3) Insert ti in the bucket Bx in the hash table Hi

4) For each tuple tj in bucket Bx in the other hash table

5) If tj joins with ti
6) output a positive join output tuple tþ for (ti and tj)

with:

7) tþ:ts ¼ maxðti:ts; tj:tsÞ
8) tþ:Ets ¼ minðti:Ets; tj:EtsÞ
9) If ðtj:Ets < ti:EtsÞ
10) Increment reference count of tj by one

11) Else Increment reference count of ti by one

12) Else if ti is an expired tuple

13) Bx ¼ hashðtiÞ
14) Delete the tuple ti from the bucket Bx

15) If reference count of ti > 0

16) if ti:ts > lastTM

17) lastTM ¼ ti:ts
18) Send a join-message with timestamp ¼ ti:ts

Note that one time-message is produced for all input
tuples that have the same expiration timestamp. The join

operator avoids producing time-messages with the same
timestamp by keeping the timestamp of the last emitted
join-message in a variable, termed lastTM. Before produ-
cing another time-message with time currentTM, the join
operator checks the value of lastTM. If currentTM is
greater than lastTM, then the current time-message is
emitted and the value of lastTM is set to currentTM;
otherwise, the current message is ignored.

5.3 Processing Time-Messages

When an operator receives a negative tuple with the time-
message flag set, the operator learns that all positive tuples
that have expiration timestamps equal to the message’s
timestamp are expired and acts accordingly. This can be
achieved in the same way as expiring tuples in ITA, i.e., by
scanning the operator’s state and expiring all tuples that
carry the same expiration timestamp ðEtsÞ as that of the
join-message. If the operator’s state is sorted on the Ets
attribute of the tuples, then this scan should not be costly.
Nonstateful Class-1 operators (e.g., Union) just pass the
time-message to the output. As will be discussed in the next
section, the time-message optimization imposes an addi-
tional memory overhead for nonstateful Class-2 operators.

The join-message optimization is designed with two
goals in mind: 1) to reduce the work performed by the join
operator when processing a negative tuple and 2) to reduce
the number of negative tuples emitted by the join operator.
Note that the join-message achieves its goals as follows:
1) Negative tuples are “passed” through the join operator
without probing the other hash table(s). 2) Only one
message is emitted for every processed negative tuple
independent of its join multiplicity. Moreover, one join-
message is emitted for tuples having similar expiration
timestamps. A large number of negative tuples can be
avoided in the case of one-to-many and many-to-many join
operations, which are common in stream applications, for
example, in online auction monitoring [26].

Example. Fig. 4 gives an example of the join-message
approach. Fig. 4a is the query pipeline. Two input
streams, S1 and S2, are joined. Both streams have the
same input schema: <ItemId, Price, StoreID>. The sliding
windows for the two streams are of the same size and are
equal to five time units each. In the figure, the table
beside the MAX operator gives MAX’s state. The table
consists of three columns: The first column is for the
value used in the MAX aggregation (S2.Price) and the
second column is for the tuple timestamp and the third
column is for the tuple expiration timestamp (other
attributes may be stored in the state but are omitted for
clarity of the discussion). Fig. 4b gives the tuples in the
pipeline when using NTA and before applying the join-
message optimization. The values on the lines represent
the joining attribute (StoreID). Fig. 4c gives the tuples in
the query pipeline after applying the join-message
optimization. A tuple with joining attribute value 6þ

arrives at S1 at time T1. Three subsequent tuples from S2

(at times T2, T3, and T4) join with the tuple 6þ (at time T1)
from S1. The output of the join has an expiration
timestamp equal to that of the tuple that expires first
from the two joining tuples. In this example, the output
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of the join carries expiration timestamp T1. At time T6,
tuple 6þ from S1 expires. In NTA (Fig. 4b), JOIN will
perform the join with tuple 6� and output three negative
tuples. The three tuples are processed by MAX indepen-
dently. As mentioned in Section 4.6, MAX will output a
new output after processing each input tuple (positive or
negative). When applying the join-message optimization,
(Fig. 4c), the join operator sends a join-message with
timestamp T1 to its output queue. Upon receiving the
join-message, MAX scans its state and expires all tuples
with expiration timestamp T1 and produces a new
output after processing each expired tuple.

5.4 Discussion

As can be seen from the previous example and explana-
tions, the join-message optimization reduces the CPU cost
of negative tuples in the join operator. On the other hand,
the join-message optimization encounters a little additional
memory overhead. The memory overhead is due to the
reference counter that is kept with tuples in the join state.
The reference counter is an integer and its size can be
neglected in comparison to the tuple size. Moreover, the
memory overhead is offset by the great savings in CPU by
avoiding the reexecution of the join for negative tuples.

The join-message optimization does not encounter
memory overhead for the operator above the join if this
operator is stateful (e.g., Join or Distinct). The memory
overhead of the join-message optimization is worth con-
sidering only when the join operator is followed by a
nonstateful Class-2 operator (i.e., the subtractable aggre-
gates: Sum, Count, and Average). Unlike NTA, when the
join-message optimization is applied, these aggregates have
to store the input tuples in a state. But, as will be discussed
next, for high input rates, NTA gives very high output
delays due to tuples flooding the pipeline. Based on these

observations, the decision on whether to use the join-
message optimization or the basic NTA with these
aggregate queries involves a compromise among memory,
CPU, and output delay. The decision should be based on
the available resources and the characteristics of the input
stream.

6 THE PIGGYBACKING APPROACH

As described in Section 3.2, the main motivation behind
NTA is to avoid the output delay that is incurred in ITA.
The output delay comes from either the low arrival rate or
highly selective operators (e.g., Join and Select). Thus, in the
case of high arrival rates and nonselective operators, the
overhead of having negative tuples is unjustified. In fact, in
these cases, ITA is preferable over NTA. In many cases, data
stream sources may suffer from fluctuations in data arrival,
especially in unpredictable, slow, or bursty network traffic
(e.g., see [29]). In addition, due to the streaming nature of
the input, data distribution is unpredictable. Hence, it is
difficult to have a model for operator selectivity [22].

In this section, we present the piggybacking approach for
efficient pipelined execution of sliding-window queries.
The goal of the piggybacking optimization is to always
achieve the minimum possible output delay independent of
the input stream characteristics. This goal is achieved by
dynamically adapting the pipeline as the characteristics of
the input stream change.

In the piggybacking approach, time-messages and/or
negative tuples flow in the query pipeline only when they
are needed. The main idea of the piggybacking optimization
is to reduce the number of tuples in the pipeline by merging
multiple negative tuples and/or time-messages into one
time-message. Moreover, positive tuples are piggybacked
with the time-messages if they coexist in a queue. By
reducing the number of tuples in the pipeline, we also
reduce the memory occupied by the queues between the
operators and reduce the cost of inserting and reading
tuples from queues. A similar notion of piggybacking is
used in [2] to reduce the memory needed to process a query.
The piggybacking optimization is realized by changing the
queue insertion operation such that, at any time, the queue
will include at most one time-message. The piggybacking
approach works in two stages as follows:

Producing a piggybacking flag. When an operator
produces an output tuple t (either positive, negative, or
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time-message) in the output queue, the insertion operation
of the queue works as follows: First, it checks if there are
any time-messages in the queue (which is the input queue
of the next operator in the pipeline). If there is at least one
time-message, the insertion operation performs two actions:
1) The output tuple t is tagged by a special flag PGFlag.
2) All the time-messages in the output queue are purged.
The timestamp of the tagged tuple is a time-message that is
used in the second stage to direct the execution of the
pipelined query operators. Notice that 1) only time-
messages are purged from the queue but invalid tuples
remain, 2) at any time, the queue will include at most one
time-message, and 3) the time-message is the bottom most
tuple in the queue.

Processing the piggybacking flag. When a query
operator receives a tuple t (either positive, negative, or
time-message) at time T , it checks for the PGFlag in t. If the
input tuple is not tagged by the piggybacking flag, the
query operator will act exactly as NTA and the time-
message optimization. However, if the incoming tuple is
tagged by the piggybacking flag, the query operator acts as
ITA, described in Section 3.1. This means that all tuples
stored in the operator state with expiration timestamp less
than or equal to T should expire. The idea is, if there are
many positive tuples, then there is no need to communicate
explicit time-messages in the pipeline. In the case where
processing the incoming tuple t does not result in any
output (e.g., filtered with the Join), we output a time-
message that contains only the timestamp and the piggy-
backing flag so that operators higher in the pipeline behave
accordingly.

The piggybacking flag ðPGFlagÞ is a generalization of the
time-message, described in Section 5.2.1. The main difference
is that a time-message with timestamp T is responsible for
expiring tuples with expiration timestamp T , while a
PGFlag with timestamp T is responsible for expiring all
the tuples with expiration timestamps less than or equal to T .

Example. Fig. 6 gives an example of the piggybacking
approach. This example uses the same query of Fig. 2a.
The example shows that, when JOIN is highly selective
(in the period T6 to T8), negative tuples are passed to
COUNT for immediate expiration of tuples with values 4,
5, and 5. At time T10, JOIN emits tuple 4� immediately
followed by tuple 4þ. If tuple 4þ is emitted before
COUNT reads 4�, then 4þ will delete 4� from the queue
and COUNT will read only tuple 4þ. While processing
4þ, COUNT checks the input tuple’s ð4þÞ timestamp and
knows that a tuple with value 4 (which is stored in
COUNT’s state) should expire. Then, COUNT emits the

new answer reflecting the expiration of 4 and the
addition of 4. The same happens at time T11. This
example shows that the answer update will have the
minimum possible delay.

The piggybacking approach is designed with the follow-
ing goal in mind: “Always achieve the minimum possible
output delay independent of the input stream or query
characteristics.” This goal is achieved as follows: 1) The time
information is propagated (using time-messages) in the
pipeline once they are generated without waiting for
positive tuples, and 2) the time information is merged with
the positive tuples whenever possible. Basically, the
piggybacking optimization self-tunes the query pipeline
by alternating between both NTA and ITA.

6.1 Discussion

In our prototype, operators in the pipeline are scheduled
using the round-robin approach (RR). In RR, an operator
runs for a fixed amount of time before releasing the CPU to
the next operator. During an operator run, the operator
processes tuples from the operator’s input queue and
produces tuples in the operator’s output queue. The
piggybacking approach results in minimizing the number
of tuples produced in the output queue during an
operator’s run since time-messages are merged together or
merged with positive tuples. This reduction in queue sizes
has the benefit of reducing the memory usage by the
pipeline and reducing the overhead of reading tuples from
the queue.

There are several other operator scheduling techniques,
e.g., FIFO, chain [7], and train [11]. The reduction in the
queue size gained by using the piggybacking approach
depends on which scheduling policy is used. For example,
if the FIFO scheduling is used, then the piggybacking
optimization does not provide any performance gains over
NTA. This is because, in the FIFO scheduling, one tuple is
processed in the pipeline at a time and tuples are not
accumulating in the intermediate queues. On the other
hand, for scheduling policies that allow tuples to accumu-
late in the output queues (e.g., RR, chain, or train), the
piggybacking optimization achieves performance gains
over NTA. In other words, the piggybacking optimization
is orthogonal to the scheduling policy. Under all scheduling
policies, in the worst case, the piggybacking approach
performs the same as NTA.

7 EXPERIMENTS

In this section, we present experimental results from the
implementation of our algorithms in a prototype data
stream management system, Nile [20]. We compare the
performance of NTA with ITA and show how the proposed
optimizations enhance the performance further.

7.1 Experimental Setup

The prototype system is implemented on Intel Pentium 4
CPU 2.4 GHz with 512 MB RAM running Windows XP. The
system uses the pipeline query execution model for
processing queries over data streams. The query execution
pipeline is connected with the underlying streaming source
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via the stream scan operator SSCAN. The EXPIRE operator
is implemented as part of the SSCAN operator. The local
selection predicates for each stream are pushed inside the
EXPIRE operator. Different operators in the pipeline
communicate with each other via a network of FIFO
queues. Tuples are tagged with a special flag to indicate
whether the tuple is positive, negative, or invalid. Each
operator in the pipeline runs as an independent thread.
Operators in Nile are scheduled using a round-robin
scheduling where each operator runs for a fixed amount
of time to consume tuples from the operator’s input queue.
Once the input queue of the operator is exhausted or the
operator’s time slot is finished, the next operator is
scheduled.

We use the average and max output delay as a measure
of performance. The output delay is defined as the delay
between the arrival/expiration of a tuple and the appear-
ance of its effect in the query answer. For example, assume
that, in Q1 (Fig. 2), a tuple t1 arrives to the system at time T .
COUNT produces an output tuple after adding the value of
t1 at time T þ d, then this tuple encounters an output delay
of d units of time.

Workload queries. We use the two queries, Q1 (Fig. 2)
and Q2 (Fig. 4) to evaluate the proposed techniques. The
stream SalesStream used in the queries has the same
following schema: (StoreID, ItemID, Price, Quantity, Time-
stamp). We use randomly generated synthetic data. The
interarrival time between two data items follows the
exponential distribution with mean � tuples/second. The
arrival rate of the input streams is changed by varying the
parameter � of the exponential distribution. A timestamp is
assigned to a tuple when the tuple arrives to the server.

Synthetic data generation. For the input streams, the
number of distinct items is set to 1,200. For Query Q1, the
table FavoriteItems is changed to achieve the desired

selectivity. The distribution of the data items inside the
window is randomly generated (if not mentioned other-
wise). For Query Q2, we achieve the desired join selectivity
by controlling the values of the join attribute (StoreID). For
example, if the window size is set such that the window will
contain 100 tuples, then the StoreID values in the first
stream are randomly generated in the range 1 to 100 and, in
the second stream, in the range 50 to 150. Such data
distribution guarantees a selectivity of 0.005 for all
windows.

7.2 ITA versus NTA

In this section, we compare the performance of ITA and
NTA for various data distributions. Fig. 7 gives the effect of
changing the selectivity of JOIN in Q1 (Fig. 2a). Fig. 7b gives
the average output delay while Fig. 7c gives the maximum
output delay. We run the experiment for two data
distributions as shown in Fig. 7a. In this experiment, the
input rate is fixed at 50 tuples/second, the window size is
30 seconds, and the selectivity varies from 0.1 to 1. For the
same selectivity value, the data distribution in Fig. 7a shows
how the qualified tuples are distributed in the window. In
Data Distribution 1, the qualified tuples are accumulated at
one end of the window and some windows may not have
any qualified tuples. On the other hand, in Data Distribu-
tion 2, the qualified tuples are scattered along the window
width. The experiment shows that the output delay in ITA
is highly affected by the selectivity and the data distribu-
tion. For low selectivity, ITA shows high output delay since
COUNT will not expire old tuples until a new input tuple
qualifies the join. The output delay for ITA is higher in the
case of Data Distribution 1 because the range between two
qualified tuples is bigger than that in Data Distribution 2.
The output delay for ITA decreases considerably when
either the selectivity increases or when tuples are scattered
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in the window since qualified tuples pass the join and
COUNT is scheduled more often. In general, the output
delay in the case of ITA is unpredictable and is highly
affected by the input characteristics. The experiment also
shows that NTA does not depend on the selectivity or data
distribution since tuple expiration takes place even if no
input tuples pass the join. As the input characteristics in
streaming environments are always changing, ITA is not
suitable to use. In the rest of the experiments, we omit ITA.

7.3 The Join-Message Optimization

Fig. 8 illustrates how the join-message optimization reduces
the overhead of processing negative tuples. This experiment
uses Query Q2 (Fig. 4a). The input rate is 50 tuples/second
for each stream. The window is 30 seconds and the join
selectivity is fixed to 0.01. The tuple’s join multiplicity
ranges from 1 to 5. To understand how to get different tuple
multiplicity for the same join selectivity, assume the
number of tuples in each window is 100, then, for a join
selectivity of 0.01, 100 tuples will be output from the join in
each window (100/100*100). The 100 output tuples can
result if 100 tuples from the first stream each joining with
one tuple from the second stream (i.e., tuple multiplicity
equals to 1). The 100 output tuples can also result if
50 tuples from the first stream each joining with two tuples
from the second stream (i.e., tuple multiplicity is equal to 2).

Fig. 8a gives the ratio between the number of negative
and positive tuples in the join output queue. The number of
tuples in the queue is an indication about memory usage by
the queue. Also, the number of negative tuples represents
the overhead associated with NTA. This overhead is always
zero for ITA. The overhead is almost equal to one in NTA
since one negative tuple is processed for every positive
tuple (in the figure, it is not exactly one since some negative
tuples may have not been processed yet at the time the
measurement is taken). The join-message optimization
reduces the number of negative tuples emitted from the
join operator to the next operator in the pipeline (MAX).
The reduction increases as the tuple join multiplicity
increases. Fig. 8b gives the average join capacity. The join
capacity is defined as the number of tuples processed by the
join operator per second. Fig. 8b shows that: 1) the join
capacity is almost the same for NTA and ITA because of the
exact processing of negative tuples and 2) the join capacity
is doubled when using the join-message optimization
(shown in the join message and piggybacking lines in

Fig. 8b) because the negative tuples do not perform the
exact join.

Fig. 8b illustrates that the join capacity is independent of
tuple multiplicity. In the symmetric hash join between two
streams S1 and S2, an input tuple from S1 probes only one
bucket in the hash table for S2. The probing cost is
negligible compared to the cost of performing the join and
constructing the output tuple. The join capacity is indepen-
dent of the tuple multiplicity because the join selectivity is
fixed and the number of output tuples is independent of the
tuple multiplicity.

7.4 The Piggybacking Approach

This section shows the performance of the piggybacking
optimization (accompanied by the join-message optimiza-
tion). Implementing the piggybacking approach requires
only a slight modification to the implementation of the
queues connecting operators in the pipeline (as described in
Section 6).

7.4.1 Performance Enhancement

Fig. 9a compares the output delay of NTA and the
piggybacking approach for Query Q2 (Fig. 4a). The input
rate is fixed to 200 tuples per second while varying the join
selectivities from 0 to 1 percent. The figure illustrates that
for lower selectivity, which corresponds to high output
rates from the join operator, NTA encounters more output
delays since the queues are flooded with positive and
negative tuples. For low selectivity values (which corre-
sponds to lower output rates from the join), NTA and the
piggybacking approach give the same output delay since a
smaller number of tuples flows in the queues and, hence,
there is no waiting time. In general, the piggybacking
approach gives the minimum possible output delay in all
arrival rates and all selectivities since it communicates the
negative tuples only when necessary.

7.4.2 Reducing Overhead

This experiment shows how the piggybacking approach
reduces the number of negative tuples in the pipeline.
Reducing the number of negative tuples in the pipeline
means reducing the memory usage by the queues. Fig. 9b
gives the ratio between the number of negative tuples and
the number of positive tuples processed by the MAX
operator in Query Q2. We vary the join selectivity as the
input rate is fixed to 200 tuples per second. In NTA, the

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

Fig. 8. Effect of the join-message. (a) Tuples in the pipeline. (b) Join capacity.



ratio is almost one since one negative tuple is processed for
every positive tuple. In the piggybacking approach, the
ratio decreases for lower selectivity. The reason is that
positive tuples flow in the query pipeline with high rate
and, hence, purge negative tuples (if any) from the queue.

7.5 System Throughput

In this section, we compare the system throughput for
Query Q2 (Fig. 4a) when using ITA, NTA, and the
optimizations (piggybacking + join message optimizations).
The system throughput is measured as the number of
output tuples produced by the query pipeline per second.
Fig. 10 gives the throughput when varying the input rate
from 50 to 350 tuples per second. Fig. 10 illustrates that, for
small arrival rates (50 tuples/second or less), the three
approaches give the same throughput. In the three
approaches, the system load is low for a small arrival rate
and, hence, all the input tuples can be processed as fast as
they arrive. As the input rates increase, NTA encounters
more processing overhead than ITA and piggybacking
because the queues are flooded with positive and negative
tuples. As a result, the throughput of NTA is lower than the
throughput of the other approaches. Fig. 10 also illustrates
that the throughput of the optimizations approach is
slightly higher than that of ITA. The reason is that the
tuples are processed faster in the optimizations approach
due to the join message optimization. Fig. 10 illustrates that
the system reaches a saturation level at which the number
of output tuples is fixed even if the input rate increases. The
saturation level corresponds to the maximum number of
tuples per second that the pipeline can process. The

saturation level of NTA is lower than that of ITA and the
optimizations approach.

Notice that the throughput measure does not distinguish
between the query processing approaches for low arrival
rates. For fluctuating input streams, the maximum output
delay can be considered a more illustrative measure since it
differentiates the approaches from each other for both low
and high arrival rates.

8 RELATED WORK

Stream query processing is currently being addressed in a
number of research prototypes. Examples include Aurora
[1], which is later extended to Borealis [2], NiagaraCQ [15],
TelegraphCQ [12], PSoup [14], NILE [20], [21], and STREAM
[3]. These research prototypes address various issues in
processing queries over data streams. All these research
prototypes have recognized the need for sliding windows to
express queries over data streams. For a survey about the
requirements for stream query processing, refer to [8], [16].

Window-aware query operators have been addressed
many times in the literature. Examples of algorithms for
processing window aggregates include [5], [1], [13] and
examples of algorithms for window join include [23]. The
previous work in this subject addresses the processing of a
single window operator but does not address the proces-
sing of a whole query pipeline. Aurora [1] uses the window
reevaluation approach to evaluate window aggregates. In
the window reevaluation approach, a computation state is
initialized whenever a window is opened, that state is
updated whenever a tuple arrives, and the state is
converted into a final result when the window closes. An
input tuple updates and is stored in more than one
computation state in the same time. In this paper, we focus
on the incremental evaluation pipeline. Incremental evalua-
tion for Join is addressed in [23], where ITA is used to
invalidate tuples from the join state when a new tuple
arrives. However, the authors of [23] do not address how to
expire tuples from the operators above the join. Also, [23]
does not address the output delay problem.

The traditional query optimization goal does not apply
to continuous queries. Rate-based optimization is intro-
duced in [30]. The goal of the optimization is to maximize
the output rate of a query. In [6], the authors introduce a
framework for conjunctive query optimization. The goal of
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the optimization is to find an execution plan that reduces
the resource usage. None of these optimization techniques
consider reducing the output delay as an optimization goal.
Moreover, these optimization frameworks consider only
ITA. Applying these optimization frameworks over NTA is
an interesting area for future work. The time-message and
piggybacking optimizations reduce the CPU and memory
utilization of NTA; hence, they can be categorized under the
class of optimizations to reduce resource utilization. Golab
and Ozsu [17] introduce two optimizations to eliminate the
overhead of negative tuples. The first optimization reorders
the query plan (i.e., pulls up the Minus operator and pushes
down the Distinct operator). The second optimization uses a
hyprid approach of both NTA and ITA (referred to as
direct). The reordering optimization can be used with our
optimizations and is orthogonal to the focus of this research.
Moreover, our proposed optimizations avoid the use of the
direct approach because of its unpredictable output delay,
as explained in Section 3.1.

Recent research efforts focus on introducing new
“artificial” kinds of tuples that flow through the query
pipeline. Examples of such tuples include delete messages
[2], DStream [4], Negative tuples [21], heartbeats [25], and
punctuation [28]. The main idea of these artificial tuples is
to notify various pipelined operators of a certain event
(e.g., expiring a tuple, synchronizing operators, or end of
sequence of data). STREAM [3] and Nile [20], [21] use
NTA to expire tuples. Negative tuples have been used in
other systems, e.g., Borealis [2] for automatic data revision
where a negative tuple is sent by the streaming source to
delete an erroneous positive tuple. Although not men-
tioned explicitly, NiagaraCQ [15] uses a notion similar to
negative tuples when processing stream deletions. All the
previous works either use ITA or NTA. Our work is
considered the first to automatically adapt the pipeline to
switch between ITA and NTA based on the underlying
stream characteristics.

Punctuation is another form of artificial tuples [28]. A
punctuation marks the end of a subset of the data and is
used to purge state and to unblock blocking operators.
Processing stream constraints is another way to discover
and purge unneeded tuples from operators’ states [9].
Unlike negative tuples, the tuples purged by the punctua-
tion (or stream constraints) are not reprocessed and do not
affect the query answer. Moreover, both [28] and [9] assume
prior knowledge of the input stream characteristics and
utilize this knowledge in generating the appropriate
punctuation.

An operator-level heartbeat [25] is a way for time
synchronization. A heartbeat is sent along the query
pipeline so that the operators learn the current time and
process input tuples accordingly. The goal of the heartbeats
is to order tuples arrived out-of-order. Heartbeat generation
assumes knowledge of the characteristics of the input
streams and is independent of the data distribution or the
query. The time-message optimization we propose in this
paper can be regarded as a special kind of heartbeat that has
a different goal and different generation policies than the
heartbeats in [25]. Time-messages are generated based on
the data distribution and query selectivity and flow in the

pipeline only when there are tuples to expire. Moreover,
time-messages can be merged with positive tuples. The goal
of time-messages is to reduce the output delay of the query.

Processing negative tuples in the query pipeline to
update the query answer is closely related to the traditional
incremental maintenance of materialized views [19], [10].
The design of our window operators is based on the
differential approach for incremental view maintenance
[18], where change propagation equations are designed for
the various relational operators [18]. The equations specify
how an operator should process an inserted or expired
tuple.

9 CONCLUSIONS

Incremental query evaluation has been adopted by data
stream management systems as a coordination scheme
among various pipelined query operators. In this paper, we
focus on the two approaches for incremental query
evaluation, namely, the input-triggered approach (ITA)
and negative tuples approach (NTA). We study the
realization of the incremental evaluation pipeline in terms
of the design of the incremental relational operators. We
show that, although NTA avoids the shortcomings of ITA
(i.e., large output delays), NTA suffers from a major
drawback. Negative tuples double the number of tuples in
the query pipeline; hence, the pipeline bandwidth is
reduced to half. We classified incremental operators into
two classes according to whether an operator can avoid the
processing of a negative tuple or not. Based on the operator
classification, we presented two optimization techniques to
enhance the performance of NTA. The first optimization,
namely, the time-message optimization, mainly focuses on
the join operator subtree. The main idea is to avoid the
reexecution of the expensive join operation with negative
tuples. The second optimization, namely, the piggybacking
optimization, self-tunes the query pipeline to work in either
ITA or NTA according to the characteristics of the tuples
flowing in the query pipeline. With the piggybacking
approach, the query pipeline gets the benefits of both ITA
and NTA. Experimental results based on a real implemen-
tation of ITA, NTA, time-messages, and piggybacking
approaches inside a prototype data stream management
system show that the join-message optimization enhances
the performance of negative tuples by a factor of two. Based
on the input rate and/or join selectivity, the piggybacking
optimization always traces the best performance of either
ITA or NTA.

APPENDIX

GLOBAL CLOCK APPROACH

This appendix gives an example to show that a query may
produce incorrect answers if the operators depend on a
global clock to expire tuples. The example in Fig. 11 is an
aggregate query (SUM) over an input stream S1. Fig. 11a
gives the query pipeline and Fig. 11b gives the execution
time line. Stream S3 represents the output of the SUM
operator while stream C represents the expected output.
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In this example, a delay of three clock-ticks takes place
between the time that tuple 7 is received at S1 and the time
at which it is received at S2. Tuple 7 has a timestamp T4

which is equal to the time 7 arrives at S1. Due to scheduling
and the different operator processing speeds, tuple 7 does
not arrive at the SUM operator until time T7. If SUM is
scheduled between T5 and T7, SUM will expire tuple 5 and
produce an incorrect SUM 8 in S3 at time T5. Moreover,
when SUM is scheduled at time T7 or after, SUM will
receive the delayed tuple 7 that has a timestamp T4. This
means that SUM processes and produces tuples in a
nondeterministic timestamp order. The negative tuples
approach solves this problem because the positive tuple 7
is generated at time T4 while the negative tuple 5 is
generated at time T5 and the two tuples will arrive at the
SUM operator in the correct timestamp order.
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