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Abstract. Constraints are a valuable tool for managing information. Feature constraints have been
used for describing records in constraint programming [8, 54] and record like structures in computa-
tional linguistics [35, 52]. In this paper, we consider how constraint-based technology can be used to
query and reason about semistructured data. The constraint system FT< [46] provides information or-
dering constraints interpreted over feature trees. Here, we show how a generalization of FT< combined
with path constraints can lead to formally represent, state constraints, and reason about semistructured
data. The constraint languages we propose provide possibilities to straightforwardly capture, for exam-
ple, what it means for a tree to be a subtree or subsumed by another, or what it means for two paths
to be divergent. We establish a logical semantics for our constraints thanks to axiom schemes present-
ing our first-order theory constraint system. We propose using the constraint systems for querying

semistructured data.
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1 Introduction

In the last decade, new applications (e.g., CAD, CASE) have been a powerful driving force in the
development of new database technology. New paradigms have arisen (e.g., object-oriented databases
[10]) that provide greater flexibility than the traditional relational model. However, in some applica-
tion areas, such as Web databases [4, 44], biological databases [55], digital libraries [21], etc; there is
still a need for greater flexibility, both in data representation and manipulation. These applications
are characterized by the lack of any fixed and rigid structure (i.e., schema).

*This work is supported by National science Foundation under grants 9972883-EIA and 9983249 EIA, and a grant
from HP.



Semistructured data models are intended to capture data that are not intentionally structured, that
are structured heterogeneously, or that evolve so quickly that the changes cannot be reflected in the
structure. A typical example is the World-Wide Web with its HTML pages, text files, bibliographies,
biological databases, etc. A semistructured database essentially consists of objects, which are linked
to each other by attributes.

The core problem in semistructured data is that the structure of the data is not fully known. This
leads to the fact that querying the data is often content-based as opposed to the structure-based
querying, e.g., in relational systems. Furthermore, this has led to the fact that users often browse
through data instead, because no structural knowledge (or schema information) is available.

Recent research works propose to model semistructured data using ”lightweight’ data models based
on labeled directed graphs [1, 17]. Based on this data structure, semistructured data represent a par-
ticularly interesting domain for query languages. Computations over semistructured data can easily
become infinite, even when the underlying alphabet is finite. This is because the use of path expres-
sions (i.e., compositions of labels) is allowed, so that the number of possible paths over any finite
alphabet is infinite. Query languages for semistructured data have been recently investigated mainly
in the context of algebraic programming [3, 17].

In this paper, we explore a different approach to the problem, an approach based on Feature Logics',
instead of algebraic programming. In particular, we develop a rule-based constraint query language
for manipulating semistructured data. The resulting language has both a clear declarative semantics
and an operational semantics. The semantics is based on fixpoint theory [40]. Relevant features of the
proposed language is the support for recursive queries, order constraints and path constraints, which
cannot be expressed in other languages for semistructured data. Those constraints support a wide
range of query predicates, such as inclusion among data tree structures, compatibility between trees,
or divergence between paths.

Paper outline: Section 2 summarizes the contributions of this paper. Section 3 introduces
semistructured data. In Section 4 we define the data model and give examples of queries. Sec-
tion b presents the syntax and semantics of two new constraint languages suitable for semistructured
data. In Section 6, we develop our query language and give its syntax and semantics. Section 7
discusses constraints relaxation in order to compute approximate query answers. Section 8 deals with
the connection of the proposed framework with XML. Section 9 discusses related work. We conclude
in Section 10.

2 Contributions

Semistructured databases have reached a widespread acceptance in practical applications of databases
(see XML). They are acknowledged for their simplicity combined with their expressibility. As such,
the field of semistructured databases has proven to be an important research platform and in many
ways setting the standard for future database technology. In order to meet the demands for more
expressive and flexible ways to interact with semistructured database, it is important to go beyond

'Feature logic (see, e.g., [11, 53, 33, 36]) has its origin in the three areas of knowledge representation with concept
descriptions, frames, or U-terms [6], natural language processing, in particular approaches based on unification grammars
(see, e.g., [50]), and constraint (logic) programming (see, e.g., [7, §8]).



what can be formalized by traditional tools. In this paper, we introduce a new constraint system
for semistructured data. The constraint system consists of two interacting constraint languages. The
resulting query language gives the user the ability to define a broad class of queries that cannot be
(naturally) expressed by means of existing formal languages for semistructured data.

We present two classes of constraints, namely, ordering constraints and path constraints, that are of
interest in connection with both structured and semistructured databases. Our constraints are inspired
by Feature Logics. Feature descriptions are used as the main data structure of so-called unification
grammars, which are a popular family of declarative formalisms for processing natural language [52].
Feature descriptions have also been proposed as a constraint system for logic programming (see, for
example, [9, 54]). They provide for a partial description of abstract objects by means of functional
attributes, called features. On top of our constraint languages we allow the definition of relations (by
means of definite clauses) in the style of [32], leading to a declarative, rule-based, constraint query
language for semistructured data. The language we propose is based on the general scheme for han-
dling clauses whose variables are constrained by an underlying constraint theory [19]. Constraints can
be seen as quantifier restrictions as they filter out the values that can be assigned to the variables of a
clause in any of the models of the constraint theory. The satisfiability for conjunctions of constraints
is decidable. Thus, an unsatisfiable query denotes the empty set in every interpretation, which means
that it is worthless.

To summarize, the framework presented here integrates formalisms developed in Databases, Feature
Logics and Constraint (Logic) Programming. The paper builds on the works by [9, 12, 46, 19] to
propose a new constraint system for semistructured data and a declarative, rule-based, constraint query
language that has a clear declarative and operational semantics. We make the following contributions:

(1) We develop a simple and flexible structure for representing semistructured data. The structure,
called role trees, is inspired by Feature Constraint Systems. Trees are useful for structuring data
in modern applications. This gives the more flexible role trees (our data structure) an interesting
potential.

(2) We propose two constraint languages for semistructured data. The ordering constraints allow
to declaratively specify relationships between trees representing semistructured data. Path con-
straints allow to constrain the navigation of the trees. Our constraints are of a finer grain and
of different expressiveness.

(3) We propose a declarative, rule-based, constraint query language that can be used to infer re-
lationships between semistructured data. We view our query language as consisting of two
constraint languages on top of which relations can be defined by definite clauses. The language
has declarative and operational semantics. The semantics is based on fixpoint theory, as in
classical logic programming, and on a new notion of active domain, called the extended active

domain, introduced to allow for a bottom-up evaluation of rules.

(4) Approximate answers make it necessary to refine the model of query evaluation. For that, we

propose two rewriting rules allowing to relax some constraints in queries.

As usual in information-intensive applications (e.g., databases), a declarative specification of con-
straints and queries should be preferred to more procedural one: it is usually more concise and elegant



because it is likely to support formal analysis and thence optimization by the DBMS.

To our knowledge (see related work in Section 9), no previous work considers the kind of constraints
we propose and their use in the context of semistructured data.

3 Semistructured Data

In traditional databases such as the relational model [25] there is a clear separation between the schema
and the data itself. Recently, it has been recognized that there are applications where the data is self-
describing in the sense that it does not come with a separate schema, and the structure of the data,
when it exists has to be inferred from the data itself. Such data is called semistructured. A concrete
example is the ACeDB genome database [55], while a somewhat less concrete but certainly well-known
example is the World-Wide Web. The Web imposes no constraints on the internal structure of HTML
pages, although structural primitives such as enumerations may be used. Another frequent scenario
for semistructured data is when data is integrated in a simple fagshion from several heterogeneous
sources and there are discrepancies among the various data representations: some information may be
missing in some sources, an attribute may be single-valued in one source and multi-valued in another,
or the same entity may be represented by different types in different sources. Semistructured data
displays the following features:

The structure is irregular: In many applications, the large collections that are maintained often
consist of heterogeneous elements. Some elements may be incomplete. On the other hand, other
elements may record extra information, e.g., annotations. Different types may be used for the
same kind of information, e.g., prices may be in dollars in portions of the database and in francs
in others. The same piece of information, e.g., an address, may be structured in some places as
a string and in others as a tuple. Modeling and querying such irregular structures are essential

1ssues.

The structure is implicit: In many applications, although a precise structuring exists, it is
given implicitly. For instance, electronic documents consist of a text and a grammar (e.g., a
DTD in SGML). The parsing of the document then allows one to isolate pieces of information
and detect relationships between them. However, the interpretation of these relationships (e.g.,
SGML exceptions) may be beyond the capabilities of standard database models and are left to
the particular applications and specific tools.

Data models, query languages, and systems for semistructured data are areas of active research. Of
particular interest and relevance, eXtensible Markup Language (XML) is an emerging standard for
web data, and bears a close correspondence to semistructured data models introduced in research.
Semistructured data is naturally modeled in terms of graphs which contain labels that give semantics
to the underlying structure [1, 16].

Management of semistructured data requires typical database features such as a language for form-
ing adhoc queries and updates, concurrency control, secondary storage management, etc. However,
because semistructured data cannot conform to a standard database framework, trying to use a con-
ventional DBMS to manage semistructured data becomes a difficult or impossible task.



When querying semistructured data, one cannot expect the user to be fully aware of the complete
structure, especially if the structure evolves dynamically. Thus, it is important not to require full
knowledge of the structure to express meaningful queries. At the same time, we do not want to be
able to exploit regular structure during query processing when it happens to exist and the user hap-
pens to know it.

An example of a complete database management system for semistructured data is LORE [41], a
repository for OEM [56] data featuring the LOREL [3] query language. Another system devoted to
semistructured data is the Strudel Web site management system, which features the StruQL query
language [27] and a data model similar to OEM. UnQL [17] is a query language that allows queries
on both the content and structure of a semistructured database and also uses a data model similar to
Strudel and OEM.

4 Data and Query Modeling

Recent research works propose to model semistructured data using ”lightweight” data models based
on labeled directed graphs [1, 17]. Informally, the vertices in such graphs represent objects and the
labels on the edges convey semantic information about the relationship between objects. The vertices
without outgoing edges (sink nodes) in the graph represent atomic objects and have values associated
with them. The other vertices represent complex objects. An example? of a semistructured database
is given in figure 1. Although a real-world video database would of course be much, much larger, this
example concisely captures the sort of structure (or lack thereof) needed to illustrate the features of
our language. As illustrated by figure 1, the structure of the content describing a video differs from a
category to another, and even within the same category.

Path expressions describe paths along the graph, and can be viewed as compositions of labels. For
example, the expression

video.category

describes a path that starts in an object, continues to the video of that object, and ends in the category
of that video.

The Graph-Oriented Model. Formally, semistructured data is represented by a directed labeled
graph G = (N, E) where N is a finite set of labeled nodes and E is a finite set of labeled edges.
An edge e is written as (n1,®,n9) where n; and ne are members of N and « is the label of the
edge. The label of a node n is given by a function A(n) that maps to a non-null string. The la-
bel a of an edge e = (nq,a,n2) is a string given by o = o(e). The domain of the functions A and
o is the universal set of all nodes (from all graphs) and the range is the set of strings (from all lexicons).

Our constraint system avoids overspecification by allowing the description

x : conference[name = {VLDB}, location = {Roma},
program_co_chairs = {Snodgrass, Apers, Ramamohanarao}]

>This example is inspired by the one given in [31].
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Figure 1: A video database content.

saying that x has sort conference, its role name is VLDB, its role location is Roma, and its role pro-
gram_co_chairs is Snodgrass, Apers, and Ramamohanarao. Nothing is said about other roles of x, which

may or may not exist.

In this paper, we use the notion of trees to represent semistructured data. We investigate a set of
constraints over semistructured data. Before presenting these constraint languages, we shortly and
informally discuss feature and role trees.

A feature tree is a tree with unordered, labeled edges and labeled nodes. The edge labels are called
features; features are functional in that two features labeling edges departing from the same node
are distinct. In programming, features correspond to record field selectors and node labels to record
field contents. In our framework, we extend the notion of feature trees to role trees. A role tree is a
possibly infinite tree whose nodes are labeled with symbols called sorts, and whose edges are labeled
with symbols called roles. The labeling with roles is nondeterministic in that edges departing from a
node need not to be labeled with distinct roles.

An example of a role tree is shown in figure 1. Its root is labeled with the node label archive_entry and
the edges departing at this root are labeled by the role video.

A role tree is defined by a tree domain and a labeling function. The domain of a role tree 7 is the
multiset of all words labeling a branch from the root of 7 to a node of 7. For instance, the domain of
the tree of figure 2 is {¢, video, video, video.category, video.date, video.duration, video.producedBy, etc.}.
The labeling function associates each element of the domain with a set of sorts.

A role tree is finite if its tree domain is finite. In general, the domain of a role tree may also be infinite
in order to model semistructured data with cyclic dependencies.
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Figure 2: Example of tree.

A role tree can be seen as a carrier of information. This viewpoint gives rise to an ordering relation
on role trees in a very natural way that we call information ordering. The information ordering is
illustrated by the example of figure 3. The smaller tree is missing some information about the object
it represents, namely that this object is an archive video and that role category of the object Oy is
Western and the role actor is Steve McQueen and Youn Bruner. In order to have nodes without
information, we allow for unlabeled nodes depicted with a e. Formally, this means that we do not

require a labeling function to be total.
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Figure 3: Example of an order over trees.

Intuitively, a role tree 7, is smaller than a role tree 1 if 7 has fewer edges and node labels than 7.
More precisely, this means that every word of roles in the tree domain of 71 belongs to the tree domain
of 7 and that the partial labeling function of 7, is contained in the labeling function of 7. In this
case we write 7| < 7o. The notions of tree domains and labeling function will be formally defined later.

The following are examples of queries (over databases of the style of figure 1). In these queries, x and y
are tree variables (i.e., ranging over trees), and «, 8 are path variables (i.e., ranging over composition
of roles). We use the predicate symbol tree to denote the set of trees in the database. The formal



semantics of the constructs used in constraints will be given later.

answer(x) <« tree(x)||{Deniro, Devito}(c, x), a€ video.actor

This query returns the set of trees such that there is a path video.actor from the root (of each tree
answer to the query), leading to the set of sorts {Deniro, Devito}. The symbol &€ is used to express
path restriction. In this query (which is expressed as a rule), answer(x) is called the head of the query,
tree(x) is called the body of the query, and {Deniro, Devito}(a, x), a€video.actor is called the constraint
part of the query. The notation S{«,x) means that in the tree x there is a path « from the root to
the set of sorts S. For example, on the right of figure 3, the path video.category leads to the singleton
{Western}.

answer(x,y) < tree(x), tree(y)||x <y, {Tom_Hanks} (e, x), { Tom_Hanks}(8, y), o118

This query returns a set of pairs (x,y) of trees such that there is a path « in x and a path § in y, that
are divergent (i.e., different) and leading to the same set of sorts (here {Tom_Hanks}). The symbol I
stands for divergence of paths.

answer(x,y) < tree(x), tree(y)[jx ~y

This query returns pairs of trees that are compatible. The symbol ~ stands for compatibility. Two
trees  and y are compatible if there is another three z such that z and y are both subsumed by z. In
other words, z ~ y < Jz(x < z Ay < 2).

5 Constraint Languages for Semistructured Data

This section introduces the core aspects of our model for semistructured data. We first formally define
the notion of trees. We then present the two most relevant features of our model, namely ordering
constraints and path constraints. We also discuss issues related to satisfiability and expressiveness of
those constraints.

5.1 Role Trees and Constraints

To give a rigorous formalization of role trees, we first fix two disjoint alphabets S and F, whose sym-
bols are called sorts and roles, respectively. The letters S, S’ will always denote sets of sorts, and the
letters f, g will always denote roles. Words over F are called paths. The concatenation of two paths
v and w results in the path vw. The symbol € denotes the empty path, ve = ev = v, and F* denotes
the set of all paths.

A tree domain is a nonempty set D C F* that is prefix-closed; that is, if vw € D, then v € D. Thus,
it always contains the empty path.

A role tree is a mapping t : D — P(S) from a tree domain D into the powerset P(S) of S. The paths
in the domain of a role tree represent the nodes of the tree; the empty path represents its root. The
letters s and ¢ are used to denote role trees.

When convenient, we may consider a role tree ¢ as a relation, ie., t C F* x P(S), and write
(w,S) € t instead of t(w) = S. (Clearly, a relation ¢t C F* x P(S) is a role tree if and only if



D ={w |35 : (w,S) € t} is a tree domain and ¢ is relational). As relations, i.e., as subsets of
F* x P(S), role trees are partially ordered by set inclusion. We say that s is smaller than (or, is a

prefiz-subtree of; or, subsumes; or, approrimates) t if s C t.

The subtree wt of a role tree t at one of its nodes w is the role tree defined by (as a relation)
wt == {(v, S) | (wv, S) € t}

If D is the domain of ¢, then the domain of wt is the set w™'D = {v | wv € D}. Thus, wt is given
as the mapping wt : w—'D — P(S) defined on its domain by wv(t) = t(wwv). A role tree s is called a
subtree of a role tree ¢ if it is a subtree s = wt at one of its nodes w, and a direct subtree if w € F.

A role tree t with domain D is called rational if (1) ¢ has only finitely many subtrees and (2) ¢ is
finitely branching; that is: for every w € D,wF N D = {wf € D | f € F} is finite. Assuming
(1), the condition (2) is equivalent to saying that there exist finitely many roles fi,..., f, such that

D C{fi,---, fa}"

A path p is a finite sequence of roles in F. The empty path is denoted by ¢ and the free-monoid
concatenation of paths p and p' as pp’; we have ep = pe = p. Given paths p and p/, p’ is called a prefiz
of p if p = p'p" for some path p”. A tree domain is a non-empty prefixed-closed set of paths.

Definition 1 (Role Trees). A role tree T is a pair (D, L) consisting of a tree domain D and a
partial labeling function L : D — §. Given a role tree T, we write D, for its tree domain and L, for
its labeling function. A role tree is called finite if its tree domain is finite, and infinite otherwise. We

denote the set of all role trees by R. If p € D, we write as T[p| the subtree of T at path p which is
formally defined by D,y = {(p',S) | pp’ € Dr} and L = {(®', ) | (wp',S) € L.}
5.1.1 Syntax and Semantics of Ordering Constraints

In the following, we introduce the syntax and semantics of ordering constraints over role trees. We
assume an infinite set (which we denote by V) of tree variables ranged over by z,y, an infinite set

(which we denote by V') of path variables ranger over by «, 8, an infinite set F of roles ranged over
by f, g, and an arbitrary multiset S of sorts denoted by S, T containing at least two distinct elements.

Syntax. An ordering constraint ¢ is defined by the following abstract syntax.

pu=z <y|Sa,z) |zly|z~y| P Ape

where v is a role variable.

An ordering constraint is a conjunction of atomic constraints which are either atomic ordering con-
straints ¢ <y, generalized labeling constraints S(c, ), selection constraints x[vly, or compatibility

constraints © ~ y.

For example, the complex constraint:

x[v]z Ay[v]t Az~ t A {DBMS}(a,z) A {DBMS}(«, t)



expresses the fact that the pair x,y of trees have compatible subtrees via the same feature (here the
valuation of the variable v), and such that both subtrees lead to the sort DBMS following the same
path from the root of each.

Semantics. The signature of the structure contains the binary relation symbols <, ~, and S(e,e) for
every set of labels S, and for every role f a binary relation symbol e[f]e. The domain of the structure
R is the set of possibly infinite role trees. The relation symbols are interpreted as follows:

n<m iff D; CD; and L, CL,

mifvlre it Dr, ={p|fp€ Dy} and L, ={(p,S) | (fp,S) € Ly, }
where f = o(v), with o a valuation

S(a,7) iff p(a) € D; and (u(a),S) € L,
T ~7p iff L; UL, is a partial function (on D, UD,,)

where p is a valuation from V to the set of elements F*.

5.1.2 Satisfiability Test

We present a set of axioms valid for our constraint system and then interpret these axioms as an
algorithm that solves the satisfiability problem of our constraint system.

Table 1 contains axioms schemes F1 - F6 that we regard as sets of axioms. The union of these sets
of axioms is denoted by F. For instance, an axiom scheme z < z represents the infinite set of axioms
obtained by instantiation of the meta variable z. An axiom is either a constraint ¢, an implication
between constraints ¢ — ¢', or an implication ¢ — false.

F1.1 z<zx

F1.2 z<yANy<z—z<z

F2 zlr' Az <yAyply -2’ <y

F3.1 T~

F3.2 c<yANy~z—x~2

F3.3 T~NY Y~

Fa zlr' ANz ~yAyly =2’ ~y

F5 S(a,z) A S'(a,z) — false for S # S’

F6 S(a,z) NS (a,y) Nz ~y — false for S £ S’

Table 1: Axioms of Satisfiability: F1-F6

The role tree structure 7 is defined as follows:

e The domain of 7T is the set of all role trees.

e t € A7 if and only if t(¢) = A (¢'s root is labeled with the sort A).

o (s,t) € fT if and only if f € D, and t = fs (¢ is the subtree of s at f).
Proposition 1 The structure T is a model of the axioms in F.

Proof We prove the statement for the rules in F5 and F6.

10



F5) S(a,z) A S (o, z) iff 3p € D, and (p,S) € L, and (p,S’) € L. Or p is a path (a finite sequence
of labels). This means that we cannot have simultaneously (p,S) € L, and (p,S’) € L.

F6) S(a,z) AS(a,y) Az ~y + S(a,z) AS'(a,y) ANFz(z <z Ay < 2)
— S(a,z) A S, z) AS'(a,y) A S (e, 2)
— false (according to F5, ie., S(a,z) A S'(a,z) — false)

We define the size of a constraint ¢ to be the number of occurrences of roles,node labels, and variables
in .

Proposition 2 If ¢ is a constraint of size n then the algorithm (i.e., set of axioms F) which starts

with © as an input terminates in at most 2.n? steps. Here, F1.1 and F3.3 apply to variables in ¢ only.

Proof Note that the algorithm F does not add new variables to a set of constraints. The new
constraints that can be added are of the form = ~ y, z <y, or false. The number of new constraints
of the form z ~ y that can be added is bounded by n?. The number of new constraints of the form
z < y that can be added is also bounded by n?. |

Expressiveness. =~ We show that our constraint system is strictly more expressive than FT< [46].
The feature constraints in the constraint system FT< are conjunctions of the following constraints,
which are built from variables z, y, features f, and node labels a.

pu=z<ylal@)|zflyle~y|leiApa
Proposition 3 There is no constraint of FT< which cannot be expressed in our constraint system.

Proof
Every constraint of FT< can trivially be expressed in our constraint system. The FT< constraint a(z)
can be expressed by a(e, ) where € is the empty path.

[ |

5.2 Path Constraints
The language of terms uses a countable set V of variables called path variables, and denoted «, 3, . . ..

Definition 2 (Path) A path is a finite string of roles. We identify a label f (i.e., a role name in
our case) with the string (f) consisting of a single role. We say that a path u is a prefix of a path v
(written u<v) if there is a non-empty path w such that v = u.w. Note that < is neither symmetric nor
reflexive. We say that two paths u, v diverge (written uﬂv) if there are labels f, g with f # g, and
possibly empty paths w, wy, wo, such that v = w.f.w; Av=w.g.ws. It is clear that I is a symmetric

relation.

Proposition 4 Given two paths u and v, then ezactly one of the relations u=v, u<v, u=v or ully
holds.

Definition 3 (Path Term) A path term, denoted p, q, ..., is either a path variable o or a concate-

nation of path variables o.(.

11



5.2.1 Syntax and Semantics of Path Constraints

Definition 4 (Path Constraint) The set of atomic path constraints is given by:

¢ — a=<f prefix
pEL  path restriction
a = path equality
pllg divergence

L is a regular expression denoting a regular language £(L) C F+, where F is a set of roles.

For example, the conjunction
allo! A B<a A B=d’ A B € video.sequence

Says that the two paths a and o' have the same prefix video.sequence, but they are divergent.

An interpretation 7 is a standard first order structure, where every role f € F is interpreted as
a binary relation fZ. A valuation vy; is a function vy : V — Ft. We define vi(0.B) to be vy (o) vy (B).

The validity of an atomic constraint in an interpretation Z under a valuation vy is defined as follows:

vy =1 pEL < vy(p)€eL
vi Er o< <= vp(a) <vp(B)
vy Era=p <= vy(a)=vy(B)

vy Erolly <= vp(p) Luvp(q)

A constraint ¢ is satisfiable if there exists at least one interpretation in which ¢ has a solution.
Satisfiability of conjunctions of our atomic constraints is decidable [12].

6 Constraint-Based Query Language for Semistructured Data

We now present a construction that, given the constraint languages, let us call them C (for ordering
constraints over role trees) and C’ (for path constraints) and a set R of relation symbols, extends C
and C' to a constraint query language R(C,C’). Hence, we view our query language as consisting of
two constraint languages on top of which relations can be defined by definite clauses.

6.1 Syntax

We define the predicate symbol tree to denote semistructured data represented as trees.

We reason about semistructured data by a program P which contains a set of rules defining ordinary
predicates. The rules are of the form:

H(X)+ Li(Y1),- ., Lu(¥)llct, -« -y Cm

for some n > 0 and m > 0, where X,Y],...,Y, are tuples of tree variables or path variables. We
require that the rules are safe, i.e., a variable that appears in X must also appear in ¥; U...UY,U
{path variables and tree variables occurring in ¢y, ...,¢n}. The predicates Ly,..., L, may be either

tree or ordinary predicates. ci,..., ¢y, are ordering constraints (C-constraints) or path constraints
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(C'-constraints). In the following, we use the term (positive) atom to make reference to predicates
Li,...,Ly.

6.2 Semantics

Our language has a declarative model-theoretic and fixpoint semantics.

The language of terms uses three countable, pair-wise disjoint sets:
1. A set D that is the union of two pair-wise disjoint sets:

— Dy: a set of tree domains

— Dsy: a set of roles
2. A set V of variables called tree variables, and denoted z, v, ...

3. A set V of variables called path variables, and denoted a, 8, . . ..

We call V U D first order terms. Let V = VU V.

6.2.1 Model-theoretic semantics

Let var; be a countable function that assigns to each syntactical expression a subset of V correspond-
ing to the set of tree variables occurring in the expression, and wvare be a countable function that
assigns to each expression a subset of 174 corresponding to the set of path variables occurring in the
expression.

Let var = variUvary. If Ey,. .., E, are syntactic expressions, then var(E1, ..., E,) is an abbreviation
for var(E1) U ... Uvar(Ey).

A ground atom A is an atom for which var(A4) = @. A ground rule is a rule r for which var(r) = §.

Definition 5 (Extension) Given a set Do of roles, the extension of Da, written DE, is the set of

path expressions containing the following elements:
e cach element in Doy

e for each ordered pair p1,p2 of elements of D™, the element p1.po

Definition 6 (Extended Active Domain) The active domain of an interpretation Z, noted Dz is
the set of elements appearing in I, that is, a subset of D1 UDy. The extended active domain of T,
denoted DS*t, is the extension of Dz, that is, a subset of D U D§™.

Definition 7 (Interpretation) Given a program P, an interpretation T of P consists of:

e A domain D
o A mapping from each constant symbol in P to an element of domain D

o A mapping from each n-ary predicate symbol in P to a relation in (D)™
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Definition 8 (Valuation) A wvaluation v1 is a total function from V to the set of elements D;. A
valuation vy is a total function from V to the set of elements Dgt. Let v = vy Uvy. v is extended to

be identity on D and then extended to map free tuples to tuples in a natural fashion.

Definition 9 (Atom Satisfaction) Let Z be an interpretation. A ground atom L is satisfiable in T
if L is present in Z.

Definition 10 (Rule Satisfaction) Let r be a rule of the form :
r:A+ Li,....Ly|ci, ... cm

where Ly, ..., Ly, are (positive) atoms, and cy,...,cy are constraints. Let T be an interpretation, and
v be a valuation that maps all variables of v to elements of DS*t. The rule v is said to be true (or
satisfied) in interpretation I for the valuation v if v[A] is present in T whenever each v[L;],i € [1,n]

is satisfiable in T, and each v(c;],j € [1,m] is satisfiable.

6.2.2 Fixpoint Semantics

The fixpoint semantics is defined in terms of an immediate consequence operator, Tp, that maps
interpretations to interpretations. An interpretation of a program is any subset of all ground atomic
formulas built from predicate symbols in the language and elements in D,

Each application of the operator Tp may create new atoms. We show below that Tp is monotonic
and continuous. Hence, it has a least fixpoint that can be computed in a bottom-up iterative fashion.

Recall that the language of terms has two countable disjoint sets: a set of tree domains ( D), and a
set of roles ( D3). A path expression is an element of D§**. We define D%t = D; U D§*L.

At the iteration 1, only paths of length3 1 (i.e., simple roles, elements of Dy) are considered during
rules triggering. At iteration k, we consider paths of length less or equal to k. It is clear that the
paths occurring in the final result are of length less or equal to the length of the longest path that can
be found in all the tree domains.

Lemma 1 IfZ; and Iy are two interpretations such that T, C Iy, then D%ft C D%;”t.

Definition 11 (Immediate Consequence Operator) Let P be a program and I an interpretation.
A ground atom A is an immediate consequence for T and P if either A € I, or there exists a rule

r:H <+ Li,...,Lyllc1,-..,cm in P, and there exists a valuation v, based on DE, such that:
e A=v(H), and
e Vi € [1,n], v(L;) is satisfiable, and
e v(ci,...,Cnm) satisfiable.

Definition 12 (Tp-Operator) The operator Tp associated with a program P maps interpretations

to interpretations. If T is an interpretation, then Tp(Z) is the following interpretation.:

Tp(Z) =T U{A | A is an immediate consequence for Z and P}

3The length of a path is the number of roles composing the path.
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Lemma 2 (Monotonicity) The operator Tp is monotonic; i.e., if I1 and Iy are two interpretations
such that Il g IQ, then Tp(Il) g TP(IQ)

Proof Let 7; and Z; be two interpretations such that Z; C Zy. We must show that if an atom A is
an immediate consequence for Z; and P, then A € Tp(Zy).
Since A is an immediate consequence for Z; and P, at least one of the following cases applies:

e A€Z,. Then A € Iy, and thus A € Tp(Zy);

e there exists arule r : H < Lq,...,Ly|lc1,-..,cp in P and a valuation v, based on D%ft, such
that A = v(H), Vi € [1,n|v(L;) is satisfiable, and v(cy, . . ., ¢y,) satisfiable. Following the Lemma
1, v is also a valuation based on D%;”t. Since Z; C 7y, we have v(L;) satisfiable Vi € [1,n], and
v(ci, ..., cp) satisfiable. Hence A € Tp(Z5).

Theorem 1 (Continuity) The operator Tp is continuous, that is, if T, Io, s, ... are interpreta-
tions such that Ty C Iy C I3... (possibly infinite sequence), then Tp(|J; Z;) C U; Tr(Z;).

Proof Let 7T = |J;Z; and let A be an atom in Tp(Z). We must show that A is also in |J; Tp(Z;). At
least one of the following two cases applies:

e Ac 1 ie, A€ |J;Z; Then, there exists some j such that A € Z;. Thus, A € Tp(Z;) and
consequently A € J, Tp(Z;).

e Thereexistsaruler : H < Ly,..., Lyl|lci, ..., ¢ in P and a valuation v based on DE** such that
Vi € [1,n] v(L;) is satisfiable and v(cy, ..., cy) satisfiable. Since v(L;) satisfiable, there exists
some j; such that v(L;) satisfiable in Z;,. In addition, since the Zj are increasing, there exists
some [, such that Z;, C 7, for all j;. Hence, v(L;) satisfiable in Z; Vi € [1,n] and v(c1,...,cm)
satisfiable. Let V' = war(Ly,...,Ly) be the set of variables in the rule r, and let v(V) be the
result of applying v to each variable in V. v(V') is a finite subset of D" since v is based on D&,
We have v(L;) satisfiable Vi € [1,n] and v(cy,...,cn) satisfiable. Thus, v(var(L;)) satisfiable
in D%ft Vi € [1,n] and v(cy,...,cn) satisfiable. Then A € Tp(Z;) (A = v(H)). Consequently
Ae Uz TP(IZ')-

Lemma 3 7 is a model of P iff Tp(Z) C I.

Proof
? = 7 If 7 is an interpretation and P a program, then let cons(P,Z) denote the set of all ground facts
which are immediate consequences for Z and P.

Tp(Z) =TU{A| A is an immediate consequence for Z and P}

For any element A in cons(P,T), at least one of the following cases holds:

e A € 7. By definition of immediate consequence;
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e there exists a rule r : H + Lq,...,Ly|c1,...,¢p in P, and a valuation v such that Vi €
[1,n] v(L;) satisfiable in Z, v(cy, ..., cn) satisfiable, and A = v(H). Since 7 is a model of P, Z
satisfies r (Z =), and then A € Z. Thus, Tp(Z) C T .

7 <=7 Let 7T be an interpretation and P be a program.

Let r: H + Ly,...,Ly|lc1,--.,cm be any rule in P and v any valuation. If Vi € [1,n]v(L;) satisfiable
in 7 and v(cy,...,cn) satisfiable in Z, then v(H) € Tp(Z). Because Tp(Z) C I, we have v(H) € I,
and then 7 satisfies r (Z = r). Hence Z |= P. [ |

Lemma 4 Each fixpoint of Tp is a model for P.

Proof Follows immediately from Lemma 3. |

Theorem 2 Let P be a program and L an input such that the minimal model for P exists, then the

minimal model and the least fixpoint coincide.

Proof Let P be a program and Z an interpretation, Let us denote by P(Z) the minimal model of
P containing Z. According to lemma 3, Tp(P(Z)) C P(Z). Tp is monotonic, so Tp(Tp(P(Z))) C
Tp(P(Z)), and then Tp(P(Z)) is a model of P containing Z. As P(Z) is the minimal model containing
Z, we have P(Z) C Tp(P(Z)). As P(I) is a fixpoint of P and also a minimal model of P, each fixpoint
of Tp containing 7 is a model of P containing P(Z). Thus P(Z) is the minimal model of P containing
T. |

6.3 Example

Let us give some simple examples of queries. Consider a company selling products. Figure 4 shows a
fragment of data that the company has at its disposal. Different departments use different kinds of
data according to their needs. For example, one department has data of type (a), another of type (b)
and another of type (c). This data is stored in a warehouse intended to be queried and browsed.

The query "find all catalogs making reference to a product sold by a supplier located in Milano” can
be expressed by the following rule:

answer(zx) + tree(z)||{Milano}(a.city, x)
In this example, « is a path variable, and z is a tree variable.

The query ”find all pairs of catalogs making reference to a product of category Camera sold by sup-
pliers in Italy and USA” can be expressed as:

answer(x,y) < tree(x), tree(y)||{Italy}(a.country, z), {USA}(a.country,y),
{Camera}(B,x),{Camera}(B,y), BEproduct.category

If we want to compute all pairs of trees (y,z) such that y is a component (i.e., subtree) of z then we
can use the following program:
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catalogl

product product

pl pn

name

supplier

220 TV

Italy

Milanofiori
Cannon-ltalia 0282481

Sony-Lafayette 3175929773 USA Indie

(@)

pl

name

Canon-ST43
Camera 145 Sony-Lafayette 3775929773

(b) (c)

Figure 4: A fragment of our catalog, product and supplier database.

component(y, x) + tree(z), tree(y)||z[v]y
component(y, ) < component(z, x), component(y, z)
7 Constraints Relaxation

When optimal solutions (i.e., those data trees matching the query tree) cannot be obtained, one may
be interested in finding suboptimal solutions by relaxing some constraints.

According to the semantics of our query language, the satisfiability test for the constraint part of
queries assumes ordered inclusion of trees, leading to exact matching of paths and sorts. For the need

of approximate query answers, we have to deal with unordered inclusion of trees, and set constraints.

The tree, which can be a query tree, on the left of figure 5 is not perfectly embedded in the data tree
on the right. The ¢ node in the data tree is skipped.

Definition 13 (Embedding) A function f from the set Q of query nodes into the set D of data
nodes is called an embedding if for all g;,q; € Q:

1. flg) = flg)) & q=gq;
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employee programmer

)

employee

Figure b: Unordered inclusion of trees.

2. label(q;) = label (f(g;))

3. q; is the parent of q; with e the label of the edge from g; to q; < f(q;) is an ancestor of f(qg;)
with e the label of an edge from f(q;) to f(g;)

Let p=aq...a, be a path. We write a; € p to denote the fact that a; is a component of p. We write
a; <p aj when ¢ < j. That is, a; is an ancestor of a; in p.

Let p=ay...ap and ¢ = b; ... by, be two paths. We say that p is embedded in ¢, and we write p < ¢
iff

1. n<m

2. VYa; €p,a;€q(i€[l,n])

3. Va;,a; €p, a; <pa; = a; <qa;

Let @ be a query of the form L||C where L is the body part and C is the constraint part. Assume that
C contains a constraint of the form S(p,z), where S is a set and p is a path. In the case @ doesn’t
return an exact answer, then rewrite the constraint C by replacing S(p, z) by X(,z), X C S,a < p,
where X is a new set variable, and o is a new path variable.

X C S (also called set constraint) and a < p are weak constraints. The evaluation of the new query,
under the semantics of C and <« will return a set of approximate answers.

To summarize, let L|C be a query, where C is its constraint part. Then, If C' contains:

e the constraint S(e,z), where e stands for a path or a path variable, then replace S(e,z) by
X(e,z),X C S, with X a new set variable.

e the constraint e(p,x), where p is a path, then replace o(p,z) by e(a, z), @ < p, with o a new
path variable.
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8 Relation to XML

In this section, we show how the proposed framework can support querying XML data. We have
to show how XML documents can be coded with role trees. We use a restricted structure of XML
documents. However, the framework applies to the complete structure as defined in [49, 15, 28].

XML? is a textual representation of data. The basic component in XML is the element, that is,
a piece of text bounded by matching tags such as < faculty > and < /faculty >. Inside an element
we may have "raw” text, other elements, or a mixture of the two. Consider the following XML example:

< faculty >

< name > Clint < /name >

< room > 420 < /room >

< email > crm@cs.edu < /email >
< [faculty >

An expression such as < faculty > is called a start-tag and < /faculty > an end-tag. Start- and end-
tags are also called markups. Such tags must be balanced; that is, they should be closed in inverse
order to that in which they are opened, like parentheses. Tags in XML are defined by users; there
are no predefined tags, as in HTML. The text between a start-tag and the corresponding end-tag,
including the embedded tags, is called an element, and the structures between the tags are referred to
as the content. The term subelement is also used to describe the relation between an element and its
component elements. Thus < email > ... < /email > is a subelement of < faculty > ... < /faculty >
in the example above. As with semistructured data, we may use repeated elements with the same tag
to represent collections. The following is an example in which several < faculty > tags occur next to
each other.

< people >
< faculty >
< name > Clint < /name >
< room > 420 < /room >
< email > crm@cs.edu < /email >
< [faculty >
< faculty >
< name > Marion < /name >
< room > 319 < /room >
< email > mj@cs.edu < /email >
< [faculty >
< /people >

The basic XML syntax is perfectly suited for describing semistructured data. Recall the syntax for
semistructured data expressions. The simple XML document

< faculty >
< name > Clint < /name >

“For more details, see [2].
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< room > 420 < /room >
< email > crm@cs.edu < /email >
< [faculty >

has the following representation as a semistructured data expression:

{faculty : {name : ”Clint”, room : 420, email : ”crm@cs.edu” } }

There is a subtle distinction between an XML element and a semistructured data expression. A
semistructured data expression is a set of label/subtree pairs, while an element has just one top-level
label. XML denotes graphs with labels on nodes®. To be able to apply the proposed framework, we
consider that an XML document is represented by a role tree of a specific form. The only two edge
labels are subelement and value. Figure 6 illustrates our representation for the XML data above.

faculty
. %@
& u
$ § "
name room email
value value value
clint 420 crm@cs.edu

Figure 6: Our labeled-tree representation for XML data.

9 Related Work

We discuss the relationship of our work to query languages for semistructured data and path queries
with constraints. Please note that the proposed frameworks and results by others are all different from

ours.

Query languages for semistructured data. Semistructured data is modeled as labeled graph, in
which the nodes correspond to the objects and the edges to their attributes. Most query languages
proposed for semistructured data can navigate the data using Regular Path Expressions, thus travers-
ing arbitrary long paths in the graph.

In [3], for example, a query language, called Lorel, for semistructured data is obtained by extending
OQL[20] with powerful and flexible path expressions, which allow querying without precise knowledge
of the structure. Path expressions are built from labels and wild-cards (place-holders) using regular
expressions, allowing the user to specify rich patterns that are matched to actual paths in the database
graph. One of the limits of this language is that it does not allow to express recursive queries over
database graphs.

SWhile semistructured data expressions denote graphs with labels on edges.
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The language reported in [17], UnQL, is closely related to Lorel, allowing to query data organized as
a root, edge-labeled graph. A primary feature of UnQL is a powerful construct called traverse that
allows restructuring of trees to arbitrary depth. The language of termms uses variables ranging over
trees or over edge labels. A tree is seen as a set of edge/subtree pairs. For example, in the expression
of the form \l = \t + DB, the label variable \[ is used to match any edge emanating from the root
of the database DB. The variable \¢ will be bound to the associated subtree. Certain restructuring
queries, which require a fixpoint operation, appear not to be expressible in UnCAL, a calculus for
UnQL.

[43] proposed a SQL-like query language (called WebSQL) that integrates textual retrieval with struc-
ture and topology-based queries. The language is designed to query the World Wide Web. To make
reference to the hypertext structure of the web, the language uses a set of symbols allowing to define
path regular expressions. For example, =|= . —* is a regular expression that represents the set of
paths containing the zero length path and all paths that start with a global link and continue with zero
or more local links. A hypertext link is said to be local if the destination and the source documents
are different but located on the same server, and it is said to be global if the destination and the
source documents are located on different servers. In this language, queries may contain constraints
like zvy, where v is a variable ranging over paths. Again, this proposal does not allow to express
recursive queries which may be useful when querying the Web.

In [22, 23], extensions to OQL are proposed that are somewhat similar in spirit or goals to LOREL. In
[22], a more rigidly typed approach is followed, but because heterogeneous collections are introduced,
the model still has a strong similarity to OEM. However, the language proposed in [22], called OQL-
doc, does not use coercion the way it is used in LOREL, and the treatment of path expressions is
quite different. Optimizing the evaluation of generalized path expressions is considered in [23]. Their
optimization is based on two object algebra operators, one dealing with paths at the schema level and
one with paths at the data level.

[34] investigated conjunctive queries that allow for incomplete answers in the framework of semistruc-
tured data. The proposed model of query evaluation consists of a search phase (involving search
constraints), where a query graph containing variables is used to match a maximal portion of the
database graph, and a filter phase (involving filter constraints) where the maximal matchings re-
sulting from the search phase are subjected to constraints. The authors deliberately limited their
investigation to queries that do not allow regular path expressions.

Also related to our work are several query languages for the World-Wide Web that have emerged
recently, e.g., W3QS [38], which focuses on extensibility, and WebLog [39] which is based on a
Datalog-like syntax. Additional relevant work includes query languages for hypertext structures,
e.g., [13, 26, 45, 42], and work on integrating SGML [30] documents with relational databases [14],
since SGML documents can be viewed as semistructured data.

In the area of heterogeneous database integration, which is a common scenario for semistructured data,
most of work has focused on integrating data in well structured databases. In particular, systems such
as Pegasus [47] and UniSQL/M [37] are designed to integrate data in object-oriented and relational
databases. At the other end of the spectrum, systems such as GAIA [48] and ACL/KIF [29] provide

uniform access to data with minimal structure.
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[38] also incorporated path expressions. In the proposed language, the condition part of a query may
contain expressions of the form path = regexp where path is a path expression and regezp is a Perl
[61] regular expression.

Path queries with constraints. Abiteboul and Vianu [5] investigated the evaluation and opti-
mization of path expression queries involving path constraints. Path constraints are local; they may
capture the structural information about a web site (or a collection of sites). A path constraint is
an expression of the form p C ¢ or p = g where p and ¢ are regular expressions. A path constraint
p C g holds at a given site if the answer to query p applied to that site is included in the answer to
g applied to the same site. The constraint p = ¢ is also allowed in our constraint language. Con-
straints such as a<f3 and aﬂﬂ , and ordering constraints cannot be expressed as word constraints of [5].

Buneman et al. [18] proposed a class of path constraints that are useful for both structured and
semistructured data for specifying natural integrity constraints. A path constraint ¢ is an expression
of either the forward form Vzy(p(r, z) Ag(x,y) — v(z,y)) or the backward form Vzy(p(r, z) Aq(z,y) —
v(y, z)) where p,q,~ are paths. This constraint language cannot express queries like @< and ollg,
or the ordering constraints.

Please note that no other work considered the ordering constraints we propose in this paper.

10 Conclusion

In this paper we have shown how two classes of constraints can be combined to make a flexible query
language for semistructured data.

There is a growing interest in semistructured databases. As such data (e.g., on the Web) proliferate,
aids to browsing and filtering become increasingly important tools for interacting with such exponen-
tially growing information resources and for dealing with access problems.

In this paper, we have presented a class of ordering and path constraints and addressed the problem of
developing a formal, rule-based constraint query language that allows the retrieval of semistructured
data. The primary motivation of this work was that ordering and path constraints are relevant in
semistructured data retrieval and the absence of suitable support for expressing such constraints in
traditional query languages represent a serious obstacle.

Our approach is purely declarative and formulated in terms of constraints between variables which
straightforwardly capture, for example, what it means for two paths to be divergent. The imple-
mentation of query evaluation procedures requires eflicient algorithms for solving ordering and path
constraints. A formal account of constraint languages for semistructured data is an essential step in

demonstrating the correctness of such algorithims, and may yield more efficient processing strategies.

As for the future: (1) We want to develop an SQL-like language based on the formal model we have
developed in order to provide a more user-friendly syntax; (2) In this paper, sorts appearing in ordering
constraints (i.e., constraints of the form S{a,x)) are constants (i.e., S is a set of constants). In order
our query language to be more flexible, it will be useful to consider sorts as first class values. As a
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consequence, we will allow constraints of the form Z(a,x), where Z is a variable ranging over sets of
sorts; (3) Another direction of research consists in investigation the relationship between XPath (i.e.,
XML Path Language) [24] and our constraints.
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