
Generalization of ACID Properties

Brahim Medjahed

Department of Computer & Information Science, The University of Michigan - Dearborn
http://www.engin.umd.umich.edu/∼brahim

Mourad Ouzzani

Cyber Center, Purdue University
http://www.cs.purdue.edu/homes/mourad/

Ahmed K. Elmagarmid

Cyber Center and Department of Computer Science, Purdue University
http://www.cs.purdue.edu/homes/ake/

SYNONYMS

Advanced Transaction Models; Extended Transaction Models

DEFINITION

ACID (Atomicity, Consistency, Isolation, and Durability) is a set of properties that guarantee the reliability of
database transactions [2]. ACID properties were initially developed with traditional, business-oriented applications
(e.g., banking) in mind. Hence, they do not fully support the functional and performance requirements of
advanced database applications such as computer-aided design, computer-aided manufacturing, office automation,
network management, multidatabases, and mobile databases. For instance, transactions in computer-aided design
applications are generally of long duration and preserving the traditional ACID properties in such transactions
would require locking resources for long periods of time. This has lead to the generalization of ACID properties
as Recovery, Consistency, Visibility and Permanence. The aim of such generalization is to relax some of the
constraints and restrictions imposed by the ACID properties. For example, visibility relaxes the isolation property
by enabling the sharing of partial results and hence promoting cooperation among concurrent transactions. Hence,
the more generalized are ACID properties, the more flexible is the corresponding transaction model.

MAIN TEXT

ACID is an important concept of database theory. It defines four properties that traditional database transactions
must display: Atomicity, Consistency, Isolation, and Durability. Atomicity states that transactions must follow
an “all or nothing” rule. Either all of the changes made by a transaction occur or none of them do. The two-phase
commit protocol (2PC) is generally used in distributed databases to ensure that each participant in a transaction
agrees on whether the transaction should be committed or not. Consistency means that transactions always
operate on a consistent view of the database and leave the database in a consistent state. A database is said to be
consistent as long as it conforms to a set of invariants, called integrity constraints. Isolation gives the illusion that
each transaction is executed alone. It ensures that the effects of a transaction are invisible to other concurrent
transactions until that transaction is committed. Concurrency control protocol are generally implemented in
database systems to preserve this property. Durability states that once a transaction is committed, its effects are
guaranteed to persist even in the event of subsequent failures. This is usually achieved using database backups
and transaction logs.
The limitations inherent to the original ACID properties and the peculiarities of advanced database applications
has lead to the generalization of ACID properties as Recovery, Consistency, Visibility and Permanence. Recovery

refers to the ability to take the database to a state that is considered correct in case of failure. Consistency refers
to the correctness of the state of the database that a committed transaction produces. Visibility refers to the
ability of one transaction to see the results of another running transaction. Permanence refers to the ability of
a transaction to record its results in the database. The flexibility of a transaction model depends on the way



ACID properties are generalized. An extensive coverage of advanced transaction models is presented in [1]. Sagas,
Nested Transactions, and Flex are representative examples of models that generalize ACID properties while ACTA

is an example of a formal framework to express these models and reason about them.
A Saga is a chain of transactions that is itself atomic. Isolation is relaxed at the level of a Saga and visibility is
permitted at the component transaction boundaries. A saga itself is atomic but because of the relaxed visibility,
it supports semantic consistency. That is, each transaction in the chain is assumed to have a semantic inverse,
or compensation, transaction associated with it. If one of the transactions in the saga fails, the transactions are
rolled back in the reverse order of their execution. Committed transactions are rolled back by executing their
corresponding compensation transactions.
Nesting allows concurrency within a transaction and provides fine-grained and hierarchical control for failure
handling. The original nested transaction model, which supports only closed sub-transactions, was extended to
include open sub-transactions. Closed sub-transactions may not support consistency and durability. A closed
sub-transaction commits its results to its parent. These partial results are externalized only after the top (root)
transaction commits, thus ensuring atomicity and isolation of the whole transaction. Because of its relaxed
visibility, open sub-transactions directly externalize their results and expose them to other transactions.
The Flex Transaction Model has been proposed to generalize ACID properties in multidatabase systems. It relaxes
the atomicity and isolation properties of nested transactions to provide users increased flexibility in specifying
their transactions. A Flex transaction may proceed and commit even if some of its sub-transactions fail. It
also allows the specification of dependencies on sub-transactions as internal or external dependencies. Internal
dependencies define the execution order of sub-transactions, while external dependencies define the dependency
of a sub-transaction execution on events (such as the start/end execution times) that do not belong to the
transaction. The Flex model also enables users to control the isolation granularity of a transaction through the
use of compensating sub-transactions.
ACTA is a framework that facilitates the formal description of properties of extended transaction models. It
defines constructs that facilitate the synthesis of extended transaction models by tailoring/combining existing
models or starting from first principles. Different notions are introduced in ACTA to enable the generalization
of ACID properties from different perspectives. For instance, the notion of delegation allows transactions to
selectively abort some of the operations it has performed and yet commit.

CROSS REFERENCE

Transaction Management
Concurrency Control
Serializability
Recovery
Two-Phase Commit
ACID
Extended Transaction Models
ACTA
Distributed, Parallel and Networked Databases

RECOMMENDED READING

[1] A. K. Elmagarmid, editor. Database Transaction Models for Advanced Applications. Morgan Kaufmann, 1992.
[2] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.

2


