Constraint-Based Approach to
Semistructured Data*

Mohand-Said Hacid' Farouk Toumani? Ahmed K. Elmagarmid!
I Department of Computer Sciences 2 Laboratoire LIMOS
Purdue University ISIMA - Campus des Cezeaux - B.P. 125
West Lafayette, IN 47907 - USA 63173 Aubiére Cedex - France
{mshacid,ake} @Qcs.purdue.edu ftoumani@sp.isima.fr
Abstract

In this paper we consider how constraint-based technology can be used to query semistruc-
tured data. As many concerns in semistructured data (e.g., representing and navigat-
ing) are also found in computational linguistics, this last area could provide an in-
teresting angle to attack some of the problems regarding semistructured data. When
possible, we should not duplicate works and good ideas should be reused. We present a
formalism based on feature logics' for querying semistructured data. The formalism is
a hybrid one in the sense that it combines clauses with path constraints. The resulting
language has a clear declarative and operational semantics.

1 Introduction

In the last decade, new applications (e.g., CAD, CASE) have been a powerful driving
force in the development of new database technology. New paradigms have arisen (e.g.,
object-oriented databases [10]) that provide greater flexibility than the traditional rela-
tional model. However, in some application areas, such as Web databases [4, 48], biological
databases [66], digital libraries [21], etc; there is still a need for greater flexibility, both in
data representation and manipulation. These applications are characterized by the lack
of any fixed and rigid structure (i.e., schema).

Semistructured data models are intended to capture data that are not intentionally struc-
tured, that are structured heterogeneously, or that evolve so quickly that the changes
cannot be reflected in the structure. A typical example is the World-Wide Web with
its HTML pages, text files, bibliographies, biological databases, etc. A semistructured

*This project is supported by National Science Foundation under grants 9972883-EIA and 9974255-
IIS and 9983249-EIA; grants from HP, IBM and Intel; and by the European Community, Basic Research
Action IST-1999-10589 (Project MKBEEM).

'Feature logic (see, e.g., [11, 63, 32, 35]) has its origin in the three areas of knowledge representation
with concept descriptions, frames, or ¥-terms [6, 15, 51, 52], natural language processing, in particular
approaches based on wnification grammars [34, 36, 54, 62, 58, 60], and constraint (logic) programming
[7, 8, 50, 64].

database essentially consists of objects, which are linked to each other by attributes.

The core problem in semistructured data is that the structure of the data is not fully
known. This leads to the fact that querying the data is often content-based as opposed
to the structure-based querying, e.g., in relational systems. Furthermore, this has led to
the fact that users often browse through data instead, because no structural knowledge
(or schema information) is available.

Semistructured Data represent a particularly interesting domain for query languages.
Computations over semistructured data can easily become infinite, even when the un-
derlying alphabet is finite. This is because the use of path expressions (i.e., compositions
of labels) is allowed, so that the number of possible paths over any finite alphabet is infi-
nite. Query languages for semistructured data have been recently investigated mainly in
the context of algebraic programming [3, 17].

In this paper, we explore a different approach to the problem, an approach based on logic
programming, instead of algebraic programming. In particular, we develop an extension
of Datalog for manipulating semistructured data. The resulting language has both a clear
declarative semantics and an operational semantics. The semantics are based on fixpoint
theory, as in classical logic programming [42]. The language of terms uses five countable,
disjoint sets: a set of atomic values (D1), a set of objects (D2), a set of labels (Ds), a
set of object variables (V), and a set of path variables (V). A path variable is a variable
ranging over paths. The universe of paths over D3 is infinite. Thus, to keep the semantics
of programs finite, we do not evaluate rules over the entire universe, D3, but on a specific
active domain. We define the active domain of a database to be the set of constants (ob-
jects and labels) occurring in the database. We then define the eztended active domain®
to include both the constants in the active domain and all path expressions resulting from
the composition of labels in the active domain. The semantics of our language is defined
with respect to the extended active domain. In particular, substitutions range over this

domain when rules are evaluated.

The extended active domain is not fixed during query evaluation. Instead, whenever a new
path expression is created, the new path and all paths resulting from its concatenation
with already existing paths are added to the extended active domain.

We present a class of path constraints of interest in connection with both structured and
semistructured databases. Our constraint language is inspired by Feature Logics [12]. Fea-
ture descriptions are used as the main data structure of so-called unification grammars,
which are a popular family of declarative formalisms for processing natural language [62].
Feature descriptions have also been proposed as a constraint system for logic programming
(see, for example, [9, 65]). They provide for a partial description of abstract objects by
means of functional attributes called features. On top of this constraint language we allow
the definition of relations (by means of definite clauses) in the style of [31], leading to a

2This notion is borrowed from [45].

declarative, rule-based, constraint query language for semistructured data. The language
we propose is based on the general scheme for handling clauses whose variables are con-
strained by an underlying constraint theory [19]. Constraints can be seen as quantifier
restrictions as they filter out the values that can be assigned to the variables of a clause
in any of the models of the constraint theory. Containment® of queries is the problem
of checking whether the result of one query is contained in what another query produces
[2, 67]. Containment is mainly concerned with query optimization. In this paper we pro-
pose an approach for testing containment of queries expressed in our rule-based, constraint
language.

To our knowledge (see related work in Section 8), no previous work considers path con-
straints we can express in our query language.

Paper outline: Section 2 introduces semistructured data. Section 3 gives a brief
summary of Feature Logics. Section 4 defines preliminary notions such as the Resolution
Principle for clauses with constraints. In Section 5 we introduce the data model and give
an introductory example. In Section 6, we develop our language and give its syntax and
semantics. In Section 7 we develop a calculus for deciding query containment. Section 8
discusses related work. We conclude in Section 9.

2 Semistructured Data

In traditional databases such as the relational model [24] there is a clear separation be-
tween the schema and the data itself. Recently, it has been recognized that there are
applications where the data is self-describing in the sense that it does not come with a
separate schema, and the structure of the data, when it exists has to be inferred from
the data itself. Such data is called semistructured. A concrete example is the ACeDB
genome database [66], while a somewhat less concrete but certainly well-known example
is the World-Wide Web. The Web imposes no constraints on the internal structure of
HTML pages, although structural primitives such as enumerations may be used. Another
frequent scenario for semistructured data is when data is integrated in a simple fashion
from several heterogeneous sources and there are discrepancies among the various data
representations: some information may be missing in some sources, an attribute may be
single-valued in one source and multi-valued in another, or the same entity may be repre-
sented by different types in different sources. Semistructured data displays the following
features:

The structure is irregular: In many applications, the large collections that are main-
tained often consist of heterogeneous elements. Some elements may be incomplete.
On the other hand, other elements may record extra information, e.g., annotations.
Different types may be used for the same kind of information, e.g., prices may be in
dollars in portions of the database and in francs in others. The same piece of infor-

3Also called implication.

mation, e.g., an address, may be structured in some places as a string and in others
as a tuple. Modeling and querying such irregular structures are essential issues.

The structure is implicit: In many applications, although a precise structuring
exists, it is given implicitly. For instance, electronic documents consist of a text and
a grammar (e.g., a DTD in SGML). The parsing of the document then allows one
to isolate pieces of information and detect relationships between them. However,
the interpretation of these relationships (e.g., SGML exceptions) may be beyond the
capabilities of standard database models and are left to the particular applications
and specific tools.

Data models, query languages, and systems for semistructured data are areas of active
research. Of particular interest and relevance, eXensible Markup Language (XML) is
an emerging standard for web data, and bears a close correspondence to semistructured
data models introduced in research. Semistructured data is naturally modeled in terms of
graphs which contain labels that give semantics to the underlying structure [1, 16].

Management of semistructured data requires typical database features such as a language
for forming adhoc queries and updates, concurrency control, secondary storage manage-
ment, etc. However, because semistructured data cannot conform to a standard database
framework, trying to use a conventional DBMS to manage semistructured data becomes
a difficult or impossible task.

When querying semistructured data, one cannot expect the user to be fully aware of the
complete structure, especially if the structure evolves dynamically. Thus, it is important
not to require full knowledge of the structure to express meaningful queries. At the same
time, we do not want to be able to exploit regular structure during query processing when
it happens to exist and the user happens to know it.

An example of a complete database management system for semistructured data is LORE
[44], a repository for OEM [69] data featuring the LOREL [3] query language. Another
system devoted to semistructured data is the Strudel Web site management system, which
features the StruQL query language [27] and a data model similar to OEM. UnQL [17] is a
query language that allows queries on both the content and structure of a semistructured
database and also uses a data model similar to Strudel and OEM.

3 Feature Logics

Feature logics are the logical basis for so-called unification grammars studied in computa-
tional linguistics. The common assumption of these formalisms is that linguistic objects
can be described by means of their features, which are functional attributes.

Constraint-Based grammar Formalisms

The constraint-based grammar formalisms have evolved relatively independently, and ac-
cordingly been shaped by rather different design objectives and theoretical positions. On
the one hand, unification-based formalisms such as PATR [60, 61] and FUG [36, 37] were
designed primarily as general, computational tools to facilitate the task of implementing
natural language processing systems. As such they impose few (non-trivial) constraints
on the kinds of linguistic descriptions which can be written down. Formalisms such as
LFG [34], on the other hand, were designed to serve as formal realizations of particu-
lar theoretical frameworks, and accordingly embody restrictive statements of ”universal
grammar”. Despite their different origins, and their distinctive and often innovatory fea-
tures however, the constraint-based grammar formalisms share a number of important
characteristics such as:

Declarativism. The constraint-based grammar formalisms characterize the relation-
ship between natural language expressions and the information they carry (both
syntactic and semantic) without reference to particular models of linguistic process-
ing.

Surface Orientation/Context-Free Skeleton. Constraint-based grammar formalisms
provide a direct characterization of the surface form of natural language expres-
sions. Typically, they make use of a context-free 'skeleton’ grammar (either phrase-
structure rules or a categorical component) in order to describe the hierarchical
structure and left-to-right order of strings.

Feature Structures. An important characteristic of constraint-based grammar for-
malisms is the use of hierarchical systems of features and values known as feature
structures to represent linguistic objects. Feature structures are related to the record
structures of computer science and the frames of Artificial Intelligence.

Constraint Languages. In order to characterize the well-formedness of linguistic
objects, constraint-based grammar formalisms employ specialized languages for ex-
pressing propositions about features and their values. Constraint languages are
used to capture syntactic phenomena such as agreement, subcategorization and un-
bounded dependencies, and account for much of the notational elegance of the for-
malisms.

Feature Constraints

Feature constraints provide records as logical data structure for constraint (logic) pro-
gramming. Their origins are the feature descriptions from computational linguistics (see
[63] for references) and Ait-Kaci’s ¢-terms [6] which have been employed in the logic pro-
gramming language LOGIN [7]. Smolka [63] gives a unified logical view of most earlier
feature formalisms and presents an expressive feature logic.

The predicate logic view to feature constraints, which has been pioneered by Smolka [63],
laid the ground for the development of the constraint system FT [9] and CFT [65]. The

latter constraint system subsumes Colmerauer’s classical rational tree constraint system
[25], but provides for finer grained and more expressive constraints. CFT’s standard
model consists of so-called feature trees, that is possibly infinite trees where the nodes are
labeled with label symbols and the edges are labeled with feature symbols. The labels of
the edges departing from a node, called the features of that node, are pairwise distinct.The
atomic constraints of CF'T are equations, label constraints Az (”z has label A”), feature
constraints z[f]y ("y is a child of z via feature f”) and arity constraints z{fi,..., fn} "z
has exactly the features fi,..., fn”). A rational tree constraint z=K(y1,...,¥yn) can be
expressed in CF'T as
Kz Az{l,...,n} Az[l]ly1 A...z[nlyn

Note that in CFT we can express the fact that = has the child y at feature f by z[f]y,
which is inconvenient to express in the rational tree constraint system if the signature is
finite and impossible if the signature is infinite.

4 Preliminaries

We shall introduce those notions that are necessary for our application (see, e.g., [19, 31,
40, 43] for further details).

A constraint is some piece of syntax constraining the values of the variables occurring in
it. It is a restriction on a space of possibilities. Mathematical constraints are precisely
specifiable relations among several unknowns (or variables), each taking a value in a given
domain. Constraints restrict the possible values that variables can take, representing some
(partial) information about the variables of interest. Constraints enjoy several interesting
properties. First, as said before, constraints may specify partial information —a constraint
need not uniquely specify the value of its variables. Second, they are additive: given a
constraint ¢; say, X +Y > Z, another constraint ¢o can be added, say, X +Y < Z. The
order of imposition of constraints does not matter; all that matters at the end is that the
conjunction of constraints is in effect. Third, constraints are rarely independent; for in-
stance, once ¢; and ¢y are imposed it is the case that the constraint X +Y = Z is entailed.
Fourth, they are nondirectional: typically a constraint on (say) three variables X,Y, Z can
be used to infer a constraint on X given constraints on Y and Z, or a constraint on Y
given constraints on X and Z and so on. Fifth, they are declarative: typically they specify
what relationship must hold without specifying a computational procedure to enforce that
relationship. Any computational system dealing with constraints must fundamentally take
these properties into account.

Now, let us formally define constraint languages.

A constraint language is a tuple (VAR,CON,V,INT) such that:
1. VAR is an infinite set whose elements are called variables

2. CON is a set whose elements are called constraints

3. V is a computable function that assigns to every constraint ¢ a finite set V¢ of
variables, called the variables constrained by ¢

4. INT is a nonempty set of interpretations, where every interpretation Z € INT
consists of a nonempty set DZ, called the domain of Z, and a solution mapping []I
such that:

4.1 an T-assignment is a mapping VAR — DT, and ASS? is the set of all Z-
assignments

4.2 []I is a function mapping every constraint ¢ to a set [¢]I of Z-assignments,
where the Z-assignments in [¢]” are called the solutions of ¢ in Z

4.3 a constraint ¢ contains only the variables in V¢, that is, if & € [¢]” and 3 is an
T-assignment that agrees with o on Ve, then 3 € [¢]*

Predicate logic is a prominent example of a constraint language. The well-formed for-
mulas are the constraints, V¢ are the free variables of a formula ¢, and for every Tarski
interpretation Z the solutions [¢]I are the Z-assignments satisfying ¢.Viewing predicate
logic as a constraint language abstracts away from the syntactic details of formulas.

A constraint ¢ is satisfiable if there exists at least one interpretation in which ¢ has a
solution. A constraint ¢ is valid in an interpretation Z if [¢]I = ASST, that is, every
T-assignment is a solution of ¢ in Z. Conversely, we say that an interpretation Z satisfies
a constraint ¢ if ¢ is valid in Z. An interpretation is a model of a set ® of constraints if it
satisfies every constraint in ®.

A renaming is a bijection VAR — VAR that is the identity except for finitely many
exceptions. If p is a renaming, we call a constraint ¢’ a p-variant of a constraint ¢ if

V¢ = p(Vg) and [¢]F = [¢]° p:={ep|a e[}

for every interpretation Z. A constraint ¢’ is called a variant of a constraint ¢ if there
exists a renaming p such that ¢’ is a p-variant of ¢.

Proposition 1 A constraint is satisfiable if and only if each of its variants is satisfiable.
Furthermore, a constraint is valid in an interpretation T if and only if each of its variants
is valid in T.

A constraint language is closed under renaming if every constraint ¢ has a p-variant for ev-
ery renaming. A constraint language is closed under intersection if for every two constraints
¢ and ¢/ there exists a constraint ¢ such that [¢]" N [¢/]F = [¢]" for every interpretation
Z. A constraint language is decidable if the satisfiability of its constraints is decidable.

Let @ be a set of constraints and Z be an interpretation. The solutions of ® in Z are

defined as
[o] = | [¢]
ped

where [®]7 := 0 is ® is empty.

Now, we introduce a general schema for handling clauses whose variables are constrained
with an underlying constraint theory. In general, constraints can be seen as quantifier re-
strictions as they filter out the values that can be assigned to the variables of a clause (or
an arbitrary formulae with restricted universal or existential quantifier) in any of the mod-
els of the constraint theory. We give a resolution principle for clauses with constraints,
where unification is replaced by testing constraints for satisfiability over the constraint
theory.

The Resolution Principle is based on the following inference rule:
From (AV B) and (A V C) infer (B V C)

The rule is obviously correct: If (AV B) and (—=AV C) are true, then the resolvent (BV C)
is also true. Since either A is false, then B must be true, or A is true, then C must be
true, and hence in any case (B V C) must be true.

For predicate logic the two complementary A’s are atoms starting with the same predicate
symbol, but with potentially different argument terms, say s; and t; (i € [1,n]). Then
one has to unify corresponding arguments of the literals A and —A —that is to find sub-
stitutions for the variables that make the corresponding argument terms identical- before
the conclusion can be drawn, and the resolvent has to be instantiated with the unifying
substitution:

P(s1,...,8,) VB and = P(t1,...,t,)VC
o(BVC)

if os; =oti(1 <i<mn)

Robinson [57] showed that this rule (combined with factorization) provides a complete
calculus. An analysis of the soundness and completeness proof, however, shows that it is
not necessary to unify the terms. It would be enough to test whether they are unifiable,
provided we add a constraint I' consisting of term equations s; = t; (saying ”if the terms
can be made equal”) to the inferred resolvent. Whenever such constrained resolvents are
now involved in a further resolution step the new resolvent inherits their constraints to-
gether with the new argument term equations. Now, these collected constraints have to be
tested for unifiability. Thus a resolution step in this modification takes two clauses with
such equational constraints and produces a resolvent with a new unifiable equational con-
straint consisting of the constraints inherited from its parents together with the argument
equations for the involved complementary literals.

P(s1,...,8p) VB || T and =P(t1,...,tp) VC || A
BVC||[TANAANs =1,

if TAAAs; =1; is unifiable

A more general view is that every clause might have some arbitrary, not necessarily equa-
tional constraint and a resolvent of two clauses gets a new constraint that is unsatisfiable

whenever one of the constraints of the parents (or the equational constraint of the argu-
ments of the complementary literals) is unifiable.

P(st,....sn) VB || R and ~P(t,...,t)VC || S
BVC||RASAsi=1t;

if RAS A s; =1; is satisfiable

This constrained resolution principle is again sound, but as in the classical case complete-
ness of a constrained resolution calculus is not straight forward.

5 Data Model and Queries

Recent research works propose to model semistructured data using ”lightweight” data
models based on labeled directed graphs [1, 17]. Informally, the vertices in such graphs
represent objects and the labels on the edges convey semantic information about the
relationship between objects. The vertices without outgoing edges (sink nodes) in the
graph represent atomic objects and have values associated with them. The other vertices
represent complex objects. An example? of a semistructured database is given figure 1.
Although a real-world video database would of course be much, much larger, this example
concisely captures the sort of structure (or lack thereof) needed to illustrate the features
of our language. As illustrated by figure 1, the structure of the content describing a video
differs from a category to another, and even within the same category.

Path expressions describe path along the graph, and can be viewed as compositions of
labels. For example, the expression

Residence.City

describes a path that starts in an object, continues to the residence of that object, and
ends in the city of that residence.

In this paper, we assume that the usual base types String, Integer, Real, etc., are available.
In addition, we shall use a new type Feature for labels that would correspond to attribute
(i.e., label) names. We write numbers and labels literally and use quotation marks for
strings, e.g., "car”. In what follows we make the simplifying assumption that labels can
be symbols, strings, integers, etc; in fact, the type of labels is just the discriminated union
of these base types.

In the following, we restrict ourselves to semistructured data whose graph is acyclic.

Like [53] we represent the graph using two base relations:

e link(FromObj, ToObj, Label): This relation contains all the edge information. For
instance, link(archive-entry, o1, video) refers to an edge labeled video from the
object archive-entry to the object o;.

“This example is inspired by the one given in [30].

archive_entry

Iy

z
=6 @ D videg video
o % video
]
“‘6\0 @ %% - @ duration)
\ oA date
Sé‘\ Yate < é&é
) 2
9 \3‘&00 & Ei
e
; ody\ & .
Y § - ,
8 > . B X
= g . %b»% :
g - |
] 2 '\ [
° & e T
(& ~or,
Q g \0/&
& ' 3 N

Figure 1: A video database content.

e atomic(Obj, Value): It contains all the value information. For instance, the fact
atomic(ni,” Comedy”) states that object nq is atomic and has value Comedy.

We assume that each atomic object has exactly one value, and each atomic object has no
outgoing edges. We consider that the data comes in as an instance over link and atomic sat-
isfying these two conditions. We use the term database in the following for such a data set.

Let p be a path expression of the form a;.as9 ... a,, where each a; is a label. Then, link(o;,
02, p) holds if there are objects 0’1, ... ,oln_1 such that link(o, 0’1, ai), - - link(o'n_l, 09,
ap) hold.

The following are examples of queries (over the database of figure 1). In these queries, X
and Y are first-order variables, and o, 5 are path variables, that is variables ranging over
paths built from an alphabet of labels.

Answer(X) : —link(archive-entry, X, a)||a€video.actor

This query returns the set of objects reachable from the root object archive-entry by the
path video.actor. The symbol € is used to express path restriction. In this query, Answer(X)
is called the head of the query, link(archive-entry, X, o) is called the body of the query, and
a€video.actor is called the constraint part of the query.

Answer(X,Y) : —link(X,Y, @), link(X, Y, 8)|| o113

10

This query returns a set of pairs (X, Y) of objects, such that X is an ancestor of Y via two
different paths. The symbol II stands for divergence of paths.

Answer(X,Y) : —link(X,Y, a)||3<c, BEvideo.sequences

This query retrieves a set of pairs (X, Y) such that Y is reachable from X by a path starting
with the sub-path video.sequences and ending with any sub-path. The symbol < is used
to express a prefix relation between two paths.

6 The Language

We view our language as consisting of a constraint language on top of which relations can
be defined by definite clauses.
6.1 Basic Definitions

Before providing the syntax and semantics of our query language, we need some additional
definitions.

Definition 1 (Path) A path is a finite string of labels. We identify a label f with the
string (f) consisting of a single label. We say that o path u is a prefix of a path v (written
u < v) if there is a non-empty path w such that v = u.w. Note that < is neither symmetric
nor reflexive. We say that two paths u, v diverge (written uwIlv) if there are labels f, g
with f # g, and possibly empty paths w, wy, we, such that u = w.f.w Av =w.g.ws. It is
clear that 11 is a symmetric relation.

Proposition 2 Given two paths u and v, then exactly one of the relations v = v, u < v,
u > v or ullv holds.

Definition 2 (Path Term) A path term, denoted p, q, ..., is either a path variable a or
a concatenation of path variables o.(.

6.2 Syntax
The language of terms uses three countable, pair-wise disjoint sets:
1. A set D of constant symbols. This set is the union of three pair-wise disjoint sets:

— Dy: a set of atomic values
— Ds: a set entities, also called objects entities
— Ds: a set of labels

2. A set V of variables called object variables and value variables, and denoted X,Y ...

3. A set V of variables called path variables, and denoted «, 8, . ..
We call DUV first order terms.

11

6.3 Constraint Language (C)

We start with a definition of our constraint language.
Definition 3 (Path Constraint) The set of atomic constraints is given by:

¢ — X =Y agreement
a=<p prefix
pEL path restriction
a=/[path equality
pllg divergence

We exclude empty paths in subterm agreements, since XeY is equivalent to X =Y. L is
a regular expression denoting a regular language £(L) C F+, where F is a set of labels.
Note that, to guarantee the decidability of conjunctions of constraints, complex terms are
allowed only in divergence and restriction constraints.

An interpretation 7 is a standard first order structure, where every label f € F is in-
terpreted as a binary, functional relation fZ. A valuation is a pair (vy, vi), where vy is
a standard first order valuation of the variables in V and vy, is a function vy, : V. — F¥.
We define vy (a.8) to be vy (a)vi (B).

The validity of an atomic constraint in an interpretation Z under a valuation (vy,vy;) is
defined as follows:

() FT X =Y = w(X)=n(Y)
(w,vyp) EzpEL = vp(p) €L
(w.vp) Fra=f = vya) <vp(B)
() Fra=8 <= vy(a) =vy(B)
(w,vy) Fzplls <= vyp(p) Lup(g)

Note that there is no interaction between 1y and vy,.

A constraint ¢ is satisfiable if there exists at least one interpretation in which ¢ has a
solution. Satisfiability of conjunctions of atomic constraints is decidable [12].

6.4 Relational Extension

We now present a construction that, given the constraint language C and a set of relation
symbols, extends C to a constraint language R(C).

Definition 4 (Predicate Symbol) we define the following predicate symbols:
o The predicate symbol link with arity 8

e The binary predicate symbol atomic

12

o The user specified intentional predicates (ordinary® predicates)

We model semistructured data by a program P which contains, besides the set of facts
built from link and atomic, the following rule:

link(X,Y,a.8) : —link(X, Z, o), link(Z,Y, B)

This rule says that if an object Z can be reached from an object X by a path o and Y
can be reached from Z by the path 3, then there is a path o.8 from X to Y.
Other ordinary predicates can be specified by rules of the form:

H(X) s =Li(P), o, Ln(Ta)lets - s 0m

for some n > 0 and m > 0, where X,Y),...,Y, are tuples of variables or constants.
We require that the rules are safe, i.e., a variable that appears in X must also appear
in Y U...UY,. The predicates Li,..., L, may be either link or atomic, or ordinary
predicates. ci,...,cm are path constraints (C-constraints). In the following, we use the
term (positive) atom to make reference to predicates L1, ..., Ly.

Figure 2 shows a program associated with a fragment of the video database of Figure 1.
This program P does not contain arbitrary predicates.

The program P
Archive-entry

() atomic(n,, 'George’),
@ Vi 1
6 Ideo atomic(n,, 'Bob’),
atomic(t,, 'thriller’),

5S> oS atomic(t,, 'thriller’)
0\)\69 ’59\ %, link(archive-entry, o,, video),
O, (< . . L
6@ /}788 link(archive-entry, o,, video),
(Z, 51 playsin 8 % link(o,, a,, actors),
§

% %5'2 link(o,, s,, subjects),
Bob

link(o,, t,, themes),
th””er link(s,, t;, themes),

w link(a,, 0,, playsin),

as link(0,, p,, producedBy),

= .

link(p,, n;, name),

link(a,, n,, name),

1
'thriller'

nl

'‘George’ link(X, Y, a.B) :- link(X, Z, a), link(Z, Y, B)

Figure 2: A fragment of a video database and its corresponding program P.

6.5 Semantics

Our language has a declarative model-theoretic and fixpoint semantics.

Model-theoretic semantics Recall that V denotes a set of variables called object and
value variables, and V denotes a set of variables called path variables. Let V=V UV.

Let war; be a countable function that assigns to each syntactical expression a subset of
V corresponding to the set of object and value variables occurring in the expression, and
vars be a countable function that assigns to each expression a subset of 1% corresponding

5Qrdinary predicates are of any arity.

13

to the set of path variables occurring in the expression.

Let var = vary Uvary. If Ey, ..., E, are syntactic expressions, then var(E1,..., E,) is an
abbreviation for var(E;) U...Uvar(Ey).

A ground atom A is an atom for which var(A) = @. A ground rule is a rule 7 for which
var(r) = 0.

Definition 5 (Extension) Given a set D3 of labels, the extension of D3, written D§*,
is the set of path expressions containing the following elements:

e cach element in D3

e for each ordered pair p1,pa of elements of D§*t, the element p1.po

Definition 6 (Extended Active Domain) The active domain of an interpretation T,
noted Dt is the set of elements appearing in I, that is, o subset of D1 U Dy U Ds. The
extended active domain of I, denoted DE*, is the extension of Dz, that is, a subset of
Dy U Dy U DE*.

Definition 7 (Interpretation) Given a program P, an interpretation T of P consists

of:
e A domain D
o A mapping from each constant symbol in P to an element of domain D

e A mapping from each n-ary predicate symbol in P to a relation in (D)™

Definition 8 (Valuation) A valuation v is a total function from V to the set of elements
D1 UD,. A wvaluation vy is a total function from V to the set of elements Dget. Let
v =1 Uuws. v is extended to be identity on D and then extended to map free tuples to
tuples in a natural fashion.

Definition 9 (Atom Satisfaction) Let 7 be an interpretation. A ground atom L is
satisfiable in T if L is present in .

Definition 10 (Rule Satisfaction) Let r be a rule of the form :
r:A Li,...;Ly|lci,y---,em

where Ly, ..., Ly, are (positive) atoms, and c1,...,¢y are path constraints. Let T be an
interpretation, and v be a valuation that maps all variables of r to elements of DEt. The
rule r is said to be true (or satisfied) in interpretation T for valuation v if v[A] is present in
T whenever each v[L;],i € [1,n] is satisfiable in I, and each v(c;],j € [1,m] is satisfiable.

14

6.5.1 Fixpoint Semantics

The fixpoint semantics is defined in terms of an immediate consequence operator, Tp, that
maps interpretations to interpretations. An interpretation of a program is any subset of
all ground atomic formulas built from predicate symbols in the language and elements in
‘Dewt.

Each application of the operator Tp may create new atoms. We show below that Tp
is monotonic and continuous. Hence, it has a least fixpoint that can be computed in a
bottom-up iterative fashion.

Recall that the language of terms has three countable disjoint sets: a set of atomic values
(Dy1), a set of entities (D2), and a set of labels (D3). A path expression is an element of
D§*. We define D¢ = Dy U Dy U DL

At the iteration 1, only paths of length® 1 (i.e., simple labels, elements of D3) are considered
during rules triggering. At iteration k, we consider paths of length less or equal to & (cf.
figure 3). It is clear that the paths occurring in the final result are of length less or equal
to the size (i.e., cardinality) of the base relation link.

Lemma 1 If7Z; and Iy are two interpretations such that Z; C Io, then D%ft C D%;”t.

Definition 11 (Immediate Consequence Operator) Let P be a program and T an
interpretation. A ground atom A is an immediate consequence for T and P if either A € Z,
or there exists a rule v : H < Lq,...,Ly|lc1,-...,cm in P, and there exists a valuation v,
based on D&, such that:

e A=v(H), and
e Vi € [1,n], v(L;) is satisfiable, and
e v(ci,...,Cn) satisfiable.

Definition 12 (T-Operator) The operator Tp associated with program P maps in-
terpretations to interpretations. If T is an interpretation, then Tp(Z) is the following
interpretation:

Tp(Z) =TU{A | A is an immediate consequence for Z and P}

Figure 3 shows the new facts produced at each iteration of the operator Tp in the case of
the program P of Figure 2.
Note that, after the iteration 5, no new facts can be produced.

Lemma 2 (Monotonicity) The operator Tp is monotonic; i.e., if 1 and Iy are two
interpretations such that Iy C Iy, then Tp(Zy) C Tp(Z2)

5The length of a path is the number of labels composing the path.

15

Iteration 1
link(archive-entry, o,, video),
link(archive-entry, o,, video),
link(o,, a,, actors),
link(o,, s,, subjects),
link(o,, t,, themes),
link(s,, t;, themes),
link(a,, o, playsin),
link(o,, p,, producedBy),
link(p,, n;, name),
link(a,, n,, name)

Iteration 2
link(archive-entry, s,, video.subjects)
link(archive-entry, a,, video.actors),
link(archive-entry, t,, video.themes),
link(archive-entry, p,, video.producedBy),
link(o,, t;, subjects.themes),
link(o,, n,, actors.name),
link(o,, n,, producedBy.name),
link(o,, 0,, actors.playsin),
link(a,, s,, playsin.subjects)

Iteration 4
link(archive-entry, s,, video.actors.playslin.subjects),
ink(0,, t,, actors.playsin.subjects.themes)

Iteration 3
link(archive-entry, t;, video.subjects.themes)
link(archive-entry, n,, video.actors.name),
link(archive-entry, o,, video.actors.playsin),
link(archive-entry, n,, video.producedBy.name),

link(02, s1, actors.playsIn.subjects),)) lteration 5 ‘
link(a,, t,, playsin.subjects.themes) link(archive-entry, t,, video.actors.playsin.subjects.themes)

Figure 3: The new facts (immediate consequences) produced at each iteration.

Proof Let Z; and Z, be two interpretations such that Z; C Zo. We must show that if an
atom A is an immediate consequence for 7y and P, then A € Tp(Zs).

Since A is an immediate consequence for Z; and P, at least one of the following cases
applies:

e A€Z;. Then A € Ty, and thus A € Tp(Zs);

e there exists a rule r : H < Ly,...,Lyllc1,...,¢n in P and a valuation v, based on
D5, such that A = v(H), Vi € [1,n]v(L;) is satisfiable, and v(ci, . . . , ¢) satisfiable.
Following the Lemma 1, v is also a valuation based on D%ft. Since Z; C Iy, we have
v(L;) satisfiable Vi € [1,n], and v(cy, ..., cy) satisfiable. Hence A € Tp(Zy).

Theorem 1 (Continuity) The operator Tp is continuous, that is, if Iy, To, I3, ... are
interpretations such that I C Iy C I3... (possibly infinite sequence), then Tp(|J;Z;) C
Ui TP(Ii)'

Proof Let 7 = |J,Z; and let A be an atom in Tp(Z). We must show that A is also in
U; Tp(Z;). At least one of the following two cases applies:

e AcZ,ie., Ac|J,Z; Then, there exists some j such that A € Z;. Thus, A € Tp(Z;)
and consequently A € |J, Tp(Z;).

e There exists a rule r : H < Ly,...,Ly||¢1,...,¢n in P and a valuation v based on
D&% such that Vi € [1,n] v(L;) is satisfiable and v(cy, . . . , ¢) satisfiable. Since v(L;)
satisfiable, there exists some j; such that v(L;) satisfiable in Z;;. In addition, since

16

the 7;, are increasing, there exists some [, such that Z;, C Z; for all j;. Hence, v(L;)
satisfiable in Z; Vi € [1,n] and v(cy, ..., ¢y) satisfiable. Let V = wvar(Ly,...,Ly) be
the set of variables in the rule r, and let v(V') be the result of applying v to each
variable in V. v(V) is a finite subset of D§** since v is based on D&*. We have
v(L;) satisfiable Vi € [1,n] and v(cy, ..., cn) satisfiable. Thus, v(var(L;)) satisfiable
in D%ft Vi € [1,n] and v(cy,...,cny) satisfiable. Then A € Tp(I;) (A = v(H)).
Consequently A € |J; Tp(Z;).

Lemma 3 7 is a model of P iff Tp(Z) C I.

Proof
” =7 If 7 is an interpretation and P a program, then let cons(P,Z) denote the set of all
ground facts which are immediate consequences for Z and P.

Tp(Z) =TU{A | A is an immediate consequence for Z and P}

For any element A in cons(P,T), at least one of the following cases holds:
e A € 7. By definition of immediate consequence;

e there exists arule r: H < Ly,..., Ly||c1,...,¢m in P, and a valuation v such that
Vi € [1,n] v(L;) satisfiable in Z, v(cy, ..., cy) satisfiable, and A = v(H). Since 7 is
a model of P, T satisfies r (Z |=r), and then A € Z. Thus, Tp(Z) C T .

7 <=7 Let Z be an interpretation and P be a program.

Let r: H < Ly,...,Lylci,-..,cn be any rule in P and v any valuation. If Vi € [1, n]v(L;)
satisfiable in Z and v(cy, .. ., ¢y) satisfiable in Z, then v(H) € Tp(Z). Because Tp(Z) C Z,
we have v(H) € Z, and then 7 satisfies r (Z =r). Hence Z |= P. [

Lemma 4 Each fixpoint of Tp is a model for P.

Proof Follows immediately from Lemma 3. |

Theorem 2 Let P be a program and L an input such that the minimal model for P exists,
then the minimal model and the least fixpoint coincide.

Proof Let P be a program and Z an interpretation, Let us denote by P(Z) the minimal
model of P containing Z. According to lemma 3, Tp(P(Z)) C P(Z). Tp is monotonic, so
Tp(Tp(P(Z))) C Tp(P(I)), and then Tp(P(ZI)) is a model of P containing Z. As P(Z) is
the minimal model containing Z, we have P(T) C Tp(P(Z)). As P(I) is a fixpoint of P
and also a minimal model of P, each fixpoint of Tp containing 7 is a model of P containing
P(Z). Thus P(Z) is the minimal model of P containing Z. |

17

7 Query Containment

Containment’ and equivalence of queries is the problem of checking whether the result
of one query is contained in or equal to, what another query produces [2, 67]. Contain-
ment is mainly concerned with query optimization. For example, in the case of the use of
materialized views for rewriting queries, a given query is compared against multiple view
definitions (which may be seen as queries as well) to identify which of them may be com-
bined to answer the query. This comparison is essentially testing for query containment.

In this section we present an algorithm for deciding the containment of a query within a
view (which is a query as well). Our method is inspired by the one given in [68].

Definition 13 (Containment) Given a query Q and a view V in our query language, are
the answers to @@ also answers to V in any database state.

The following algorithm takes as input a query Q||C and a view V||C’ and checks whether
the query is contained in the view. We call this algorithm QCD (Query Containment
Decision).

Algorithm QCD
(Checking Containment of a query in a view)

Require: a query Q||C and a view V||C’
Ensure: Q||C is contained in V||C" or not.
1: Generate a canonical database C,DB form Q||C
// C.,DB :HQUBQUCQ
// Hg: the instanciated head of the query Q||C
// Bg: the instanciated body of the query Q||C
// Cq: the instanciated constraint part of the query Q||C
Evaluate the view V|[|C" over C,DB. Let Fc,pg be the result (a set of facts).
If Fe,oe C Hg
then return @||C contained in V||C’
else return Q||C not contained in V||C’

In the following, we explain the different steps of the algorithin.

Intuitively, the QCD algorithm discovers the containment by ”matching” the view with
subgoals of the query. In particular, the matching is done as follows: First we create a
prototypical database containing ”frozen fact” for every subgoal of the query. Frozen facts
are derived by turning the object variables in the query into unique constants which will
be denoted by a bar.

Example 1 Consider the following query:

Answer(X,Y) : —link(X,Y, a)||8<a, BEvideo.sequences

" Also called implication.

18

which consists in retrieving a set of pairs (X, Y) such that Y is reachable from X by a path
starting with the sub-path video.sequences and ending with any sub-path.

The prototypical database for this query is then:

Answer(Z, §), link(Z, 7,), B<a, SEvideo.sequences
We distinguish three parts in this database:
e Hg which is the singleton containing the frozen fact derived from the head of the
query @, ie., Hg = {Answer(Z,)}

e Bg which is the set of frozen facts derived from the body of the query, i.e., Bg =
{link(z, 7, @)}

e (g the set of constraints in () after object variables are turned into constants, i.e.,
Cg = {B=a, B€video.sequences}.

The QCD algorithm then evaluates the view over a subset of the prototypical database
(here Bg U Cg), trying to derive the frozen fact corresponding to the head of the query
(i.e., the content of Hgp).

Example 2 Consider the following view:

Answer(U, V) : —link(U, V, v)||p=<", pEvideo
the evaluation of the body of this view over BoU Cq leads to the following ground instance
of the view

Answer(zZ,) : —link(Z, 7, a)||8<a, BE€video, B<a, BEvideo.sequences

with the substitution o0 = {U/z,V/y,v/a, p/B}. Note that the constraint part of the proto-
typical database (i.e., Cg) is added to the constraint part of the view. In our case, the body
and the constraint parts of the instanciated view are satisfiable and then we can derive the
head of the view which is contained in Hg).

Theorem 3 (Correctness) Algorithm QCD terminates and produces yes is the query en-
tails the view and no otherwise.

8 Related Work

We discuss the relationship of our work to query languages for semistructured data and
path queries with constraints. This section is intended to be illustrative. We apologize if
we left out other relevant works.

19

Query languages for semistructured data. Semistructured data is modeled as labeled
graph, in which the nodes correspond to the objects and the edges to their attributes.
Most query languages proposed for semistructured data can navigate the data using Reg-
ular Path Fxpressions, thus traversing arbitrary long paths in the graph.

In [3], for example, a query language, called Lorel, for semistructured data is obtained
by extending OQL[20] with powerful and flexible path expressions, which allow querying
without precise knowledge of the structure. Path expressions are built from labels and
wild-cards (place-holders) using regular expressions, allowing the user to specify rich pat-
terns that are matched to actual paths in the database graph. One of the limits of this
language is that it does not allow to express recursive queries over database graphs.

The language reported in [17], UnQL, is closely related to Lorel, allowing to query data
organized as a root, edge-labeled graph. A primary feature of UnQL is a powerful con-
struct called traverse that allows restructuring of trees to arbitrary depth. The language
of terms uses variables ranging over trees or over edge labels. A tree is seen as a set of
edge/subtree pairs. For example, in the expression of the form \l = \¢ < DB, the label
variable \! is used to match any edge emanating from the root of the database DB. the
variable \t will be bound to the associated subtree. Certain restructuring queries, which
require a fixpoint operation, appear not to be expressible in UnCAL, a calculus for UnQL.

[47] proposed a SQL-like query language (called WebSQL) that integrates textual retrieval
with structure and topology-based queries. The language is designed to query the World
Wide Web. To make reference to the hypertext structure of the web, the language uses
a set of symbols allowing to define path regular expressions. For example, =|= . =* is a
regular expression that represents the set of paths containing the zero length path and all
paths that start with a global link and continue with zero or more local links. A hypertext
link is said to be local if the destination and the source documents are different but located
on the same server, and it is said to be global if the destination and the source documents
are located on different servers. In this language, queries may contain constraints like zvy,
where v is a variable ranging over paths. Again, this proposal does not allow to express
recursive queries which may be extremely useful when querying the Web.

In [22, 23], extensions to OQL are proposed that are somewhat similar in spirit or goals
to LOREL. In [22], a more rigidly typed approach is followed, but because heterogeneous
collections are introduced, the model still has a strong similarity to OEM. However, the
language proposed in [22], called OQL-doc, does not use coercion the way it is used in
LOREL, and the treatment of path expressions is quite different. Optimizing the evalua-
tion of generalized path expressions is considered in [23]. Their optimization is based on
two object algebra operators, one dealing with paths at the schema level and one with
paths at the data level.

[33] investigated conjunctive queries that allow for incomplete answers in the framework
of semistructured data. The proposed model of query evaluation consists of a search phase

20

(involving search constraints), where a query graph containing variables is used to match
a maximal portion of the database graph, and a filter phase (involving filter constraints)
where the maximal matchings resulting from the search phase are subjected to constraints.
The authors deliberately limited their investigation to queries that do not allow regular
path expressions.

Also related to our work are several queries for the World-Wide Web that have emerged
recently, e.g., W3QL [39], which focuses on extensibility, and WebLog [41] which is based
on a Datalog-like syntax. Additional relevant work includes query languages for hyper-
text structures, e.g., [13, 26, 49, 46], and work on integrating SGML [29] documents with
relational databases [14], since SGML documents can be viewed as semistructured data.

In the area of heterogeneous database integration, which is a common scenario for semistruc-
tured data, most of work has focused on integrating data in well structured databases.
In particular, systems such as Pegasus [55] and UniSQL/M [38] are designed to integrate
data in object-oriented and relational databases. At the other end of the spectrum, sys-
tems such as GAIA [56] and ACL/KIF [28] provide uniform access to data with minimal
structure.

[39] also incorporated path expressions. In the proposed language, the condition part of a
query may contain expressions of the form path = regexp where path is a path expression
and regexp is a Perl [59] regular expression.

path queries with constraints. Abiteboul and Vianu [5] investigated the evaluation
and optimization of path expression queries involving path constraints. Path constraints
are local; they may capture the structural information about a web site (or a collection of
sites). A path constraint is an expression of the form p C g or p = ¢ where p and ¢ are
regular expressions. A path constraint p C g holds at a given site if the answer to query p
applied to that site is included in the answer to ¢ applied to the same site (and similarly
to p = ¢). The constraint p = ¢ is also allowed in our constraint language. Constraints
such as < and oll8 cannot be expressed as word constraints [5].

Buneman et al. [18] proposed a class of path constraints that are useful for both structured
and semistructured data for specifying natural integrity constraints. A path constraint ¢ is
an expression of either the forward form Vzy(p(r,z) A ¢(z,y) — v(z,y)) or the backward
form Vzy(p(r,z) A g(z,y) — ¥(y,z)) where p,q,7v are paths. This constraint language
cannot express queries like <A and oIIS.

9 Conclusion

There is a growing interest in semistructured databases. As such data (e.g., on the Web)
proliferate, aids to browsing and filtering become increasingly important tools for inter-
acting with such exponentially growing information resources and for dealing with access
problems.

21

In this paper, we have presented a class of path constraints and addressed the problem
of developing a formal, rule-based constraint query language that allows the retrieval of
semistructured data. The primary motivation of this work was that path constraints are
relevant in semistructured data retrieval and the absence of suitable support for expressing
such constraints in traditional query languages represent a serious obstacle.

Our approach is purely declarative and formulated in terms of constraints between path
variables which straightforwardly capture, for example, what it means for two paths to be
divergent. The implementation of query evaluation procedures requires efficient algorithms
for solving path constraints. A formal account of constraint languages for semistructured
data is an essential step in demonstrating the correctness of such algorithms, and may
yield more efficient processing strategies.

References

[1] S. Abiteboul. Querying Semi-Structured Data. In Proceedings of the International
Conference on Database Theory (ICDT’97), Delphi, Greece, pages 1-18, Janvier 1997.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

. 1iteboul, D. Quass, J. McHugh, J. Widom, an . L. Wiener. e Lore

3] S. Abiteboul, D. Q J. McHugh, J. Wid d J. L. Wi The Lorel
Query Language for Semistructured Data. International Journal on Digital Libraries,
1(1):68-88, 1997.

[4] S. Abiteboul and V. Vianu. Queries and Computation on the Web. In F. N. Afrati and
P. Kolaitis, editors, In Proceedings of the 6th International Conference on Database
Theory (ICDT’97), Delphi, Greece, volume 1186 of Lecture Notes in Computer Sci-
ence, pages 662—675. Springer, 1997.

[5] S. Abiteboul and V. Vianu. Regular Path Queries with Constraints. In Proceed-
ings of the Sizteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Databases (PODS’97), Tucson, Arizona, pages 122-133. ACM Press, May 1997.

[6] H. ATt-Kaci. An Algebraic Semantics Approach to the Effective Resolution of Type
Equations. Theoretical Computer Science, 45:293-351, 1986.

[7] H. Ait-Kaci and R. Nasr. LOGIN: A Logic Programming Language with Built-in
Inheritance. Journal of Logic Programming, 3(3):185-215, 1986.

[8] H. Ait-Kaci and A. Podelski. Towards a Meaning of LIFE. The Journal of Logic
Programming, 16(3-4), July 1993.

[9] H. Ait-Kaci, A. Podelski, and G. Smolka. A Feature-Based Constraint System for
Logic Programming with Entailment. Theoretical Computer Science, 122:263-283,
1994.

22

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and Z. Zdonik. The
Object-Oriented Database Manifesto. In In Proceedings of the First International
Conference on Deductive and Object Oriented Databases (DOOD’89), Kyoto, Japan,
pages 40-57, 1989.

F. Baader, H. J. Biickert, B. Nebel, W. Nutt, and G. Smolka. On the Expressivity of
Feature Logics with Negation, Functional Uncertainty, and Sort Equations. Journal
of Logic, Language and Information, 2:1-18, 1993.

R. Backofen. Regular Path Expressions in Feature Logic. Journal of Symbolic Com-
putation, 17:421-455, 1994.

C. Beeri and Y. Kornatski. A Logic Query Language for Hypermedia Systems. In-
formation Systems, 77, 1994.

G. Blake, M. Consens, P. Kilpelainen, P. Larson, T. Snider, and F. Tompa.
Text /relational Database Management Systems: Harmonizing SQL and SGML. In

Proceedings of the First International Conference on Applications of Databases, Vad-
stena, Sweden, pages 267-280, 1994.

R. J. Brachman and H. J. Levesque. The Tractability of Subsumption in Frame-
based Description Languages. In Proceedings of the National Conference on Artificial
Intelligence, pages 34-37, Aug. 1984.

P. Buneman. Semistructured Data. In Proceedings of the ACM Symposium on Prin-
ciples of Database Systems, Tucson, Az, USA, 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and
Optimization Techniques for Unstructured Data. In Proceedings of the ACM SIG-
MOD International Conference (SIGMOD’96), Montreal, Canada, pages 505-516,
June 1996.

P. Buneman, W. Fan, and S. Weinstein. Path Constraints on Semistructured and
Structured Data. In Proceedings of the seventeenth ACM-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS’98), Seattle, Washington, pages
129-138. ACM Press, 1998.

H.-J. Biirckert. A Resolution Principle for Constrained Logics. Artificial Intelligence,
66:235-271, 1994.

R. G. G. Cattell. The Object Database Standard: ODMG-93. Maurgan Kaufmann,
San Francisco, California. 1994.

C. Chang, H. Garcia-Molina, and A. Paepcke. Boolean Query Mapping Across Het-
erogeneous Information Sources. IEEE Transactions on Knowledge and Data Engi-
neering, 8(4), 1996.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Docu-
ments to Novel Query Facilities. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’9}), pages 313-324, May 1994.

23

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized
Path Expressions. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’96), pages 313-322, June 1996.

E. F. Codd. Extending the Database Relational Model to Capture more Meaning.
ACM Transactions on Database Systems, 4:397-434, 1979.

A. Colmerauer. Equations and Inequations on Finite and Infinite Trees. In Proceed-
ings of the 2nd International Conference on 5th Generation Computer Systems, pages
85-99, 1984.

M. P. Consens and A. O. Mendelzon. Expressing Structural Hypertext Queries in
Graphlog. In Proceedings of the Second ACM Conference on Hypertext, Pittsburgh,
Pennsylvania, Nov. 1989.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for a Web
Site Management System. SIGMOD Record, 26(3):4-11, 1997.

M. Genesereth and R. Fikes. Knowledge Interchange Format Reference Manual.
Available as http://logic.stanford.edu/sharing/papers/kif.ps. 1994.

C. F. Goldfarb and Y. Rubingki. The SGML Handbook. Clarendon Press, Ozxford,
UK, 1990.

M.-S. Hacid, C. Decleir, and J. Kouloumdjian. A Database Approach for Modeling
and Querying Video Data. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 12(5):729-750, 2000.

M. Hohfeld and G. Smolka. Definite Relations over Constraint Languages. LILOG
Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, Germany,
Oct. 1988.

M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI Lectures
Notes 16, Center for the Study of Language and Information, 1988.

Y. Kanza, W. Nutt, and Y. Sagiv. Queries with Incomplete Answers over Semistruc-
tured Data. In Proceedings of the Fighteenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Databasests (PODS’99), Philadelphia, Pennsylvania, pages
227-236. ACM Press, May 1999.

R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A Formal System for
Grammatical Representation. In J. Bresnan, editor, The mental Representation of
Grammatical Relations, pages 173-381. MIT Press, Cambridge (MA), 1982.

R. T. Kasper and W. C. Rounds. A Logical Semantics for Feature Structures. In
Proceedings of the Annual Meeting of the Association of Computational Linguistics,
pages 257-265, 1986.

M. Kay. Functional Grammar. In C. Chiarello, editor, Proceedings of of the fifth
Annual Meeting of the Berkeley Linguistics Society, pages 142-158, 1979.

24

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

M. Kay. Parsing in Functional Unification Grammar. In Natural Language Parsing:
Psychological, Computational, and Theoretical Perspectives, Chapter 7, pages 251-
278. Cambridge University Press, 1985.

W. Kim. On Object Oriented Database Technology. UniSQL Product Literature.
1994.

D. Konopnicki and O. Shmueli. W3QS: A Query System for the World-Wide Web. In
U. Dayal, P. M. D. Gray, and S. Nishio, editors, Proceedings of the 21th International
Conference on Very Large Databases (VLDB’95), Zurich, Switzerland, pages 54-65.
Morgan Kaufmann, Sept. 1995.

G. Kuper, L. Libkin, and J. Paradaens. Constraint Databases. Springer-Verlag, March
2000.

L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A Declarative Language
for Querying and Restructuring the Web. In Proceedings of the Sizth International
Workshop on Research Issues in Data Engineering (RIDE’96), Feb. 1996.

J. W. Lioyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second
edition.

K. Marriott and P. J. Stuckey. Programming With Constraints : An Introduction.
MIT Press, January 1999.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. LORE: A Database
Management System for Semistructured Data. SIGMOD Record, 26(3):54-66, 1997.

G. Mecca and A. J. Bonner. Sequences, Datalog and Transducers. In Proceedings
of the 1995 Symposium on Principles of Database Systems (PODS’95), San Jose,
California, pages 23-35, May 1995.

A. Mendelzon and P. T. Wood. Finding Regular Simple Paths in Graph Databases.
SIAM Journal of Computing, 24(6), 1995.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web.
International Journal on Digital Libraries, 1(1):54-67, 1996.

A. O. Mendelzon and T. Milo. Formal Models of Web Queries. In Proceedings of the
Sizteenth ACM-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’97), Tucston, Arizona, pages 134-143. ACM Press, 1997.

T. Minohara and R. Watanabe. Queries on Structure in Hypertext. In Foundations
of Data Organization and Algorithms (FODO’93), pages 394-411, 1993.

K. Mukai. Partially Specified Terms in Logic Programming for Linguistic Analysis.
In Proceedings of the 6th International Conference on Fifth Generation Computer
Systems, Tokyo, Japan, 1988.

25

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

B. Nebel. Reasoning and Revision in Hybrid Representation Systems. LNCS-422.
Springer-Verlag, 1990.

B. Nebel and G. Smolka. Representation and Reasoning with Attribute Descriptions.
In K. H. Blasius, U. Hedtstiick, and C.-R. Rollinger, editors, Sorts and Types in
Artificial Intelligence, volume 418 of LNAI pages 112-139. Springer Verlag, 1990.

S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistructured
Data. In L. M. Haas and A. Tiwary, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD’98), pages 295-306,
Seattle, Washington, USA, June 1998. ACM Press.

C. Pollard and 1. Sag. Head Driven Phrase Structure Grammar. Studies in Contem-
porary Linguistics. Cambridge University Press, Cambridge, England, 1994.

A. Rafii, R. Ahmed, M. Ketabchi, P. DeSmedt, and W. Du. Integrating Strategies in
the Pegasus Object Oriented Multidatabase System. In Proceedings of the Twenty-

Fifth Hawaii International Conference on System Sciences, volume 11, pages 323-334,
1992.

R. Rao, B. Janssen, and A. Rajaraman. GATA Technical Overview. Technical Report,
Xerox Palo Alto Research Center. 1994.

J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle. Journal
of the ACM, 12(1), 1965.

W. C. Rounds. Feature Logics. In J. van Benthem and A. ter Meulen, editors,
Handbook of Logic and Language, pages 475-533. Elsevier Science Publishers B.V.
(North Holland), 1997. Part 2: General Topics.

R. L. Schwartz. Learning Perl. O’Reilly & Associates, Inc., 1993. Ch. Regular
expressions.

S. Shieber, H. Uszkoreit, F. Pereira, J. A. Robinson, and M. Tyson. The Formal-
ism and Implementation of PART-II. In J. Bresnan, editor, Research on Interactive
Acquisition and Use of Knowledge. SRI International, Menlo Park, California, 1983.

S. M. Shieber. The Design of a Computer Language for Linguistic Information. In
Proceedings of COLING’84, pages 363—-366. 1984.

S. M. Shieber. An Introduction to Unification-Based Approaches to Grammar. volume
4 of CSLI Lecture Notes. Center for the Study of Language and Information, Stanford
University, 1986.

G. Smolka. Feature Constraint Logics for Unification Grammars. Journal of Logic
Programming, 12(1-2):51-87, 1992.

G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer Science
Today, Lecture Notes in Computer Science, vol. 1000, pages 324-343. Springer-Verlag,
Berlin, 1995.

26

[65]

[66]

[67]

[68]

[69]

G. Smolka and R. Treinen. Records for Logic Programming. Journal of Logic Pro-
gramming, 18(3):229-258, Apr. 1994.

J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACeDB Data Base
Manager. Technical report mrc-lmb, MRC Laboratory for Molecular Biology, 1992.

J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1, II.
Computer Science Press, Rockville MD, 1989.

V. Vassalos and Y. Papakonstantinou. Describing and Using Query Capabilities of
Heterogeneous Sources. In Proceedings of the 23rd International Conference on Very
Large Databases (VLDB’97), Athens, Greece, pages 256-265, 1997.

J. W. Y. Papakonstantinou, H. Garcia Molina. Object Exchange Across Heteroge-
neous Information Sources. In Proceedings of the 11th International Conference on
Data Engineering (ICDE’95), Taipei, Taiwan, pages 251-260, Mars 1995.

27

