Ranking for Data Repairs

Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville
Purdue University, West Lafayette, IN 47907, USA

{myakout, ake, neville}@cs.purdue.edu

Abstract— Improving data quality is a time-consuming, labor-
intensive and often domain specific operation. A recent principled
approach for repairing dirty database is to use data quality rules
in the form of database constraints to identify dirty tuples and
then use the rules to derive data repairs. Most of existing data
repair approaches focus on providing fully automated solutions,
which could be risky to depend upon especially for critical
data. To guarantee the optimal quality repairs applied to the
database, users should be involved to confirm each repair. This
highlights the need for an interactive approach that combines the
best of both; automatically generating repairs, while efficiently
employing user’s efforts to verify the repairs. In such approach,
the user will guide an online repairing process to incrementally
generate repairs. A key challenge in this approach is the response
time within the user’s interactive sessions, because the process
of generating the repairs is time consuming due to the large
search space of possible repairs. To this end, we present in this
paper a mechanism to continuously generate repairs only to the
current top k important violated data quality rules. Moreover, the
repairs are grouped and ranked such that the most beneficial
in terms of improving data quality comes first to consult the
user for verification and feedback. Our experiments on real-world
dataset demonstrate the effectiveness of our ranking mechanism
to provide a fast response time for the user while improving the
data quality as quickly as possible.

1. INTRODUCTION

There is unanimous agreement among researchers and prac-
titioners alike on the importance of data quality for many real
world applications and the unimaginable consequences of mak-
ing decisions based on inconsistent, inaccurate or incomplete
data. Poor data quality is a fact of life for most organizations
[1]. For example, poor data quality in retail databases alone
costs US consumers $2.5 billion annually [2]. Not to mention
the importance of data quality in the healthcare domain. In
such critical applications, incorrect information about patients
in an Electronic Health Record (EHR) may lead to wrong
treatments and prescriptions, which consequently may cause
severe medical problems including death.

A general and recent domain independent approach for
improving data quality is to (i) discover and identify some
data quality rules (DQRs), and then, (ii) use these rules to
derive data repairs for dirty instances that violate these rules.
Various techniques have followed this approach for automatic
data repairs, (e.g., [3], [4], [5], [6], [7], [8], [9]). However,
in real-world scenario, this is not sufficient and domain users
have to verify the applied repairs, especially, when in critical
domains like healthcare.

Automatic repair techniques usually employ heuristics by
defining a cost model (or evaluation function) to greedily select
the best repairs among the many possible repairs for a dirty
tuple violating the rules. In most cases, the cost model prefers
repairs that minimally change the original data. For example,
choosing values that are close in distance to the dirty values.
However, inconsistent values could be completely different, i.e.,

not close in distance. It is also usually assumed that the values
derived directly from a pre-specified cleaning rule are always
correct. For example, if the rule is “zip=47906 — state=IN"" and
a dirty tuple contains “zip=47906, state=IL", then the repair is
to change the state to IN. However, it could be the case that
the zip code is actually wrong. Consequently, domain users
will have to be involved in interactively monitoring the repair
process [4].

One of the key challenges in an interactive data repair
system is to provide a fast response time during the user
interactions. More specifically, we need to determine how to
explore the repair search space to generate repairs. This will
require developing a set of principled measures to estimate the
improvement in quality to reason about these tasks. This should
help achieve a good trade-off between high quality, responsive
system and minimal user involvement, which are top priorities
of an interactive data cleaning approach.

In this paper, we present a ranking mechanism for the DQRs
to explore the search space with the objective of satisfying
only the top £ rules. This will help reducing the response time
spent in each interactive repairing session to search for repairs.
Moreover, we summarize a ranking mechanism for groups of
repairs to provides the most beneficial repairs to the user first.
We show empirically that by combining both rules ranking with
repair group ranking, we can achieve fast convergence to better
data quality with minimal user efforts.

Example

We consider the relation Person(Name, SRC, STR, CT,
STT, ZIP), which specify personal address information Street
(STR), City (CT), State (STT) and (ZIP), in addition to the
source (SRC) of the data or the identity of the data entry
operator. An instance of this relation is shown in Fig. L.

Data quality rules can be defined in the form of conditional
functional dependencies (CFDs) as described in Fig. I(b). A
CFD is a pair consisting of embedded standard functional
dependance (FD) and a pattern tableau. For example, ¢1 — ¢3
state that the FD ZIP — CT,STT (i.e., zip codes uniquely
identify city and state) holds in the context where the ZIP is
46360, 46774 or 46825'. Moreover, the pattern tableau enforces
bindings between the attribute values, e.g., if ZIP=46360, then
CT= Michigan City. ¢5 states that the FD STR,CT — ZIP
holds in the context where CT = Fort Wayne, i.e., street names
uniquely identify the zip codes whenever the city is Fort Wayne.
Note that all the tuples have violations.

Typically, a repair algorithm will use the rules and the current
database instance to find the best possible repairs to satisfy the
violated rules. For example, ¢5 violates ¢4 and a possible repair

'Some zip codes in the US may span more than one city

Name | SRC STR cT STT| ZIP
t1] Jim [H1| REDWOOD DR | MICHIGAN CITY | MI [46360
t2] Tom | H2 | REDWOOD DR WESTVILLE IN | 46360
t3] Jeff | H2 | BIRCH PARKWAY WESTVILLE IN | 46360
t4] Rick | H2 | BIRCH PARKWAY WESTVILLE IN | 46360
t5] Joe | H1 BELL AVENUE FORT WAYNE | IN [46391
t6] Mark | H1 BELL AVENUE FORT WAYNE | IN 46825
t7] Cady | H2 SHERDEN RD FT WAYNE IN |46774
(a) Data

¢1: (2IP — CT,STT, {46360 || MichiganCity, IN})
¢2: (ZIP — CT,STT, {46774 | NewHaven, IN})
¢3: (ZIP — CT,STT, {46825 | FortWayne, IN})
¢4 : (ZIP — CT, STT, {46391 | Westville,IN})

¢5 : (STR,CT — zIP,{ _ ,FortWayne | _})
(b) CFD Rules
Fig. 1. Example data and rules

would be to either replace CT by Westville or ZIP by 46825
which would fall in the context of ¢3 but without violations.

Then a question is raised; do we need to generate the possible
repairs for all the dirty tuples? This will be time consuming
for large databases. Assuming that the persons leaving in zip
codes 46360 are currently more important for the business
and their information should be more accurate than the others.
Then, we can limit the repair generation mechanism to suggest
repairs for ¢; since it is more valuable to the business and
it is highly violated. Focusing on repairing the violations of
¢1 will improve the quality of an important portion of the
data, and at the same time, this will reduce the response time
spent in searching for repairs for the first four tuples instead
of finding repairs for all the tuples. This motivates our rules
ranking mechanism to guide the repairing process and provide
a responsive interactive repairing system.

To involve the user in guiding the repair process, it is impor-
tant to provide the repairs into groups that can be easily handled
by users, e.g., displaying a group of dirty tuples where the CT
is suggested to be Michigan City. From our experience, this
grouping proved to be highly effective in manually verifying
large number of repairs quickly. Moreover, assuming that the
repair mechanism suggests for repairing ¢,, t3, and ¢4 that CT
be replaced with Michigan City (which is a correct value for
to,t3 but incorrect for t4), and suggests for repairing ¢s3 and
ty that ZIP be replaced by 46391 (which are both incorrect
repairs). It will be useful to consult the user for the first group
because (i) the repairs are more likely to be correct, and (ii) the
high number of correct repairs will allow for fast convergence
to a cleaner database. For the second group, we will not get
such impact.[]

The rest of the paper has three main parts: The first part is
Section II, which provides guidelines for our interactive repair-
ing framework. The second part is Section III, which covers
the main novelty of our framework, namely the mechanisms
for ranking the DQRs and suggested repairs. The third part is
a discussion of our experimental evaluation in Section IV. We
wrap up and conclude the paper in Section V.

II. FRAMEWORK

In this section, we illustrate our interactive repairing frame-
work that combines together an automatic repairing technique

Procedure 1 Interactive_Repair(D dirty database, > DQRs)
1: Identify the dirty tuples in D using 3.

2: repeat

3: Identify the top k important violated rules Y.

4: Possible Repairs «— Generate initial suggested repairs for the tuples
violating ¥y,

5: while Possible Repairs is not empty and the user is available do

6: Rank groups of repairs such that the most beneficial come first and

the user selects group ¢ from the top.

7: User interactively gives feedback on suggested repairs in ¢

8: Confirmed repairs are applied to the database.

9: Replace rejected repairs in Possible Repairs as needed.

10: Identify emerged dirty tuple and generate repairs as necessary.

11: end while
12: until Dirtypuples is empty or user is not available

with user involvement. Procedure 1 provides an outline of the
main steps of the framework.

The primary input to the framework is a relational database
instance D, which is dirty. The second input is a set of DQRs
3 that represent data integrity semantics. DQRs are a set of
constraints that need to be satisfied by all database tuples in
order for the database to be considered of high quality. Exam-
ples of such rules include general integrity constraints, standard
functional and inclusion dependencies (FDs and INDs resp.)
as well as their recent extension conditional functional depen-
dencies (CFDs) proposed in [10], and conditional inclusion
dependencies (CINDs) [11]. Another type is Dedupalog [12]
rules, which are used to eliminate duplicates. For example, in
Dedupalog, Paperx(id,id’) < TitleSimilar(t,t') means
that papers with similar titles are likely to be duplicate.

In Procedure 1, after identifying the dirty tuples which
violate the DQRs in step 1, our framework provides two types
of guidance: (i) guide the automatic repairing mechanism to
focus on discovering repairs for the most important violated
DQRs, and consequently, improve the system response time in
each repairing session. (ii) guide the user to focus his/her efforts
on verifying repairs that would improve the quality faster. This
guidance proceeds in a continuous feedback process in the steps
2-12, while there are dirty tuples and the user is available and
willing to give feedback.

Particularly in step 3, the system picks the top k& important
violated rules ;. This is followed by automatically generating
suggested repairs in step 4 for the tuples that violate only Xj.
This way we reduce the time spent in exhaustively searching
the whole space of repairs for all the dirty tuples and pro-
vides a responsive system. The generated repairs are stored in
Possible Repairs list.

Afterward, a user interactive session starts with each iteration
of the loop in steps 5-11. In each session, the repairs are
grouped and ranked (step 6), such that the most important
groups comes first, and the user starts to work on the first
group (c) in the list. (Selecting the top k rules and ranking
the repair groups is discussed in Section III.) The user then
provides feedback in step 7 (e.g. confirm, reject, or provide
new repairs) on the suggested repairs. Confirmed repairs are
immediately applied to the database in step 8, and for rejected
repairs, the system incrementally provide alternative repairs, as
needed (step 9). Since applied repairs will change the database
state, this will require, in step 10, identifying new emerged
violations to the DQRs due to this change.

III. GUIDED REPAIR

The key challenge to our framework hinges in steps 3 and
6 of Procedure 1. In this section, we address the problem of
quantifying the importance of satisfying a data quality rule, as
well as, the benefit from a group of suggested repairs to the data
quality. This will help us devising a scoring mechanism to rank
the DQRs (step 3) to focus on satisfying the top k rules when
generating repairs. Moreover, providing a ranking to the groups
of repairs (step 6) for user feedback according to its anticipated
benefit to the data quality. Both of these ranking mechanisms
will help in involving the user to verify the repairs that would
improve the data quality most, while providing a good response
time for the user between repairing sessions.

Before we proceed, we need to quantify the rule violations
by introducing the concept of a database violation as follows:

Definition 1: Database Violation to DQR ¢: Given a
database D and a DQR ¢, a database violation with respect to
¢, denoted by vio(D, {¢}), is defined as the number of tuples
violating ¢, vio(D,{¢}) = |{t | t = ¢ At € D}|, where t [~ ¢
denotes that t violates ¢.

Consequently, the total database violations for D with respect
to the set of DQRs X is:

vio(D, %) =Y vio(D,{4}).

PED

A. Guided Generation For Data Repairs

In the following, we propose an approach to guide the
automatic generation of data repairs. This approach provides
a mechanism for exploring the data repairs by prioritizing
the repairs search space for the sake of having a responsive
interactive system. The automatic generation of data repairs is
a time consuming process due to the large search space to find
the best repairs, even when greedy heuristics is applied. In our
repairing framework, instead of greedily deciding upon data
repairs, the user is involved to provide the necessary decisions
upon the repairs. If the framework starts by generating possible
repairs for all the identified dirty tuples, the user will have to
wait long time for system to initially respond. Moreover in later
user sessions, rejected repairs will require generation for other
repairs leading to more waiting time from the user.

To start with, we need first to define a data quality loss
function, which will be the objective to be minimized while
exploring the repairs search space, accordingly, we show how
to quantify the importance of a rule to be satisfied.

Data Quality Loss: We define the data quality loss, L(D),
as inversely proportional to the degree of satisfaction of the
specified DQRs Y. To compute L(D), we first need to measure
the quality loss with respect to a DQR ¢; € X, namely
ql(D|¢;). Assuming that D°P? is the clean optimal database
instance, where all the DQRs X are satisfied, we can express

ql by:

E(D.¢i) _ E D™, ¢:)- (D ¢)
': (DOpt7¢i)): (D0pt7¢i) (1)
where = (D, ¢;) and | (D°Pt, ¢;) are the numbers of tuples

satisfying the rule ¢; in the current database instance D and
DePt, respectively. Consequently, the data quality loss can be

ql(D|g;) =1 —

computed as follows:

L(D) = Z ql(D|¢;) x w;.)

o>

where w; is a weight to express the business value for the
quality of the database of satisfying the rule ¢;. These weights
are user defined parameters. In our experiments, we used the
values w; = %, where |D(¢;)| is the number of tuples
that fall in the context of the rule ¢; (e.g., in Figure 1, t5 and
tg fall in the context of ¢5 and t;-t4 fall in the context of ¢1).
The intuition is that the more tuples fall in the context of a rule,
the more valuable it is to satisfy this rule. Note that |D(¢;)]
covers tuples that both satisfy and violate ¢;.

Concerning the numerator expression in Eq. 1, namely the
difference between the numbers of the tuples satisfying ¢; in
D°Pt and D, respectively. This quantity can be approximated
using the number of tuples violating ¢;. Accordingly, we use
the expression vio(D, {¢;}) (cf. Definition 1) as the numerator
in Eq. 1. Moreover, we can approximate D°P* by D as it is
not expected to have most of the data dirty. This will lead to
the expected data quality loss as follows:

vio(D, {$i}) x w;
EIL(D)] = Y LA) X Wi
2T F D

Consequently, we can assign each rule ¢; an importance score

as follows:
_ vio(D, {¢:}) x w;
1=t o)

Satisfying the rules ¢; with the highest values of I(¢;),
would improve the quality most according to Eq. 3. Therefore,
we can guide the repairing mechanism to focus on finding
repairs only for the currently top k rules with the highest I
values.

3

“

B. Ranking Repair Groups

In the following, we discuss how to best present repairs to the
user, in a way that will provide the most benefit for improving
the quality of the data.

At any iteration of the process outlined in the steps 2-11 of
Procedure 1, there will be several possible suggested repairs
(in Possible Repairs list) to forward to the user for feedback.
These repairs are grouped into groups {ci,cs ...} according
to a grouping function. This function is selected in a way that
exposes the structure of data relationships with the objective
of providing a useful-looking set of repairs to be easier for
the user to handle and process. Example of grouping functions
include grouping repairs for tuples that have the same value
in a given attribute (e.g., age, city) and grouping repairs that
suggest the same value for attribute A (we used the later one for
our experiments). Similar grouping ideas have been explored
in [13], [14].

The formula to compute the data quality benefit to database
D of consulting the user for the repair group ¢ can be written
as follows:

vio(D, {¢;}) — vio(D",{¢;})
Blgle)) = D> wiy s " ®)
g o Z ':(D .77(251;)

where r; € c is a currently suggested repair in the system
within the group ¢, s; € [0,1] is a score attached to r;

ri€c

resulted from the repairing mechanism using a repair evaluation
function to represent the mechanism certainty of the repair r;,
the database instance resulting from applying the repair r; is
denoted by D"7, |= (D"7, ¢;) is the number of tuples satisfying
the DQR ¢; in the database instance D"/, and w; is a weight
to express how much valuable ¢; for the data domain to be
applied on the data.

To principally reason about the above benefit formulation in
Eq. 5, we developed a decision theoretic approach based on
the value of information [15] concept. The derivation details
are provided in a paper that is currently under submission.
However, the above formulation can be intuitively justified by
the following.

The main objective to improve the quality is to reduce the
database violations. Therefore, the difference in the amount of
database violations as defined in Definition 1, before and after
applying 7;, is a major component to compute the repair benefit.
This component is computed, under the first summation, for
every DQR ¢; as a fraction of the number of tuples that would
be satisfying ¢;, if r; is applied. Since the database does not
know the correctness of the repair 7;, we can not use the
term under the first summation as a final benefit score. Instead,
we compute the expected repair benefit by approximating our
certainty about the benefit by using s;, which is a repair
evaluation score for r;. s; is the score resulted from the repair
evaluation function used in the repairing mechanism. Finally,
it is usually expected for the DQRs to not have same (business
or sematic) value in the database. There are some rules that are
more valuable to satisfy than the others. Therefore, the overall
expected benefit will be scaled using the rule’s weights w;.

IV. EXPERIMENTS

In this section, we present an evaluation for our framework.
Specifically, the objectives of the experimental study are as
follows:

o Study the the reduction in the average response time
within the user’s consultation sessions because of the rules
ranking mechanism.

« Demonstrate the fast convergence to a better data quality
due to the repair groups ranking mechanism and the effect
of the rules ranking, as well on this convergence.

Framework Implementation. In our implementation to the
framework, we used the CFDs as the data quality rules. CFDs
are an extension to the standard FDs and have proved to be
more effective in catching data inconsistencies than FDs [10].
Several efforts were triggered [16], [17], [18], [19] to facilitate
their automatic discovery. We implemented a repair generation
process that is inspired by the technique described in [7].
However, we extended this technique to find repairs for each
attribute of the dirty tuples separately given the current database
state. More precisely, given a dirty tuple ¢, suggesting a
new value for ¢[A] is independent from any other previously
discovered repair, unless it was confirmed by the user. The
work in [7] uses a greedy search for repairs that may depend
on already found repairs, which could themselves be incorrect.

Datasets. In our experiments, we used two datasets, denoted
as Dataset 1 and 2 respectively. Dataset 1 is a real world dataset
resulting from the integration of (anonymized) emergency room
visits from 74 hospitals. Such patient data is used to monitor
naturally occurring disease outbreaks, biological attacks, and

chemical attacks. Since such data is coming from several
sources, a myriad of data quality issues arise due to the
different information systems used by these hospitals and the
different data entry operators responsible for entering this data.
For our experiments, we selected a subset of the available
patient attributes, namely Patient ID, Age, Sex, Classification,
Complaint, HospitalName, StreetAddress, City, Zip, State, and
VisitDate. For Dataset 2, we used the adult dataset from
the UCI repository?. For our experiments, we used the at-
tributes education, hours_per_week, income, marital_status, na-
tive_country, occupation, race, relationship, sex, and workclass.

Ground truth. To evaluate the quality of our technique
against a ground-truth, we manually repaired 20,000 patient
records in Dataset 1. We used address and zip code lookup
web sites for this purpose. We assumed that Dataset 2 is
already clean and hence can be used as our ground truth. We
synthetically introduced errors in the attribute values as follows.
We randomly picked a set of tuples, and then for each tuple,
we randomly picked a subset of the attributes to perturb by
either changing characters or replacing the attribute value with
another value from the domain attribute values. All experiments
are reported when 30% of the tuples are dirty.

Data Quality Rules. For dataset 1, we used CFDs similar
to what was illustrated in Figure I. The rules were identified
while manually repairing the tuples. For Dataset 2, we identi-
fied 8 rules that include the attributes workclass, occupation,
relationship, sex, education, marital_status, hours_per_week and
income.

Settings. All the experiments were conducted on a server
with a 3 GHz processor and 32 GB RAM running on Linux. We
used Java to implement the proposed techniques and MySQL
to store and query the records.

User interaction simulation. User feedback to suggested
repairs was simulated by providing answers as determined by
the ground truth datasets.

Data quality state metric. We measure the database quality
using the data quality loss (Eq. 2). For Dataset 1, we used the
manually repaired database as the desired optimal database, and
for Dataset 2, we used the original adult dataset as the optimal
one.

A. Improving the Average Response Time Using Rules Ranking

In this experiment, we evaluate the rules ranking mechanism
described in Section III-A to guide the generation of data
repairs and reducing the system response time. More precisely,
we study the system response time through the user interactions
when using the ranked top k rules for several values of k.

In Fig. 2 for the two datasets, we report the overall average
response times over all the sessions required to clean all the
database against the value of k. We compare the result to the
same technique when ignoring the rules ranking.

For Dataset 1, there is an overall 2 to 3 order of magnitude
decrease in the response time when ignoring the ranking. Also,
with the increase of k the average response time is slightly
increasing. This is justified by increasing the number of rules
to be satisfied, and consequently, increasing the scope of the
search space to be explored to generate more repairs. For
Dataset 2, the property of increasing the average response time

Zhttp://archive.ics.uci.edu/ml/

~
)
)
o
o

g 07
2.1 T

£ £o06

v

E 1.6 205

g 204

g g

- M p 03

= =Top k rules 502 ~=Top k rules

s 0.6 . = .

] --No rules ranking §01 ~No rules ranking

©01 I 6 J
0 4 8 K 12 16 20 0 2 4 6 8

k

(a) Dataset 1. (b) Dataset 2.
Fig. 2. Comparing the overall average response time when using the rules
ranking (top k) and when ignoring the rules ranking. The rules ranking is
effective in reducing response time.

with the increase of k still hold. However, the the use of the
top k technique quickly perform similar to the case of ignoring
the ranking when k£ = 8. This is because we used only 8 rules
for repairing. In the case of Dataset 1, we used about 200 rules
and this give more chance to demonstrate the effectiveness of
using the top k rules mechanism.

To further get more insights about the response time behavior
through the iterations, we reported in Fig. 3 the average
response time achieved so far after each iteration for the first 30
interactive sessions. Particularly, after session 7, we sum all the
user waiting time so far and divide it by 4, for ¢ = 1,...,30.
This is reported when using the rules ranking technique for
k = 2,6,12, as well as, for the case when there is no ranking
for the rules.

In Fig. 3 for all the reported curves, the average response
time starts high in the first few sessions and then quickly de-
creases in later sessions. However, the techniques that uses the
rules ranking maintain always lower response time compared
with the technique without rules ranking. As we decrease k,
we will have lower curve and better response time.

Concluding the above experiment, our rules ranking tech-
nique helps the repairing mechanism in reducing the repairs
search space by focusing on finding repairs for those tuples that
violate only the top k£ important violated rules. This resulted in
having an a overall better response time than the case without
the rules ranking as well as always maintaining better response
time through all the repairing interactive time with the user.

B. The Effect of the Rules Ranking on the Progress of Improv-
ing the Data Quality

In the following, we study the impact of the rules ranking
mechanism on the progress of improving the data quality as
we acquire user feedback for data repairs.

Ranking Groups of Repairs: First, we empirically prove
that ranking the groups of repairs according to Eq. 5 for user
feedback provides the best convergence to better data quality as
the system receives user feedback. Fig. 4 provides a comparison
between two intuitive techniques (namely Greedy and Random)
for ranking the groups of repairs in addition to our technique
described in Section III-B, denoted as GR (Guided Repair).

In the Greedy ranking, we rank the repair groups according
to their sizes. The rationale behind this strategy is that groups
that cover larger numbers of repairs may have high impact on
the database quality if most of the suggestions within them are
correct. The Random ranking is the naive strategy where we
randomly order the repair groups; all repair groups are equally
important.

-
(=]
o

—NoRank —NoRank

=
o

-

°
o

Average Response Time (sec)
Average Response Time (sec)

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Number of user's sessions Number of user's sessions
(a) Dataset 1. (b) Dataset 2.

Fig. 3. Comparing the average response time through the user’s interactive
sessions. The use of the rules ranking with different &k is always maintaining
less response time.

5100 £100
[}
§ 80 £ 80
8 3
‘g 60 % 60
Z 40 Z 40
© ©
=) S —GR
g 20 y C(: 20 - Greedy
g 0 S ---Random g 0 ---Random

4([3 60 80 100 0 60 80 100

0 20 20 40
Feedaback (User efforts) Feedback (User efforts)

(a) Dataset 1. (b) Dataset 2.

Fig. 4. Comparing three techniques (GR, Greedy, and Random) for ranking
the generated repair groups. Feedback is reported as the percentage of the
maximum number of verified repairs required by a technique. GR shows
superior performance compared to other naive ranking strategies.

As illustrated for both datasets, the GR approach performs
well compared to the Greedy and Random approaches. This is
because the GR approach perfectly identifies the most beneficial
repair groups that are more likely to have correct repairs. While
the Greedy approach improves the quality, most of the content
of the repair groups is sometimes incorrect leading to wasted
user efforts. The Random approach showed the worst perfor-
mance in Dataset 1, while for Dataset 2, it was comparable
with the Greedy approach especially in the beginning of the
curves. This is because in Dataset 2, most of the sizes of the
repair groups were close to each others making the Random and
Greedy approaches behave almost identically, while in Dataset
1 the groups sizes varies widely making the random choices
ineffective.

The results reported above justify clearly the importance and
effectiveness of the GR ranking. The GR approach is well
suited for repairing “very” critical data, where every suggested
repair has to be verified before applying it to the database.

Ranking Rules To Generate Repairs: In the following
experiment, we used the GR ranking mechanism to rank the
repairs generated when using the rules ranking mechanism.
Recall that the rules ranking guide the repair generation to
generate repairs for only the tuples that violates the most
important violated rules identified by the highest score, I, in
Eq. 4.

First, we compare our rules ranking mechanism with other
strategies: (i) Greedy, which rank rules according the amount
of violations, i.e. using vio(D, {¢}). The intuition here is to
highly rank rules that are most violated. (ii) Random, which
treats all the rules equally and randomly pick k rules at a time.
We used k£ =5 for this experiment.

We report the evaluation on Dataset lin Fig. 5. Fig. 5(a)

+ 100
T 250 g
A Ry E g0 .
2 200 3 .
= 2 60 I
w150 E A
£ 100 £ 40 |
o ® H r
E —Rules Ranking g i —Rules Ranking
g 50 - Random s 2 - Random
[0 ---Greedy a 0 ---Greedy

0 50 100 150 200 250 300
Number of Repairing Sessions

0 50 100 150 200 250 300
Number of Repairing Sessions

(a) Comparing the total waiting time
through the sessions.

Fig. 5. Comparing three techniques (Rules Ranking, Greedy, and Random)
for ranking rules to guide repairs generation. Our Rules Ranking mechanism
provides the best trade-off between the total waiting time and improving the
quality.

(b) Comparing the improvement in
data quality through the sessions.

shows the total waiting time through the repairing sessions and
Fig. 5(b) shows the progress in improving the quality through
the seesions as well. The Greedy is the best to improve the
quality over the sessions, but it is the worst in the required
waiting time. Conversely, the Random required the least waiting
time, while it is the worst in improving the quality. Our rules
ranking mechanism provides a performance that is in between.

The Greedy approach picks the rules that are most violated,
hence more dirty tuple will need repairs after a session,
consequently, more waiting time is needed. Moreover, when
repairing many tuples that violate the same rule, most likely, the
repairs would be related and grouped together in few sessions.
This situation and argument are reversed for the Random. To
this end, our rules ranking provide the best trade-off between
these approaches.

In Fig. 6, we study the effect of k£ on improving the data
quality and the waiting time. It is noted that the rules ranking
is helpful in the beginning of the curves. As we increase k, the
waiting time is increasing.

The rules ranking technique affects the currently suggested
repairs in the Possible Repair list. This will affect the compu-
tation of the group benefit in Eq. 5, and consequently, change
the repairs presented to the user for verification. Therefore, for
the initial iterations, the rules ranking (for different values of
k) is more responsive than for the case of NoRank.

In conclusion, the rules ranking and using the top £ rules
technique provide the best trade-off between faster conversion
to better data quality and faster response time within the
interactive sessions. This trade-off is controlled by k, lower
values of k makes the system responsive, while higher values
slow down the quality improvement.

V. CONCLUSION AND FUTURE WORK

We presented guidelines for an interactive data repair frame-
work. The objective is to leverage automatic repairing tech-
niques alongside with user feedback in a responsive system to
monitor and improve the data quality as quickly as possible
while guaranteeing optimal repairs to the data. The framework
presented assumes that all repairs should verified by the user,
however in our current work, we have already involved machine
learning algorithms to minimize user’s efforts.

The work presented is part of bigger research project aiming
at tackling the problem of improving data quality from a more
pragmatic and practical point of view. Our approach is to
provide techniques for guided data quality improvement. The

=
o
o

.a'.:; 100 g
s 80 g 80
g 8
5 60 a 60
£ E
Z 40 Z 40
E 3
g 20 g 20
< 8
- ©
E o a o

0 50 100 150 200 250 0 2 4 6 8 10 12
Total Waiting Time (sec)

(a) Dataset 1. (b) Dataset 2.
Fig. 6. Reporting the progress in data quality improvement vs. the total waiting
time during the sessions for different values of k. The ranking is effective in
achieving better quality with less waiting times between the sessions. Increasing
k, increases the waiting time because of increasing the repairs to be search for
the dirty tuples.

Total Waiting Time (sec)

key idea is to efficiently and effectively involve the user in
guiding the automatic mechanisms for data quality tasks (e.g.
repairing data, discovering data quality rules), instead of having
the automatic techniques work and produce their results which
would be far more than one can expect the user to comment
on. To this end, we are developing principled measures to
reason about these tasks, as well as, involving machine learning
algorithms to learn and minimize user interactions.

REFERENCES

[1] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques. Addison-Wesley.

[2] L. English, “Information quality management: The next frontier,” Infor-
mation Management Magazine, 2000.

[3] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query answers in
inconsistent databases,” in PODS, 1999.

[4] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-based model
and effective heuristic for repairing constraints by value modification,” in
ACM SIGMOD, 2005.

[S] R. Bruni and A. Sassano, “Errors detection and correction in large scale
data collecting,” in IDA, 2001.

[6] J. Chomicki and J. Marcinkowski, “Minimal-change integrity mainte-
nance using tuple deletions,” in Information and Computation, 2005.

[7]1 G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality:
consistency and accuracy,” in VLDB, 2007.

[8] E. Franconi, A. L. Palma, N. Leone, S. Perri, and E. Scarcello, “Census
data repair: a challenging application of disjunctive logic programming,”
in LPAR, 2001.

[9] A. Lopatenko and L. Bravo, “Efficient approximation algorithms for

repairing inconsistent databases,” in /CDE, 2007.

P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Condi-

tional functional dependencies for data cleaning,” in /CDE, 2007.

L. Bravo, W. Fan, and S. Ma, “Extending dependencies with conditions,”

in VLDB, 2007.

A. Arasu, C. Re, and D. Suciu, “Large-scale deduplication with con-

straints using dedupalog,” in ICDE’09, 2009.

S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using active

learning,” in ACM SIGKDD, 2002.

M. A. Hernndez and S. J. Stolfo, “Real-world data is dirty: Data

cleansing and the merge/purge problem,” in Data Mining and Knowledge

Discovery, 1998.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

F. Chiang and R. J. Miller, “Discovering data quality rules,” in VLDB,

2008.

W. Fan, F. Geerts, L. V. Lakshmanan, and M. Xiong, “Discovering

conditional functional dependencies,” in ICDE, 2009.

L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu, “Increasing

the expressivity of conditional functional dependencies without extra

complexity,” in VLDB, 2008.

G. Cormode, L. Golab, F. Korn, A. McGregor, D. Srivastava, and

X. Zhang, “Estimating the confidence of conditional functional depen-

dencies,” in ACM SIGMOD, 2009.

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

