
Multimedia Systems

VDBMS: A Testbed Facility for Research in Video Database

Benchmarking

Walid G. Aref, Ann C. Catlin, Ahmed K. Elmagarmid, Jianping Fan, Moustafa A. Hammad, Ihab

F. Ilyas, Mirette Marzouk, Sunil Prabhakar, Yi-Cheng Tu, Xingquan Zhu ?

Department of Computer Sciences, Purdue University, West Lafayette, IN. 47907-2066, USA.

Received: date / Revised version: date

Abstract Real world video-based applications require
database technology that is capable of storing digital
video in the form of video databases and providing
content-based video search and retrieval. Methods for
handling traditional data storage, query, search, re-
trieval and presentation cannot be extended to provide
this functionality. The VDBMS research initiative is
motivated by the requirements of video-based appli-
cations to search and retrieve portions of video data
based on content, and by the need for testbed facilities
to facilitate research in the area of video database man-
agement. In this paper we describe the VDBMS video
database research platform, a system that supports
comprehensive and efficient database management for
digital video. Our fundamental concept is to provide
a full range of functionality for video as a well-defined
abstract database data type, with its own description,
parameters and applicable methods. Research problems
that are addressed by VDBMS to support the handling
of video data include MPEG-7 standard multimedia
content representation, algorithms for image-based shot
detection, image processing techniques for extracting
low-level visual features, a high-dimensional indexing
technique to access the high-dimensional feature vectors
extracted by image pre-processing, multimedia query
processing and optimization, new query operators,
real-time stream management, a search-based buffer
management policy, and an access control model for
selective, content-based access to streaming video.
VDBMS also provides an environment for testing
the correctness and scope of new video processing
techniques, measuring the performance of algorithms in
a standardized way, and comparing the performance of
different implementations of an algorithm or component.
We are currently developing video component wrappers

? This work was supported in part by the National Sci-
ence Foundation under Grants IIS-0093116, EIA-9972883,
IIS-9974255, IIS-0209120 and by the NAVSEA/Naval Sur-
face Warfare Center, Crane.

with well-defined interfaces to facilitate the modification
or replacement of video processing components. The
ultimate goal of the VDBMS project is a flexible,
extensible framework that can be used by the research
community for developing, testing and benchmarking
video database technologies.

Keywords: Video database management system -
Stream manager - Rank join - MPEG-7

1 Introduction

A significant and ever increasing portion of the infor-
mation created today has audio-visual components, and
most of it is now available in digital form. Real world
video-based applications require database technology that
is capable of storing this information in the form of video
databases and providing content-based video search and
retrieval. Methods for handling traditional data stor-
age and retrieval cannot be extended to provide this
functionality for video. Two standard approaches have
been developed for handling video data: storage in video
servers and storage as binary large objects. Storing video
data in video servers with few data management capa-
bilities has been widely adopted by video on demand
(VOD) systems. The Fellini VOD system [29] supports
real-time and non-real-time storage and retrieval of con-
tinuous media data (video, audio.) It focuses primarily
on media streaming, and provides no support for content
search and retrieval of the stored media. Many research
VOD systems focus on efficient buffer management of
raw video streams [8,23], and provide either very lim-
ited support or no support at all for content search and
retrieval. It is not possible for such systems to address
the integration of content search, retrieval and stream-
ing. Integration of the search and streaming of video
data is, however, supported by some commercial sys-
tems. Virage [38] provides textual extraction, encoding,



2 Walid G. Aref et al.

search and streaming of continuous media. As a special-
ized video server, Virage offers a great deal of flexibility
for applications that access video by textual content. On
the other hand, it difficult to integrate their video func-
tionality with other types of data (e.g., relational data or
high-dimensional data) or to express and execute com-
plex declarative queries (e.g., SQL queries) on the stored
media.

The second approach views video as a binary large
object (BLOB), whose content is hidden from the system
and for which no meaningful processing or optimization
can be performed. BLOBs are supported by many indus-
trial strength database systems. The problem with the
BLOB representation is that once it leaves the database,
it is handled by a user application in an application-
specific manner, resulting in data type mismatches be-
tween the database and the application. Moreover, much
important functionality, such as online and customized
video views, query by content, similarity search queries,
video editing functionalities and data abstraction cannot
be provided as an integral part of a BLOB-based system.
Some recent video research has focused on new applica-
tions of data management functionality to video data,
such as mining videos [31] [40] and monitoring/tracking
objects in video streams using continuous queries [15].
Such features will benefit from the efficient storage, query
and indexing capabilities of a video database system
which supports video data as a first class database ob-
ject. This functionality cannot be satisfied by handling
video data as BLOBs. The requirements must be ad-
dressed by building upon existing database technolo-
gies and extending them as needed to efficiently support
video database functionality.

VDBMS provides a full range of functionality for
video as a well-defined data type, with its own descrip-
tion, parameters and applicable methods. The devel-
opment and integration of a video data type into the
database management system achieves a clear separa-
tion between the video processing and database com-
ponents. This allows video-based application design to
focus on details of the application itself, while relying
on the underlying video framework components for stor-
age, search, retrieval, analysis and presentation of the
video data. Video applications thus inherit all the pow-
erful functionality generally provided by database man-
agement systems, including query processing, optimiza-
tion, concurrency and recovery. Furthermore, VDBMS
is a general purpose data management system, and sup-
ports extensions to include new data processing func-
tionalities such as video mining and continuous queries.

VDBMS system components include a video pre-
processing toolkit, a high-dimensional index manager,
a stream manager, and a search-based buffer manage-
ment policy. These VDBMS system components are de-
scribed in this paper, and details can be found in the
literature [2] [11] [14] [18]. We present VDBMS as a re-
search platform because it provides an open and flex-

ible environment for investigating new research areas
related to video database management, including the
implementation, integration and evaluation of new and
existing algorithms. Research problems that were ad-
dressed within the VDBMS environment to support the
handling of video data include MPEG-7 document com-
pliance for importing and exporting video features [1],
algorithms for image-based shot detection [20], image
processing techniques for extracting low-level visual fea-
tures [11], camera motion detection algorithms [39], hier-
archical video summarization strategies for abstracting
video content, a high-dimensional indexing technique to
access the high dimensional feature vectors extracted
by image pre-processing, new multi-feature rank-join
query operators for image similarity matching [18], a
new real-time stream manager to admit, schedule, mon-
itor and serve concurrent video stream requests period-
ically, an enhanced buffer management policy that in-
tegrates knowledge from the query processor to improve
streaming performance [14], and an access control model
that provides selective, content-based access to stream-
ing video data [6].

The development of the VDBMS video database
management research platform was motivated by the re-
quirements of video-based applications to retrieve por-
tions of video data based on content and by the need
for testbed facilities to facilitate research in the area
of video database management. While investigating, de-
veloping, and testing the fundamental components re-
quired to support full video database functionality, we
utilized VDBMS as a testbed for integrating and evalu-
ating video processing technologies from other sources.
As such, the system has provided us with an envi-
ronment for testing the correctness and scope of algo-
rithms, measuring the performance of algorithms in a
standardized way, and comparing the performance of dif-
ferent implementations of a component. The next step
in VDBMS system development is the construction of
video component wrappers with well-defined interfaces
that allow video components to be easily modified or
replaced. We also plan to provide the corresponding
semi-automatic mechanisms for integrating these com-
ponents into VDBMS. The ultimate goal of the VDBMS
project is a flexible, extensible framework that can be
used by the research community for developing, testing
and benchmarking video database technologies.

We describe VDBMS system components in Sections
2 and 3. To demonstrate the usefulness of VDBMS as
a testbed for video database benchmarking, Section 4
presents experimental studies and analysis for alterna-
tive techniques implemented within the VDBMS envi-
ronment.

2 The Query Interface

A VDBMS query interface client supports end-user
content-based query, search, retrieval and real-time



VDBMS: A Testbed Facility for Research in Video Database Benchmarking 3

Fig. 1 VDBMS query interface.

streaming for the VDBMS video database server. End-
users can query by image, query by camera motion type,
query by keywords or specify an SQL statement. In
image-based queries, users present an example image
and query the database for images or shots ”most sim-
ilar” to the example based on any number and com-
bination of the listed visual features. The features of
the user’s query image are extracted online and sent
to the server for execution. Results can be either frame
level (video frame images with similar visual features) or
shot level (video shots with similar aggregate visual fea-
tures, where feature aggregation is computed across shot
frames.) Keyword queries are matched against video an-
notation data associated with logical video scenes. The
query interface generates and displays the SQL equiv-
alent of the user’s query for all non-SQL queries. The
VDBMS query processor returns a ranked list of results,
where the user determines the number of top-ranked re-
sults to retrieve. Users can navigate an image skim of
the results using any step size. When the user requests
shot-level results, a key frame representing shot content
is returned to the user, and the user can select the key
frame to stream the shot directly from the database to
the query interface media player.

Users access the VDBMS query interface using the
Windows-based client shown in Figure 1. The client con-
nects to the VDBMS system which resides on a Sun En-
terprise 450 machine with 4 UltraSparc II processors,
running the Solaris 5.6 operating system. The system
memory is one Gbyte, with RAID disks of 170 Gbytes of
storage. VDBMS functionality has been tested against
more than 500 hours of medical videos obtained from
the Indiana University School of Medicine. The medi-

cal videos are digitized, compressed into MPEG-1 for-
mat, processed off-line by the VDBMS pre-processing
toolkit to generate image and content-based meta-data,
and then stored together with their meta-data in the
VDBMS database.

3 The Video Database Management System

The VDBMS database management system is built on
top of an open source system consisting of Shore [36],
the storage manager developed at the University of Wis-
consin, and Predator [33], the object relational database
manager from Cornell University. The VDBMS research
group has developed the extensions and adaptations
needed to support full database functionality for the
video as a fundamental, abstract database data type.
Key database extensions include high-dimensional in-
dexing, video store and search operations, new video
query types, real-time video streaming, search-based
buffer management policies for continuous streaming,
and support for extended storage hierarchies includ-
ing tertiary storage. These extensions required major
changes in many traditional database system compo-
nents. Figure 2 illustrates our layered system architec-
ture with its functional components and their interac-
tions. The system consists of the object storage system
layer at the bottom, the object relational database man-
agement layer in the middle, and the user interface layer
at the top.



4 Walid G. Aref et al.

Fig. 2 VDBMS layered system architecture.

3.1 A Video Pre-processing Toolkit

The VDBMS video-preprocessing toolkit applies image
and semantic processing to partition raw video streams
into shots then associates the shots with extracted visual
and semantic descriptors that represent and index the
video content for searching. Preprocessing algorithms de-
tect the video scene boundaries that partition the video
into meaningful shots using a process that computes
color histogram differences and incorporates a mecha-
nism for dynamic threshold determination. Video shots
are then processed to extract MPEG-7 compatible low-
level visual feature descriptors, camera motion classifica-
tion, spatial and temporal segmentation, representative
key frames, and the semantic annotations of domain ex-
perts. The video, its features and indices are stored in the
VDBMS database, along with physical metadata such as
resolution for quality-of-service presentation. Our sys-
tem follows the recent trend of representing the video
content description in an XML-like format according to
MPEG-7 [19] multimedia content descriptors. MPEG-7
is the worldwide standard for video content description,
and has been incorporated as an integral part of VDBMS
feature representation. VDBMS video pre-processing ex-
tracts nearly all low-level features defined by MPEG-7,
including color histogram in both HSV and YUV for-
mats, texture tamura, texture edges, color moment and
layout, motion and edge histograms, dominant and scal-
able color, and homogeneous texture.

We are currently developing a wrapper that abstracts
the extraction, representation, and query of features.
This plug-in component allows users to define a new
feature, supply its extraction (image processing) algo-
rithm, and query against the feature for image similar-
ity matching. Our wrapper and integration mechanisms
incorporate the feature into the query interface, create
the schema for database representation and apply the
user-provided algorithm during video pre-processing and

image-based queries. We provide users with a graphical
interface for defining and integrating video segmentation
algorithms, feature extraction algorithms, camera mo-
tion classification techniques, and other video processing
techniques that can be used for content representation
and content-based retrieval. This will allow researchers
to compare and evaluate alternate methods, improve ex-
iting algorithms or develop new ones.

3.2 High-dimensional Video Indexing

Since high-dimensional feature data is collected for each
video frame and aggregated for each video shot, the
meta-data that represents and indexes video content oc-
cupies more disk space than the video itself. The mag-
nitude of this meta-data and its storage in the database
as high-dimensional vectors present serious indexing and
searching difficulties in the execution and optimization
of feature-based queries. The VDBMS research group
extended the indexing capability of Shore by incorpo-
rating the GiST v2.0 implementation [16] [17] [37] of the
SR-tree as the high-dimensional index [5] [21] and modi-
fied the query-processing layer of Predator to access the
Shore/GiST index. VDBMS added the vector ADT to
be used by all feature fields, and implemented

CREATE GSR INDEX <table> <fieldname> <table>

to create an instance of the GiST SR-tree for each field to
be used as the access path in feature matching queries.
The multi-dimensional indexing structure handles the
high-dimensional feature vectors that are produced by
visual feature extraction and used in image similarity
searches.

We are currently building an interface to support a
plug-in component for indexing techniques, so that alter-
native indexing mechanisms can be implemented, tested,
and compared within the VDBMS system.

3.3 The Query Processor and Video Query Operators

The query processor was modified extensively to han-
dle the new high-dimensional indexing scheme, as well
as to support new video query operators and their in-
tegration into the query execution plan. VDBMS query
processing must take into account the video methods and
operators in generating, optimizing and executing query
plans. Image similarity search is performed by issuing
nearest neighbor queries to the high-dimensional access
path.

In multi-feature image similarity queries, users gener-
ally present a sample image and query the database for
images ”most similar” to the example based on some
collection of visual features. Results should be deter-
mined according to a combined similarity order [13] [26].
We have developed a practical, binary, pipelined query
operator, NRA-RJ, which determines an output global



VDBMS: A Testbed Facility for Research in Video Database Benchmarking 5

ranking from the input ranked video streams based on
a score function [18]. Our algorithm extends Fagin’s op-
timal aggregate ranking algorithm, NRA, [10] by allow-
ing the input to have a range of scores instead of exact
scores. The output of NRA-RJ thus serves as valid in-
put to other operators in the query pipeline, supporting
a hierarchy of join operations and integrating easily into
the query processing engine of any database system.

We created a new VDBMS query operator that en-
capsulates the rank-join algorithm in its GetNext opera-
tion. Each call to GetNext returns the next top element
from the ranked inputs. The internal state information
needed by the operator consists of a priority queue of
objects encountered thus far, sorted on worst score in
descending order. GetNext is binary (although this re-
striction is merely practical) and the algorithm holds for
more than two inputs. Our modifications to the original
NRA algorithm are the following:

– The right input list is a source stream that provides
the operator with the ranked objects and their exact
scores. The left input may not be a source list since
it can be the output of another NRA-RJ operator.
In this case, the score is expressed as a range, from
worst to best. This means that GetNext must be able
to handle a score range rather than an exact score
from the left iterator.

– The parameter k, the number of requested output ob-
jects, is not known in advance, rather it increases for
each call to GetNext. The modified algorithm first
checks if another object can be reported from the
priority queue without violating the stopping condi-
tion, and if not, moves deeper into the input streams
to retrieve more objects.

– In each call to GetNext, the current depth of the
caller is passed to the operator. This extra informa-
tion assures synchronization among the pipeline of
NRA-RJ operators.

The incremental and pipelining properties of our ag-
gregation algorithm are essential for practical use in real-
world database engines, and our new operator will help
in implementing this type of join in ordinary query plans.

A modular interface for the integration of query op-
erators into the VDBMS query processor is currently
underway. The interface will support the integration of
user-developed operators into the query execution plan,
and will also support the performance evaluation and
comparison of alternative algorithms for implementing
query operators by allowing developers to identify per-
formance metrics and test point locations for collecting
measurements and statistics. In Section 4.2, we demon-
strate this concept in the context of performance analysis
for different algorithms that implement the multi-feature
ranking query operator. The experimental study inves-
tigates scalability as well as time and space complexity,
and discusses performance trade-off issues

3.4 The Stream Manager

The VDBMS stream manager is responsible for handling
the special needs of video streaming. Each request for
video data needs to be streamed with a predetermined
rate (MPEG-1 needs, on average, a 1.5 Mbps display
rate.) Violating the rate of streaming by either increasing
or decreasing the display rate may result in overflow at
the client buffer or hiccups at the client side. To hide
the latency associated with access to disk storage, the
stream manager streams part of the data (a segment)
while pre-fetching the next segment into the memory
buffers.

Since many stream requests are serviced simultane-
ously by the manager, resources such as memory buffers
and disk bandwidth must be divided among the streams.
This is achieved by serving each stream request period-
ically, and serving additional concurrent streaming re-
quests within that period. Due to limited memory and
disk bandwidth, the manager can only serve a specific
number of requests within a single period. To serve re-
quests in real-time, the segment referenced next should
be retrieved into the buffer before the end of the current
period. We have implemented a real-time stream man-
ager above the buffer manager layer in VDBMS [1], and
its functionality is as follows: (1) admit a new stream re-
quest if the maximum number of concurrent streams has
not been reached, otherwise delay the request and re-try
when one of the current requests finishes, (2) schedule
segment pre-fetching by sending requests to the buffer
manager. Each page of the allocated segment is fixed
in the buffer pool until the page is streamed, (3) send
the segment to the client according to a predetermined
streaming rate. The segments are processed page-wise,
and each page is unfixed and returned to the buffer man-
ager after streaming the content, and (4) communicate
with the query manager to keep track of search results.
The stream manager is implemented as multi-threaded
modules, and has well defined interfaces with the query
engine, the buffer manager, and the Extensible Abstract
Data Type (E-ADT) interface. The stream manager op-
erates by issuing requests to the buffer manager, guiding
the underlying buffer management policies, communi-
cating with the query processor, and sending streams to
clients at a specific rate.

3.5 A Search-based Buffer Management Policy

Continuous-media servers that support content-based
search and retrieval use a main memory buffer to store
the requested media streams before sending them on to
the user. Buffering policies for media streaming have
been investigated in several studies. Chang and Garcia-
Molina [8] introduce a memory-efficient pre-fetching
schedule based on fixing the time-displacement between
pre-fetching requests. A recent study [23] proposes dy-



6 Walid G. Aref et al.

namic buffer allocation for media streaming that min-
imizes the memory requirement for concurrent media
streams. The work in [12] presents the basic functionali-
ties of buffer management for delay-sensitive multimedia
data, and in [30] Ozden et al. describe changes needed
by database management systems to support multimedia
data. Replacement policies for media streams have been
studied for target applications such as VOD [9] [25] [28],
which are designed for streaming purposes only. Brown
et al. [7] propose a goal-oriented buffer allocation for dif-
ferent database workloads, where a target goal (average
execution time, for instance) is designated for each work-
load. In the VDBMS project, we have investigated a new
buffer management policy which addresses the relation-
ship between the searching and streaming processes of
video data.

Caching parts of media streams that may be refer-
enced in the near future enhances streaming performance
in two ways: it reduces the number of references to disk
storage and it minimizes delay associated with the start
of streaming. However, precise caching decisions are of-
ten difficult to make. Optimal pre-fetch and replacement
policies would pre-fetch the data before its first refer-
ence and replace the data block that will not be refer-
enced for the longest time [30]. An obvious difficulty is
the policy’s dependence on knowledge about expected
streams, which is generally not available. In the case of
video streaming, however, there is an inherent connec-
tion between query processing and streaming. Choices
for streaming are usually based on query results, and
this relationship can be used by the buffer manager to
pre-fetch and cache pages expected for reference.

We have developed an efficient buffer management
policy that uses feedback from the search engine to make
more accurate replacement and pre-fetching decisions.
Top-ranked query results from the query processor are
used to predict future video streaming requests, and a
weight function [3] determines candidates for caching.
By integrating knowledge from the query and stream-
ing components, VDBMS can achieve better caching of
media streams, thus minimizing initial latency and re-
ducing disk I/O. Many factors must be considered when
basing pre-fetching or replacement decisions on search
results. Streaming based on the search context is proba-
bilistic: new streaming requests can be based on any of
the search results or even on none of them. Furthermore
and as a result of sharing the caching space by pages
for current as well as expected streams; there will be
increased overhead in the replacement policy associated
with balancing the space assigned to each.

In our search-based replacement policy, pages in the
buffer pool that are referenced by either current or ex-
pected streams are considered for caching. To maximize
the number of caching pages, we replace the page that
will be referenced by current or expected streams after a
long period of time has passed. Also, we prefer caching
pages that will be reference by current streams to those

that will be referenced by expected streams by assigning
higher keep weight values to the current streams. Lookup
tables contain pointers to expected streams, which are
collected from the search results and checked by the
stream manager for matches when determining pages
to replace. With knowledge collected in lookup table
for expected streams, we predict with high probability
that one of the expected streams will be requested. The
stream manager tracks the utilization of the streaming
period, and utilizes any fraction of the streaming period
unused by current streams to pre-fetch the first segment
of the top ranked expected streams into the memory
buffer. If an expected stream becomes an actual request,
most of the pages in the first segment would already be
cached in the buffer pool and as a result, the number of
references to lower level storage would be significantly re-
duced. The pre-fetching policy does not introduce much
overhead, since it operates only during idle period time,
utilizing unused and reserved streaming resources.

The performance of the search-based policy was eval-
uated by investigating the effects of buffer management
on the number of I/Os when referencing the first seg-
ment of a requested stream. Experimental results are
presented in Section 4.1.They show that initial latency
of the search-based policy is reduced on the average by
20% when compared with traditional policies.

3.6 Extended Storage Hierarchies

Video database storage and buffer managers handle huge
volumes of data with real time constraints [25] [28].
In VDBMS, the buffer pools are divided between the
database buffer area and the streaming area where re-
quests for streams are serviced. Extended buffer manage-
ment handles multiple page requests with segment allo-
cation (instead of the traditional page-based approach)
for the large streaming requests from the stream man-
ager. An interface between the buffer manager and the
stream manager is used to exchange information that
guides buffer caching for stream requests. The storage
manager was extended to perform necessary video op-
erations and process both real-time and non-real time
requests. VDBMS methods for handling extended stor-
age hierarchies support transparent, real-time access to
buffer, disk and tertiary storage. Different caching levels
on buffer and disk storage enhance access for frequently
referenced data, and a tertiary storage server manages
access to tertiary resident data, making it directly ac-
cessible to the VDBMS system.

The tertiary storage and cache disk managers are im-
plemented underneath the storage volume manager. A
dedicated disk partition is used for caching hot items
in tertiary storage, and the cache disk manager main-
tains and reports these items. The tertiary storage man-
ager communicates with a PowerFile manager (remote
NT process), which locates the requested page in its



VDBMS: A Testbed Facility for Research in Video Database Benchmarking 7

changer, loads the CD/DVD, and sends the requested
data through the local network via TCP. Due to the over
heard for reading from the device, the basic transfer unit
is a block instead of a page. The block is copied to the
cache disk, and the first page is sent to the buffer pool.
DVD jukeboxes can be daisy-chained, giving VDBMS
access to terabytes of data.

4 A Testbed for Video Database Benchmarking

While investigating and implementing components to
support full video database management, we have uti-
lized VDBMS to investigate, integrate, validate, com-
pare and evaluate alternate video processing techniques
and technologies. To illustrate the effectiveness of the
current VDBMS system for new component integration,
validation, and performance evaluation, we briefly de-
scribe three recent research projects carried out within
the VDBMS environment. The contribution of these and
other experimental studies to the understanding of video
processing within the database environment is the moti-
vation for our effort to create a complete testbed facility
for video database benchmarking.

4.1 Validation of a Buffer Management Policy

To validate the search-based buffer management policy
in a heavy workload environment, we execute 32 simulta-
neous clients. Each client submits an image-based query
to VDBMS and receives a collection of key frame rep-
resenting the results of a shot-based image similarity
search. The client delays for a random period (uniformly
distributed between 10 to 20 seconds) after retrieving
the results, and then submits a streaming request for
one of them. We assume the client plays a shot selected
from the four top-ranked results 80% of the time. The
VDBMS stream manager admits the streaming request
if possible; otherwise the request is delayed until one of
the current streams has finished. The client immediately
submits a new search request following the streaming of
the selected shot, so that a heavy load situation is main-
tained. The search results are synthesized by random
selection of 10 candidate shots from the database. The
random selection provides an upper bound for the per-
formance of our policy. Our keep weight is set to three
if a page is referenced by an expected stream from the
top ranked results, and four if the page is referenced
by a current stream. Higher values for the keep param-
eter are not recommended since they lead to excessive
looping over buffer pages to find replacement candidates.
The experimental data consists of eight one-hour videos,
compressed in MPEG-1 format with a total size of five
Gbytes. Each video has been pre-processed into shots
with lengths between 5 and 10 minutes. We set the page
size to 8Kbytes, the segment size to 30 pages, and the

maximum number of concurrent streams to 16. Each ex-
perimental run lasts for 30 minutes, and the total num-
ber of buffer references is approximately 500,000.

We compare the performance of the following poli-
cies:

– Search-based replacement (SrchBR): pages are cached
if referenced by current or expected-stream requests

– Search-based pre-fetching and replacement (SrchBPR):
first segment of expected-stream is pre-fetched; pages
are cached if referenced by current or expected-stream
requests

– Stream-based replacement (StrmBR): pages are cached
only if referenced by a concurrent stream request.

– Use&Toss: pages are candidates for replacement im-
mediately after use.

Figure 3(a) shows the effect of the buffer policies on re-
ducing the number of I/Os when referencing the first
segment of the stream. For each first segment, we mea-
sure the percentage of pages found in the buffer as we
increase the buffer size from 10 to 25 Mbytes. The fig-
ure shows that SrchBPR caches about 25% of the total
pages of new streams based on the search results; that is,
the initial latency is reduced by 25%. Although SrchBR
achieves better results than StrmBR and Use&Toss, it
caches only those pages either used by current streams
or referenced by expected streams, and therefore the im-
provement is smaller than that of the pre-fetch policy.
StrmBR has no knowledge of expected streams and per-
forms about the same as Use&Toss. In Figure 3(b), the
buffer size is fixed at 25 Mbytes, and we measure the
reduction in I/O when referencing the first segment of
the stream as the number of stored videos is increased
from two to eight. SrchBPR achieves the best perfor-
mance, as high as 40% reduction in the number of I/Os.
This improvement results from both pre-fetching and re-
placement strategies, since more common data now ex-
ists between current and expected-streams. As the num-
ber of videos increases, the chance for interaction de-
creases. Thus the improvement is dominated by the pos-
itive effects of pre-fetching. The effect of the replacement
policy is obvious in SrchBR and StrmBR, as both re-
duce the I/Os with small data sets. With larger data
sets, StrmBR and Use&Toss contribute similarly to the
reduction of I/O, since both have no knowledge about
expected streams. The short duration of streamed seg-
ments represents an obstacle for replacement algorithms
that depend only on current streams for two reasons:
1) in large data set with uniform access patterns, com-
mon pages are infrequent, and 2) common pages gener-
ally exist within a short interval of each other (intervals
are bounded, on average, by half the length of a shot).
Replacement policies based on caching common pages
between current streams will thus have a small number
of pages to recommend for caching.

Figure 3(c) shows the relative improvement in the
buffer hit ratio for policies based on current streams.



8 Walid G. Aref et al.

10.0 15.0 20.0 25.0
Buffer size in MBytes

0.0

10.0

20.0

30.0

40.0

P
er

ce
nt

ag
e 

of
 r

ed
uc

tio
n 

in
 I/

O
 

SrchBPR
SrchBR
StrmBR
Use&Toss

2.0 4.0 6.0 8.0
Number of videos

0.0

10.0

20.0

30.0

40.0

50.0

P
er

ce
nt

ag
e 

of
 I/

O
 r

ed
uc

tio
n

SrchBPR
SrchBR
StrmBR
Use&Toss

5.0 10.0 15.0 20.0 25.0 30.0
Buffer size in MBytes

−2.0

0.0

2.0

4.0

6.0

8.0

10.0

R
el

at
iv

e 
im

pr
ov

em
en

t

SrchBPR
SrchBR
StrmBR

(a) Buffer size in MBytes (b) Number of videos (c) Buffer size in MBytes

Fig. 3 Performance evaluation of buffer management policies: (a) reduction in I/O as buffer size changes, (b) reduction in
I/O as number of videos changes, and (c) relative improvement in buffer hit ratio as buffer size changes.

As the buffer size increases, more space is available to
cache the data and the chance of replacement is de-
creased. With small buffer sizes, pages are replaced more
frequently and the improvement achieved with search-
based policies such as SrchBPR and StrmBR becomes
significant.

4.2 Performance Evaluation of Rank-Join Query

Operators

We implemented three state-of-the-art rank-join algo-
rithms as query operators in VDBMS for an extensive
empirical study to evaluate operator performance and
trade-off issues in executing multi-feature queries. Our
experimental study compares the NRA-RJ operator de-
veloped by the VDBMS research group [18], the J* oper-
ator introduced by Natsev et al. [27], and (for a baseline
comparison) the non-pipelined version of the NRA algo-
rithm as a multi-way rank-join operator, MW-RJ [10].
Although most query optimizers are restricted to binary
operators, MW-RJ provides a reference line for the best
possible performance. We investigated scalability as well
as time and space complexity between the algorithms for
executing a join of multiple ranked inputs (any number
and combination of features) on the stored video objects.

The following multi-feature query for the k top-ranked
results was issued against the VDBMS features:

Retrieve the top k video shots ”most similar” to a
given image based on m visual features

The query evaluation plan has m nearest neighbor
(NN) operators on m different visual features, and m−1
rank-join binary operators are used, where the results
of one operator are pipelined to the next operator in
the pipeline. The number of features m in our study
varies from 2 to 6, and the number of top-ranked re-
sults k varies from 5 to 100. To evaluate the operators,
we used the following performance metrics: (1) query
running time for retrieving the top matching k output
results, (2) size of the buffer maintained by the operator,
and (3) number of database accesses in disk pages. While

the number of database accesses should give a good indi-
cation of the time complexity of the operator, the experi-
ments show a significant CPU time complexity difference
between the two operators that affects the total running
time, especially for small numbers of inputs. Figures 4
and 5 give performance comparisons for NRA-RJ, J*
and MW-RJ, for m = 2 and m = 3, respectively, where
m is the number of input sources that give a pipeline
of length m − 1. For m = 2, NRA-RJ is identical to
MW-RJ since there is no pipeline. Figure 4(a) compares
the total running time of the NRA-RJ and J* operators.
The J* algorithm has a significant CPU overhead due
to the execution of its underlying A* graph search al-
gorithm, which considers more join combinations. Thus,
NRA-RJ shows a faster execution time. Both operators
are nearly equal in the database access count depicted in
Figure 4(c). NRA-RJ has a smaller maximum queue size
than that of J*, as shown in Figure 4(b), and the differ-
ence increases as k increases (i.e., as more results are re-
quested). The difference in the maximum queue size and
in the execution time can be explained by the fact that
the J* algorithm has to consider more join combinations
than NRA-RJ since it was developed for a general join
condition. When used in self-join problem settings, the
generality of the J* algorithm causes expensive unneces-
sary computations that increase both the queue size and
the running time.

Figure 5 compares the NRA-RJ, J*, and MW-RJ op-
erators for m = 3. Figure 5(a) shows that NRA-RJ still
outperforms J* in total running time, and the pipeline
does not affect the speed of the NRA-RJ operator when
compared with MW-RJ. For the maximum queue size
given in Figure 5(b) and the number of database accesses
given in Figure 5(c), we make the following observations:

– NRA-RJ has a larger maximum queue size and more
database accesses than MW-RJ. To understand this
difference, we clarify how NRA-RJ operates in a pipeline
of 3 inputs. Figure 6 shows NRA-RJ with three input
streams, L1, L2 and L3 When the top NRA-RJ opera-
tor, OP1, is called to produce the next top ranked ob-



VDBMS: A Testbed Facility for Research in Video Database Benchmarking 9

0 10 20 30 40 50 60 70 80 90 100
K

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

T
im

e 
(s

ec
on

ds
)

NRA−RJ
J*

0 10 20 30 40 50 60 70 80 90 100
K

0

200

400

600

800

1000

1200

M
ax

im
um

 Q
ue

ue
 S

iz
e

NRA−RJ
J*

0 10 20 30 40 50 60 70 80 90 100
K

0

5

10

15

N
o 

of
 A

cc
es

se
d 

Pa
ge

s

NRA−RJ
J*

(a) (b) (c)

Fig. 4 Performance comparison for NRA-RJ and J* when m=2.

0 10 20 30 40 50 60 70 80 90 100
K

0

10

20

30

T
im

e 
(s

ec
on

ds
)

NRA−RJ
MW−RJ
J*

0 10 20 30 40 50 60 70 80 90 100
K

0

2000

4000

6000

8000

M
ax

im
um

 Q
ue

ue
 S

iz
e

NRA−RJ
MW−RJ
J*

0 10 20 30 40 50 60 70 80 90 100
K

0

10

20

30

40

50

N
o 

of
 A

cc
es

se
d 

Pa
ge

s

NRA−RJ
MW−RJ
J*

(a) (b) (c)

Fig. 5 Performance comparison for NRA-RJ, J* and MW-RJ for m=3.

Fig. 6 A query pipeline with m=3.

ject, several GetNext calls for the left and right chil-
dren are invoked. According to NRA-RJ’s GetNext

algorithm, OP1 gets the next tuple from its left and
right children at each step. Hence, OP2 will be re-
quired to deliver as many top ranked objects for L2

and L3 as for L1. These calls to the ranking algorithm
in OP2 force L2 and L3 to retrieve unnecessary ob-
jects, which results in larger queue sizes with more
database accesses. We refer to this as the local rank-

ing problem, that is, the NRA-RJ operator in the
early pipeline stages tends to retrieve more database

objects in order to deliver as many ranked tuples as
required by the next NRA-RJ operator.

– The J* operator has less database access cost than
NRA-RJ, and close to the cost of MW-RJ, despite
NRA-RJ’s local ranking problem. In contrast to NRA-
RJ, the J*’s algorithm does not retrieve equal num-
bers of objects from its left and right children.

– For the same reason that J* has less disk accesses
than NRA-RJ, J* starts with smaller maximum queue
size than NRA-RJ. However, as in the case for m = 2,
J* begins to save many candidate join combinations
in the queue, causing its maximum queue size to be-
come larger than that of NRA-RJ as k increases. This
also explains the fact that J* has a larger queue size
than MW-RJ, even though both are retrieving al-
most the same number of database objects, as shown
in Figure 5(c).

We now evaluate the scalability of the two pipelined op-
erators with respect to the length of the query pipeline
m. By fixing k = 20, the operators NRA-RJ and J*are
again compared with respect to our three chosen perfor-
mance metrics. As m increases from 2 to 6, NRA-RJ has
a larger queue size because of the increased local ranking
overhead in the pipeline. As NRA-RJ encounters greater
database access, I/O cost begins to dominate total run-
ning time. The overhead finally affects the running time
enough to make NRA-RJ performance worse than J*,



10 Walid G. Aref et al.

0 10 20 30 40 50 60 70 80 90 100
K

0

10

20

30

T
im

e 
(s

ec
on

ds
)

NRA−RJ
MW−RJ
J*

0 10 20 30 40 50 60 70 80 90 100
K

0

1000

2000

3000

M
ax

im
um

 Q
ue

ue
 S

iz
e

NRA−RJ
MW−RJ
J*

0 10 20 30 40 50 60 70 80 90 100
K

0

10

20

30

40

N
o 

of
 A

cc
es

se
d 

Pa
ge

s

NRA−RJ
MW−RJ
J*

(a) (b) (c)

Fig. 7 The optimized NRA-RJ operator.

demonstrating clearly that J* is scalable in terms of in-
creased ranked inputs while NRA-JR is not. Our evalua-
tion of the performance of NRA-RJ led to an important
insight: we must minimize the excessive local ranking
calls in earlier stages of the pipeline. Our solution was
to unbalance the depth step in the operator children. We
changed the NRA-RJ GetNext algorithm to reduce the
local ranking overhead by changing the way it retrieve
tuples from its children, that is, to require less expensive
GetNext calls to the left child, which is also an NRA-
RJ operator. Using different depths in the input streams
had a major effect on the performance. Figure 7 shows
the comparison between the modified NRA-RJ, the J*
and the MW-RJ operator. In the optimized version of
the NRA-RJ operator, one tuple is retrieved from the
left NRA-RJ child for each p tuples retrieved from the
right input child (in the figure, p = 2.) The optimized
NRA-RJ operator showed significant performance im-
provements in both the maximum queue size and in the
number of database accesses, due to the reduction of lo-
cal ranking overhead in the inner pipeline stages. With
this improvement, the optimized NRA-RJ operator is
superior to the J* operator, even for large m. The opti-
mized NRA-RJ operator is an order of magnitude faster,
has less space requirements, and has a comparable num-
ber of disk accesses.

4.3 A Component for MPEG-7 Document Compliance

The existing implementation for VDBMS feature ex-
traction and database representation applies MPEG-7
to descriptors and description schemes, using an XML-
like format to define the semantic and image-based in-
formation that identifies video content. The video pre-
processing toolkit extracts nearly all low-level features
defined by MPEG-7 as standard, and the VDBMS query
interface allows to users to retrieve video shots based on
any combination of these features. Queries combining
multiple low-level features can be used to approximate
high-level content-based searches.

To accommodate the representation and query of
MPEG-7 features not currently extracted by VDBMS

video pre-processing, we have developed an XML wrap-
per that can import any MPEG-7 document specified
with Data Definition Language (DDL) and map its
descriptors to the VDBMS object-relational database
schema. The wrapper also supports the export of
VDBMS extracted features and other meta-data from
the database as an MPEG-7 document. The XML wrap-
per enables the VDBMS system to make use of any
available pre-extracted meta-data formatted as MPEG-7
documents without preprocessing the video itself. In ad-
dition, features that VDBMS video pre-processing does
not extract (such as event-based and other semantic fea-
tures) can be integrated, represented and queried as
VDBMS meta-data via this mechanism. A document
import function takes as input a user-supplied MPEG-
7 document, which is generated using Multimedia De-
scription Schemes (MMDS) and contains the high and
low-level feature descriptors. The document is passed
through the VDBMS MPEG-7 wrapper to extract, parse
and map the descriptors to the VDBMS database fea-
ture schema. The video and its documented MPEG-7
features are then stored inside the database where they
can be used for image and content-based queries. An ex-
port function extracts existing feature descriptors from
the database and sends them through the wrapper where
they are mapped to the MPEG-7 descriptors. The gen-
erated document can be used by other video processing
tools or databases.

5 Conclusion

In this paper, we present a video database research ini-
tiative that resulted in the successful development of a
video database management system which provides com-
prehensive and efficient capabilities for indexing, storing,
querying, searching, and streaming video data. Our fun-
damental concept was to support a full range of function-
ality for video as a fundamental, well-defined abstract
database data type. Research problems that were ad-
dressed by VDBMS to support the handling of video
data include MPEG-7 standard multimedia content rep-
resentation, algorithms for image-based shot detection,



VDBMS: A Testbed Facility for Research in Video Database Benchmarking 11

image processing techniques for extracting low-level vi-
sual features, a high-dimensional indexing technique to
access feature vectors extracted by image pre-processing,
multimedia query processing and optimization, new query
operators, a real-time stream manager, a search-based
buffer management policy, and an access control model
for selective, content-based access to streaming video
data. We have also used VDBMS as a testbed for inte-
grating and evaluating video processing techniques and
components. As such, the system has provided us with
an environment for testing the correctness and scope
of algorithms, measuring the performance of algorithms
in a standardized way, and comparing the performance
of different implementations of components. The use of
VDBMS as a testbed facility was illustrated by perfor-
mance studies to investigate and analyze alternative im-
plementations of video database processing methods.

We are currently constructing video component wrap-
pers with well-defined interfaces to facilitate the modi-
fication or replacement of video processing components.
We are also developing semi-automatic mechanisms for
integrating these components into VDBMS. The ulti-
mate goal of the VDBMS project is a flexible, extensible
framework that can be used by the research community
for developing, testing and benchmarking video database
technologies.

References

1. Aref W, Catlin A, Elmagarmid A, Fan J, Hammad M,
Ilyas I, Marzouk M, Zhu A (2002) A Video database man-
agement system for advancing video database research. In
International Workshop on Management Information Sys-
tems. Tempe, Arizona, USA.

2. Aref W, Catlin A, Elmagarmid A, Fan J, Guo J, Ham-
mad M, Ilyas I, Marzouk M, Prabhakar S, Rezgui A, Teoh
S, Terzi E, Tu Y, Vakali A, Zhu X(2002) A distributed
server for continuous media. In Proceedings of the 18th
International Conference on Data Engineering. San Jose,
California., USA.

3. Aref W, Kamel I, Ghandeharizadeh S (2001) Disk schedul-
ing in video editing systems. IEEE Trans. on Knowledge
and Data Engineering. 13(6). pp. 933-950.

4. Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The
R* -tree: an efficient robust access method for points and
rectangles. SIGMOD Record, ACM Special Interest Group
on Management of Data, 19(2): pp. 322-331.

5. Berchtold S, Bhm C, Jagadish H, Kriegel H-P, Sander
J(2000) Independent quantization: An index compression
technique for high-dimensional data spaces. In Proceedings
of the 16th International Conference on Data Engineering.
San Diego, California, USA. pp. 577-588.

6. Bertino E, Hammad M, Aref W, Elmagarmid A (2000)
An access control model for video database systems. In
Proceedings of the 9th International Conference on Infor-
mation and Knowledge Management. pp. 336-343.

7. Brown K, Carey M, Livny M (1996) Goal-oriented buffer
management revisited. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of
Data. Montreal, Quebec, Canada.

8. Chang E, Garcia-Molina H (1997) Effective Memory Use
in a Media Server. In Proceedings of the 23rd International
Conference on Very Large Data Bases. Athens, Greece.

9. Dan A, Sitaram D (1996) A generalized interval caching
policy for mixed interactive and long video environments.
In the IS&T SPIE Multimedia Computing and Networking
Conference. San Jose, CA, USA.

10. Fagin R, Lotem A, Naor M (2001) Optimal aggregation
algorithms for middleware. In Proceedings of the 20th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. Santa Barbara, California, USA.

11. Fan J, Aref W, Elmagarmid A, Hacid M-S, Marzouk M,
Zhu, X (2001). Multiview: Multi-level video content repre-
sentation and retrieval. Journal of Electrical Imaging, Vol.
10, No. 4. pp. 895-908.

12. Gemmell J, Christodoulakis S (1992) Principles of Delay
Sensitive Multimedia Data Storage and Retrieval. In ACM
Transactions on Information Systems, Vol(1) No(1) pages
51-90.

13. Guntzer U, Balke W-T, Kiessling W (2000) Optimiz-
ing multi-feature queries for image databases. In Proceed-
ings of the 26th International Conference on Very Large
Databases. September 10-14, 2000. Cairo, Egypt. p. 419-
428.

14. Hammad M, Aref W, Elmagarmid A(2002) Search-based
buffer management policies for streaming in continuous me-
dia. In Proceedings of the IEEE International Conference
on Multimedia and Expo. Lausanne, Switzerland.

15. Hammad M, Aref W, and Elmagarmid A(2003). Stream
window join: tracking moving objects in sensor network
databases. In Proceedings of the 15th International Confer-
ence on Scientific and Statistical Database Management.

16. Hellerstein J, Naughton J, Pfeffer A(1995) Generalized
search trees for database systems. In Proceedings of the
21st International Conference on Very Large Data Bases.
Zurich, Switzerland.

17. Ilyas I, Aref W (2001) SP-GiST: An extensible database
index for supporting space partitioning trees. Journal of
Intelligent Systems (JIIS). 17(2-3). pp. 215-235.

18. Ilyas I, Aref W, Elmagarmid A(2002). Joining ranked
inputs in practice. In Proceedings of the 28th International
Conference on Very Large Databases. Hong Kong, China.

19. ISO/IEC/JTC1/SC29/WG11: Text of ISO/IEC 15938-3
Multimedia Content Description Interface ? Part 3: Visual.
Final Committee Draft. Document No. N4062. Singapore.
March 2001

20. Jiang H, Helal A, Elmagarmid A, Joshi A(1998). Scene
change detection for video database systems. Journal on
Multimedia Systems, 6(2), pp.186-195.

21. Katayama N, Satoh S (1997). The SR-tree: An index
structure for high dimensional nearest neighbor queries.
SIGMOD Record, ACM Special Interest Group on Man-
agement of Data, 26(2).

22. Kumar P, Babu G (1998). Intelligent multimedia data:
data + indices + inference. Multimedia Systems. 6(6).
pp.395-407.

23. Lee L, Whang Y, Moon S, Song Y (2001). Dynamic
Buffer Allocation in Video-on-Demand Systems. In Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, Santa Barbara, CA, USA.

24. Lin T, Zhang H (2000). Automatic Video Scene Extrac-
tion by Shot Grouping. In Proceedings of the ICPR.



12 Walid G. Aref et al.

25. Moser F, Kraiss A, Klas L (1995). A buffer management
strategy for interactive continuous data flows in a multime-
dia dbms. In Proceedings of the 21st International Confer-
ence on Very Large Data Bases. Zurich, Switzerland. pp.
275-286.

26. Nepal S, Ramakrishna M (1999) Query processing is-
sues in image (multimedia) databases. In Proceedings of
the 15th International Conference on Data Engineering.
Sydney, Australia. p. 22-29. IEEE Computer Society.

27. Natsev A, Chang Y-C, Smith J, Li C-S (2001). and Vit-
ter, J. Supporting incremental join queries on ranked in-
puts. In VLDB’01 Proc. of 27th International Conf. on Very
Large Data Bases. Rome, Italy.

28. Ozden B, Rastogi R, Silberschatz A (1996). Buffer re-
placement algorithms for multimedia storage systems. In
Proc. of IEEE International Conf. on Multimedia Comput-
ing and Systems. pp. 172-180.

29. Ozden B, Biliris A, Rastogi R, Silberschatz A (1994)
Fellini: A Low-cost Storage Server for Movie on Demand
Databases. In Proceedings of the 20th International Con-
ference on Very Large Databases.

30. Ozden B, Rastogi R, Silberschatz A (1997). Multimedia
Support for Databases. In Proceedings of the 16th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. Tucson, Arizona, USA.

31. Pan J-Y, Faloutsos C (2003) GeoPlot: spatial data min-
ing on video libraries. In Proceedings of the International
Conference on Information and Knowledge Management,
McLean, VA, USA.

32. Rui Y, Huang T, Mehrotra S (1999) Constructing table-
of-content for video. ACM MSJ. 7(5). pp. 359-368.

33. Seshadri P (1998) Predator: A resource for database re-
search. SIGMOD Record. 27(1). pp. 16-20.

34. Smith J (1078) Sequentiality and prefetching in database
systems. ACM Trans. on Database Systems. 3(3). pp. 223-
247.

35. Stonebraker M (1981) Operating system support for
database management. CACM. 24(7). pp. 412-418.

36. Storage Manager Architecture. Shore Documentation,
Computer Sciences Department. UW-Madison, June 1999.

37. Thomas M, Carson C, Hellerstein J (2000) Creating a
Customized Access Method for Blobworld, In Proceedings
of the 16th International Conference on Data Engineering,
San Diego, California, USA.

38. Virage. http://www.virage.com/.
39. Zhu X, Elmagarmid A, Xiangyang X, Catlin A. In-

sightVideo: Toward hierarchical content organization for ef-
ficient video browsing, summarization and retrieval. IEEE
Transactions on Multimedia Journal. To appear.

40. Zhu X, Fan J, Aref W, Catlin A, Elmagarmid A (2003)
Medical Video Mining for Efficient Database Indexing
Management and Access. In Proceedings of the 19th Inter-
national Conferences on Data Engineering. Banalore, India.


