
Video Query Processing in the VDBMS Testbed
for Video Database Research

Walid Aref
Moustafa Hammad

Ann Christine Catlin
Ihab Ilyas

Thanaa Ghanem

Purdue University
West Lafayette, IN 47906

USA

Ahmed Elmagarmid
Mirette Marzouk

ABSTRACT
The increased use of video data sets for multimedia-based
applications has created a demand for strong video database
support, including efficient methods for handling the content-
based query and retrieval of video data. Video query processing
presents significant research challenges, mainly associated with
the size, complexity and unstructured nature of video data. A
video query processor must support video operations for search by
content and streaming, new query types, and the incorporation of
video methods and operators in generating, optimizing and
executing query plans. In this paper, we address these query
processing issues in two contexts, first as applied to the video data
type and then as applied to the stream data type. We present the
query processing functionality of the VDBMS video database
management system, which was designed to support a full range
of functionality for video as an abstract data type. We describe
two query operators for the video data type which implement the
rank-join and stop-after algorithms. As videos may be considered
streams of consecutive image frames, video query processing can
be expressed as continuous queries over video data streams. The
stream data type was therefore introduced into the VDBMS
system, and system functionality was extended to support general
data streams. From this viewpoint, we present an approach for
defining and processing streams, including video, through the
query execution engine. We describe the implementation of
several algorithms for video query processing expressed as
continuous queries over video streams, such as fast forward,
region-based blurring and left outer join. We include a description
of the window-join algorithm as a core operator for continuous
query systems, and discuss shared execution as an optimization
approach for stream query processing.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – multimedia
databases, query processing.

General Terms
Algorithms, Management, Performance, Design.

Keywords
Continuous query, query processing, rank-join algorithm, stream
processing, video database, window-join algorithm.

1. INTRODUCTION
The VDBMS video database management system was designed to
support a full range of functionality for video as a well-defined
abstract database data type, with the goal of providing video-
based applications with all the powerful functionality generally
provided by database management systems [1,2]. In particular,
VDBMS supports query processing for content-based query,
search and retrieval of video data. An efficient high-dimensional
indexing mechanism was implemented in VDBMS to handle
searching against video content, and new operators were defined
for video query processing, such as nearest neighbor search and
query by sample image for processing similarity queries. The
VDBMS query processor has been designed to consider video
methods and operators in generating, optimizing, and executing
query plans. Additional supporting components were developed to
complete the system, including a stream manager, query-based
buffer management policies for effective real-time streaming [14],
and pre-processing tools to generate visual features and other
video metadata for the content representation used in video query
processing [12]. The VDBMS framework ensures that video-
based applications are provided with full video data processing
functionality.

We have extended the VDBMS concept of the video data type
(VDT) to handle general data streams, and the capabilities of
VDBMS have been advanced to support a new VDBMS stream
data type (SDT). This includes the development of a new stream
manager to operate as an interface between outside stream-
producing devices and internal processing, a StreamScan
operator, operators for handling continuous queries, and support
for multiple continuous query optimization and execution. The
underlying framework for stream data processing incorporates
novel stream management and query processing mechanisms to
support the online acquisition, management, storage, non-
blocking query, and integration of data stream sources.
Requirements of our stream processing framework include a data-
driven execution model (push and pull-based evaluation), support
for both continuous and snapshot queries, admission control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MMDB ’03, November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-726-5/03/0011…$5.00.

mechanisms, scalability in both number of streams and number of
queries, prioritization of both streams and queries, maintenance of
data stream summaries, and the ability to perform data mining
over streams. Key components include the query processing
interface for source streams, the stream manager, the stream buffer
manager, non-blocking query execution and a new class of join
algorithms for joining multiple data streams constrained by a
sliding time window.

If we now define video data as a sequence of consecutive image
frames, then video data can be viewed as a data stream, where
each data item represents a single image frame. Video query
processing can then be regarded as an example of stream query
processing and we can express video streaming operations (such
as the blurring of specific regions of frame content and fast
forwarding) as continuous queries over data streams. From this
viewpoint, video processing emerges as an application of stream
data processing. Numerous complex operations over video data
can be expressed as continuous queries over streams. In fact, with
increasing research in online video analysis and online feature
extraction, a wealth of information can be streamed in parallel
with the stream of video frames.

There are some important advantages to expressing video
processing operations as queries over data streams. These include:
1) space efficiency. Some video applications deliver processed
forms of videos to users. Instead of storing multiple versions of
videos, where each is customized to meet user-based restrictions,
the user requirement can be expressed as a continuous query. The
query is executed on one version of the video to produce an
appropriately processed video for each user class. That is, query
execution accesses a single stored version of the video, and the
output of query processing is transferred to the user, 2) flexibility.
Simple combinations of query operators produce different views
of the same video and 3) scalability. Sharing of operations can be
exploited so that multiple users can be supported at the same time.

In this paper, we address VDBMS video query processing in two
contexts, first as applied to the video data type and then as applied
to the stream data type. In section 2, we describe VDBMS query
processing for the VDT and present VDBMS query operators that
implement the rank-join and stop-after algorithms operating on
video as a VDT. In section 3, we present the stream query
processing framework of VDBMS. Section 4 presents three new
VDBMS stream query processing algorithms that operate on
video as an SDT, and Section 5 describes a new stream query
operator for shared execution of window joins. Lastly we discuss
shared execution, an optimization approach for stream query
processing.

2. VDBMS QUERY PROCESSING FOR
THE VIDEO DATA TYPE
2.1 The Query Processor
The VDBMS object relational database manager extends the
Predator open source system [25], which has been modified
extensively to provide full video query processing capability. The
modifications and adaptations are based on the development and
integration of video as a fundamental abstract database data type.
Key extensions include high-dimensional indexing, video store
and search operations, and new video query types. The extensions
required major changes in many database system components

since traditional methods for handling data retrieval cannot be
easily extended to support the meaningful query processing and
optimization of video, including online customized video views,
content-based queries, video content control during streaming,
and data abstraction.

VDBMS adopted the features approach in querying video by
content. Visual and semantic descriptors that represent and index
video content for searching are extracted during video pre-
processing. The video, its indices and metadata descriptors are
then stored in the database. The high-dimensional feature vectors
generated by video pre-processing presented serious indexing and
searching difficulties in the execution and optimization of feature-
based queries [20], hence VDBMS incorporated the GiST [17,27]
implementation of the SR-tree as the high-dimensional index
[3,4], and modified the query-processing layer of Predator to
access this index. The vector ADT was added for all feature fields,
and an instance of the GiST SR-tree is used as the access path in
feature matching queries. The multi-dimensional indexing
structure manages the high-dimensional feature vectors that are
produced by visual feature extraction and used in image similarity
searches.

2.2 The Rank-Join Algorithm
Consider stored video metadata that describes low-level visual
features such as color histogram, texture and edge orientation. The
features are extracted for each video frame during pre-processing
and stored in separate tables in the database. Each feature is then
indexed using a high-dimensional index for faster query response.
If a user is interested in the k video frames most similar to a given
query image based on color, the database system should rank the
frames according to their similarity to the color information
extracted from the given image, and present only the k most
similar frames to the user. The database system can use the high-
dimensional index to perform an efficient nearest-neighbor search
[21] and produce the nearest k neighbors. We call this simple
ranking query a single-feature or a single-criteria ranking query,
and no joins are required to answer the query. A database system
supporting approximate matching merely ranks the tuples
according to how nearly they match the query image.

A more complex similarity query occurs when a user is interested
in finding the k most similar frames to a given query image based
on both color and texture. In this case, the database system must
obtain a global ranking of frames based on both color and texture
similarities to the query image. We refer to this type of query as a
multi-feature ranking query. Unlike for single feature ranking
queries, it is not clear with multi-criteria ranking how the database
system should combine the individual rankings of the individual
criteria, even if the notion of approximate matching is supported
[11,24]. In current database systems, the only way to evaluate the
query in the previous example is as follows: First, the feature
tables are joined on the tuple key attributes. Then, for each join
result, the similarity between the tuple features and the query
features are quantized and combined into one similarity score.
Finally, the results are sorted on the computed combined score to
produce the top-k results. Two expensive major operations are
involved: joining the individual inputs and sorting the join results.
When using traditional join operators to answer a ranking query,
an execution plan with a blocking sorting operator on top of the

join is unavoidable. If the inputs are large, the cost of this plan
can be prohibitively expensive.

We have developed a practical, binary, pipelined rank-join query
operator, NRA-RJ [19], which determines an output global
ranking from the input ranked video streams based on a score
function. Our algorithm extends Fagin's optimal aggregate ranking
algorithm [11] by assuming no random access is available on the
input streams. We created a new VDBMS query operator that
encapsulates the rank-join algorithm in its GetNext() operation,
and each call to GetNext() returns the next top element from the
ranked inputs. The output of NRA-RJ thus serves as valid input to
other operators in the query pipeline, supporting a hierarchy of
join operations and integrating easily into the query processing
engine of any database system. The incremental and pipelining
properties of our aggregation algorithm are essential for practical
use in real-world database engines, and our new operator will help
in implementing this type of join in ordinary query plans.

The GetNext() operation is the core of the rank-join operator. The
internal state information needed by the operator consists of a
priority queue of objects encountered thus far, sorted on worst
score in descending order. GetNext() is binary, although this
restriction is merely practical, and the algorithm holds for more
than two inputs. Our most significant modification to the original
aggregate ranking algorithm is that we can handle ranges of
scores, instead of requiring the inputs to have exact scores for
each object. This modification allows for pipelining the algorithm.
The modified algorithm first checks if another object can be
reported from the priority queue without violating the stopping
condition, and if not, moves deeper into the input streams to
retrieve more objects. In each call to GetNext(), the current depth
of the caller is passed to the operator. This extra information
assures synchronization among the pipeline of NRA-RJ operators.

2.3 The Stop-After Algorithm
Because of its pipelined nature, NRA-RJ does not specify the
number k of desired results, and we need a way to limit the output
of the similarity queries. The number of reported answers to k in
NRA-RJ is limited by applying the Stop-After query operator
[9,10], which is implemented in VDBMS as a physical query
operator Scan-Stop. This is a straightforward implementation of
Stop-After, and appears on top of the query plan. The Scan-Stop
does not perform any ordering on its input.

3. VDBMS QUERY PROCESSING FOR
THE STREAM DATA TYPE
Since videos can be considered as a long sequence of frames
delivered over time, one can model video as a stream of frames.
With this view of video data, a multitude of fine-grained and
incremental video operations can be introduced. Whereas the
offline and bulk processing of video is widely deployed to process
stored videos, the incremental and frame-level processing of video
would be advantageous in scenarios such as the following:

 Video is delivered on-line as an infinite stream, and the
responsiveness of video processing is important, for
example, while tracking moving objects in surveillance
applications.

 Storage space is limited and it is not feasible to keep multiple
copies of the same video (the original video and processed
versions). In this case the processing of video upon request
and streaming the resulting, or processed, video is considered
a space-efficient approach. An example is delivery video
based on different quality of service [5].

In this section we describe a general model for data streams, and
introduce video streams as an example application. We follow this
by presenting stream query operations and their applications on
video streams. Finally, we provide a brief description of the
interface between query operations and the underlying streams

3.1 Stream Data Model and Stream Query
Operations
We consider a stream to be an infinite sequence of data items,
where items are appended to the sequence over time and items in
the sequence are ordered by a timestamp. Accordingly, we model
each stream data item as a tuple < v, t> where v is a value (or set
of values) representing the data item content, and t is the time at
which this item joined the stream. The data content v can be a
single value, a vector of values or NULL, and each value can be a
simple or composite data type. Time t is our ordering mechanism,
and the time stamp is the sequence number implicitly attached to
each new data item. The time stamp may be assigned to the data
item at its source or at the query processor [26]. As an example
application of the stream model, the single data item in a video
stream can be defined as the < frame, t>, where frame is an
abstract data type representing frame content and t is the
timestamp assigned at the query processor. Note that the frame
data type includes different attributes such as FrameID, size, type
(I, P or B frames for MPEG video), headers and binary content.
Our model can easily integrate Frame-level physical features by
storing a foreign key to features table described in Section 2.1.

Some of the traditional SQL operations, such as selection and
projection, have semantics similar to the relational model when
applied to the processing of data streams. Selection operations
select stream data items that satisfy a predicate condition (Boolean
expression), much the same as selection in the relational model.
Projection is also similar to its relational model equivalent, where
a mapping function is repeatedly executed for each stream data
item. These two operations are directly applicable to video
processing when viewing video as streams of frames. As an
example, a selection operation could select frames that satisfy the
selection condition: “select I-Frames from the video stream” and a
projection operation function LowResolution() could be applied
to every frame to produce video streams with reduced (lower
resolution) quality. This may be important for applications which
stream video through network links with slow bandwidth.

The binary form of the join operation finds the correlated items in
two data sources. For a binary join, a data item from one source
(the outer) is compared against all data items in the other source
(the inner) to produce the matching pairs. This definition is
clearly applicable when the data sources are non-streams or if the
inner-stream is a non-stream data source. For all stream data
sources, iteration on all items on the inner stream is not possible
since the stream is assumed to be infinite. Therefore, for joining
two stream data sources, a restricted form of the join referred to as
window-join is used [16]. In the window-join, only part of the
data stream (a window) is considered for the join. In this paper,

we consider a sliding window join that is defined in terms of time
units. However, other representations of window-join are also
applicable, such as the landmark window and tuple-count
window. In the video stream processing application domain, the
following types of joins are applicable:

 Joining a video stream with a non-stream data source, for
example when searching for matching frames between a
video stream generated by a monitoring camera and a stored
database of images.

 Window-join for two data streams, for example when
tracking objects that appear in video data streams from two
monitoring cameras. The objects are identified in each data
stream and the maximum time for the object to travel through
the monitoring devices defines an implicit time window for
the join operation.

A special type of the join operation is the outer-join, where tuples
from left, right or either streams are always produced as output,
regardless of whether they satisfy the join condition.

3.2 A Stream Interface to Query Processing
We developed and integrated the abstract stream data type into the
VDBMS video database system to represent source data types
with streaming capability, and VDBMS was modified to
accommodate stream processing. Any stream-type must provide
interfaces for InitStream(), ReadStream(), and CloseStream(). In
order to collect data from the streams and supply them to the
query execution engine, we developed the stream manager as a
new component. The stream manager registers new stream-access
requests, retrieves data from the registered streams into its local
buffers, and supplies data to be processed by the query execution
engine. Running as a separate thread, the stream manager
schedules the retrieval of tuples in a round robin fashion. To
interface the query execution plan to the stream manager, we
introduce a StreamScan operator to communicate with the stream
manager and receive new tuples as they are collected by the
stream manager. A similar operator to the StreamScan is also
introduced in [8] and [22] for stream query interfaces.

4. VIDEO PROCESSING AS CONTINUOUS
QUERIES OVER STREAMS
As described in the previous section, we define video as a stream
of frames residing within the database. Video data is stored in a
video stream table VideoStream with the schema (VideoID,
Frame, Timestamp). The Frame attribute is a complex data type
with additional attributes and manipulation functions. Frame
attributes include the frame number FrameNum, the FrameType to
identify the frame as I, P or B, and the frame binary data. A
sample user-defined function to support streaming is
PacketizeStream(), which augments a streamed frame with the
necessary headers for final display.

The VideoStream table stores video as a stream data type (SDT).
The SDT stores special information about the video, such as
identifier, stored location, type, size, etc. At query execution time,
the SDT generates a stream of frames that correspond to the stored
version of the video. Only one view of the table exists at request
time. It contains the SDT as a virtual table with the actual contents
(tuples) of the data stream. The query communicates with a video

driver to retrieve the video frame by frame and produce an
appropriately processed video.

4.1 Fast-Forward
Fast forwarding a streaming video to the end-user is a simple
example of video query processing expressed as a continuous
query over the video data stream. In the following example query,
the stream of frames for the video titled "HeartSurgery" is filtered
by the selection predicate VS.frame.type = I_FRAME. Only I
frames are streamed out of the query, with the result that the video
is displayed to the end-user in fast forward mode:

SELECT VS.frame.PacketizeStream()
FROM VideoStream VS
WHERE VS.frame.type = "I_FRAME" and
VS.VideoID = "HeartSurgery";

The next section describes an extremely useful and significantly
more complex example of video processing which operates as a
continuous query over a stream of video frame data.

4.2 Video Access Control during Streaming
To provide customized views for a video according to user needs
or specific access criteria, video stream operators can be used as
access control mechanisms that apply real-time constraints on
delivery video data streams [6]. We have developed an access
control operator that hides areas of the video frame based on
content during streaming. Query processing determines the
authorized portions of each video frame that a user can receive,
and alters the frames according to the user authorization and the
video content description. A video-based application for medical
education videos might use this mechanism to protect patient
privacy, e.g., to blur the faces of patients during streaming to end-
users who are not authorized to know the identity of patients.
Granularity control is exercised over rectangular areas of a video
frame which are associated with specific objects, such as a face or
names and addresses.

In traditional databases, access control can easily be expressed in
terms of a query (view) over the restricted tables. VDBMS
follows this approach: when a user submits a query to retrieve a
video containing the specified object, VDBMS will generate a
continuous query to hide that object in all video frames by
blurring the area in which the object appears. In the following
query example, the ObjectTrajectory, defined by its appearance in
the video frames, is determined beforehand and stored as
minimum bounding rectangles (MBR), along with the frame
number and video information. This information is stored in a
relational table as (VideoID, FrameNum, MBR). The system
submits the following query to stream the altered video stream to
the user:

SELECT VS.frame.BlurFrame(OT.MBR)
FROM VideoStream VS, ObjectTrajectory OT
WHERE VS.frame.FrameNum
LEFT OUTER JOIN OT.FrameNum and
VS.VideoID = "HeartSurgery" and
VS.VideoID = OT.VideoID;

The query involves a Left Outer Join (described in the next
section) between the video stream and the frames in the
ObjectTrajectory. While streaming frames, if the current frame

number is found in the ObjectTrajectory, the MBR of the frame is
streamed along with the frame data to upper levels in the query
pipeline. Other wise, a null MBR is streamed with this frame. The
final projection of the query, BlurFrame(OT.MBR), blurs the
frame if the MBR is not null. The result of the query is a
streaming video where objects defined in the ObjectTrajectory are
blurred.

An example application is shown in Figure 1. In the top image, a
patient’s face is blurred during streaming since the user is not
authorized to view it. The client interface to the VDBMS medical
video library is shown in the bottom image. The client generates
the access control query based on the user’s authorization level.

Figure 1. Content-based access control for streaming video.

Fast forward can be combined with the access control mechanism
to provide fast forwarding through a video for which some end-
users have restricted access. The query can be expressed in SQL
form as follows:

SELECT bVS.bframe.PacketizeStream()
FROM (
SELECT VS.frame.BlurFrame(OT.MBR) as bframe
FROM VideoStream VS, ObjectTrajectory OT
WHERE VS.frame.FrameNum
LEFT OUTER JOIN OT.FrameNum and
VS.VideoID = "HeartSurgery" and
VS.VideoID = OT.VideoID;
) AS bVS
WHERE bVS.bframe.type = "I_FRAME";

Clearly, access control queries will never be generated by the end-
user. Instead, a client interface which has incorporated the access

control mechanism will construct the query for execution. In our
example query, useful optimization techniques can be applied,
such as pushing the selection predicate, bVS.frame.type =
"I_FRAME", down in the query plan. In this case P and B frames
would not be processed for blurring and the query execution time
will be reduced. In plan (a) of Figure 2, the selection is pulled
above the join and many tuples are unnecessarily joined. In plan
(b) the selection is pushed down before the join so that
unnecessary tuples are filtered out before the join.

Figure 2. Optimizing select operator placement.

4.3 Implementation of the Left Outer Join
We briefly describe our implementation of the left outer join
algorithm. Query execution in VDBMS uses the “iterator model.”
A tuple iterator is set up on the highest plan operator, tuples are
retrieved one-by-one, and each plan operator accesses its children
by setting up iterators on them. A graph is created for the
execution phase, and each node in this graph corresponds to a
physical algorithm. The Left Outer Join is constructed as a node
in the execution graph.

The Left Outer Join operator is implemented as a simple tuple
nested loop join with specialized code that allows it to return
additional output records. The Left Outer Join operator class
contains information about the join which is kept alongside all
GetNextRecord() function calls, including an index to the array
that specifies from which relation (outer or inner) to get the next
item and a counter that keeps the number of records from the
inner relation that match the current outer relation tuple.
GetNextRecord() takes a record from the outer relation, opens a
scan on the inner relation, and passes through the inner relation
record by record. When a record matches the join condition with
the current outer record, the record is returned. After a scan on the
inner relation is complete, the counter is checked. If it equals zero,
a new record is constructed with the fields corresponding to the
outer tuple extracted from the current outer tuple, along with the
fields corresponding the inner tuple set to NULL, and this record
is also returned.

5. THE WINDOW-JOIN
In this section we describe an algorithm for implementing the
sliding window-join operation. As introduced in Section 3, the
window-join (W-join) operation has many practical applications
when considering the video stream model. An example SQL query
that includes W-join is the tracking of objects that appear in
multiple data streams from multiple cameras. For an object Obj

that requires w time units to travel between two monitoring
cameras, the query is posed1:

SELECT A.Obj
FROM Camera1 A, Camera2 B
WHERE similar (A.Obj, B.Obj)
WINDOW w

where similar() is a user-defined function that determines when
two objects captured by different cameras are similar. This
function can be considered as an equality predicate on object
identifiers, A.Obj = B.Obj.

We identify four forms of the W-join: binary, path, graph, and
clique (which include a special case referred to as uniform clique
window join). In this paper, we focus on the uniform clique W-
join defined as follows:

Given n data streams and a join condition (a Boolean
expression on the tuples' values), find the tuples that
satisfy the join condition and that are within a sliding
time window of length w units from each other.

We present an algorithm for W-join: the backward evaluation of
window join (BEW-join). The BEW-join provides low response
time for slower input data streams. We introduce algorithms for
the other forms of W-join (e.g., the path, graph and non-uniform
clique-join) in [16].

We describe the BEW-join using an example window-join among
five streams, A, B, C, D, and E, as shown in Figure 3. The five
streams are joined together using a single window constraint of
length w that applies between every two streams. For illustration,
we assume that only the black dots (tuples) from each stream
satisfy the join predicate in the WHERE clause, equality over
objectID. The W-join maintains a buffer for each stream and we
assume that the vertical bold arrow is currently pointing to the
tuple about to be processed: Stream A is about to process the new
tuple a2. The Figure illustrates the positions of the tuples as they
arrive over time, newer tuples are to the left of the stream and
older tuples are to the right. There is no restriction that if the
algorithm is processing a tuple tnew from one stream, then all
tuples from the other streams that have earlier timestamps must
have been processed. The order of scanning the streams is
arbitrary and without loss of generality, we assume the order is: A,
B, C, D, E, A, etc. The algorithm starts

Figure 3 depicts the status of the algorithm when processing tuple
a2 from Stream A and forming a window of length 2w centered at
a2. The algorithm iterates over all tuples of Stream B which are
within the window of tuple a2. These tuples are shown inside the
rectangle over B. b4 satisfies the join predicate and is located
within the window of a2. The period is modified (reduced) to
include a2, b4 and all tuples within w of both of them. This new
period is used to test tuples in Stream C, and is shown as a
rectangle over Stream C in Figure 3 (a).

The process of checking the join condition is repeated for tuples
in C. Since tuple c3 satisfies the join predicate and also lies inside
the rectangle, a new period is calculated that includes tuples a2,

1 For tracking object by more than two video cameras, the w-join can be

expressed as a multi-way join between the streams from each video
camera. Our W-join algorithm is presented as a multi-way W-join.

b4, c3 and all tuples that are within w of all of them. This period
is shown as a rectangle over Stream D. In Stream D, d2 satisfies
the join predicate and is located within the rectangle formed by
a2, b4, c3. A new period is formed which includes the previous
tuples and any further tuples within w of all of them. This period
is shown as a rectangle over Stream E. The step is repeated for
Stream E, and the 5-tuple, <a2, b4, c3, d2, e2> is reported as
output. The algorithm recursively backtracks to consider other
tuples in Streams D, then C and finally B. The final output 5-
tuples in the iteration that starts with tuple a2 are: <a2, b4, c3, d2,
e2>, <a2, b3, c3, d2, e2>, <a2, b3, c1, d2, e2>, <a2, b2, c3, d2,
e2> and <a2, b2, c1, d2, e2>, respectively. While iterating over
stream D, tuple d1 is located at distance more than w from all the
last tuples in streams A, B, C, E, (tuples a2, b4, c3, e2). Since
future tuples will have timestamps greater than any of (a2, b4, c3,
e2) then tuple d1 can not be part of any future W-join. As a result
tuple d1 can be safely dropped from the join buffer of stream D.

Figure 3. The BEW Join

After finishing with tuple a2, the algorithm starts a new iteration
using a different new tuple (if any). In the example of Figure 3,
we advance the pointer of Stream B to process tuple b5. This
iteration is shown in 3(b) where periods over Streams C, D, E and
A are constructed, respectively. This iteration produces no output,
since no tuples join together in the constructed rectangles.

The algorithm never produces spurious duplicate tuples, since
each iteration starts with a new tuple for the join (the newest tuple
from a stream). Since, the output tuples of this iteration must
include the new tuple then duplicate tuples cannot be produced.

6. SHARED EXECUTION OF
CONTINUOUS QUERIES
Centralized stream processing system must be able to support
hundreds of concurrent users posing continuous queries over data

streams and consuming system resources for extended periods of
time. Exploiting shared execution for these queries will
significantly improve system scalability. This is especially
important if the sharing is performed for expensive and commonly
used operators. One example of such an operator is the window-
join. However sharing of the window-join is not straightforward,
especially if the queries are interested in different windows over
the data streams. In [15] we investigated different approaches to
scheduling shared binary window-joins over data streams. We
introduced two new scheduling approaches, the shortest-window-
first and the maximum-query-throughout, for a shared window-
join, and compared their performance with the largest-window-
only scheduling technique. The performance of the algorithms
with respect to reduced response time is more prominent when the
streams possess bursty arrival rates.

Although the algorithms for shared window-joins target general
data streams, these problem are extremely important in the video
streaming domain. Since video stream are usually encoded in a
variable rate streams, traffic is likely to provide a bursty arrival of
frames from a video stream. Furthermore, when the outcome of
the video query is expected to be streamed as a new video, the
basic assumption is that the underlying query operations should
have low (almost real-time) response time. Therefore, proposed
algorithms for video operations should optimize the response
time. Finally, for processing on-line feeds of video streams,
concurrent queries are expected to share their resources, and
shared execution is becoming increasingly important.

7. CONCLUSION
Video-based applications require strong video database support,
including efficient methods for handling content-based query and
retrieval of portions of video data. A video query processor
should support video-based operations for search by content and
streaming, new video query types, and the incorporation of video
methods and operators in generating, optimizing and executing
query plans. In this paper, we described VDBMS database
support for video query processing in two contexts: first as
applied to the video data type and then as applied to the stream
data type. The VDBMS query capability was designed to support
a full range of functionality for video processing, based on the
development and integration of video as an abstract database data
type (VDT). We described two query operators for the VDT
which implement the rank-join and stop-after algorithms. We then
considered video data as streams of consecutive image frames,
and expressed video query processing as continuous queries over
video data streams. The stream data type (SDT) was developed
and integrated into VDBMS, and system functionality was
extended to support general data streams. From this viewpoint, we
presented an approach for defining and processing streams,
including video, through the new VDBMS query execution
engine. We described the implementation of several algorithms
for video query processing, such as fast forward, region-based
blurring and left outer join, which were expressed as continuous
queries over video streams. We also described the window-join
algorithm and shared execution over data streams as core
operations for continuous query systems.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under Grants IIS-0093116, EIA-9972883, IIS-
0209120 and by the NAVSEA/Naval Surface Warfare Center,
Crane.

9. AUTHOR INFORMATION
Author phone numbers and email addresses are as follows: Walid
Aref 765-494-1997, aref@cs.purdue.edu. Ann Christine Catlin
765-494-4465, acc@cs.purdue.edu. Ahmed Elmagarmid 765-494-
1998, ake@cs.purdue.edu. Moustafa Hammad 765-494-4359,
mhammad@cs.purdue.edu. Ihab Ilyas 765-496-6348. Mirette
Marzouk 765-494-6020, marzouk@cs.purdue.edu. Thanaa
Ghanem 765-494-6020, ghanemtm@cs.purdue.edu.

10. REFERENCES
[1] Aref, W., Catlin, A.C., Elmagarmid, A., Fan, J.,

Hammad, M., Ilyas, I., Marzouk, M., and Zhu, X. A
video database management system for advancing
video database research. In Proc. of the Int Workshop
on Management Information Systems. Nov 2002.
Tempe, Arizona.

[2] Aref, W., Catlin, A.C., Elmagarmid, A., Fan, J., Guo,
J., Hammad, M., Ilyas, I., Marzouk, M., Prabhakar, S.,
Rezgui, A., Teoh, S., Terzi, E., Tu, Y., Vakali, A. and
Zhu, X. A distributed server for continuous media. In
Proc. of the 18th Int Conf on Data Engineering. Feb
26-Mar 1 2002. San Jose, California.

[3] Beckmann, N., Kriegel, H., Schneider, R. and Seeger,
B. The R* -tree: an efficient robust access method for
points and rectangles. SIGMOD Record, ACM Special
Interest Group on Management of Data, 19(2): pp.
322-331. 1990.

[4] Berchtold, S., Böhm, C., Jagadish, H., Kriegel, H-P.
and Sander, J. Independent quantization: An index
compression technique for high-dimensional data
spaces. In Proc. of the 16th Int Conf on Data
Engineering. San Diego, CA. pp. 577-588. February
2000.

[5] Bertino, E., Elmagarmid, A. and Hacid, M-S. Quality
of service in multimedia digital libraries. SIGMOD
Record. 30(1), pp. 35-40, March 2003.

[6] Bertino, E., Hammad, M., Aref, W. and Elmagarmid,
A. An access control model for video database
systems. In Proc. of the 9th Int Conf on Information
and Knowledge Management. pp. 336-343. Nov 2000.

[7] Bertino, E., Samarati. P. and S. Jajodia. An extended
authorization model. IEEE Trans. on Knowledge and
Data Engineering. 9(1). pp. 85-101. 1997.

[8] P. Bonnet , J. E. Gehrke and P. Seshadri. Towards
Sensor Database Systems. In Proc. of the 2nd Inter
Conf on Mobile Data Management. Jan 2001.

[9] Michael J. Carey and Donald Kossmann, On saying
“Enough already!'' in SQL, In Proc. CK SIGMOD.
Tucson, Arizona. May 1997.

[10] Michael J. Carey and Donald Kossmann, Reducing the
Braking Distance of an SQL Query Engine, In Proc.
CK’98 VLDB. New York, August, 1998.

[11] Fagin, R., Lotem, A. and Naor, M. Optimal
aggregation algorithms for middleware. In Proc.
PODS’01 Santa Barbara, CA. May 2001

[12] Fan, J., Aref, W., Elmagarmid, A., Hacid, M.,
Marzouk, M. and Zhu, X. Multiview: Multi-level video
content representation and retrieval. Journal of
Electrical Imaging, Vol. 10, No. 4, pp. 895-908,
October 2001.

[13] Guntzer, U., Balke, W-T. and Kiessling, W.
Optimizing multi-feature queries for image databases.
In Proc. Of 26th Int Conf On Very Large Databases.
Cairo, Egypt. pp. 419-428. September 10-14 2000.

[14] Hammad, M., Aref, W., and Elmagarmid, A. Search-
based buffer management policies for streaming in
continuous media. In Proc. of the IEEE Int Conf on
Multimedia and Expo. Lausanne, Switzerland. August
26-29, 2002.

[15] Hammad, M., Franklin, M., Aref, W. and Elmagarmid.
A. Scheduling for shared window joins over data
streams. In Proc. of the 29th Int Conf on Very Large
Data Bases. 2003

[16] Hammad, M., Aref, W. and Elmagarmid. A. Stream
Window Join: Tracking Moving Objects in Sensor-
Network Databases. In Proc. of the 15th SSDBM Conf.
Jul 2003.

[17] Hellerstein, J., Naughton, J. and Pfeffer, A.
Generalized search trees for database systems. In Proc.
of 21st Int Conf on Very Large Data Bases. Zurich,
Switzerland. September 11-15, 1995.

[18] Ilyas, I. and Aref, W. SP-GiST: An extensible database
index for supporting space partitioning trees. Journal
of Intelligent System. 17(2-3). pp. 215-235. 2001.

[19] Ilyas, I, Aref, W, and Elmagarmid, A. Joining ranked
inputs in practice. In Proc. of the 28th Int Conf on Very
Large Data Bases. Hong Kong, China. 2002.

[20] Ilyas, I. and Aref, W. An extensible index for spatial
databases. In Proc of the 13th Int Conf on Statistical
and Scientific Databases. Virginia. July 2001.

[21] Katayama, N. and Satoh, S. The SR-tree: An index
structure for high dimensional nearest neighbor
queries. SIGMOD Record, ACM Special Interest
Group on Management of Data, 26(2). 1997.

[22] S. Madden, M. J. Franklin, J. M. Hellerstein and W.
Hong. The design of an acquisitional query processor
for sensor networks. In Proc. of the SIGMOD Conf.
2003.

[23] Nepal, S., Ramakrishna, M. Query processing issues in
image (multimedia) databases. In Proc. of the 15th Int
Conf on Data Engineering. Sydney, Australia. pp. 22-
29. March 23-26, 1999.

[24] Natsev, A., Chang, Y-C., Smith, J., Li, C-S. and Vitter,
J. Supporting incremental join queries on ranked
inputs. In Proc. of 27th Int Conf on Very Large Data
Bases. Rome, Italy. 2001.

[25] Seshadri, P. Predator: A resource for database
research. SIGMOD Record. 27(1). pp. 16-20. 1998.

[26] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 2000.

[27] Thomas, M., Carson, C., and Hellerstein, J. Creating a
Customized Access Method for Blobworld, In Proc of
the 16th Int Conf on Data Engineering. San Diego,
CA, March 2000

