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ABSTRACT 
The increased use of video data sets for multimedia-based 
applications has created a demand for strong video database 
support, including efficient methods for handling the content-
based query and retrieval of video data. Video query processing 
presents significant research challenges, mainly associated with 
the size, complexity and unstructured nature of video data. A 
video query processor must support video operations for search by 
content and streaming, new query types, and the incorporation of 
video methods and operators in generating, optimizing and 
executing query plans.  In this paper, we address these query 
processing issues in two contexts, first as applied to the video data 
type and then as applied to the stream data type. We present the 
query processing functionality of the VDBMS video database 
management system, which was designed to support a full range 
of functionality for video as an abstract data type. We describe 
two query operators for the video data type which implement the 
rank-join and stop-after algorithms. As videos may be considered 
streams of consecutive image frames, video query processing can 
be expressed as continuous queries over video data streams. The 
stream data type was therefore introduced into the VDBMS 
system, and system functionality was extended to support general 
data streams. From this viewpoint, we present an approach for 
defining and processing streams, including video, through the 
query execution engine. We describe the implementation of 
several algorithms for video query processing expressed as 
continuous queries over video streams, such as fast forward, 
region-based blurring and left outer join. We include a description 
of the window-join algorithm as a core operator for continuous 
query systems, and discuss shared execution as an optimization 
approach for stream query processing.    

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – multimedia 
databases, query processing. 

General Terms 
Algorithms, Management, Performance, Design.  

Keywords 
Continuous query, query processing, rank-join algorithm, stream 
processing, video database, window-join algorithm.  

1. INTRODUCTION 
The VDBMS video database management system was designed to 
support a full range of functionality for video as a well-defined 
abstract database data type, with the goal of providing video-
based applications with all the powerful functionality generally 
provided by database management systems [1,2]. In particular, 
VDBMS supports query processing for content-based query, 
search and retrieval of video data. An efficient high-dimensional 
indexing mechanism was implemented in VDBMS to handle 
searching against video content, and new operators were defined 
for video query processing, such as nearest neighbor search and 
query by sample image for processing  similarity queries. The 
VDBMS query processor has been designed to consider video 
methods and operators in generating, optimizing, and executing 
query plans. Additional supporting components were developed to 
complete the system, including a stream manager, query-based 
buffer management policies for effective real-time streaming [14], 
and pre-processing tools to generate visual features and other 
video metadata for the content representation used in video query 
processing [12]. The VDBMS framework ensures that video-
based applications are provided with full video data processing 
functionality. 

We have extended the VDBMS concept of the video data type 
(VDT) to handle general data streams, and the capabilities of 
VDBMS have been advanced to support a new VDBMS stream 
data type (SDT). This includes the development of a new stream 
manager to operate as an interface between outside stream-
producing devices and internal processing, a StreamScan 
operator, operators for handling continuous queries, and support 
for multiple continuous query optimization and execution. The 
underlying framework for stream data processing incorporates 
novel stream management and query processing mechanisms to 
support the online acquisition, management, storage, non-
blocking query, and integration of data stream sources. 
Requirements of our stream processing framework include a data-
driven execution model (push and pull-based evaluation), support 
for both continuous and snapshot queries, admission control 
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mechanisms, scalability in both number of streams and number of 
queries, prioritization of both streams and queries, maintenance of 
data stream summaries, and the ability to perform data mining 
over streams. Key components include the query processing 
interface for source streams, the stream manager, the stream buffer 
manager, non-blocking query execution and a new class of join 
algorithms for joining multiple data streams constrained by a 
sliding time window. 

If we now define video data as a sequence of consecutive image 
frames, then video data can be viewed as a data stream, where 
each data item represents a single image frame. Video query 
processing can then be regarded as an example of stream query 
processing and we can express video streaming operations (such 
as the blurring of specific regions of frame content and fast 
forwarding) as continuous queries over data streams. From this 
viewpoint, video processing emerges as an application of stream 
data processing. Numerous complex operations over video data 
can be expressed as continuous queries over streams. In fact, with 
increasing research in online video analysis and online feature 
extraction, a wealth of information can be streamed in parallel 
with the stream of video frames. 

There are some important advantages to expressing video 
processing operations as queries over data streams. These include: 
1) space efficiency. Some video applications deliver processed 
forms of videos to users. Instead of storing multiple versions of 
videos, where each is customized to meet user-based restrictions, 
the user requirement can be expressed as a continuous query. The 
query is executed on one version of the video to produce an 
appropriately processed video for each user class. That is, query 
execution accesses a single stored version of the video, and the 
output of query processing is transferred to the user, 2) flexibility. 
Simple combinations of query operators produce different views 
of the same video and 3) scalability. Sharing of operations can be 
exploited so that multiple users can be supported at the same time. 

In this paper, we address VDBMS video query processing in two 
contexts, first as applied to the video data type and then as applied 
to the stream data type. In section 2, we describe VDBMS query 
processing for the VDT and present VDBMS query operators that 
implement the rank-join and stop-after algorithms operating on 
video as a VDT.  In section 3, we present the stream query 
processing framework of VDBMS. Section 4 presents three new 
VDBMS stream query processing algorithms that operate on 
video as an SDT, and Section 5 describes a new stream query 
operator for shared execution of window joins. Lastly we discuss 
shared execution, an optimization approach for stream query 
processing. 

2. VDBMS QUERY PROCESSING FOR 
THE VIDEO DATA TYPE 
2.1 The Query Processor 
The VDBMS object relational database manager extends the 
Predator open source system [25], which has been modified 
extensively to provide full video query processing capability. The 
modifications and adaptations are based on the development and 
integration of video as a fundamental abstract database data type. 
Key extensions include high-dimensional indexing, video store 
and search operations, and new video query types. The extensions 
required major changes in many database system components 

since traditional methods for handling data retrieval cannot be 
easily extended to support the meaningful query processing and 
optimization of video, including online customized video views, 
content-based queries, video content control during streaming, 
and data abstraction. 

VDBMS adopted the features approach in querying video by 
content. Visual and semantic descriptors that represent and index 
video content for searching are extracted during video pre-
processing. The video, its indices and metadata descriptors are 
then stored in the database. The high-dimensional feature vectors 
generated by video pre-processing presented serious indexing and 
searching difficulties in the execution and optimization of feature-
based queries [20], hence VDBMS incorporated the GiST [17,27] 
implementation of the SR-tree as the high-dimensional index 
[3,4], and modified the query-processing layer of Predator to 
access this index. The vector ADT was added for all feature fields, 
and an instance of the GiST SR-tree is used as the access path in 
feature matching queries. The multi-dimensional indexing 
structure manages the high-dimensional feature vectors that are 
produced by visual feature extraction and used in image similarity 
searches. 

2.2 The Rank-Join Algorithm 
Consider stored video metadata that describes low-level visual 
features such as color histogram, texture and edge orientation. The 
features are extracted for each video frame during pre-processing 
and stored in separate tables in the database. Each feature is then 
indexed using a high-dimensional index for faster query response.  
If a user is interested in the k video frames most similar to a given 
query image based on color, the database system should rank the 
frames according to their similarity to the color information 
extracted from the given image, and present only the k most 
similar frames to the user. The database system can use the high-
dimensional index to perform an efficient nearest-neighbor search 
[21] and produce the nearest k neighbors. We call this simple 
ranking query a single-feature or a single-criteria ranking query, 
and no joins are required to answer the query. A database system 
supporting approximate matching merely ranks the tuples 
according to how nearly they match the query image. 

A more complex similarity query occurs when a user is interested 
in finding the k most similar frames to a given query image based 
on both color and texture. In this case, the database system must 
obtain a global ranking of frames based on both color and texture 
similarities to the query image. We refer to this type of query as a 
multi-feature ranking query. Unlike for single feature ranking 
queries, it is not clear with multi-criteria ranking how the database 
system should combine the individual rankings of the individual 
criteria, even if the notion of approximate matching is supported 
[11,24]. In current database systems, the only way to evaluate the 
query in the previous example is as follows: First, the feature 
tables are joined on the tuple key attributes. Then, for each join 
result, the similarity between the tuple features and the query 
features are quantized and combined into one similarity score. 
Finally, the results are sorted on the computed combined score to 
produce the top-k results. Two expensive major operations are 
involved: joining the individual inputs and sorting the join results. 
When using traditional join operators to answer a ranking query, 
an execution plan with a blocking sorting operator on top of the 



join is unavoidable. If the inputs are large, the cost of this plan 
can be prohibitively expensive. 

We have developed a practical, binary, pipelined rank-join query 
operator, NRA-RJ [19], which determines an output global 
ranking from the input ranked video streams based on a score 
function. Our algorithm extends Fagin's optimal aggregate ranking 
algorithm [11] by assuming no random access is available on the 
input streams. We created a new VDBMS query operator that 
encapsulates the rank-join algorithm in its GetNext() operation, 
and each call to GetNext() returns the next top element from the 
ranked inputs. The output of NRA-RJ thus serves as valid input to 
other operators in the query pipeline, supporting a hierarchy of 
join operations and integrating easily into the query processing 
engine of any database system. The incremental and pipelining 
properties of our aggregation algorithm are essential for practical 
use in real-world database engines, and our new operator will help 
in implementing this type of join in ordinary query plans. 

The GetNext() operation is the core of the rank-join operator. The 
internal state information needed by the operator consists of a 
priority queue of objects encountered thus far, sorted on worst 
score in descending order. GetNext() is binary, although this 
restriction is merely practical, and the algorithm holds for more 
than two inputs. Our most significant modification to the original 
aggregate ranking algorithm is that we can handle ranges of 
scores, instead of requiring the inputs to have exact scores for 
each object. This modification allows for pipelining the algorithm. 
The modified algorithm first checks if another object can be 
reported from the priority queue without violating the stopping 
condition, and if not, moves deeper into the input streams to 
retrieve more objects. In each call to GetNext(), the current depth 
of the caller is passed to the operator. This extra information 
assures synchronization among the pipeline of NRA-RJ operators. 

2.3 The Stop-After Algorithm 
Because of its pipelined nature, NRA-RJ does not specify the 
number k of desired results, and we need a way to limit the output 
of the similarity queries. The number of reported answers to k in 
NRA-RJ is limited by applying the Stop-After query operator 
[9,10], which is implemented in VDBMS as a physical query 
operator Scan-Stop. This is a straightforward implementation of 
Stop-After, and appears on top of the query plan. The Scan-Stop 
does not perform any ordering on its input. 

3. VDBMS QUERY PROCESSING FOR 
THE STREAM DATA TYPE 
Since videos can be considered as a long sequence of frames 
delivered over time, one can model video as a stream of frames. 
With this view of video data, a multitude of fine-grained and 
incremental video operations can be introduced. Whereas the 
offline and bulk processing of video is widely deployed to process 
stored videos, the incremental and frame-level processing of video 
would be advantageous in scenarios such as the following: 

 Video is delivered on-line as an infinite stream, and the 
responsiveness of video processing is important, for 
example, while tracking moving objects in surveillance 
applications. 

 Storage space is limited and it is not feasible to keep multiple 
copies of the same video (the original video and processed 
versions). In this case the processing of video upon request 
and streaming the resulting, or processed, video is considered 
a space-efficient approach. An example is delivery video 
based on different quality of service [5]. 

In this section we describe a general model for data streams, and 
introduce video streams as an example application. We follow this 
by presenting stream query operations and their applications on 
video streams. Finally, we provide a brief description of the 
interface between query operations and the underlying streams 

3.1 Stream Data Model and Stream Query 
Operations 
We consider a stream to be an infinite sequence of data items, 
where items are appended to the sequence over time and items in 
the sequence are ordered by a timestamp. Accordingly, we model 
each stream data item as a tuple < v, t> where v is a value (or set 
of values) representing the data item content, and t is the time at 
which this item joined the stream. The data content v can be a 
single value, a vector of values or NULL, and each value can be a 
simple or composite data type. Time t is our ordering mechanism, 
and the time stamp is the sequence number implicitly attached to 
each new data item. The time stamp may be assigned to the data 
item at its source or at the query processor [26].  As an example 
application of the stream model, the single data item in a video 
stream can be defined as the < frame, t>, where frame is an 
abstract data type representing frame content and t is the 
timestamp assigned at the query processor. Note that the frame 
data type includes different attributes such as FrameID, size, type 
(I, P or B frames for MPEG video), headers and binary content. 
Our model can easily integrate Frame-level physical features by 
storing a foreign key to features table described in Section 2.1.  

Some of the traditional SQL operations, such as selection and 
projection, have semantics similar to the relational model when 
applied to the processing of data streams. Selection operations 
select stream data items that satisfy a predicate condition (Boolean 
expression), much the same as selection in the relational model. 
Projection is also similar to its relational model equivalent, where 
a mapping function is repeatedly executed for each stream data 
item. These two operations are directly applicable to video 
processing when viewing video as streams of frames. As an 
example, a selection operation could select frames that satisfy the 
selection condition: “select I-Frames from the video stream” and a 
projection operation function LowResolution() could be applied 
to every frame to produce video streams with reduced (lower 
resolution) quality. This may be important for applications which 
stream video through network links with slow bandwidth.  

The binary form of the join operation finds the correlated items in 
two data sources. For a binary join, a data item from one source 
(the outer) is compared against all data items in the other source 
(the inner) to produce the matching pairs. This definition is 
clearly applicable when the data sources are non-streams or if the 
inner-stream is a non-stream data source. For all stream data 
sources, iteration on all items on the inner stream is not possible 
since the stream is assumed to be infinite. Therefore, for joining 
two stream data sources, a restricted form of the join referred to as 
window-join is used [16]. In the window-join, only part of the 
data stream (a window) is considered for the join. In this paper, 



we consider a sliding window join that is defined in terms of time 
units. However, other representations of window-join are also 
applicable, such as the landmark window and tuple-count 
window. In the video stream processing application domain, the 
following types of joins are applicable: 

 Joining a video stream with a non-stream data source, for 
example when searching for matching frames between a 
video stream generated by a monitoring camera and a stored 
database of images.  

 Window-join for two data streams, for example when 
tracking objects that appear in video data streams from two 
monitoring cameras. The objects are identified in each data 
stream and the maximum time for the object to travel through 
the monitoring devices defines an implicit time window for 
the join operation.  

A special type of the join operation is the outer-join, where tuples 
from left, right or either streams are always produced as output, 
regardless of whether they satisfy the join condition.  

3.2 A Stream Interface to Query Processing 
We developed and integrated the abstract stream data type into the 
VDBMS video database system to represent source data types 
with streaming capability, and VDBMS was modified to 
accommodate stream processing. Any stream-type must provide 
interfaces for InitStream(), ReadStream(), and CloseStream(). In 
order to collect data from the streams and supply them to the 
query execution engine, we developed the stream manager as a 
new component. The stream manager registers new stream-access 
requests, retrieves data from the registered streams into its local 
buffers, and supplies data to be processed by the query execution 
engine. Running as a separate thread, the stream manager 
schedules the retrieval of tuples in a round robin fashion. To 
interface the query execution plan to the stream manager, we 
introduce a StreamScan operator to communicate with the stream 
manager and receive new tuples as they are collected by the 
stream manager. A similar operator to the StreamScan is also 
introduced in [8] and [22] for stream query interfaces. 

4. VIDEO PROCESSING AS CONTINUOUS 
QUERIES OVER STREAMS 
As described in the previous section, we define video as a stream 
of frames residing within the database. Video data is stored in a 
video stream table VideoStream with the schema (VideoID, 
Frame, Timestamp). The Frame attribute is a complex data type 
with additional attributes and manipulation functions. Frame 
attributes include the frame number FrameNum, the FrameType to 
identify the frame as I, P or B, and the frame binary data. A 
sample user-defined function to support streaming is 
PacketizeStream(), which augments a streamed frame with the 
necessary headers for final display.  

The VideoStream table stores video as a stream data type (SDT). 
The SDT stores special information about the video, such as 
identifier, stored location, type, size, etc. At query execution time, 
the SDT generates a stream of frames that correspond to the stored 
version of the video. Only one view of the table exists at request 
time. It contains the SDT as a virtual table with the actual contents 
(tuples) of the data stream.  The query communicates with a video 

driver to retrieve the video frame by frame and produce an 
appropriately processed video. 

4.1 Fast-Forward 
Fast forwarding a streaming video to the end-user is a simple 
example of video query processing expressed as a continuous 
query over the video data stream. In the following example query, 
the stream of frames for the video titled "HeartSurgery" is filtered 
by the selection predicate VS.frame.type = I_FRAME.  Only I 
frames are streamed out of the query, with the result that the video 
is displayed to the end-user in fast forward mode: 

SELECT VS.frame.PacketizeStream()                  
FROM   VideoStream VS                                   
WHERE  VS.frame.type = "I_FRAME" and                                   
VS.VideoID = "HeartSurgery"; 

The next section describes an extremely useful and significantly 
more complex example of video processing which operates as a 
continuous query over a stream of video frame data. 

4.2 Video Access Control during Streaming 
To provide customized views for a video according to user needs 
or specific access criteria, video stream operators can be used as 
access control mechanisms that apply real-time constraints on 
delivery video data streams [6]. We have developed an access 
control operator that hides areas of the video frame based on 
content during streaming. Query processing determines the 
authorized portions of each video frame that a user can receive, 
and alters the frames according to the user authorization and the 
video content description. A video-based application for medical 
education videos might use this mechanism to protect patient 
privacy, e.g., to blur the faces of patients during streaming to end-
users who are not authorized to know the identity of patients. 
Granularity control is exercised over rectangular areas of a video 
frame which are associated with specific objects, such as a face or 
names and addresses. 

In traditional databases, access control can easily be expressed in 
terms of a query (view) over the restricted tables. VDBMS 
follows this approach: when a user submits a query to retrieve a 
video containing the specified object, VDBMS will generate a 
continuous query to hide that object in all video frames by 
blurring the area in which the object appears. In the following 
query example, the ObjectTrajectory, defined by its appearance in 
the video frames, is determined beforehand and stored as 
minimum bounding rectangles (MBR), along with the frame 
number and video information. This information is stored in a 
relational table as (VideoID, FrameNum, MBR). The system 
submits the following query to stream the altered video stream to 
the user: 

SELECT VS.frame.BlurFrame(OT.MBR)                                 
FROM   VideoStream VS, ObjectTrajectory OT 
WHERE  VS.frame.FrameNum                               
LEFT OUTER JOIN OT.FrameNum and                        
VS.VideoID = "HeartSurgery" and                 
VS.VideoID = OT.VideoID; 

The query involves a Left Outer Join (described in the next 
section) between the video stream and the frames in the 
ObjectTrajectory. While streaming frames, if the current frame 



number is found in the ObjectTrajectory, the MBR of the frame is 
streamed along with the frame data to upper levels in the query 
pipeline. Other wise, a null MBR is streamed with this frame. The 
final projection of the query, BlurFrame(OT.MBR), blurs the 
frame if the MBR is not null. The result of the query is a 
streaming video where objects defined in the ObjectTrajectory are 
blurred.  

An example application is shown in Figure 1. In the top image, a 
patient’s face is blurred during streaming since the user is not 
authorized to view it. The client interface to the VDBMS medical 
video library is shown in the bottom image. The client generates 
the access control query based on the user’s authorization level. 

 

Figure 1. Content-based access control for streaming video. 

Fast forward can be combined with the access control mechanism 
to provide fast forwarding through a video for which some end-
users have restricted access. The query can be expressed in SQL 
form as follows: 

SELECT bVS.bframe.PacketizeStream()              
FROM   (                                                            
SELECT VS.frame.BlurFrame(OT.MBR) as bframe 
FROM   VideoStream VS, ObjectTrajectory OT 
WHERE  VS.frame.FrameNum                            
LEFT OUTER JOIN OT.FrameNum and          
VS.VideoID = "HeartSurgery" and                 
VS.VideoID = OT.VideoID;                                          
) AS bVS                                                            
WHERE  bVS.bframe.type = "I_FRAME"; 

Clearly, access control queries will never be generated by the end-
user. Instead, a client interface which has incorporated the access 

control mechanism will construct the query for execution. In our 
example query, useful optimization techniques can be applied, 
such as pushing the selection predicate, bVS.frame.type = 
"I_FRAME", down in the query plan. In this case P and B frames 
would not be processed for blurring and the query execution time 
will be reduced. In plan (a) of Figure 2, the selection is pulled 
above the join and many tuples are unnecessarily joined. In plan 
(b) the selection is pushed down before the join so that 
unnecessary tuples are filtered out before the join. 

 

Figure 2. Optimizing select operator placement. 

4.3 Implementation of the Left Outer Join 
We briefly describe our implementation of the left outer join 
algorithm. Query execution in VDBMS uses the “iterator model.” 
A tuple iterator is set up on the highest plan operator, tuples are 
retrieved one-by-one, and each plan operator accesses its children 
by setting up iterators on them. A graph is created for the 
execution phase, and each node in this graph corresponds to a 
physical algorithm. The Left Outer Join is constructed as a node 
in the execution graph.  

The Left Outer Join operator is implemented as a simple tuple 
nested loop join with specialized code that allows it to return 
additional output records. The Left Outer Join operator class 
contains information about the join which is kept alongside all 
GetNextRecord() function calls, including an index to the array 
that specifies from which relation (outer or inner) to get the next 
item and a counter that keeps the number of records from the 
inner relation that match the current outer relation tuple. 
GetNextRecord() takes a record from the outer relation, opens a 
scan on the inner relation, and passes through the inner relation 
record by record. When a record matches the join condition with 
the current outer record, the record is returned. After a scan on the 
inner relation is complete, the counter is checked. If it equals zero, 
a new record is constructed with the fields corresponding to the 
outer tuple extracted from the current outer tuple, along with the 
fields corresponding the inner tuple set to NULL, and this record 
is also returned. 

5. THE WINDOW-JOIN 
In this section we describe an algorithm for implementing the 
sliding window-join operation. As introduced in Section 3, the 
window-join (W-join) operation has many practical applications 
when considering the video stream model. An example SQL query 
that includes W-join is the tracking of objects that appear in 
multiple data streams from multiple cameras. For an object Obj 



that requires w time units to travel between two monitoring 
cameras, the query is posed1: 

SELECT A.Obj                                                
FROM Camera1 A, Camera2 B                     
WHERE similar (A.Obj, B.Obj)                 
WINDOW w 

where similar() is a user-defined function that determines when 
two objects captured by different cameras are similar. This 
function can be considered as an equality predicate on object 
identifiers, A.Obj = B.Obj.  

We identify four forms of the W-join: binary, path, graph, and 
clique (which include a special case referred to as uniform clique 
window join). In this paper, we focus on the uniform clique W-
join defined as follows:  

Given n data streams and a join condition (a Boolean 
expression on the tuples' values), find the tuples that 
satisfy the join condition and that are within a sliding 
time window of length w units from each other. 

We present an algorithm for W-join: the backward evaluation of 
window join (BEW-join). The BEW-join provides low response 
time for slower input data streams. We introduce algorithms for 
the other forms of W-join (e.g., the path, graph and non-uniform 
clique-join) in [16]. 

We describe the BEW-join using an example window-join among 
five streams, A, B, C, D, and E, as shown in Figure 3. The five 
streams are joined together using a single window constraint of 
length w that applies between every two streams. For illustration, 
we assume that only the black dots (tuples) from each stream 
satisfy the join predicate in the WHERE clause, equality over 
objectID. The W-join maintains a buffer for each stream and we 
assume that the vertical bold arrow is currently pointing to the 
tuple about to be processed: Stream A is about to process the new 
tuple a2. The Figure illustrates the positions of the tuples as they 
arrive over time, newer tuples are to the left of the stream and 
older tuples are to the right.  There is no restriction that if the 
algorithm is processing a tuple tnew from one stream, then all 
tuples from the other streams that have earlier timestamps must 
have been processed. The order of scanning the streams is 
arbitrary and without loss of generality, we assume the order is: A, 
B, C, D, E, A, etc. The algorithm starts 

Figure 3 depicts the status of the algorithm when processing tuple 
a2 from Stream A and forming a window of length 2w centered at 
a2. The algorithm iterates over all tuples of Stream B which are 
within the window of tuple a2. These tuples are shown inside the 
rectangle over B. b4 satisfies the join predicate and is located 
within the window of a2. The period is modified (reduced) to 
include a2, b4 and all tuples within w of both of them. This new 
period is used to test tuples in Stream C, and is shown as a 
rectangle over Stream C in Figure 3 (a).  

The process of checking the join condition is repeated for tuples 
in C. Since tuple c3 satisfies the join predicate and also lies inside 
the rectangle, a new period is calculated that includes tuples a2, 

                                                                 
1 For tracking object by more than two video cameras, the w-join can be 

expressed as a multi-way join between the streams from each video 
camera. Our W-join algorithm is presented as a multi-way W-join. 

b4, c3 and all tuples that are within w of all of them. This period 
is shown as a rectangle over Stream D. In Stream D, d2 satisfies 
the join predicate and is located within the rectangle formed by 
a2, b4, c3. A new period is formed which includes the previous 
tuples and any further tuples within w of all of them. This period 
is shown as a rectangle over Stream E. The step is repeated for 
Stream E, and the 5-tuple, <a2, b4, c3, d2, e2> is reported as 
output. The algorithm recursively backtracks to consider other 
tuples in Streams D, then C and finally B. The final output 5-
tuples in the iteration that starts with tuple a2 are: <a2, b4, c3, d2, 
e2>, <a2, b3, c3, d2, e2>, <a2, b3, c1, d2, e2>, <a2, b2, c3, d2, 
e2> and <a2, b2, c1, d2, e2>, respectively. While iterating over 
stream D, tuple d1 is located at distance more than w from all the 
last tuples in streams A, B, C, E, (tuples a2, b4, c3, e2). Since 
future tuples will have timestamps greater than any of (a2, b4, c3, 
e2) then tuple d1 can not be part of any future W-join. As a result 
tuple d1 can be safely dropped from the join buffer of stream D. 

 

Figure 3. The BEW Join 

After finishing with tuple a2, the algorithm starts a new iteration 
using a different new tuple (if any). In the example of Figure 3, 
we advance the pointer of Stream B to process tuple b5.  This 
iteration is shown in 3(b) where periods over Streams C, D, E and 
A are constructed, respectively. This iteration produces no output, 
since no tuples join together in the constructed rectangles.  

The algorithm never produces spurious duplicate tuples, since 
each iteration starts with a new tuple for the join (the newest tuple 
from a stream). Since, the output tuples of this iteration must 
include the new tuple then duplicate tuples cannot be produced. 

6. SHARED EXECUTION OF 
CONTINUOUS QUERIES 
Centralized stream processing system must be able to support 
hundreds of concurrent users posing continuous queries over data 



streams and consuming system resources for extended periods of 
time. Exploiting shared execution for these queries will 
significantly improve system scalability. This is especially 
important if the sharing is performed for expensive and commonly 
used operators. One example of such an operator is the window-
join.  However sharing of the window-join is not straightforward, 
especially if the queries are interested in different windows over 
the data streams. In [15] we investigated different approaches to 
scheduling shared binary window-joins over data streams. We 
introduced two new scheduling approaches, the shortest-window-
first and the maximum-query-throughout, for a shared window-
join, and compared their performance with the largest-window-
only scheduling technique. The performance of the algorithms 
with respect to reduced response time is more prominent when the 
streams possess bursty arrival rates. 

Although the algorithms for shared window-joins target general 
data streams, these problem are extremely important in the video 
streaming domain. Since video stream are usually encoded in a 
variable rate streams, traffic is likely to provide a bursty arrival of 
frames from a video stream. Furthermore, when the outcome of 
the video query is expected to be streamed as a new video, the 
basic assumption is that the underlying query operations should 
have low (almost real-time) response time. Therefore, proposed 
algorithms for video operations should optimize the response 
time. Finally, for processing on-line feeds of video streams, 
concurrent queries are expected to share their resources, and 
shared execution is becoming increasingly important. 

7. CONCLUSION 
Video-based applications require strong video database support, 
including efficient methods for handling content-based query and 
retrieval of portions of video data. A video query processor 
should support video-based operations for search by content and 
streaming, new video query types, and the incorporation of video 
methods and operators in generating, optimizing and executing 
query plans.  In this paper, we described VDBMS database 
support for video query processing in two contexts:  first as 
applied to the video data type and then as applied to the stream 
data type. The VDBMS query capability was designed to support 
a full range of functionality for video processing, based on the 
development and integration of video as an abstract database data 
type (VDT). We described two query operators for the VDT 
which implement the rank-join and stop-after algorithms. We then 
considered video data as streams of consecutive image frames, 
and expressed video query processing as continuous queries over 
video data streams. The stream data type (SDT) was developed 
and integrated into VDBMS, and system functionality was 
extended to support general data streams. From this viewpoint, we 
presented an approach for defining and processing streams, 
including video, through the new VDBMS query execution 
engine. We described the implementation of several algorithms 
for video query processing, such as fast forward, region-based 
blurring and left outer join, which were expressed as continuous 
queries over video streams. We also described the window-join 
algorithm and shared execution over data streams as core 
operations for continuous query systems. 
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