
CS348

Project 2

Library Information system

Due date: 11:59 pm, March 7, 2009

You are asked to implement a Library Information System which will consist of five
relations. The primary key of each relation is underlined.

Books(book_id: number, book_title: varchar2(50), author_id: number,
year_of_publication: number, edition: number, status:varchar2(20))

Author(author_id: number, Name: varchar2(30))

Borrower (borrower_id: number, name: varchar2(30), status: varchar2(20))

Issue(book_id: number, borrower_id: number, issue_date: date, return_date: date)

Pending_request(book_id: int number, requester_id: number, request_date: date,
Issue_date: date)

Constraints:

1. Status in the Books relation can have only two values: charged /not charged.

2. Status in the Borrower relation can be either student or faculty.

3. Only a maximum of two books can be issued to a student and a maximum of three
books to a faculty member at a time.

4. Books are to be returned within five days of their date of issue. Otherwise, a fine of
$10 per day is charged for late return.

5. There is only one copy of every book. If a book is already issued it cannot be issued to
another person.

6. If a borrower requests a book which is already issued, his/her request goes to the
Pending_request table. Requests for a given book in this table are served on a first come
first serve basis.

7. If there is a pending request for an already issued book, the current borrower cannot
renew it, rather his/her request is put in the Pending_request table.

8. In case, a borrower gets his/her book renewed, the issue_date is updated to the date
when renewal is requested.

9. Whenever a book is issued, a new record is added to the Issue table and a NULL value
is assigned to return_date. When the borrower returns the book, this field is updated to
the date of return.

Triggers:

1. Implement a trigger that enforces rule 3 in the database. Name this trigger as
trg_maxbooks.

2. Implement a trigger that changes the status in the Books table to 'charged' whenever a
book is issued, i.e., when a new tuple is added to the Issue table. Name this trigger as
trg_charge.

3. Implement a trigger that changes the status in the Books table to 'not charged'

whenever a borrower returns the book. Name this trigger as trg_notcharge.

Functions:

1. Write a function (call it fun_issue_book) that takes the following arguments:
borrower_id, book_id, and current_date. This function issues a book to the requester if
it is not charged, otherwise it adds the requester's record in the Pending_ request table.
The current_date corresponds to issue_date if the book is issued immediately, or
request_date if the requester waits for the requested book in the pending_request table.
The function will return ' 1' the book is issued to the requester, otherwise it will return '0'.

2. Write a function (call it fun_issue_anyedition) that will take the following input
arguments: borrower_id, book_title, author_name and current_date. This function
will issue the latest edition of the requested book. In case, the latest edition is already
issued, the next older edition that is currently available in the library will be issued. If
there is no edition of the requested book currently available, the request will be put in the
Pending_request table. The requester will wait for the edition that will become available
at the earliest possible time. The function returns ‘1’ if the request is satisfied, otherwise
it returns ‘0’.

3. Write a function (call it fun_most_popular) which for a given month, returns the
book_id of the book that has been borrowed by the maximum number of borrowers. Note
that multiple books can be most popular in a given month and your function should return
all of them.

4. Write a function (call it fun_return_book) which takes book_id as input and returns
the book to the library by updating appropriate tables. The function returns '1' if the
operation is successful; otherwise it returns '0'. In addition to updating the return_date

field of the issue table, this function also browses through the Pending_request table and
checks the pending requests against the returned book. If there is any pending request, the
function issues the book to the requester. If there are multiple requesters then the one on
the head of the queue gets the book.

Procedures:

1. Write a procedure (call it pro_print_borrower) to print out current borrowers' list in
the following format. The number of days equals to the difference between the
issue_date and today's date.
BorrowerName Book Title <= 5 days <= 10 days <= 15 days >15 days
----------- ---------------- ------------- -------------- --------------- ------------
Adah Talbot Fundamentals of Democracy 100
Adah Talbot Programming in Unix 1

2. Write a procedure (call it pro_print_fine) which will take the current_date as an
argument (the user will specify the current date explicitly). This procedure will print out
the borrowers_name, book_id, issue_date and the fine paid or to be paid (if the book is
not returned till to-date).

3. Write a procedure (call it pro_listborr_mon) which will take the following arguments
as input: borrower_id and a given month (JAN through DEC), search the Issue table,
and print the borrower_id, borrower_name, book_id, book_title, issue_date and
return_date.

4. Write a procedure (call it pro_listborr) to print out the names of the borrower who
have not returned the books yet (including both overdue and not overdue). Also print the
book_id and issue_date.

5. Write a procedure (call it pro_list_popular) to display the month, author_name and
the number of editions maintained by the library for the most popular book for every
month of the year.

Execution phase:

1. Populate the Books, Author and Borrower tables.

2. Execute all the triggers.

3. Use the function fun_issue_book() to populate the Issue and Pending_request tables.

4. Use the function fun_issue_anyedition() to insert the following records in your
sample database for testing.

Borrower_id Book_title Author Date

2 DATA MANAGEMENT C.J. DATES 3/3/2009
4 CALCULUS H. ANTON 3/4/2009
5 ORACLE ORACLE PRESS 3/4/2009

10 IEEE MULTIMEDIA IEEE 2/27/2009
2 MIS MANAGEMENT C.J. CATES 5/3/2009
4 CALCULUS II H. ANTON 3/4/2009

10 ORACLE ORACLE PRESS 3/4/2009
5 IEEE MULTIMEDIA IEEE 2/26/2009
2 DATA STRUCTURE W. GATES 3/3/2009
4 CALCULUS III H. ANTON 4/4/2009

11 ORACLE ORACLE PRESS 3/8/2009
6 IEEE MULTIMEDIA IEEE 2/17/2009

5. Execute pro_print_borrower.

6. Execute pro_print_fine.

7. Use the function fun_return_book() to return books with book_id 1,2, 4, 10.

8. Print the Pending_request table and the Issue table.

9. Execute pro_listborr_mon for the month of February and March.

10. Execute pro_listborr.

11. Execute pro_list_popular.

12. Print the average time a requester waits in the Pending_request table.

13. Print the name and the borrower_id of the person who has waited the longest
amount of time for any book.

What and How to Submit:

• All the SQL commands for creating the tables and defining integrity constraints

should be in one file, createtable.sql.

• The code for your triggers should be in one sql file tgr.sql.

• The code for functions should be in one sql file fun.sql.

• The code for procedure should be in one sql file pro.sql

• The code for populating the Books, Authors and Borrower tables should be in one
sql file populate.sql.

• The code for the execution phase should be in one sql file myexecution.sql

• You are also required to submit the sample data which you will create to test your
procedures, functions and triggers in a separate file mydata.sql.

• Make sure at the end of your execution phase, you include statements to drop all the
tables, triggers, functions and procedures in a separate file dropall.sql, to ensure
proper testing and grading of your project.

Note:

When you are ready to submit your project, you should have a directory PRJ2 where your
files are. Go to the directory which contains the directory PRJ2, run the following UNIX
command

turnin -c cs348 -p proj2 PRJ2

Your whole directory will be submitted for grading. You can check the submitting with

turnin -c cs348 -p proj2 -v

Note:

1. Your project will be tested on an arbitrary data set, so make sure that all the data

types of your tables, procedures and functions conform to the given schema.

2. You must use PL/SQL (oracle procedural extension to SQL) to write your triggers,

procedures and functions.

QUERIES NOT GENERATING ANY OUTPUT WILL NOT BE GRADED

