
1

Towards Practical Communication in

Byzantine-Resistant DHTs
Maxwell Young, Aniket Kate, Ian Goldberg, and Martin Karsten

Abstract—There are several analytical results on distributed
hash tables (DHTs) that can tolerate Byzantine faults. Unfor-
tunately, in such systems, operations such as data retrieval
and message sending incur significant communication costs. For
example, a simple scheme used in many Byzantine fault-tolerant
DHT constructions of n nodes requires O(log3

n) messages; this
is likely impractical for real-world applications. The previous best
known message complexity is O(log2

n) in expectation; however,
the corresponding protocol suffers from prohibitive costs owing
to hidden constants in the asymptotic notation and setup costs.

In this paper we focus on reducing the communication costs
against a computationally bounded adversary. We employ thresh-
old cryptography and distributed key generation to define two
protocols both of which are more efficient than existing solutions.
In comparison, our first protocol is deterministic with O(log2

n)
message complexity and our second protocol is randomized with
expected O(log n) message complexity. Further, both the hidden
constants and setup costs for our protocols are small and no
trusted third party is required. Finally, we present results from
microbenchmarks conducted over PlanetLab showing that our
protocols are practical for deployment under significant levels of
churn and adversarial behaviour.

Index Terms—Computer network security; Distributed algo-
rithms.

I. INTRODUCTION

The peer-to-peer (P2P) paradigm is a popular approach

to providing large-scale decentralized services. However, the

lack of admission control in many such systems makes them

vulnerable to malicious interference [57], [63]. This is a

practical concern since large-scale P2P systems currently exist

such as the Azureus DHT [19] and the KAD DHT [58], each of

which sees over one million users on a daily basis. In addition

to file sharing, there are proposals for using P2P systems to

protect archived data [23], combat computer worms [3] and re-

implement the Domain Name System [62]; such applications

would likely benefit from increased security as well.

Malicious activity is typically modeled by assuming an

adversary that controls a significant fraction of the machines in

the network. A machine that is controlled by the adversary is

said to suffer a Byzantine fault and we often refer to a Byzan-

tine adversary that uses these machines in concert in order to

maximize disruption to the network. There are a number of

results on P2P systems that can provably tolerate Byzantine

M. Young, I. Goldberg and M. Karsten are with the David R. Cheriton
School of Computer Science, University of Waterloo, Waterloo, ON, Canada,
N2L 3G1. Email: {m22young,iang,mkarsten}@cs.uwaterloo.ca

A. Kate is with the Max Planck Institute for Software Systems, MPI-
SWS Wartburg, Martin-Luther-Straße 12, D-66111 Saarbrücken, Germany.
Email: aniket@mpi-sws.org

faults [5]–[7], [21], [28], [33], [45], [54]. To date, the majority

of results pertain to DHTs. A common technique in DHTs

that tolerate adversarial faults is the use of quorums which

are sets of peers where a bounded fraction (less than 1/2)

of the members are controlled by the adversary. A quorum

replaces an individual peer as the atomic unit. Adversarial

behavior can then be overcome by majority action allowing

for communication between correct peers; we call this robust

communication. Since critical operations such as data queries

are performed in concert by members of a quorum, robust

communication must be efficient and this is our focus.

Before presenting our results, we lay the groundwork for

the ideas in this paper. First, we elaborate on the relevance of

Byzantine fault tolerance in P2P systems in practice. Second,

there have been a number of advances towards achieving such

fault tolerance using quorums, and we present an overview of

the main ideas present in the literature.

A. The Byzantine Fault Model

The Byzantine fault model captures a wide variety of

challenging attacks. Two common real-world examples are

pollution attacks and index poisoning attacks which are both

aimed at preventing peers from obtaining desired content. In a

pollution attack, the attacker corrupts data and then facilitates

the sharing of this data on a massive scale. Interested users

spend resources obtaining this polluted data only to find it

unusable. In a recent study, it was discovered that over 50%
of files in Kazaa were polluted [40]. Similar in nature, an

index poisoning attack is carried out by flooding the network

with identifiers that do not correspond to any actual data [41].

Queries involving these identifiers will stall and eventually fail,

consuming resources and frustrating the user. A recent study

of the FastTrack and Overnet systems demonstrated instances

where 50% to 90% of all advertisements for a particular file

suffered from poisoning [41]. Such findings illustrate that, far

from being isolated incidents, such attacks are prevalent.

Content sharing is clearly central to the P2P paradigm.

However, providing content consumes the resources of the

provider since upload bandwidth is often more restricted than

download bandwidth; consequently, peers may be tempted to

avoid advertising. This behaviour is known as free riding and it

is common in many P2P systems. An analysis of the Gnutella

network in 2000 revealed that nearly 70% of peers contributed

zero content while approximately 50% of requested content

was provided by only 1% of the peers [18]. A subsequent

study in 2005 found that the situation had worsened with 85%
of peers in the Gnutella network sharing no content [31].

2

Certain malicious behaviour may also amount to denial-of-

service (DoS) attacks. For instance, a Byzantine peer may

route any query to itself and then offer only a corrupted

version of data item [17]. Rapid joins and departures have also

been considered as a DoS attack [63]. More straightforward

attacks include Byzantine peers overwhelming targeted nodes

by repeatedly issuing queries [57].

Finally, in discussing fault tolerance, it is important to

address the Sybil attack [16]. Here the adversary controls

a large number of identities; however, in contrast to the

Byzantine fault model where the adversary typically controls

machines, the identities generated by a Sybil adversary need

not correspond to physical resources. Therefore, identities

can be generated cheaply and, indeed, the adversary may

even constitute a majority of network identities. In this case,

algorithms that depend on majority action for fault tolerance

are ineffective. In this work, we do not explicitly address such

attacks. However, several schemes have been proposed for

countering the Sybil attack and our results can likely be used

in conjunction with these (see the survey of [61]).

B. Quorums and DHTs

A popular approach to dealing with the attacks discussed

above is to use quorums [4]–[7], [21], [28], [45], [54] (dis-

cussed in Section II). A quorums is a set of peers where the

majority of the members have not suffered Byzantine faults.

While quorums have been applied to a variety of P2P struc-

tures, we restrict our scope to DHTs for ease of exposition and

because a number of results pertaining to adaptive adversaries

have been shown only for DHTs. Typically, a quorum consists

of Θ(logn) peers where n is the total number of peers in

the system. If the Byzantine peers attempt to deviate from

the protocol, this errant behavior can be overcome through

majority action. For instance, content may be stored in a

distributed and redundant fashion across members of a quorum

such that the content cannot be polluted by a single host peer.

Poisoning attacks can be mitigated by having peers belonging

to the same quorum validate content before it is advertised.

Furthermore, a useful property of quorums is that those peers

who violate protocol can be ejected from their quorums which

effectively removes them from the system.

Several protocols using quorums have been proposed; how-

ever, there is a common theme in the way such quorums are

utilized. A message m originating from a peer p traverses a

sequence of quorums Q1, Q2, . . . , Qℓ until a destination peer

is reached. A typical example is a query for content where the

destination is a peer q holding a data item. Initially p notifies

its own quorum Q1 that it wishes to transmit m. Each peer in

Q1 forwards m to all peers in Q2. A peer in Q2 determines the

correct message by majority filtering on all incoming messages

and, in turn, sends to all peers in the next quorum. This

forwarding process continues until the quorum Qℓ holding

p is reached. Assuming a majority of correct peers in each

quorum, transmission of m is guaranteed. Unfortunately, this

simple protocol is costly. If all quorums have size s and the

path length is ℓ, then the message complexity is ℓ·s2. Typically,

s = Θ(logn) and, as in Chord [60], ℓ = O(log n) which gives

a O(log3 n) message complexity which is likely prohibitively

expensive for practical values of n.

Note that this approach can fail if the adversary obtains a

majority of corrupted peers in any quorum. This can happen

if an adaptive adversary has its peers join and depart the

network until a favorable placement is attained. For instance,

the adversary may target a quorum in the following manner.

The adversary adds a corrupted peer p into the system to see

where it is placed. If p lands within the target quorum, the

adversary keeps the peer active in the system; otherwise, p
departs. Over a number of joins and departures the adversary

may accumulate a large number of peers in the target quorum,

eventually obtaining a majority. Remedies to this challenging

adaptive Byzantine adversary have been proposed using quo-

rums and we discuss this further in Section II.

To date, the previous best communication complexity for

using quorums was given by Saia and Young [54] who

give a randomized communication protocol for DHTs which

achieves O(log2 n) messages in expectation over a path of

length O(log n). While communication between two quorums

incurs an expected constant number of messages, the analysis

in [54] yields a large constant. Furthermore, with probability

1−o(1), some peers will incur a non-constant (ω(1)) message

complexity (see [65]). The protocol also employs a link

architecture between peers requiring the use of a Byzantine

agreement protocol. Finally, maintenance and asynchronicity

issues remain unresolved.

Therefore, while theoretical results exist on the feasibility

of robust communication, they are likely not practical. This

presents an impediment to the deployment of such systems

and we seek to address this outstanding problem.

C. Our Contributions

We improve upon all previously known results involving

communication between quorums [6], [21], [45], [54]. We

summarize our main results below:

Theorem 1. In the computational setting, for an adversary

that controls an ǫ < 1/3-fraction of any quorum of size at most

s, there are two protocols for achieving robust communication

of a message m to a set of peers D ⊆ Qi for some quorum Qi

over a path of length ℓ. Our Robust Communication Protocol

I (RCP-I) has the following properties:

• The total message complexity (number of messages sent

and received) and the message complexity of the sending

peer is each at most 2 · s+ 4 · s · (ℓ− 2) + |D|.
• The message complexity of every forwarding peer along

the lookup path is at most 4.
• The latency (number of roundtrip communication rounds)

is at most 2 · (ℓ− 2) + 2.

For our Robust Communication Protocol II (RCP-II):

• The expected total message complexity and the expected

message complexity of the sending peer is each at most

2 · s+ (ℓ−2)
(1−ǫ)·c + (ℓ− 2) + |D|.

• The expected message complexity of a forwarding peer

on the lookup path is at most 2
(1−ǫ)·c·s .

• The expected latency is at most
(ℓ−2)
(1−ǫ)·c + 2.

3

Here, the constant c > 0 is the probability that the response

time of a correct peer is at most ∆.

Using the Chord-based construction of [21], the message

complexity of RCP-I is O(log2 n) and for RCP-II it is

O(log n) in expectation. We tolerate a large fraction of ad-

versarial peers; strictly less than a 1/3-fraction compared to

the roughly 1/4-fraction in [54]. Our use of a distributed key

generation (DKG) scheme allows for security without a trusted

party or costly updating of public/private keys outside of each

quorum. This obviates the need for a trusted third party. To

the best of our knowledge, this is the first use of DKG in a

Byzantine-tolerant P2P setting.

Finally, we provide microbenchmark results involving two

quorums using PlanetLab. Our experimentation demonstrates

that our protocols perform well under significant levels of

churn and faulty behaviour. In particular, for a 105-node

system with ℓ = 20, our results imply RCP-I and RCP-II

complete in under 4 seconds and 5 seconds, respectively.

II. RELATED WORK

State machine replication (SMR) is a standard method for

implementing highly fault-tolerant services [56]. Services are

replicated over multiple servers to provide a high-integrity

distributed system. While P2P systems do not align perfectly

with the SMR paradigm [56], the literature on Byzantine fault-

tolerant replication is relevant. Early work by Reiter [49]

gave protocols for Byzantine agreement and atomic broadcast.

Our first protocol shares some common features with the

multicast protocol of [49], yet we differ significantly since

in the P2P domain we must contend with issues of scalability,

churn, and spurious requests aimed at consuming resources.

More recently, Castro and Liskov [13] demonstrated efficient

Byzantine fault-tolerant SMR; however, this seems unsuitable

for a P2P setting due to scaling issues. Other Byzantine fault-

tolerant systems exist such as SINTRA [11], FARSITE [2], the

Query/Update protocol [1] and the HQ system [14]; however,

these likely do not scale to the P2P domain.

Two implemented large-scale Byzantine fault-tolerant stor-

age architectures are OceanStore [37] and Rosebud [52]. The

latter scales up to tens of thousands of nodes and handles

changing membership. However, Rosebud relies on a config-

uration service (CS) which tracks system membership, ejects

faulty nodes, and handles new nodes. The CS, implemented

over a set of nodes, introduces a potential bottleneck and a

possible point of attack; similarly, a “primary tier” of replicas

is used in OceanStore. In contrast, our protocol is completely

decentralized and no special set of nodes is required.

Both Rodrigues, Kouznetsov and Bhattacharjee [51] and

Rodrigues, Liskov and Shrira [53] give proposals for applying

the SMR approach on a large scale; the latter describes a

P2P system. However, both works rely on a CS and neither

provides empirical results or discusses secure routing. Wang et

al. [64] design and implement a routing scheme that tolerates

Byzantine faults and yields good performance. However, they

require both a certificate authority (CA) and a special set of

nodes, called a neighborhood authority, similar to a CS.

There are several theoretical results on Byzantine fault-

tolerant DHTs [6], [21], [28], [45]. These results make use

of sets of Θ(logn) peers such that a majority of the peers

in a quorum are correct. Note all of these works refer to

such sets as quorums; however, for ease of exposition, we

use this terminology. Awerbuch and Scheideler show how to

tolerate a powerful adaptive adversary who attempts to gain

a majority of Byzantine peers in a quorum [5]–[7]. Saia and

Young [54] demonstrate more efficient robust communication

but, as discussed earlier, several issues remain unresolved.

Finally, a version of this current work appeared in [66].

Castro et al. [12], Halo [34], and Salsa [44] handle Byzan-

tine faults by routing along multiple diverse routes. The

proposal in [12] requires a CA whereas we do not rely on

any trusted third party. In both [34] and [44], the guarantees

are unclear against an adversary who owns a large IP-address

space or targets identifiers over time as described in [6]. In

contrast, defenses for quorum-based protocols are known [5]–

[7]. Such an adaptive adversary could potentially compromise

the “knuckle” nodes in [34] or the global contacts used in [44];

in contrast, defenses against an adaptive adversary are known

for quorum-based protocols [5]–[7].

There are several other works relating to issues of security in

P2P networks. The ShadowWalker system [43] addresses the

issue of anonymity and routes securely using the notion of

multiple “shadows” which are similar to a quorum; however,

our protocols differ significantly. The Brahms system [10]

allows for uniform sampling of peers despite a Byzantine

adversary. The Fireflies architecture [33] allows each peer to

remain informed of live members despite Byzantine attacks;

however, its applicability likely extends only to single hop

overlays such as in work by Gupta et al. [27] and secure

routing in multi-hop networks is not treated.

III. SYSTEM MODEL

Each peer p is assumed to have a unique identifier, pID, and

a network address, paddr. Byzantine peers are also referred to

as faulty or adversarial; all other peers are called correct. A

fraction of the correct peers may crash due to a system failure

or depart gracefully. We model such peers as having crashed.

We adopt an asynchronous communication model with

unbounded message delivery time. However, for liveness in

DKG and in our second protocol, we use a weak synchrony

assumption by Castro and Liskov [30]. Formally, let delay(t)
denote the time between the moment t when a message is

initially sent and the moment when it is received at the

destination; the sender retransmits the message until it is

received correctly. Then the weak synchrony assumption is

that the delay(t) does not grow faster than t indefinitely. This

assumption seems valid in practice assuming that network

faults are eventually repaired, and it avoids the well-known

impossibility result regarding liveness [22].

Peers p and q are said to communicate directly if each has

the other in its routing table. The target of m is a set of peers

D within a single quorum; m may be a data item request and

D may consist of a single peer or multiple peers depending

on how data is stored.

4

Qi

Qh

Qj

p
u

v

p
u

v

Fig. 1. (Left) Three peers on a DHT ring where p links to u and v. (Right)
An example of a quorum topology in a DHT ring where p ∈ Qi, u ∈ Qj

and v ∈ Qh. Thick lines signify all-to-all inter-quorum links.

A. The Quorum Topology

There are several approaches to how quorums are created

and maintained [6], [45], [54]; we refer the reader to [21] for

a detailed explanation of one approach. As a simple example,

the links in a quorum topology consist of the union of Chord’s

links along with a set of redundant links. Specifically, for peer

p’s link to q in Chord, each peer in quorum Qp has a link to

every peer in Qq (and links to every peer in its own quorum

Qp). A link to a Byzantine peer may be treated as faulty or

unobtainable if the peer misbehaves, but only links between

correct peers are required to be functional. Conceptually,

despite a number of different approaches, we may view the

setup of quorums as a graph where nodes correspond to

quorums and edges correspond to communication capability

between quorums; we call this the quorum topology. Figure 1

illustrates how quorums can be linked in a DHT such as

Chord. Peers will likely have different views of the network

and hence membership lists for Qi may differ for two peers;

however, such issues can be overcome (for example, see [21]).

We assume the following four simple invariants are true:

1) Goodness: each quorum has size Θ(s) for s = Ω(logn)
and possesses at most an ǫ-fraction of Byzantine peers

for ǫ < 1/3.

2) Membership: every peer belongs to at least one quorum.

3) Intra-Quorum Communication: every peer can commu-

nicate directly to all other members of its quorums.

4) Inter-Quorum CommunicK̂Qi
is the associated set of

public key sharesation: if Qi and Qj share an edge in

the quorum topology, then p ∈ Qi may communicate

directly with any member of Qj and vice-versa.

These invariants are standard in the sense that previous work

on quorums in DHTs ensure they hold with probability nearly

equal to 1. For example, results for maintaining the goodness

invariant are known [5]–[7]. For the membership invariant,

there exist quorum topologies where a peer may belong to

several quorums simultaneously [21], [45]. Finally, to the best

of our knowledge, no implementation of a quorum topology

exists; this represents another gap between theory and practice.

A number of challenges remain in bridging this gap and such

an endeavor is outside the scope of this current work. How-

ever, the literature suggests that, with the proper deployment,

maintaining these invariants in real-world DHTs is plausible.

B. Assumptions

The adversary is assumed to have full knowledge of the

network topology and control all faulty peers, which forms

a constant fraction of all nodes in the system. In concert

with the goodness invariant, strictly less than 1/3 of the peers

in any quorum can be faulty. These peers may collude and

coordinate their attacks on the network. Our adversary is

computationally bounded with a security parameter κ and it

has do 2κ computation to break the security of the Gap Diffie-

Hellman (GDH) problem [29] in an appropriate group.

Our protocols guarantee successful transmission of m; how-

ever, feasibility is not enough. Our protocols must be efficient

in terms of (1) the costs to correct peers for legitimate network

operations and (2) the costs due to adversarial interference.

The latter concern is crucial since it does no good to provide

solutions that allow the adversary to easily launch costly

attacks. We first discuss the cryptographic techniques for

gaining efficiency and then elaborate on points (1) and (2).

C. Threshold Cryptography

We use threshold cryptography to authenticate messages.

The idea behind an (η, t)-threshold scheme is to distribute

a secret key among η parties in order to remove any single

point of failure. Any subset of more than t parties can

jointly reconstruct the secret key or perform the required

computation securely in the presence of a Byzantine adversary

which controls up to t parties. We use threshold signatures to

authenticate the communication between quorums.

Threshold Signatures: In an (η, t)-threshold signature

scheme, a signing (private) key k is distributed among η
parties by a trusted dealer using a verifiable secret sharing

protocol [20] or by a completely distributed approach using a

DKG protocol [47]. Along with private key shares ki for each

party, the distribution algorithm also generates a verification

(public) key K and the associated public key shares K̂ . To

sign a message m, any subset of t + 1 or more parties use

their shares to generate the signature shares σi. Any party can

combine these signature shares to form a message-signature

pair S = (m,σ) = [m]k that can be verified using the public

key K; however, this does not reveal k. We refer to S as

a signature. It is also possible to verify σi using the public

key shares K̂. We assume that no computationally bounded

adversary that corrupts up to t parties can forge a signature

S′ = (m′, σ′) for a message m′. Further, malicious behavior

by up to t parties cannot prevent generation of a signature.

We use the threshold version [8] of the Boneh-Lynn-

Shacham (BLS) signature scheme [29] to authenticate com-

munication between quorums. Its key generation does not

mandate a trusted dealer and the signature generation protocol

does not require any interaction among the signing parties or

any zero-knowledge proofs.

Distributed Key Generation (DKG): In absence of a trusted

party in the P2P paradigm, we use a DKG scheme to generate

the (distributed) private key. An (η, t)-DKG protocol allows

a set of η nodes to construct a shared secret key k such that

its shares ki are distributed across the nodes and no coalition

of fewer than t nodes may reconstruct the secret; no trusted

5

dealer is required. There is also an associated public key K
and a set of public key shares K̂ for verification.

The protocol by Kate and Goldberg [36] is the first DKG

for an asynchronous setting; therefore, it is uniquely suitable

for deployment in a P2P network. In addition to a Byzantine

adversary, this protocol also tolerates crash failures. For a

quorum of size s = η, with t Byzantine nodes and f
correct nodes that can crash, the DKG protocol requires that

s ≥ 3t + 2f + 1. In our case, this security threshold holds

due to the goodness invariant in Section III-A. The DKG

protocol allows for system dynamics without changing the

system public key K Notably, the message complexity of a

batch of peers P all joining and/or all leaving the quorum

is the same as for a single peer joining/leaving the quorum,

while the bit complexity increases only linearly with |P | (see

[36, Sec. 6]); for efficiency, we batch such operations during

our analysis in Section V-B. The DKG protocol also considers

mobile adversary [46] and provides proactive security using

share renewal and share recovery protocols.

D. Spamming Attacks

A critical concern is that the adversary may launch spurious

communications aimed at consuming resources; we refer to

such behavior as spamming. For example, a malicious peer

may initiate a number of data retrieval requests [57], [63].

Here the situation is more dire since the impact of such attacks

is multiplied by the group action in a quorum-based system.

Ultimately, there is no perfect defence against an adversary

with the resources to initiate massive spamming attacks and

this is not our focus. Rather we show that our protocols

do not afford the adversary an advantage in launching such

attacks. Our goal is to prevent the adversary from forcing a

peer to perform expensive operations with impunity. For any

operation initiated by a spammer p, this can be accomplished

by either (A) placing the bulk of the cost of executing said

operation on p or (B) making the detection of spamming

inexpensive. As we will show in Section IV, our protocol RCP-

1 in Section IV-A employs principle (A) while our protocol

RCP-II in Section IV-B employs principle (B).

In addition to cryptographic techniques, we assume a rule

set to reduce the impact of spamming attacks as introduced

by Fiat et al. [21]. A rule set defines acceptable behavior in a

quorum; for example, the number of data lookup operations a

peer may execute per duration of time, or tit-for-tat behavior

for uploads/downloads. Such rules are known to everyone

within a quorum and can be implemented at the software level

or simply agreed upon by quorum members. As discussed in

Section I-B, requests from a peer q that deviate from the rule

set are ignored by the other members of its quorum, effectively

removing q from the system.

E. Feasibility via Quorums, but Efficiency via Cryptography

We now make explicit a crucial point regarding the fea-

sibility versus the efficiency of robust communication. As

we have discussed, in the presence of Byzantine peers, no

single peer can be trusted and quorums are employed to

overcome this trust deficit through majority action. Using the

simple protocol outlined in Section I, the transmission of a

message is guaranteed. Therefore, quorums allow for robust

communication without the need for cryptographic techniques.

However, as we now discuss, cryptographic techniques are

important to achieving efficient robust communication.

A Problem of Spamming: Note that spamming attacks can

pose a critical problem in a system that employs quorums.

For example, a group of Byzantine peers may pretend to be

a quorum and initiate requests. Therefore, simply obeying

a request because it appears to come from a quorum does

not prevent spamming. To investigate the implications of

spamming, consider the case where peers act on any received

request and call this the passive scenario. In the passive

scenario, a Byzantine peer p can contact any quorum Qi by

colluding with other faulty peers to obtain necessary routing

information. Members of Qi act on any request coming from

p. Even if it is possible to detect spurious requests at a global

scale, each correct peer would be required to maintain O(n)
records to exclude faulty peers from the system.

Therefore, the passive scenario is undesirable since spam-

ming allows the adversary to consume the resources of correct

peers at little cost to itself. A standard fix is that a quorum

responds only to requests that are “proven” to be legitimate.

Yet, there is a cost to proving legitimacy; we explore this to

motivate our protocols. First, we expand on the utility of a

quorum topology in proving legitimacy. We then show how

cryptographic techniques improve the efficiency of this task.

Legitimacy and the Utility of the Quorum Topology: We

now contrast the passive scenario against another general sce-

nario that we call the prove-and-verify scenario which assumes

that proofs and verifications are required to initiate operations.

We argue that this is superior to the passive scenario and

discuss how the quorum topology is used in previous works to

provide the framework for proving and verifying operations.

P2P systems often lack admission control and, if forced to

depart the system, a Byzantine peer may simply rejoin the

network with a new identity. In the worst case, perpetual and

rapid rejoin operations result in a DoS attack. Therefore, we

make the standard assumption that there is a cost for joining

the network. For example, monetary costs are suggested in [12]

and CAPTCHAs as suggested in [44]. Let τ denote the rate

at which p can issue spurious requests before being forced to

rejoin the system. In the passive scenario, a Byzantine peer

p can contact any quorum Qi by colluding with other faulty

peers to obtain necessary routing information and so τ is large

due to the abundance of potential targets.

In contrast, in the prove-and-verify system the members of

Qi must verify p’s proof before acting. Proof and verification

may take different forms. For instance, constructions exist

where two peers communicate only if their respective quorums

are linked [21], [45]; that is, the quorum topology itself acts

as proof. Verification occurs by having a quorum Qi act on

p’s request only if each peer in Qi receives messages from a

majority in Qp. Here τ is greatly reduced. Furthermore, correct

peers are not required to maintain records on misbehaving

peers. However, while the prove-and-verify scenario is far

more robust to spamming, there are shortcomings to this actual

method of proof and verification and we discuss this next.

6

TABLE I
SUMMARY OF FREQUENTLY USED NOTATION.

Notation Definition

m Message being sent via our robust communication protocols

Qp Quorum of peer p

ǫ Upper bound on the fraction of Byzantine peers in a quorum

s Asymptotic size of quorums

ℓ Number of hops traversed by communication of m

KQp
Quorum public key of peer p’s quorum

kQp
Quorum private key of peer p’s quorum

K̂Qp
Set of public key shares corresponding to KQp

(kQu
)p Peer p’s individual share of kQu

RT Qp
Routing table information for all peers in Qp

ts Time stamp

Si Signature corresponding to the ith hop in RCP-I

Mi Chain of certificates corresponding to the ith hop in RCP-II

D Target set of peers who should receive m

Efficiency in the Prove-and-Verify Scenario: We argue two

things: (1) the form of proof discussed above is restrictive and

(2) verification is expensive. First, the proof is restrictive since

for Qi and Qj to communicate without sending through in-

termediary quorums, they must maintain links to one another;

such maintenance is costly. Second, the verification process

is expensive because when communication occurs from Qi to

Qj , a correct peer q ∈ Qj must know to which peers in Qi

it must listen; this incurs more maintenance costs. These are

two significant problems with existing schemes.

Cryptography allows us to improve asymptotically on the

message complexity of verification. Under our protocols, each

quorum has a public and private key established using DKG.

Communication can occur between any two quorums that

know and can verify each other’s public key. Therefore, the

form of proof is not as restricted by the quorum topology

and we exploit this in RCP-II. Furthermore, verification is

cheaper; using O(s) messages in RCP-I or O(1) expected

messages in RCP-II. Of course, overhead is incurred by using

cryptography. Message sizes increase by an additional O(κ)
bits and keys shares, but not the key itself, must be updated

when membership changes. However, our experimental results

in Section V show that this overhead is tolerable since the

computation costs are significantly smaller than the network

latency. Hence, cryptography provides a more efficient and

flexible implementation of the prove-and-verify scenario.

IV. ROBUST COMMUNICATION PROTOCOLS

We propose two robust communication protocols: RCP-I

and RCP-II. Here we outline a general scheme in Figure 2 that

is later refined to give our two protocols; Table I summarizes

our notation. Consider a sending peer p who wishes to send

a message m to peer p′. We make the standard assumption

that m is associated with a key value which yields information

necessary for distributed routing; that is, the next peer to which

m should be forwarded is always known. Peer p notifies its

quorum Q1 that it is performing robust communication and

receives PROOF(Q1). Peer p sends this to Q2 as proof that

p’s actions are legitimate; the form of this proof is discussed

later. Depending on the scheme, one or more members of

Q2 examines the proof and, upon verifying it, sends to p:

(1) routing information for Q3 and (2) PROOF(Q2), that will

convince Q3 that p’s actions are legitimate. This continues

Q3

Qℓ

Peer p

Request

Proof(Q
1)

Q2

Q1

P
r
o
o
f(Q

1)

P
r
o
o
f(Q

2), N
ext

H
op

P
r
o
o
f(Q

3),
N

ext
H

op

P
r
o
o
f(Q

2)

Pro
of(Qℓ−

1
), m

Fig. 2. Our general robust communication scheme. At step i = 1, ..., ℓ− 1,
peer p presents proof, PROOF(Qi), that quorum Qi sanctions p’s action, and
receives new proof from Qi+1 in addition to routing information for the next
hop. At the final step ℓ,peer p sends PROOF(Qℓ−1) and m.

iteratively until p contacts the quorum holding p′ and m is

delivered. We employ the following concepts:

Quorum Public/Private Keys: Each quorum Qi is associated

with a (distributed) public/private key pair (KQi
, kQi

); how-

ever, there are two crucial differences between how such a key

pair is utilized here in comparison to traditional implementa-

tions. First, only those quorums linked to Qi in the quorum

topology, and not everyone in the network, need to know KQi
.

Second, (KQi
, kQi

) is created using the DKG protocol and

K̂Qi
is the associated set of public key shares.

Public/Private Key Shares: Each peer p ∈ Qi possesses a

private key share (kQi
)p of kQi

produced using DKG. Unlike

the quorum public/private key pair of Qi which must be known

to all quorums to which Qi is linked in the quorum topology,

only the members of Qi need to know the public key shares

K̂Qi
, which plays an important role in allowing members of

Qi to verify that the signature share sent to peer p is valid.

System Churn and Protocol Design Considerations: The

rate of churn in P2P networks has a significant impact on

system performance and this is a concern reflected in the

design of our two protocols. First, both of our protocols

perform communication in an iterative fashion (in contrast to

recursive routing) so that failures due to stale routing table in-

formation are detected immediately. While not specified in our

pseudocode, upon experiencing a failure, the calling peer and

its quorum may request that the responsible quorum update its

routing table information, at which point the original request

can proceed. Second, each of our protocols are designed to

operate in different regimes of churn. As we will discuss later

in Section IV-C, RCP-I is more tolerant of churn as it requires

few updates when peers join or depart the system. On the other

hand, RCP-II is more message-efficient and can be used in

situations where the system is experiencing less churn.

Beyond these design choices, our protocols also inherit

certain churn-resistant properties of the underlying quorum

topology and routing mechanisms of DHTs. That is, the

quorum topology requires only a polylogarithmic amount

of routing table information that needs to be kept updated,

while routing with our protocols still operates along O(log n)
hops which yields a relatively small number of potential

failure points. Additionally, the redundant link architecture

used by quorums provides some robustness to rapid system

membership changes along the lines investigated in [38].

7

RCP-I: SENDING PEER p

Initial Step:
1: p ∈ Q1 sends the following request to all peers in Q1:

[pID|paddr|key|ts1]
2: p interpolates all received signature shares to form:

SQ1
← [pID|paddr|key|ts1]kQ1

Intermediate Steps:

3: for i = 2 to ℓ− 1 do

4: p sends Si−1 and tsi to every peer in Qi and requests

a signature Si, public key KQi+1
and routing informa-

tion for Qi+1.

5: p interpolates received signature shares to form Si ←
[pID|paddr|key|tsi]kQi

.

6: p verifies if Si is valid using KQi
.

7: if (Si is invalid) then

8: p sends signature shares to each peer in Qi.
Final Step:

9: p sends SQℓ−1
to D ⊆ Qℓ along with m.

RCP-I: RECEIVING PEER q ∈ Qi

Initial Step:

1: if (q ∈ Q1 receives a request by p) then

2: q checks that a request by p does not violate the rule

set. If the request is legitimate, q sends its signature

share to p.

Intermediate Steps:

3: if (q receives Si−1 and tsi from p) then

4: q verifies a SQi−1
using KQi−1

and validates tsi;
if successful, q sends its signature share, KQi+1

and

routing information for Qi+1 to p.

5: if (q receives signature shares from p) then

6: q verifies all shares using public key shares and

informs p of invalid shares.

Fig. 3. Pseudocode for RCP-I

A. Robust Communication Protocol I

We now illustrate RCP-I for a peer p who wishes to send

a message m. The path m takes through quorums is denoted

by Q1, ..., Qℓ. We assume that p ∈ Q1 and the target of the

message is a set of peers D ⊆ Qℓ.

Overview: We outline RCP-I; the pseudocode is given in

Figure 3. Initially, the correct peers of Q1 must acquiesce

to p’s request. Peer p begins by sending [pID|paddr|key|ts1] to

all peers in its quorum Q1. The value key corresponds to

the intended destination of m and ts1 is a time stamp. The

message m can also be sent, and its hash can be added inside

the signature below; however, for simplicity, we assume m
is sent only in the last step. Each correct peer q ∈ Q1 then

consults the rule set and sends its signature share to p if p
is not in violation of the rule set to within some bound to

compensate for clock drift. Peer p interpolates these signature

shares to generate the signature: S1 ← [pID|paddr|key|ts1]kQ1
.

In each intermediate step i = 2, ..., ℓ − 1, p sends its most

recent signature Si−1 and a new time stamp tsi to each peer

q ∈ Qi along the lookup path. Since Qi is linked to Qi−1 in

the quorum topology, each q knows the public key KQi−1
to

verify Si−1. If Si−1 is verified and tsi is valid, q sends back

its signature share, KQi+1
and the routing information. Peer p

collects the shares to form Si and majority filters on the routing

information for Qi+1. In terms of majority filtering, both group

membership and the corresponding routing information are

agreed upon using DKG. Finally, for Qℓ, p sends m along

with Sℓ−1 to peers in the set D.

Share Corruption Attack: Note the following attack: a set

of Byzantine peers B (Qi send invalid shares to p and,

therefore, p will fail to construct Si. We refer to this attack as

the share corruption attack. Here, the individual public/private

key shares play a crucial role. To obtain Si, p sends the

received shares to each peer in Qi using one message per

peer. For a share sent to p by a peer in Qi, each correct peer

in Qi verifies the share using K̂Qi
. All valid shares are then

sent back to p who creates Si. While members of Qi may

identify those peers which p alleges sent an incorrect share,

punitive action is limited since p could be Byzantine. Note

that the shares are not recomputed; hence, the adversary can

only perform this attack once per step.

Lemma 1. RCP-I guarantees that m is transmitted to a target

set of peers D ⊆ Qi for some quorum Qi over a path of length

ℓ with the following properties:

• Both the total message complexity and the message

complexity of the sending peer is each at most 2 · s +
4 · s · (ℓ− 2) + |D|.

• Each forwarding peer has message complexity at most 4
messages.

• The latency is at most 2 · (ℓ − 2) + 2.

Proof: First, we prove correctness. We show that if p is

correct and has not violated the rule set, at each step i of

the protocol p either (1) receives a valid signature and routing

information for the next step or (2) terminates the protocol by

delivering m to all members of D; correctness follows directly.

Our proof is by induction on i:

Base Case: Consider the initial step i = 1 where p commu-

nicates with the peers in its quorum Qp = Q1 about sending

the message m. If p is correct and has not violated the rule

set, upon receiving [pID|paddr |key|ts1] all correct peers will

send their shares to p. Therefore, p is guaranteed to form

S by the goodness invariant. Peer p can then check whether

S is valid and, if so, sets S to be S1. Otherwise, p must

overcome the share corruption attack. Since p belongs to Q1,

peer p knows the individual public key shares of each peer

in Q1 and can therefore detect which shares are invalid and

construct S1. Finally, p already has the routing information for

Q2; therefore, the base case holds.

Inductive Hypothesis: Assume that up to step i < ℓ, p has

obtained the correct signatures and routing information.

Inductive Step: At step i+1, peer p sends Si to Qi+1. By the

inductive hypothesis, this signature is valid and p possesses the

routing information for Qi+1. If i < ℓ − 1, and no corrupted

share attack occurs, then p’s request for Si+1 and the routing

information for Qi+2 will be satisfied due to the goodness

invariant. Otherwise, p must overcome the corrupted share

attack by sending all signed shares to all other peers in Qi+1.

8

Each correct peer in Qi+1 can detect and inform p which peers

sent an invalid share. Due to the goodness invariant, peer p
can majority filter on these responses to determine the invalid

shares and then construct Si+1. If i = ℓ − 1, p possesses the

routing information for Qℓ to deliver m to all members of

D ⊆ Qi and the protocol terminates successfully. In either

case, the induction holds.

We now analyze the costs of our protocol. In the first step,

even in the event that a share corruption attack occurs at most

one round-trip round of communication occurs (between p and

Q1). For steps i = 2, ..., ℓ − 1, if a share corruption attack

occurs, at most two rounds of message exchange occur: (1) p
sends to Qi and Qi sends back to p and (2) p transmits shares

to Qi who then send the correct shares back to p. Adding the

last step, the latency is 2 · (ℓ − 2) + 2. In terms of message

complexity, in the first round, peer p must send a request to

and receive a response from each peer in Q1; this totals at

most 2s messages. For steps i = 2, ..., ℓ− 1 peer p must both

send a request to and receive a response from each peer in

a quorum; if a corruption attack occurs, p must send another

message to each peer in a quorum (with all signed shares

collected together) and receive back a response. Therefore,

this incurs at most 4 · s messages. In the last step p sends

to all members of D. Hence, the message complexity is at

most 4 · s · (ℓ− 2) + |D|+ 2s. For every other involved peer

q /∈ D, q′s message complexity is at most 4; clearly, peers in

D receive one message.

Spamming Attacks: The sending peer p experiences more

cost than other participating peers. In part, this is due to the

iterative nature of the protocol; however, largely this is because

p must send and receive O(s) messages per step. In contrast,

other participating peers need only send and receive a constant

number of messages over the execution of the protocol.

Peer p may misbehave in other ways. For instance, p may re-

peatedly contact its quorum to initiate robust communication;

however, eventually all correct peers will ignore p. Similarly,

using a correct signature, p may repeatedly ask q in another

quorum for proof and/or routing information; however, time

stamps limit such replay attacks. In conclusion, such actions

cannot cause correct peers to perform expensive operations.

B. Robust Communication Protocol II

RCP-II is randomized yielding a small expected message

complexity for both the sending peer and forwarding peers.

In exchange, joins and departures incur additional cost in

comparison to RCP-I; we discuss this in Section IV-C.

RCP-II utilizes signed routing table information. As a con-

crete example, we assume a Chord-like DHT although other

DHT designs can be accomodated. For a peer u ∈ Qi, each

entry of its routing table has the form [Qj , pID, p
′

ID,KQj
, ts].

Here p ∈ Qj and p′ ∈ Qj−1 where (1) Qi links to Qj and

Qj−1 in the quorum topology, (2) Qj−1 immediately precedes

Qj clockwise in the identifier space and (3) p and p′ are

respectively located clockwise of all other peers in Qj and

Qj−1. KQj
is the quorum public key of Qj , and ts is a time

stamp for when this entry was created. Note that any point in

the identifier space falls between unique points pID and p′ID.

Given this property, and that entries are signed by a quorum,

any attempt by a malicious peer along the lookup path to return

incorrect routing information can be detected. RT Qj
denotes

the routing table information for all peers in Qj . [KQj
]kQi

is

the quorum public key of Qj signed using the private quorum

key of Qi; recall, neighbors in the quorum topology know

each others’ public key. [RT Qj
]kQi

is the routing information

signed with the private key of Qi; entries of the routing

table are signed separately. Routing table information is time

stamped and re-signed periodically when DKG is executed.

Overview: We sketch RCP-II here. For simplicity, we tem-

porarily assume that peers act correctly; our pseudocode in

Figure 4 is complete for when peers fail to respond to

requests by p. Initially, each correct peer in Q1 receives

[pID|paddr|key|ts] from p. The time stamp ts is chosen by p and

peers in Q1 will acquiesce to the value if it agrees with the

rule set to within some bound to compensate for clock drift. If

the request does not violate the rule set, then the information

is signed allowing p to form M1 = [pID|paddr| key|ts]kQ1
.

In the second step of the protocol, p knows the membership

of Q2 and selects a peer q2 ∈ Q2 uniformly at random (u.a.r.)

without replacement. Peer p then sends M1 to q2. Assuming

q2 is correct, it verifies M1 using KQ1 and checks that the ts
is valid; the duration for which a time stamp is valid would be

specified by the rule set. Once verified q2 sends p the infor-

mation [KQ1]kQ2
, [RT Q3

]kQ2
and [KQ3]kQ2

. Peer p knows

KQ2 since Q1 links to Q2 and verifies [KQ1]kQ2
, [RT Q3

]kQ2

and [KQ3]kQ2
, and checks that the time stamp on the routing

information is valid. If so, p constructs M2 = [M1|[KQ1]kQ2
].

Here [KQ1]kQ2
will allow some peer in Q3 to verify KQ1 and

M1, while the signed verified KQ3 will allow p to check the

response from that peer in Q3.

This process repeats with minor changes for the remaining

steps. Using RT Q3
from the previous step, p selects a peer

q3 randomly from Q3 and sends M2. Since Q3 is linked

with Q2 in the quorum topology, q3 knows KQ2, which it

uses to verify [KQ1]kQ2
; this allows q3 to verify M1 signed

with kQ1. Peer q3 then confirms that ts is valid and sends

[KQ2]kQ3
, [RT Q4

]kQ3
and [KQ4]kQ3

to p. Peer p has a

verified public key KQ3 from the previous step and uses it

to verify [KQ2]kQ3
, [RT Q4

]kQ3
, and [KQ4]kQ3

. Then p con-

structs M3 = [M2|[KQ2]kQ3
] = [M1|[KQ1]kQ2

|[KQ2]kQ3
].

This process continues until m is delivered. Figure 4 gives

the pseudocode for RCP-II. Every peer contacted by p verifies

a chain of certificates, which can be converted into a single

signature using the concept of aggregate signatures [9].

Peer p may choose a Byzantine peer that does not respond.

In that case, after an appropriate time interval, p will select

an additional peer in the quorum. Let X be a random variable

denoting the time required for a correct peer to respond. We

make a weak assumption that Pr[X ≤ ∆] ≥ c where ∆ is any

duration of time and c>0 is any constant probability. This does

not circumscribe a particular distribution for response times;

any distribution suffices, including the Poisson, exponential,

and gamma distributions previously used to characterize round

trip time (RTT) over the Internet. In practice, peer p would

set its own ∆ by sampling the network using methods for

9

RCP-II: SENDING PEER p

Initial Step:

1: p sends the following to each peer q ∈ Q1:

[pID|paddr|key|ts]
2: p gathers all responses and constructs:

M1 ← [pID|paddr|key|ts]kQ1

Intermediate Steps:

3: for i = 2 to ℓ− 1 do

4: while (p does not have Mi and has waited time ∆
since previous selection) do

5: p sends Mi−1 to q ∈ Qi selected u.a.r. without

replacement.

6: if ([KQi−1
]kQi

, [RT Qi+1
]kQi

and [KQi+1]kQi
are

received from any peer in Qi previously selected)

then

7: p uses KQi
to verify KQi+1, RT Qi+1

and

KQi−1.

8: if (KQi+1, RT Qi+1
and KQi−1 are all verified)

then

9: Mi ← [Mi−1|[KQi−1
]kQi

]
Final Step:
10: p sends Mℓ−1 to D ⊆ Qℓ along with m.

RCP-II: RECEIVING PEER q

Initial Step:

1: if (q ∈ Q1 recives [pID|paddr|key|ts] from p ∈ Q1) then

2: q checks that p’s request is legitimate and, if so,

sends its signature share.

Intermediate Steps:

3: if (q ∈ Qi receives Mi−1 from p) then

4: for j = i− 1 downto 1 do

5: q uses KQj
to verify KQj−1.

6: Peer q uses KQ1 to verify M1.

7: if verification is successful then

8: q sends [KQi−1
]kQi

, [RT Qi+1
]kQi

and

[KQi+1]kQi
to p.

Fig. 4. Pseudocode for RCP-II

estimating RTT [32]. Since at most a constant fraction of peers

are Byzantine, taking the median from a sufficiently large

sample will determine ∆ and p will receive a response from

any of the previously selected peers - this is in accordance

with the weak synchrony assumption stated in Section III.

Lemma 2. RCP-II guarantees thatm is transmitted to a target

set of peers D ⊆ Qi for some quorum Qi over a path of length

ℓ with the following properties:

• Both the total message complexity and the message

complexity of the sending peer is each at most 2 · s +
(ℓ−2)
(1−ǫ)·c + (ℓ − 2) + |D|.

• Each forwarding peer has expected message complexity

at most 2
(1−ǫ)·c·s .

• The expected latency is at most
(ℓ−2)
(1−ǫ)·c + 2.

Proof: First we prove the correctness of our protocol and,

as before, we show that if p is correct and has not violated the

rule set, at each step i of the protocol p either (1) establishes a

valid Mi and receives the routing information for the next hop

or (2) terminates the protocol by delivering m to all members

of D. Our proof is by induction on i.

Base Case: Consider the initial step i = 1 where p commu-

nicates with the peers in its quorum Qp = Q1 about sending

the message m. If p is correct and has not violated the rule

set, upon receiving [pID|paddr| key|ts] all correct peers will

send their shares to p. Therefore, p is guaranteed to obtain

M1 by the majority invariant. Peer p already has the routing

information for Q2; therefore, the base case holds.

Inductive Hypothesis: Assume that at step i < ℓ, p has

obtained a correct Mi and routing information for Qi+1.

Inductive Step: First assume that i = ℓ − 1. Then, by the

induction hypothesis, peer p possesses Mℓ−1 and the necessary

routing information to send this signature and message m to

D ⊆ Qi+1; thus the protocol terminates correctly. Otherwise,

assume i < ℓ − 1; we consider step i + 1. Peer p sends Mi

to a peer q ∈ Qi+1 selected uniformly at random without

replacement. By the inductive hypothesis, the contents of Mi

are valid and p possesses the necessary routing information.

If q is a Byzantine peer, then p’s request can fail and p can

detect an invalid response using KQi+1 obtained from the

previous step. It is also possible that q is a correct but slow

node and does not respond in a predefined time period. In

this case, p re-issues its request to another randomly selected

peer in Qi+1; eventually, one of selected correct peers will

respond with [KQi
]kQi+1

, [RT Qi+2
]kQi+1

and [KQi+2]kQi+1

to p. Peer p will verify this information and create a valid

Mi+1. Therefore, at this point p possesses a correct Mi+1 and

routing information for Qi+2; therefore, the induction holds.

Since RCP-II is a randomized algorithm, our costs are given

in expectation. We assume the following: let Xi be a random

variable denoting the time required for the ith correct peer

(note we condition on correctness) selected u.a.r without

replacement by p to respond to p’s request. We assume that

Pr[Xi ≤ ∆] = c where c > 0 is some constant probability.

We now calculate upper bounds of the expected resource

costs. In the first step, in communicating with Q1, peer p
handles at most 2 · s messages and the round-trip latency is 1.

Then for each step i = 2, ..., ℓ− 1,

let Yi be the random variable with value 1 if the ith peer is

both correct and responds within time ∆; 0 otherwise. Then

Pr[Yi = 1] ≤ (1−ǫ) ·c; for simplicity, set ρ = (1−ǫ) ·c to be

this probability of success. Let Y =
∑s

i=1 Yi. The expected

number of selections E[Y] before p receives a response from

a correct peer is at most:

s∑

k=0

(1−ρ)k ·ρ · (k+1) = ρ

(
s∑

k=0

(1− ρ)k · k +
s∑

k=0

(1− ρ)k

)

where the first term is upper-bounded by the well-known

telescoping series and the second is simply a geometric series.

Therefore E[Y] ≤ 1
(1−ǫ)·c and including the last step, the

expected latency is at most ℓ−2
(1−ǫ)·c + 2. The ℓth step requires

D messages and one hop. In terms of expected message

complexity, since each step requires at most 2 messages and

10

the last step requires |D| messages, we can give a crude upper

bound of 2s + 2
(1−ǫ)·c · (ℓ − 2) + |D|. However, note that

once p hears back from a node, any message from any other

previously selected nodes in the current step can be easily

ignored/filtered. Therefore, per step, p handles 1
(1−ǫ)·c + 1

messages. We can now give a more accurate upper bound of

2s+ ℓ−2
(1−ǫ)·c +(ℓ−2)+ |D|. Finally, while latency is measured

in the number of communication rounds, the expected duration

of time required for each intermediate round is ∆
(1−ǫ)·c .

Regarding the expected message complexity of a forwarding

peer q /∈ D along the lookup path, a correct peer chosen by p
receives one message and sends one message. The probability

that q is chosen is at most 1/((1−ǫ)·s); therefore the expected

message complexity for q is at most 2/((1− ǫ) · s).
While latency is measured in communication rounds, the

time for executing RCP-II depends on ∆ and we discuss

this briefly. Accounting for the response time incurred in the

intermediate steps, p waits for at most time ∆
(1−ǫ)·c per step

in expectation as shown in Lemma 2. Since peer p will have

knowledge of the response time distribution, p may optimize

performance by selecting ∆ so that ∆
c

is minimized.

Spamming Attacks: Due to the iterative nature of RCP-II, p
sends more messages than other participating peers, but not to

the degree seen in RCP-I. Rather than make it expensive for p
to perform robust communication, RCP-II uses two properties

to deter spamming: (1) it is inexpensive for a peer to detect

spam and (2) the congestion suffered by a peer is low since the

number of messages is not magnified by the use of quorums.

To address our first point, p may launch as many robust

communication operations as the rule set allows; p may even

try to circumvent the rule set by directly sending to a correct

peer q; however, it is inexpensive for q to verify that the proof

being sent is invalid. The operation terminates at that point

since q will not reply. In contrast to the passive scenario of

Section III-E, q need not keep a history to judge the legitimacy

of a request; it simply verifies the accompanying certificate.

Our second point, and a key difference between RCP-I and

RCP-II, is that with RCP-II an operation incurs only expected

O(ℓ) messages which compares favourably to a system without

a quorum topology. Therefore, the congestion caused by such

requests is not significantly magnified by the use of quorums

which was a key concern regarding spamming.

Faulty peers may misbehave in other ways with the same

consequences and remedies as discussed in RCP-I. Even with

a generous upper bound on the expiration of ts, the congestion

p can cause with a replay attack is limited since only p can

use the certificate. An attack unique to RCP-II occurs when

a faulty peer gives p stale routing table information. Since

entries are signed and time stamped, we are guaranteed that

the location indicated by the stale information was recently

correct. Coupled with the standard assumption that ID colli-

sions do not occur, this guarantees that the adversary cannot

engineer a situation where requests are forwarded to a faulty

peer. Consequently, the impact of this attack is limited. The

search path may be slightly lengthened by forwarding to an

older location. Alternatively, stale information may point to a

peer that no longer exists or is not the correct recipient, which

forces p to backtrack one hop. These cases are handled easily,

R
 (
x)

k

p

x

p

p

Fig. 5. An illustration of the cuckoo rule. (Left) Peer p is placed in its random
location x. All peers in the k-region, Rk(x) denoted by dashed lines, are
assigned random locations in [0, 1). (Right) After the cuckoo rule is executed,
peer p is the only peer in Rk(x).

but for ease of exposition, they are not treated in Figure 4.

Routing integrity is not compromised and, since routing tables

can be signed periodically without significant CPU cost (see

Section V), the impact of such an attack is negligible.

C. The Join Protocol and Membership Updates

For the sake of being self-contained, we describe how a

peer would join our system. This involves a discussion of a

result by Awerbuch and Scheideler [6] which guarantees the

goodness invariant even if the number of joins and departures

is polynomial in the size of the network n. More precisely,

within a window of time, the adversary may opt to insert one

of its spare faulty peers or remove a faulty peer already in

the system. An adversary may attempt to gain a majority of

Byzantine peers in a targeted quorum Q by having one of its

peers q′ join the system. If q′’s location in the DHT does not

allow it to become part of Q, then the adversary removes q′

and has it rejoin for another attempt. By repeating this process,

the adversary can eventually obtain a majority in Q, at which

point the security of the system is compromised. The protocol

for defending against such attacks is the cuckoo rule developed

by Awerbuch and Scheideler [6]. Assume that the identifier

space of the DHT is normalized to be [0,1). For any interval

I ⊂ [0, 1), the cuckoo rule maintains two invariants. The first

is the balancing invariant which guarantees that I contains

Θ(|I| · n) peers. The second is the majority invariant which

guarantees the majority of peers in I are correct. The authors

show that for |I| = Θ(log (n)/n) both invariants can be

maintained with high probability over nc joins and departures,

where c is a constant that can be tuned. It follows that the peers

in I can form a quorum that satisfies the goodness invariant.

To see how the cuckoo rule works, the ring [0, 1) is assumed

to be broken into disjoint segments of constant length k/n for

some constant k. Each segment is called a k-region and Rk(x)
denotes the unique k-region containing x. When a peer p joins

the network, it is assigned a random identifier x ∈ [0, 1) and

placed in this location. The use of random identifiers, rather

than the original hashing scheme of earlier DHT constructions,

is a minor modification that does not alter previous guarantees

or analyses of such constructions (see [6] for more discussion).

All nodes in Rk(x) are evicted and placed into new locations

chosen uniformly and independently at random from [0, 1).
Figure 5 illustrates these operations.

The node placements required by the cuckoo rule can be

executed by having quorums use robust communication in

11

order to inform each other about the arrival of the evicted

nodes at their new locations. Once a quorum Qi knows about

the presence of a recently evicted node q, all correct members

of Qi update their membership lists, share IP addresses, and

aid q in setting up any required links (i.e. such as finger links

in Chord). A detailed discussion of how this could be done is

presented in [21] and random numbers can be generated using

the protocol of [5]. We finish our discussion of a join protocol

by discussing the steps necessary for maintaining DKG and

the consequent cost of membership changes.

RCP-I: Consider a quorum Qi to which a new peer is added.

The membership update protocol of DKG [36] is executed

to redistribute the shares of the public/private quorum key

pair over all members of Qi. In the process, the individual

public/private key shares are also updated. Notably, no other

quorums are affected by this process as the quorum key

pair remains the same and the individual key shares need

only be known to members of Qi. When a peer departs Qi,

the departure can be treated as a crash and so long as the

number of crashes does not exceed the crash-limit f , the DKG

(share renewal) protocol need not be executed. We use this to

associate the system churn rate to DKG session time. Note that

the adversary may crash some of its t nodes, and in principle,

the system can handle t + f node departures. However, we

cannot associate these additional t crashes with the system

churn due to the inherent arbitrary nature of Byzantine peers.

RCP-II: When a peer q joins Qi, the DKG protocol needs

to be executed as in the case of RCP-I; however, there are

additional costs due to the need to update and re-sign the

routing table information. In particular, not only do the peers

in Qi need to update and have signed their routing table

information to reflect the addition of q, all quorums to which

Qi is linked under the quorum topology also need to update

and re-sign their routing table information; note that this does

not require any revocation since the public key does not

change. Therefore, a join event under this scheme does affect

other quorums. When a peer departs Qi, DKG may be required

as in the case of RCP-I. However, routing table information for

Qi and the quorums to which it links must again update and

re-sign their routing table information. Therefore, while RCP-

II reduces message complexity, the cost of a join or departure

is higher in comparison to RCP-I.

V. EXPERIMENTAL RESULTS

We examine the performance of DKG and our two protocols

on the PlanetLab platform [48]. Based on our experimental

results and known churn rates, we propose parameters for

DHTs using our protocols.

A. Implementation and Microbenchmarks

The DKG protocol is a crucial component of our protocols.

It is required to initiate a threshold signature system in a

quorum and to securely manage membership changes. We use

a C++ implementation [35] to measure the performance of

DKG. We incorporate threshold BLS signatures and realize

our two protocols using this setup on PlanetLab.

Distributed Key Generation: We test the DKG implemen-

tation for quorum sizes s = 10, 15, 20, 25, 30 and present

median completion times and median CPU usage in Table II

along with 95% one-sided confidence intervals. We describe

our experimental setup in the context of [24], [39]. Our

experiments are terminating and conducted via the method

of independent replications. A single replication consists of

s individual observations each corresponding to the time

required for a participating peer in the quorum to complete

the DKG protocol; there are 10 replications for each s value.

For each s value, the PlanetLab machines used are chosen

from around the world with roughly 64% located in North

America, 20% located in Asia and the remaining 16% located

in Europe. Using independent replications, an unbiased sample

point estimator for variance is calculated and used to obtain

our one-sided confidence intervals using the t-distribution.

The median completion periods vary from roughly 10
seconds for s = 10 to roughly 69 seconds for s = 30. Notably,

the bulk of this latency is due to network delay whereas the

required CPU time is far smaller than the completion periods.

In the next subsection, we examine the feasibility of these

completion periods. Our DKG experiments are set up so that

correctness is guaranteed so long as at most 30% of the peers

may crash and 10% of the peers may be Byzantine. While

we can tolerate any fraction of Byzantine peers less than 1/3,

we use these numbers since in many practical scenarios we

expect the fraction of Byzantine faults to be less than 10% and

modest compared to the fraction of crash failures. In each of

our replications, the pseudorandom values are generated using

the well-known Number Theory Library (NTL) and Pairing-

Based Cryptography (PBC) library.

RCP-I and RCP-II: For our RCP-I and RCP-II experiments,

we set s = 30, t = 3, and f = 10. We conduct terminating

experiments again via the method of independent replications

where each of the 5 replications consists of 30 observations.

In RCP-I, a node requires an average of 0.14±0.0075 seconds

(95% one-sided confidence interval) to obtain a threshold

signature from a quorum, if all of the obtained signature

shares are correct. The average execution time increases to

0.23± 0.015 seconds (95% one-sided confidence interval) in

the case of a share corruption attack. Extrapolating to a path

length ℓ, an operation should take between 0.14 · ℓ±0.0075 · ℓ
or 0.23 · ℓ±0.015 · ℓ seconds on average. For a DHT with 105

nodes, the average total time for RCP-I is then 2.8± 0.15 to

4.6± 0.3 seconds with ℓ = 20.

In RCP-II, a node takes 0.042± 0.014 seconds (95% one-

sided confidence interval) on average to obtain the required

signed public keys and the signed routing information from

a correct peer. A single signature verification takes negligible

time; however, for completeness we report the average value of

0.0045±0.0028 seconds (95% one-sided confidence interval).

The median latency value over all pairs of PlanetLab nodes

is roughly 0.08 seconds [15]; that is, ∆ = 0.08 seconds for

c = 0.5. With a chain of signed public keys of length ℓ, the

total communication time is 0.14± 0.0075+(0.042± 0.014) ·

(ℓ− 1)+ ∆·(ℓ−2)
c·(1−ǫ) +(0.0045± 0.0028) · ℓ(ℓ−1)

2 which for 10%
Byzantine peers, is 4.94 ± 1.60 seconds in expectation for

ℓ = 20. To a first approximation, the execution times of our

protocols seem quite reasonable.

System Load: We address the issue of system load under the

12

TABLE II
MEDIAN VALUES OF DKG COMPLETION TIME AND CPU TIME

PER NODE FOR VARIOUS s VALUES.

s t f Time (seconds) CPU Seconds/Node

10 1 3 9.34 ± 2.50 1.31 ± 0.13
15 2 4 22.75 ± 12.72 2.12 ± 0.14
20 2 6 26.09 ± 0.89 2.51 ± 0.19
25 3 7 48.55 ± 5.27 6.24 ± 0.54
30 3 10 68.90 ± 4.31 5.93 ± 0.49

TABLE III
THE EXPECTED NUMBER OF SECONDS BEFORE A QUORUM

EXPERIENCES A MEMBERSHIP CHANGE (rQ).

s 10 15 20

nQ 1 2 3 1 2 3 1 2 3
rQ 526 351 175 350 234 117 263 132 88

25 30

1 2 3 1 2 3
210 140 70 175 87 58

assumption that signature verification is the most significant

computational operation. We make back-of-the-envelope cal-

culations to obtain the expected order of magnitude for our

performance figures. For RCP-I, from the above discussion,

each signature verification takes 0.0045±0.0028 seconds; thus,

the total CPU time required per execution is (0.0045±0.0028)·
ℓ · (1+ s+ s2); this includes the costs due to share corruption

attacks. For ℓ = 20 and s = 30, this value is 74.48 ± 52.14
CPU seconds, spread out over 600 nodes. Therefore, the

number of executions of RCP-I that can be started per second

on average when n = 105 is roughly 103; note this rate value

is for the entire system. Now, if no share corruption attacks

occur, the total CPU time required per execution becomes

(0.0045± 0.0028) · ℓ · (1 + s) which, for the same parameter

values, is 2.5 ± 1.76 CPU seconds. This implies that 4 · 104

executions can be started per second on average in the entire

system. For RCP-II, the total CPU time required for execution

is given by (0.0045± 0.0028) ·
(
ℓ+ (ℓ−1)·ℓ

2·(1−ǫ)

)
which, for the

same parameters and ǫ = 1/10 is 1.040± 0.65 CPU seconds

on average. Therefore, approximately 105 executions can be

started per second on average in the entire system.

B. Analysis and Discussion

As mentioned in Section III-A, important questions remain

with regards to translating theoretical results to a practical

setting. In particular, two quantities of interest are the size of

quorums, s, and the number of quorums to which each peer

belongs, nQ. Unfortunately, pinning down these quantities

is non-trivial. Only asymptotic analysis is present in the

literature. Furthermore, it is not a simple case of substituting

hard numbers because s depends on a number of parameters:

(1) the exact guarantees being made, (2) algorithms for quorum

maintenance, (3) the tools of analysis (i.e. form of Chernoff

bounds used) and many more. Evaluating these parameters is

outside the scope of this work. Instead, we assume a range

of values for s and nQ. As our protocols appear to be the

most efficient to date, the following results illuminate what

currently seems possible in practice.

System Churn and DKG: We now return to the issue of

system churn which was discussed earlier in Section IV. A

common metric for measuring the degree of churn is session

time: the time between when a node joins the network and

when it departs [50]. As discussed in Section III-E, we make

the standard assumption that the cost of joining the network is

large enough so as to prevent the adversary from substantially

increasing the rate of churn through rapid rejoin operations.

Part I - An Argument for Batching: Investigations have

yielded differing measurements for median session times. The

Kazaa system was found to have a median session time of

144 seconds [26]. In the Gnutella and Napster networks, the

median session time was measured to be approximately 60
minutes [55]. In the KAD DHT, 155 minutes was the measured

median [59]. A study of the Skype P2P network yielded a me-

dian session time of 5.5 hours for super-peers [25]. Here, we

temporarily assume a median session time of 60 minutes and a

standard Poisson model of peer arrivals/departures as in [42],

[50]. To calculate churn rate, r (number of arrivals/departures

per second), based on the median session time tmed (in

seconds), we use the formula of [50]: r = (n · ln 2)/tmed. For

n = 105 and tmed = 3600 seconds, r ≈ 19. Assuming that

join and departure events occur independently of each other,

Table III gives the expected number of seconds, rQ, at which

point a quorum will undergo a membership change when each

peer belongs to nQ quorums. Our choice of nQ ≤ 3 is based

upon the reasonable assumption that overlap occurs only with

neighboring quorums in the ID space.

In several cases, the rQ values are less than or fairly close to

the corresponding median DKG completion times in Table II.

Therefore, a quorum may not be able to execute DKG often

enough to accommodate each membership change. However,

join operations can be queued and performed in batches.

Executing DKG for a batch of joins does not increase the

message complexity and message size increases only linearly

in the batch size (see [36, Sec. 6]). Therefore, batching can

mitigate the effects of churn and it seems plausible that peers

would tolerate some delay in joining in exchange for security.

Part II - Batching and the Security Threshold: Batch-

ing join events improves performance; however, many peers

might depart a quorum before a new batch is added, thus

violating the security threshold. Hence, we are interested in

the session time value required such that this is not likely

to occur. Based on Table II for s = 20 and nQ = 1,

DKG completes within roughly 26 seconds. The number of

departures a quorum can suffer while not exceeding the crash

limit is f = 6. If Byzantine peers depart, more crashes are

tolerable; however, identifying such events is impossible, so

we assume the worst case of f = 6. Assuming DKG executes

every rDKG = 1200 seconds, we seek the median session

time such that at most 6 peers depart the system within 1226
seconds. With n/s = 5000 quorums in the system, each

experiencing 6 departures within 1226 seconds, the system

churn rate is roughly r = 25. This gives tmed = 2832 or,

equivalently, 47 minutes. Therefore, with this tmed, we expect

the system to remain secure. Moreover, a quorum only spends

26/1226 = 2.1% of the time executing DKG.

We can decrease the required median session times by

decreasing rDKG; however, the percentage of time spent on

DKG increases. Such tuning would depend on the desired

13

TABLE IV
MEDIAN SESSION TIMES (IN HOURS) DERIVED FROM VALUES FOR

s, nQ AND rDKG (IN HOURS).
s 10 15 20

rDKG 0.167 0.25 0.33
nQ 1 2 3 1 2 3 1 2 3

tmed 0.39 0.78 1.17 0.67 1.33 2.00 0.79 1.57 2.36

25 30
0.42 0.5

1 2 3 1 2 3

1.07 2.15 3.22 1.08 2.16 3.24

system performance, the application, s, and nQ. Table IV gives

session time calculations for other values of s, rDKG and nQ.

Required session times increase with s. Notably, for s = 30
and nQ = 1, tmed does not far exceed the 60 minutes

in [55]. As nQ increases, the required session times grow

linearly. However, our maximum of 3.24 hours is still less

than tmed measured for super-peers in the Skype network [25].

We tentatively conclude that our protocols can be deployed in

applications where session times range from 10 minutes to a

few hours and that such applications currently exist.

VI. CONCLUSIONS AND FUTURE WORK

We have provided two new robust communication protocols

that leverage cryptographic techniques to improve asymptot-

ically on the message complexity of previous results. Our

experimental work suggests that our protocols are practical

for a number of application scenarios. In terms of future

work, the performance of a complete system is an important

open question - the quorum topology chosen is crucial and

optimizing this in practice requires further study. While we

focus on DHTs, our results may apply to other P2P designs

and more general settings where groups of machines, some

with untrustworthy members, must communicate; it would be

of interest to identify such applications.

Acknowledgements: We gratefully acknowledge Yizhou

Andy Huang for his performance improvements to the DKG

implementation. This work is supported by NSERC, MITACS,

and David R. Cheriton Graduate Scholarships.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie. Fault-Scalable Byzantine Fault-Tolerant Services. In Proc.
Symp. on Operating Systems Principles (SOSP), pages 59–74, 2005.

[2] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur,
J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer. FARSITE:
Federated, Available, and Reliable Storage for an Incompletely Trusted
environment. In Proc. Operating Systems Design and Implementation

(OSDI), pages 1–14, 2002.
[3] J. Aspnes, N. Rustagi, and J. Saia. Worm versus alert: Who Wins in a

Battle for Control of a Large-Scale Network? In Proc. Intl. Conference
on Principles of Distributed Systems, pages 443–456, 2007.

[4] B. Awerbuch and C. Scheideler. Group Spreading: A Protocol for
Provably Secure Distributed Name Service. In Proc. Intl. Colloquium
on Automata, Languages and Programming, pages 183–195, 2004.

[5] B. Awerbuch and C. Scheideler. Robust Random Number Generation for
Peer-to-Peer Systems. In Proc. International Conference on Principles

of Distributed Systems (OPODIS), pages 275–289, 2006.
[6] B. Awerbuch and C. Scheideler. Towards a Scalable and Robust DHT.

In Proc. Symposium on Parallelism in Algorithms and Architectures

(SPAA), pages 318–327, 2006.
[7] B. Awerbuch and C. Scheideler. Towards Scalable and Robust Overlay

Networks. In Proc. Intl. Workshop on Peer-to-Peer Systems, 2007.

[8] A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In
Proc. International Workshop on Theory and Practic in Public Key

Crptography (PKC), pages 31–46, 2003.
[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifi-

ably Encrypted Signatures from Bilinear Maps. In Proc. International

Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 416–432, 2003.

[10] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer. Brahms:
Byzantine Resilient Random Membership Sampling. In Proc. Sympo-

sium on Principles Distributed Computing, pages 145–154, 2008.
[11] C. Cachin and J. Poritz. Secure Intrusion-tolerant Replication on the

Internet. In Proc. International Conference on Dependable Systems and

Networks (DSN), pages 167–176, 2002.
[12] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach.

Secure Routing for Structured Peer-to-Peer Overlay Networks. In Proc.

Operating Systems Design and Implementation, pages 299–314, 2002.
[13] M. Castro and B. Liskov. Byzantine Fault Tolerance Can Be Fast. In

Proc. International Conference on Dependable Systems and Networks

(DSN), pages 513–518, 2001.
[14] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ

Replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance.
In Proc. Operating Systems Design and Implem., pages 177–190, 1999.

[15] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris.
Designing a DHT for Low Latency and High Throughput. In Proc. Symp.
on Networked Sys. Design and Implementation, pages 85–98, 2004.

[16] J. Douceur. The Sybil Attack. In Proc. Intl. Workshop on Peer-to-Peer

Systems, 2002.
[17] D. Dumitriu, E. W. Knightly, A. Kuzmanovic, I. Stoica, and Willy

Zwaenepoel. Denial-of-Service Resilience in Peer-to-Peer File Sharing
Systems. In Proc. International Conference on Measurements and

Modeling of Computer Systems (SIGMETRICS), pages 38–49, 2005.
[18] E.Adar and B. A. Huberman. Free Riding on Gnutella.

http://www.hpl.hp.com/research/idl/papers/gnutella/gnutella.pdf, 2000.
[19] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson.

Profiling a Million User DHT. In Proc. Internet Measurement Confer-
ence, pages 129 – 134, 2007.

[20] P. Feldman. A Practical Scheme for Non-Interactive Verifiable Secret
Sharing. In Proc. Symposium on the Foundations on Computer Science

(FOCS), pages 427–437, 1987.
[21] A. Fiat, J. Saia, and M. Young. Making Chord Robust to Byzantine

Attacks. In Proc. European Symp. on Algorithms, pages 803–814, 2005.
[22] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed

Consensus With One Faulty Process. Journal of the ACM, 32(2):374–
382, 1985.

[23] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy. Vanish: Increasing
Data Privacy with Self-Destructing Data. In Proc. USENIX Security
Symposium, pages 299–315, 2009.

[24] D. Goldsman and G. Tokol. Output Analysis: Output Analysis Proce-
dures for Computer Simulations. In Proceedings of the 32nd Conference
on Winter Simulation, pages 39–45, 2000.

[25] S. Guha, N. Daswani, and R. Jain. An Experimental Study of the Skype
Peer-to-Peer VoIP System. In Proc. Intl. Workshop on Peer-to-Peer

Systems, 2006.
[26] P. K. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,

and J. Zahorjan. Measurement, Modeling, and Analysis of a Peer-to-
Peer File-Sharing Workload. In Proc. Symposium on Operating Systems
Principles (SOSP), pages 314–329, 2003.

[27] A. Gupta, B. Liskov, and R. Rodrigues. One Hop Lookups for Peer-to-
Peer Overlays. In Proc. Hot Topics in Operating Sys., page 2, 2003.

[28] K. Hildrum and J. Kubiatowicz. Asymptotically Efficient Approaches
to Fault-Tolerance in Peer-to-peer Networks. In Proc. Symposium on

Distributed Computing (DISC), pages 321–336, 2004.
[29] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil

Pairing. In Proc. Intl. Conference on the Theory and Application of
Cryptology and Information Security, pages 514–532, 2001.

[30] M.Castro and B.Liskov. PracticalByzantineFaultToleranceandProactive
Recovery. ACM Trans.Computer Systems, 20(4):398–461, 2002.

[31] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on Gnutella
Revisited: The Bell Tolls? IEEE Distributed Systems Online, 6(6), 2005.

[32] H. Jiang and C. Dovrolis. Passive Estimation of TCP Round-Trip Times.
ACM SIGCOMM Computer Communication Review, 32:75–88, 2002.

[33] H. Johansen, A. Allavena, and R. van Renesse. Fireflies: Scalable
Support for Intrusion-Tolerant Network Overlays. In Proc. EuroSys

Conference, pages 3–13, 2006.
[34] A. Kapadia and N. Triandopoulos. Halo: High-Assurance Locate for

Distributed Hash Tables. In Proc. Network and Distributed System

14

Security Symposium (NDSS), 2008.
[35] A. Kate and I. Goldberg. Asynchronous Distributed Private-Key Gen-

erators for Identity-Based Cryptography. Cryptology ePrint Archive,
Report 355, 2009.

[36] A. Kate and I. Goldberg. DistributedKey Generationfor theInternet. In
Proc. Intl.Conf. onDistributedComputingSystems, pages 119–128,2009.

[37] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, W. Weimer H. Weatherspoon, C. Wells, and
B. Zhao. OceanStore: An Architecture for Global-Scale Persistent
Storage. In Proc. Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 190–201, 2000.
[38] F. Kuhn, S. Schmid, and R.Wattenhofer. Towards Worst-Case Churn

Resistant Peer-to-Peer Systems. Distributed Computing, 22(4):249–267,
2010.

[39] S. Kurkowski, T. Camp, and M. Colagrosso. Manet Simulation Studies:
The Incredibles. ACM SIGMOBILE Mobile Computing and Communi-

cations Review, 9:50–61, 2005.
[40] J. Liang and R. Kumar. Pollution in P2P file sharing systems. In Proc.

IEEE Intl. Conf. on Computer Communications (INFOCOM), 2005.
[41] J. Liang, N. Naoumov, and K. W. Ross. The Index Poisoning Attack

in P2P File Sharing Systems. In Proc. IEEE Intl. Conf. on Computer

Communications (INFOCOM), pages 1–12, 2006.
[42] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the

Evolution of Peer-to-Peer Systems. In Proc. Symposium on Principles

Distributed Computing (PODC), pages 233–242, 2002.
[43] P. Mittal and N. Borisov. ShadowWalker: Peer-to-peer Anonymous

Communication using Redundant Structured Topologies. In Proc. ACM

Conference on Computer and Communications Security (CCS), 2009.
[44] A. Nambiar and M. Wright. Salsa: A Structured Approach to Large-

Scale Anonymity. In Proc. ACM Conference on Computer and Com-

munications Security (CCS), pages 17–26, 2006.
[45] M. Naor and U. Wieder. A Simple Fault Tolerant Distributed Hash

Table. InProc. Intl. Workshop on Peer-to-Peer Sys., pages 88–97, 2003.
[46] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks

(Ext. Abstract). In Proc. Symposium on Principles Distributed Comput-

ing (PODC), pages 51–59, 1991.
[47] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In Proc. International Cryptology Conference

(CRYPTO), pages 129–140, 1991.
[48] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for

Introducing Disruptive Technology into the Internet. ACM SIGCOMM

Computer Communication Review (CCR), 33(1):59–64, 2003.
[49] M. K. Reiter. The Rampart Toolkit for Building High-Integrity Services.

In Proc. International Workshop on Theory and Practice in Distributed

Systems, pages 99–110, 1995.
[50] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a

DHT. In Proc. USENIX Technical Conference, pages 127–140, 2004.
[51] R. Rodrigues, P. Kouznetsov, and B. Bhattacharjee. Large-Scale Byzan-

tine Fault Tolerance: Safe but Not Always Live. In Proc. Hot Topics in

Dependable Systems (HotDep), 2007.
[52] R. Rodrigues and B. Liskov. Rosebud: A Scalable Byzantine-Fault-

Tolerant Storage Architecture. Technical Report TR/932, MIT LCS,
December 2003.

[53] R. Rodrigues, B. Liskov, and L. Shrira. The Design of a Robust Peer-
to-Peer System. In Proc. ACM SIGOPS European Workshop, pages
117–124, 2002.

[54] J. Saia and M. Young. Reducing Communication Costs in Robust Peer-
to-Peer Networks. Inform. Process. Lett., 106(4):152–158, 2008.

[55] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. In Proc. Multimedia Computing

and Networking (MMCN), pages 314–329, 2002.
[56] F. Schneider. Implementing Fault-Tolerant Services Using the State

Machine Approach: A Tutorial. ACM Comp. Surv., 22(4):299–319, 1990.
[57] E. Sit and R. Morris. Security Considerations for Peer-to-Peer Dis-

tributed Hash Tables. In Proc. Intl.l Workshop on Peer-to-Peer Systems,
pages 261–269, 2002.

[58] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global View of KAD.
In Proc. Internet Measurement Conference, pages 117 – 122, 2007.

[59] M. Steiner, T. En-Najjary, and E.W. Biersack. Long Term Study of Peer
Behavior in the KAD DHT. IEEE/ACM Transactions on Networking,
17(5):1371–1384, 2009.

[60] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions. In Proc. ACM SIGCOMM Conference, pages 149–160, 2001.

[61] G. Urdaneta, G. Pierre, and M. van Steen. A Survey of DHT Security
Techniques. ACM Computing Surveys, 43(2):1–53, 2011.

[62] V. Pappas and D. Massey and A. Terzis and L. Zhang. A Comparative

Study of the DNS Design with DHT-Based Alternatives. In Proc. IEEE

Intl. Conference on Computer Communications, pages 1–13, 2006.
[63] D. S. Wallach. A Survey of Peer-to-Peer Security Issues. In Proc. Intl.

Conf. on Software Security: Theories and Sys., pages 253–258, 2002.
[64] P. Weng, N. Hopper, I. Osipkov, and Y. Kim. Myrmic: Secure and Robust

DHT Routing. Technical Report 2006/20, Univ. of Minnesota, 2006.
[65] M. Young, A. Kate, I. Goldberg, and M. Karsten. Practical Robust

Communication in DHTs Tolerating a Byzantine Adversary. Techni-
cal Report CACR 2009-31, 2009. http://www.cacr.math.uwaterloo.ca/
techreports/2009/cacr2009-31.pdf.

[66] M. Young, A. Kate, I. Goldberg, and M. Karsten. Practical Robust
Communication in DHTs Tolerating a Byzantine Adversary. In Proc.

Intl. Conf. on Distributed Computing Systems, pages 263–272, 2010.

Maxwell Young received his B.Sc. in mathemat-
ics from Queen’s University in 2001, a B.Sc. in
computer science from the University of British
Columbia in 2003, and a M.S. in computer sci-
ence from the University of New Mexico in 2006.
Currently, he is a Ph.D. candidate in the David R.
Cheriton School of Computer Science at the Uni-
versity of Waterloo in Ontario, Canada. His research
interests include security and distributed computing
with a focus on adversarial fault tolerance in large
decentralized networks.

Aniket Kate is a postdoctoral researcher at the Max
Planck Institute for Software Systems (MPI-SWS),
Germany. Prior to that, he completed his PhD at
the University of Waterloo, Canada in 2010 and
his Masters at the Indian Institute of Technology
(IIT) - Bombay, India in 2006. His research aims at
bridging the gap between cryptography, and system
security and privacy research.

Ian Goldberg is an Associate Professor of Com-
puter Science at the University of Waterloo, where
he is a founding member of the Cryptography,
Security, and Privacy (CrySP) research group. He
holds a Ph.D. from the University of California,
Berkeley, where he discovered serious weaknesses
in a number of widely deployed security systems,
including those used by cellular phones and wireless
networks. He also studied systems for protecting the
personal privacy of Internet users, which led to his
role as Chief Scientist at Zero-Knowledge Systems

(now Radialpoint). His research currently focuses on developing usable and
useful technologies to help Internet users maintain their security and privacy.
He is a Senior Member of the ACM and a winner of both the Early Researcher
Award and the Outstanding Young Computer Science Researcher Award.

Martin Karsten (M’98 / ACM’98) has stud-
ied information management at the University of
Mannheim, Germany, and obtained his university
degree in 1996. He received his doctoral degree in
computer science from TU Darmstadt, Germany, in
2000. He is currently an associate professor in the
David R. Cheriton School of Computer Science at
the University of Waterloo, Canada. His research
interests are network architecture, algorithms, and
protocols with an emphasis on prototypes and ex-
perimentation.

