

IOweYou Credit Networks Applications and Privacy

Aniket Kate Purdue University

CCS 2016 Tutorial

Ever Changing Landscape of Communication PURDUE

Local Marketplaces

Ever Changing Landscape of Communication PURDUE

Ever Changing Landscape of Communication PURDU

Ever Changing Landscape of Communication PURDU

Ever Changing Landscape of Communication Purl

2

Ever Changing Landscape of Communication PUP

Ever Changing Landscape of Communication

Ever Changing Landscape of Communication

Blockchain can change ... well everything

Source: CB Insights

UE

Blockchain can change ... well everything

Blockchain can change ... well everything

Source: <u>http://startupmanagement.org/blog</u> 4

This talk proudly aims at leaving you with more interesting questions than mere answers regarding credit networks.:)

Transactions in the real world

Transactions in the real world

Transactions in the real world

JE

JE

Roots in the very old Barter System or Havala

Path Selection

- How do we find paths?
 - Max flow algorithms may not scale
- How do we select paths?
 - Social welfare; e.g., allowing many transactions to succeed
 - NP-hard problem

Liquidity of the network

- For randomly chosen pair of nodes, and transaction value, what is the probability that the transaction succeeds?
- More and stronger links, better liquidity; Clique!?

Sybil Tolerance

- Number of sybil nodes should not matter
- How much IOU credit can we allow the adversary to garner?
 - How many sybil links can we manage?
 - What kind topologies and links values?

Why credit networks matter?

- PURDUE
- A flexible-yet-robust design for distributed (transitive) trust
 - through pairwise credit allocations
- Loss incurred due to misbehaving identities is bounded and (sometimes) localized

- Several Systems
 - Ostra: preventing e-mail spam [NSDI'08]

- Several Systems
 - Ostra: preventing e-mail spam [NSDI'08]

Bazaar: strengthening e-commerce [NSDI'11]

- Several Systems
 - Ostra: preventing e-mail spam [NSDI'08]

- Bazaar: strengthening e-commerce [NSDI'11]
- SumUp: Sybil-resilient content voting [NSDI'09]

Building trust with credit networks

Several Systems

- Ostra: preventing e-mail spam [NSDI'08]
- Bazaar: strengthening e-commerce [NSDI'11]
- SumUp: Sybil-resilient content voting [NSDI'09]
- Ripple: A real-life online settlement network

[NSDI'11]

[NSDI'11]

We already have cryptocurrencies, then why do we need Ripple?

	Cryptocurrencies	IOU Credit Networks				
Definition	Medium of exchange; future productivity of the public	Credit settlement network: future productivity of a specific borrower				
Transfer of funds	Direct transactions between any two wallets	Transactions only via a path with enough credit				
Fungibility	Good	Restricted by path availability				
Scalability	Limited transaction rate (<100 tps)	Highly scalable				

IOU (or Credit) Networks

Combining credit and social trust (still not permissioned)

- Combining credit and social trust (still not permissioned)
- Restricted Fungibility of Credit Networks

- Combining credit and social trust (still not permissioned)
- Restricted Fungibility of Credit Networks

- Combining credit and social trust (still not permissioned)
- Restricted Fungibility of Credit Networks

- Combining credit and social trust (still not permissioned)
- Restricted Fungibility of Credit Networks

- The Tyranny of Proof of Work
 - Bitcoin mining could consume as much electricity as Denmark by 2020!
 - (Distributed) credit networks may not require global consensus!
 - I care only about my links to my friends
 - I do not even care about links between friends and friends-of-friends
 - Formalization coming soon ...

Examples: Ripple, Stellar Settlement Networks

- For Ripple, Trade volume: \$800K Payment volume: \$400K per day
- Several banking systems across the world (US, Canada, Germany, China, Japan, Singapore,...) are getting involved

Global (Federated!) Consensus

- Non-standard atomic broadcast protocol
 - An interesting problem to study/improve it
- Choice to consensus parties is not convincing
 - A major criticism against Ripple in academics and P2P communities
- Public verifiability of transactions
 - Motivated from the Bitcoin success
 - Same privacy problem!

Attacks on privacy of Ripple links & transactions PURDUE

Transaction Details

Credit Graph

Account	Destination	Amount
rwctTPLKZgK59f1fXpDk0.	rMnVZ9maUWp5cAvmgBECZM_	300/XRP
rLSBpSquSHKbbfvcKt1c54	rKoDt7VL83AKJZewLxVZEs.	75/XRP
r428G9f5SmD4SYmnDra168.	rBeToNo4AwHaNbRX2n4BNC	0.0693402709148/CCK/rB
rhD759dbJMrzMNL4QbvQe9_	r95pWKA1K55fy7EJWrqJ9b_	300/XRP
r42WJGvV9MJa4t5QcF8Cnx	rBeToNo4AwHaNbRX2n48NC	0.0821058028231/CCK/rB
rUnr1p7xkuSBxyAqHEopZ5	r3H4rynDShFMRKMuJcadLY	1129.916679154465/EUR/
rw7UfGvzCeZwJxxUEeZHLG	rBwgTdzzMHnouLk5DJD3xd	100/XRP
rpVVzfSTUJX9CrKBSS2Z5W_	rDCgaaSBAWYfsxUYhCk1n2_	999.99/XRP

Ripple provides **pseudonymity** to its users by employing public-key hashes as identities

Attacks on privacy of Ripple links & transactions PURDUE

Transaction Details

Credit Graph

Is privacy a real problem in Ripple?

Privacy Attacks: Innocent until Proven Guilty

Is privacy a real problem in Ripple?

Privacy Attacks: Innocent until Proven Guilty

P. Moreno-Sanchez, M. B. Zafar, A. Kate: Linking Wallets and Deanonymizing Transactions in the Ripple Network. *Privacy Enhancing Technologies Symposium (PETS) 2016.*

Ripple Forum Discussion: www.xrpchat.com/topic/1721-linking-wallets-and-deanonymizing-transactions-in-ripple/

Bitcoin

Bitcoin

Ripple

Input	Output					
Alice-Bitcoin: 6 BTC	DR-Bitcoin: 6 BTC					
Alice						

Bitcoin

Input	Output				
Alice-Bitcoin: 6 BTC	DR-Bitcoin: 6 BTC				
Alice					

Sender	DR-Ripple			
Receiver	Alice-Ripple			
Value	6 BTC IOU			
Path	Bob -> Alice			
Bob				

Ripple

Bitco	Din		Ripple			
· .		Alice-Bitcoin	Sender	DR-Ripple		
Input	Output	Alice-Ripple	Receiver	Alice-Ripple		
Alice-Bitcoin:	DR-Bitcoin:		Value	6 BTC IOU		
6 BTC 6 BTC			Path	Bob -> Alice		
Ali	ce			Bob		

Bitcoin			Ripple		
		Alice-Bitcoin	Sender	DR-Ripple	
Input	Output	Alice-Ripple	Receiver	Alice-Ripple	
Alice-Bitcoin:	DR-Bitcoin:	adduud damad	Value	6 BTC IOU	
6 BTC	6 BTC	rippler	Path	Bob —> Alice	
Alice		DR-Bitcoin DR-Ripple		Bob	

Bitcoin			Ripple		
· · ·		Alice-Bitcoin	Sender	DR-Ripple	
Input	Output	Alice-Ripple	Receiver	Alice-Ripple	
Alice-Bitcoin:	DR-Bitcoin:	dividend	Value	6 BTC IOU	
6 BTC	6 BTC	rippler	Path	Bob -> Alice	
Alice		DR-Bitcoin DR-Ripple	tcoin Bob		

How to link these two events?

Some gateways/exchanges keep public logs of their businesses

RECENTLY ISSUED					RECENTLY REDEEMED					
timestamp	recipient	a	mount	status	timestam	Р	recipient	а	mount	status
2016-01-19 21:38	◆ rBxdQqy3qxJV	erc	0.0020	done	2016-02-16 1	6:41 •\$ 1Dm	jJWLHKKPV	BTC	0.2000	done
2015-10-30 08:09	randomHTp7b1	arc	4.9990	done	2016-02-08 0	8:36 🔹 rsM	n8PEs3TvM	XRP	20.0000	done
2015-10-29 22:30	randomHTp7b1	870	2.0000	done	2016-02-05 1	4:46 🔩 rJQ	FhLdAFaTB	XRP	22.0000	done
2015-10-26 01:18	ranEbQX5Y7Jw	LTC	1.7132	done	2016-02-05 1	4:02 🔩 rJQ	FhLdAFaTB	XRP	0.0000	processing
2015-10-25 16:36	rUgCBSD6SSox	BTC	0.0010	done	2016-01-30 0	8:39 SLMY	sm6Akq5E3	LTC	1.0000	done

This interlog linkability attack possible without public log

timestamps and transaction amounts

Heuristic 2: Hot-Cold Wallets

20

Heuristic 2: Hot-Cold Wallets

€ 20

Heuristic 2: Hot-Cold Wallets

Ripple Users

Ripple Users

Ripple Users £ 200 Hot Cold BITSTAMP \$ 2300 £ 5500

Ripple Users £ 200 Hot Cold BITSTAMP \$ 2300 £ 5500 Link hot and cold wallets!!

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	С	€10
В	С	€45

Sender	Receiver	Amount
A	В	€275
В	D	€30
D	C	€10
В	С	€45

Cold wallet only issues credit

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	С	€10
В	С	€45

Cold wallet only issues credit

Correlation between network topology and transactions

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	C	€10
В	С	€45

Cold wallet only issues credit

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	C	€10
В	С	€45

- Cold wallet only issues credit
- Cold wallet must top off hot wallet

- Cold wallet only issues credit
- Cold wallet must top off hot wallet

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	C	€10
В	С	€45

- Cold wallet only issues credit
- Cold wallet must top off hot wallet

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	С	€10
В	С	€45

- Cold wallet only issues credit
- Cold wallet must top off hot wallet
- Hot wallet used to fund client wallets

- Cold wallet only issues credit
- Cold wallet must top off hot wallet
- Hot wallet used to fund client wallets

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	С	€10
В	С	€45

- Cold wallet only issues credit
- Cold wallet must top off hot wallet
- Hot wallet used to fund client wallets

Sender	Receiver	Amount
А	В	€275
В	D	€30
D	С	€10
В	С	€45

- Cold wallet only issues credit
- Cold wallet must top off hot wallet
- Hot wallet used to fund client wallets

A, B belong to the same user

Deanonymization of several gateways

Transactions in the Ripple Network Linked to Gateways (Jan-13 — Dec-15)

Towards privacy-preserving transactions credit networks

P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina: **Privacy Preserving Payments in Credit Networks.** *NDSS 2015*

Defining privacy for a credit network

Transaction receiver privacy

Transaction sender privacy can be defined similarly

Transaction Value Privacy: Definition (II)

A credit network satisfies value privacy if:

A decentralized or centralized architecture?

- A decentralized or centralized architecture?
- Centralized setting: the network is maintained by a server
 - The service provider can trivially break the privacy
 - The routing computation can be performed privately, but any modifications to the edges not
 - Use of pseudonyms and anonymous channels (e.g, Tor) is not sufficient
 - In our NDSS'15 paper, we resolve this issue using minimally trusted hardware and oblivious algorithms

- A decentralized or centralized architecture?
- Centralized setting: the network is maintained by a server
 - The service provider can trivially break the privacy
 - The routing computation can be performed privately, but any modifications to the edges not
 - Use of pseudonyms and anonymous channels (e.g, Tor) is not sufficient
 - In our NDSS'15 paper, we resolve this issue using minimally trusted hardware and oblivious algorithms
- Decentralized setting: edges are maintained locally
 - A transaction passing through a node requires its active involvement
 - We will consider this later during the talk

- Centralized setting
 - The network is maintained by a service provider

- The service provider is honest-but-curious
- Some users are controlled by the service provider
- The service provider can trivially break the privacy
 - The routing computation can be performed privately, but any modifications to the edges cannot
- We resolve this feasibility issue using minimally trusted hardware

Our centralized approach: PrivPay

Threat Model

- The service provider is honestbut-curious
- Some users are controlled by the service provider
- A service-side trusted hardware module maintains the network graph in the untrusted server memory
- Correctness of the hardware module can be verified using remote code attestation
- Encryption by itself prevents an attacker from learning the database entry but monitoring memory accesses is still possible
- We develop oblivious algorithms for routing to solve this problem

Routing challenge:

Known max-flow algorithms are not scalable: $O(V^3)$ or $O(V^2log(E))$

We employ landmark routing:

Routing challenge:

Known max-flow algorithms are not scalable: $O(V^3)$ or $O(V^2 log(E))$

We employ landmark routing:

Routing challenge:

Known max-flow algorithms are not scalable: $O(V^3)$ or $O(V^2log(E))$

We employ landmark routing:

Routing challenge:

Known max-flow algorithms are not scalable: $O(V^3)$ or $O(V^2 log(E))$

We employ landmark routing:

Routing challenge:

Known max-flow algorithms are not scalable: $O(V^3)$ or $O(V^2\log(E))$

We employ landmark routing:

Routing challenge:

Known max-flow algorithms are not scalable: $O(V^3)$ or $O(V^2\log(E))$

We employ landmark routing:

PURDUE UNIVERSITY

Routing challenge:

Known max-flow algorithms are not scalable: $O(V^3)$ or $O(V^2 log(E))$

We employ landmark routing:

PrivPay architecture

- Landmark universe creator module
 - Oblivious BFS computation for selected landmark nodes

- Landmark universe creator module
 - Oblivious BFS computation for selected landmark nodes

- Landmark universe creator module
 - Oblivious BFS computation for selected landmark nodes
- Transaction (path stitcher) module
 - Given a sender and a receiver, traverse the BFS trees in an oblivious manner for the overlapping landmark nodes

- Landmark universe creator module
 - Oblivious BFS computation for selected landmark nodes
- Transaction (path stitcher) module
 - Given a sender and a receiver, traverse the BFS trees in an oblivious manner for the overlapping landmark nodes
- Privacy properties are formally proven

- Landmark universe creator module
 - Oblivious BFS computation for selected landmark nodes
- Transaction (path stitcher) module
 - Given a sender and a receiver, traverse the BFS trees in an oblivious manner for the overlapping landmark nodes
- Privacy properties are formally proven

- Landmark universe creator module
 - Oblivious BFS computation for selected landmark nodes
- Transaction (path stitcher) module
 - Given a sender and a receiver, traverse the BFS trees in an oblivious manner for the overlapping landmark nodes
- Privacy properties are formally proven

- Landmark universe creator module
 - Oblivious BFS computation for selected landmark nodes
- Transaction (path stitcher) module
 - Given a sender and a receiver, traverse the BFS trees in an oblivious manner for the overlapping landmark nodes
- Privacy properties are formally proven

Applying PrivPay to the Ripple network

PURDUE UNIVERSITY

- We have implemented PrivPay as a C++ library
- We employed real-world Ripple transactions over a period of four months (Oct'13 – Jan'14)

			Ripple takes 5
Time in <i>msec</i>	Non-Private [Eurosys'12]	PrivPay	transaction Background
Payment	0.078	1510	
Change link	0.005	95	Process
Oblivious BFS	50	22000 🥌	
Coverage	97%	95%	No false positive.
			only false negative

PrivPay: Deployment Challenges

- Ripple is currently focusing on their business growth
 - The privacy concerns was secondary to them
 - Trusted hardware-based solutions require investment
 - Ripple is not ready for the challenge yet!
- Scalability of (background) Oblivious BFS algorithm as number of users have increased ten holds
 - the coverage will reduces
- Question: Can we find some solution that is compatible with the current Ripple architecture?
 - Yes! but with a caveat

- Idea: Perform several transactions simultaneously enables privacypreserving transactions
 - Similar to Conjoin or CoinShuffle for Bitcoin
 60/50
 20/30
 30/20
 dividend rippler
 10/20
 15/05
 12/22

- Idea: Perform several transactions simultaneously enables privacypreserving transactions
 - Similar to Conjoin or CoinShuffle for Bitcoin

- Ripple only allows single sender/receiver per transaction
 - Employ threshold signature techniques overcome the problem
 - Pathjoin!

- Idea: Perform several transactions simultaneously enables privacypreserving transactions
 - Similar to Conjoin or CoinShuffle for Bitcoin

- Ripple only allows single sender/receiver per transaction
 - Employ threshold signature techniques overcome the problem
 - Pathjoin!
- 100% Compatible with Ripple. We tested it on the real Ripple network!

Towards Secure Distributed Credit Networks

A. Kate, M. Maffei, G. Malavolta, and P. Moreno-Sanchez: **SilentWhispers: Enforcing Security and Privacy in Decentralized Credit Networks** To appar at **NDSS 2017** *TechReport: http://crypsys.mmci.uni-saarland.de/projects/DecentralizedPrivPay/*

A Distributed Credit Network

Each user maintains her own credit links

A Distributed Credit Network

Each user maintains her own credit links

A Distributed Credit Network

Each user maintains her own credit links

Credit links of a user determine his credit in the network

Credit links of a user determine his credit in the network

In-flow =
$$450$$

Out-flow = 40
Net-flow = 410

In-flow =
$$450$$

Out-flow = 40
Net-flow = 410

A user checks net-flow does not change

Credit links of a user determine his credit in the network

15

25

A user checks net-flow does not change

Bob

450

CBW BANK

In-flow = 450

Out-flow = 40

Net-flow = 410

Credit links of a user determine his credit in the network

A user checks net-flow does not change

In-flow = 450Out-flow = 40Net-flow = 410

In-flow = 450

Out-flow = 40

Net-flow = 410

Credit links of a user determine his credit in the network

A user checks net-flow does not change

In-flow = 450Out-flow = 40Net-flow = 410

In-flow = 450Out-flow = 40Net-flow = 410

Credit links of a user determine his credit in the network

A user checks net-flow does not change

In-flow = 450Out-flow = 40Net-flow = 410

Credit links of a user determine his credit in the network

A user checks net-flow does not change

In-flow = 450

Out-flow = 40

Net-flow = 410

445

35

Challenges

- How to find paths between a sender and a receiver?
- How to find the IOU credit available in the path?
- How to ensure credit links form a path?
- And maintaining strong privacy, availability, and accountability guarantees...

[x]: Secret sharing of x

[x]: Secret sharing of x

Given [x] it is not possible to know x

- Given [x] it is not possible to know x
- How to ensure that [x] comes from a user in a path?

- Given [x] it is not possible to know x
- How to ensure that [x] comes from a user in a path?

 $\sigma_1 := Sig(sk_1, ([30], vk1, vk2)) \\ \sigma_2 := Sig(sk_2, ([30], vk1, vk2))$

Correct proof for a path

 $(vk_{1}, vk_{2}), (vk_{2}, vk_{3}), (vk_{3}, vk_{4}), \dots$

Correct proof for a path

Correct proof for a path

$$(vk_1 vk_2) (vk_2, vk_3), (vk_3, vk_4), \dots$$

Correct proof for a path (vk₁ vk₂) (vk₂, vk₃), (vk₃, vk₄), ...

Fresh keys per transaction

Landmarks perform SMPC min computation over the shared link values

Landmarks perform SMPC min computation over the shared link values

- Landmarks perform SMPC min computation over the shared link values
- Given enough "copies" of [x] it is possible to recover x for Alice

Sequential friend-to-friend communication

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle
- Example:

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle
- Example:

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle
- Example:

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle
- Example:

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle
- Example:

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle
- Example:

- Sequential friend-to-friend communication
- Two-step transaction: on hold (or block) and settle
- Example:

SilentWhispers: Characteristics/Limitations

- Distributed credit network transactions are possible without requiring
 - a blockchain ledger
 - a proof-of-work
- SilentWhispers can be modified by using landmarks as distributed stores

[more details in the paper]

- In case of disputes, this leaves task of proving links to the users
- It is blocking solution, and deadlocks are possibles
 - Problem: designing non-blocking solutions in the asynchronous communication setting
 - distributed max-flow computation and atomic broadcast

Payment Channels and lighting network

https://lightning.network

Designing distributed solutions for lighting network

The Interledger Protocol

https://www.w3.org/community/interledger

- Several distributed/decentralized/centralized ledger solutions are coming up
- Performing transactions across different ledgers

Thanks to My Collaborators

Pedro Moreno-Sanchez

Tim Ruffing

Matteo Maffei

Kim Pecina

Muhammad Bilal Zafar

Giulio Malavolta

Sonia Fahmy

Srivatsan Ravi

Thanks to My Collaborators

Pedro Moreno-Sanchez

Tim Ruffing

Matteo Maffei

Kim Pecina

Muhammad Bilal Zafar

Giulio Malavolta

Sonia Fahmy

Srivatsan Ravi

Thanks to My Collaborators

Pedro Moreno-Sanchez

Tim Ruffing

Matteo Maffei

Kim Pecina

Muhammad Bilal Zafar

Giulio Malavolta

Sonia Fahmy

Srivatsan Ravi

To make credit networks great again!

Take home message

 Credit networks have interesting properties and can be used in multiple scenarios

 SlientWhispers: a decentralized architecture for providing accountability and privacy for credit networks

 Ledgers although provide accountability, + it makes privacy a real problem in credit networks

13

Several questions remain unanswered leaving lots of open problems

	In the Future	PURDUE
	 Payment Channels and lighting network https://lightning.network Designing distributed solutions for lighting network 	
	The Interledger Protocol https://www.w3.org/communit	v/interledger
	 Several distributed/decentralized/centralized ledger solutions are coming up Performing transactions across different ledgers 	
Thanks!		

45