CS 59000-ENS: Influence Maximization

Assefaw Gebremedhin
Purdue University
agebreme@purdue.edu

http://www.cs.purdue.edu/homes/agebreme/Networks

Spring 2013
Marketing

- Mass marketing
- Directed marketing
- Viral marketing
Viral marketing

- Identify influential customers
- Provide them with incentives to adopt
- Hope their influence will cause cascade effect of adoption
Maximizing the spread of influence

Choose the most influential k people such that a cascade starting from those nodes reaches the largest population

Domingos and Richardson, KDD 2001 and 2002
How to find k such people?

We look at the work of Kempe, Kleinberg and Tardos, KDD 2003
Diffusion models

- Basic elements of an operational model
 - Directed graph
 - Active and inactive nodes
 - Progressive (and non-progressive) cases

- A number of diffusion models
 - Independent Cascade Model
 - Based on interacting particle systems
 - Linear Threshold Model
 - A node’s tendency to adopt increases monotonically as more of its neighbors become adopters
 - And their extensions
Independent Cascade Model

- We have a directed graph $G=(V,E)$
- Start with an initial set of active nodes S
- Process unfolds in discrete time steps
- When node v first becomes active in step t, it is given a single chance to activate each currently inactive neighbor w; it succeeds with probability p_{vw}.
 - If w has multiple newly activated neighbors, their attempts are sequenced randomly.
- If v succeeds, w becomes active in step $t+1$
- Process runs until no more activations are possible
Independent Cascade Model
Linear Threshold Model

- Directed graph \(G=(V,E) \)
- Start with an initial set of active nodes \(S \)
- A node \(v \) is influenced by each neighbor \(w \) according to a weight \(b_{vw} \) such that the sum of the weights over all neighbors is \(\leq 1 \).

Dynamics of the process:

- Each node chooses a threshold \(t_v \) uniformly from \([0,1]\)
 - This represents the weighted fraction of \(v \)'s neighbors that must become active in order for \(v \) to become active
- Diffusion unfolds deterministically in discrete steps
 - In step \(t \), all nodes that were active in step \(t-1 \) remain active
 - And any node \(v \) for which the total weight of its active neighbors is at least \(t_v \) becomes active
Maximizing the spread of influence under ICM and LTM

Given budget k, select a set S of k nodes so as to maximize $f(S)$ where

$f(S)$: expected number of nodes active at the end, if set S is targeted for initial activation

The problem is NP-hard (Reduction to Set Cover)
Influence Maximization is NP-hard

- **Set Cover:**
 - Given a universe of elements $U = \{u_1, \ldots, u_n\}$ and sets X_1, \ldots, X_m contained in U
 - Are there k sets among X_1, \ldots, X_m s.t their union is U?

- **Goal:** encode SC as an instance of IM

- **Build a bipartite X-to-U graph**
 - For each X_i, create a directed edge (X_i, u) for each u contained in X_i.
 - Put weight 1 on the edge

- There exists a set S of size k with $f(S) = k + n$ iff there exists a size k set cover

$X_1 = \{u_1, u_2, u_3\}$
Approximation Method

- **Greedy Method**

 For \(k \) iterations:

 Add a node \(u \) to set \(S \) that maximizes \(f(S+u) - f(S) \)

- **Theorem**

 The greedy method is a \((1-1/e) \) approximation for both ICM and LTM
Proof of approximation bound

1) Prove that $f(S)$ is
 a) **Monotone**
 If S is contained in T then $f(S) \leq f(T)$
 b) **Submodular** (diminishing returns)
 \[f(S + v) - f(S) \geq f(T + v) - f(T) \]
 whenever S contained in T

2) Invoke Nemhauser-Wolsey-Fisher Theorem (1978)
Diminishing returns

\[\forall S \subseteq T \]

Adding \(u \) to \(T \) helps less than adding it to \(S \)!
Proof of approximation bound

1) Prove that $f(S)$ is
 a) **Monotone**

 If S is contained in T then $f(S) \leq f(T)$

 Easy to see (activating more nodes never hurts)
 b) **Submodular** (diminishing returns)

 $f(S+v) - f(S) \geq f(T+v) - f(T)$ whenever S contained in T

 Will show this next…

2) Invoke Nemhauser-Wolsey-Fisher Theorem (1978)
Submodularity of diffusion process

- Flip all the coins at the beginning and record results
 (recall percolation from last lecture)
- Active nodes in the end are reachable via live edges
- Study reachability in the these graphs
- This problem is submodular
Submodularity of Reachability

\[g(T + v) - g(T) \subseteq g(S + v) - g(S) \text{ when } S \subseteq T. \]
Evaluating $f(S)$

- Not only one, but many scenario
- Is it still submodular?
 - Yes, since linear (nonnegative) combination of submodular functions is submodular

- How does one evaluate $f(S)$?
 - Efficient computation still an open question.

- Good estimates can be obtained by simulation (MC)
 - Repeating the diffusion process often enough
Experiments

- Collaboration network (co-authorships in papers in arXiV high-energy physics theory):
 - 10,748 nodes
 - 53,000 edges

- Independent Cascade Model
 - Case 1: inform probabilities on each edge
 - Case 2: edge from v to w has probability $1/\text{deg}(w)$ of activating w

- Simulated the process 10,000 times for each targeted set
 - Each time re-choosing edge outcomes randomly

- Compared with three other heuristics
 - Degree centrality
 - Distance centrality
 - Random
Results

$p_{uv} = 1\%$

$p_{uv} = 10\%$

Degree and distance centrality: captures only structure
Greedy: captures dynamics
Results

\[p_{uv} = \frac{1}{\text{deg}(v)} \]