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OVERVIEW OUR CONTRIBUTION USING OBSERVATIONAL DATA

e Introduction of Low rank CPTs: CPT can be treated as summation of multiple simple tables, each of them depending only
on a handful of parents

Run the previous
Use observational data algorithm and directly

to find Markov blanket query %
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* Bayesian networks can be used to model complex inter-
actions amongst constituent variables of a system

e Connect this notion of rank of a CPT to the Fourier transformation of a specific real valued set function 1]
|T| ZAE2Tf

* Use compressed sensing techniques to show that the Fourier coefficients of this set function can be used to learn the
structure of the Bayesian network

* Question: Can we learn the structure (directed) of a
Bayesian network by observing variables of a system?

_1)lA4nBl Let P = {P is faithful to G. |P(X;| X)) = P*(X;|X;),Vi,l e {1,...,n}}.

If there exists a probability distribution P e P such that

each node i is rank 2 with respect to MB(i) and P, then
we can recover the Markov blanket by solving the follow-
ing system of equations:

For a set function f : 2T - R, f(A) = Ypepr f (B)(-=1)2"8 where Fourier coefficient f

 Answer: NP-hard in general. We propose a method to
learn exact structure of a class of Bayesian networks by
making black-box queries.

* Theoretical Guarantees: We formally prove the correct-
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Let A; be a collection of m; sets A; e 2V~" chosen uniformly at random and g; € R™ be a vector whose j™ row is g;(A i)
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Here n is the number of nodes, k is the maximum size of the Markov blanket. The maximum number of parents of a node is O(k).



