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OVERVIEW

• Bayesian networks can be used to model complex inter-
actions amongst constituent variables of a system

•Question: Can we learn the structure (directed) of a
Bayesian network by observing variables of a system?

•Answer: NP-hard in general. We propose a method to
learn exact structure of a class of Bayesian networks by
making black-box queries.

•Theoretical Guarantees: We formally prove the correct-
ness of our method and provide polynomial bounds on
sample and time complexity.

PRELIMINARIES

•Bayesian network: A Bayesian network represents a
joint probability distribution over the set of random vari-
ables defined on the nodes of DAG which factorizes ac-
cording to the DAG structure, i.e., P pX1,X2,X3,X4,X5q “

P pX1|X2qP pX2qP pX3|X1,X2qP pX4|X3,X5qP pX5q.

•Rank k conditional probability distribution A node i
of a Bayesian network is said to be rank k representable
with respect to a set A Ď V ztiu and probability distribu-
tion P if @xi P dompXiq,xApiq P dompXApiqq,

P pXi “ xi|XA “ xAq “
ÿ

SĎtiuYA
1ď|S|ďk, iPS

QSpXS “ xSq

Example of Rank-2 CPT

PROBLEMDESCRIPTION

Can we recover the DAG structure using blackbox queries
with theoretical guarantees of correctness and efficiency
in terms of time and sample complexity?

OUR CONTRIBUTION

• Introduction of Low rank CPTs: CPT can be treated as summation of multiple simple tables, each of them depending only
on a handful of parents

• Connect this notion of rank of a CPT to the Fourier transformation of a specific real valued set function [1]

For a set function f : 2T Ñ R, f pAq “
ř

BP2T f̂ pBqp´1qAXB where Fourier coefficient f̂ pBq “ 2´|T |
ř

AP2T f pAqp´1q|AXB|.

• Use compressed sensing techniques to show that the Fourier coefficients of this set function can be used to learn the
structure of the Bayesian network

Algorithm

Differentiate between Terminal and Non-terminal node

Terminal node, X4 Non-terminal node, X1

MAIN THEOREM

Let gipAjq be an approximation for fipAjq “ P pXi “ 0|XMBpiqq by taking only upto pairwise Fourier coefficients. Let
|fipAjq ´ gipAjq| ď εj,@Aj PAi for some εj ą 0. ĝi by solving the following optimization problem for each node i.

βi “ min
ĝiPR|ρi |

}ĝi}1 s.t.}Miĝi ´ fi}2 ď ε where ε “
d

ÿ

AjPAj
ε2
j . (1)

Let Ai be a collection of mi sets Aj P 2V´i chosen uniformly at random and gi P Rmi be a vector whose jth row is gipAjq
and ĝi P Rn`p

n´1
2 q be a vector with elements of form f̂ipBkq@Bk P ρi where ρi “ tBk | Bk P 2i, |Bk| ď 2u is a set which contains

supportpf̂iq. Consider, gi “Miĝi where,Mi P t´1,1umiˆn such thatMi
jk “ p´1q|AjXBk| .

Theorem 1. Suppose ĝi is constructed by computing ĝipBkq using Bk from a fixed collection ρi and gi is computed by selecting
mi sets Aj uniformly at random from 2i. Let mi ě Opmaxp|supportpĝiq| log4

pn`
´

n´1
2

¯

q, |supportpĝiq| log 1
δq and βi be solved using

equation (1). Then with probability at least 1´δ, we have }βi´ ĝi}2 “ Op ε
?
mi
q. If the minimum non-zero element of |ĝi| is Ωp ε

?
mi
q

then βi recovers ĝi up to the signs. Furthermore, if non-terminal nodes are not rank 2 then |βipBq| “ Op ε
?
mi
q,@B P ρi, |B| “ 2 iff i is

a terminal node and π̂piq “ tB | |B| “ 1, |βipBq| “Ωp ε
?
mi
qu correctly recovers the parents of node i.

RESULTS

Algorithms Sample Complexity Time Complexity Selections Queries

Our Work (no observational data) Blackbox - Opnk3 log4nplogk ` loglognqq Opn4k
?
n lognq Opnq Opnk3 log4nq

Our Work (with observational data) Observational - Opnq, Blackbox - Opnk3 log5kqOpn4
q, Opnk4

a

k logkqOpnq Opnk3 log4kq
Bello et. al, 2018 Interventional - Opn22k lognq Opn22k lognq Opn2

q Opn22kq
Kocaoglu et. al, 2017 Interventional - no guarantees Op2nkn2 log2nq Oplognq Op2n lognq
Here n is the number of nodes, k is the maximum size of the Markov blanket. The maximum number of parents of a node is Opkq.

USING OBSERVATIONAL DATA

Let P “
 

P is faithful to G. |P pXi|Xlq “ P ˚pXi|Xlq,@i, l P t1, . . . ,nu
(

.
If there exists a probability distribution P̂ P P such that
each node i is rank 2 with respect to MBGpiq and P̂ , then
we can recover the Markov blanket by solving the follow-
ing system of equations:

P pXi “ 0,Xl “ 0q “Q̃ipXi “ 0qP pXl “ 0q`
ÿ

jP´i
j‰l

Q̃ijpXi “ 0,Xj “ 0qP pXj “ 0,Xl “ 0q`

Q̃ilpXi “ 0,Xl “ 0qP pXl “ 0q@ l “ t1, . . . ,nu, l ‰ i

P pXi “ 0q “Q̃ipXi “ 0q`
ÿ

jP´i
j‰l

Q̃ijpXi “ 0,Xj “ 0qP pXj “ 0q

VERIFICATION

(a) Hamming distance with control
parameter C

(b) F1 score with control parameter
C

Figure 1: Without observational data. mi “

10Cmaxpk2 log4n1, k2 log1{δq queries for each node i.

(a) Hamming distance of Markov
blanket recovery with control param-
eter C

(b) F1 score of Markov blanket recov-
ery with control parameter C

Figure 2: With observational data. N “ maxp10C logn
ε2 ,nqq

observational samples
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