JEREMIAH BLOCKI

Assistant Professor JBLOCKI@PURDUE.EDU

Assistant Professor of Computer Science jblocki@purdue.edu

Jeremiah Blocki

Information Security, Theory & Algorithms

Human Authentication

Research Interests

- Cryptography
- Game Theory and Security
- Memory Hard Functions
- Differential Privacy
- Security
- Audit Mechanisms

Usable and Secure Password Management

Application Domains

Privacy Preserving Data Analysis Human Authentication Password Hashing

Assistant Professor of Computer Science jblocki@purdue.edu

Jeremiah Blocki

REQUIRES IDEAS FROM:

- Cognitive Psychology
- COMBINATORICS
- Cryptography
- GAME THEORY

Research Goal: Usable and Secure strategies for humans to create and remember multiple passwords.

Jeremiah Blocki

Assistant Professor of Computer Science jblocki@purdue.edu **RESEARCH GOAL:** CRYPTOGRAPHIC TOOLS TO PROTECT LOW ENTROPY SECRETS (E.G., PASSWORDS) AGAINST ATTACKERS.

- Memory Hard Functions
- Stackelberg Game Theory

Research Goal: Tools for Private Data Analysis

Demana Passeret

Differentially Private Analysis of Social Networks

Researchers devise method to safely share password data

Researchers devise method to safely share password data

An undrunate reality for cybersocurity researchers is that real-world data for their research too often comes via a security breach. Now computer scientists have devised a way to let organizations share statistics about their users' passwords without putting those same customers at risk of being hacked.

http://m.phys.org/news/2016-02-method-safely-password.htm

Offline Dictionary Attack

COMPUTEI

BENJAMIN DELAWARE

Assistant Professor bendy@purdue.edu

- Formal Synthesis of binary encoders + decoders from specification
- <u>Machine-checked proof</u> certifying relationship (+memory safety)
- <u>User-extensible</u> with new strategies
 - Provides compatibility with existing protocols + legacy software

applications

- Binary encoder and decoders for robotic sensors
- ROS Master server for autonomous vehicles
- Authoritative and Recursive DNS servers
- Clean-slate development of path tracking software
- Derivation of verified Haskell ByteString library

Research Interests: Programming Languages and Formal Methods Sub-box: Program Synthesis and Verification

- Mechanized Reasoning and Decision Procedures

- Programming Language Design

- Static Analysis

Application Areas:

- Mission Critical Software
- Core Internet Infrastructure
- Autonomous Vehicles

PETROS DRINEAS

Associate Professor PDRINEAS@PURDUE.EDU

Associate Professor

Petros Drineas

pdrineas@purdue.edu http://www.drineas.org/

Theory, Numerical Linear Algebra, Big Data

Research Interests

- Randomized Algorithms for Numerical Linear Algebra (RandNLA) problems
- Applications to machine learning and data mining problems
- Big Data analysis, with a particular emphasis on the analysis of population genetics data

RandNLA:

Randomization in Numerical Linear Algebra

Randomized algorithms

• By (carefully) sampling rows/columns of a matrix, we can construct new, smaller matrices that are close to the original matrix (w.r.t. matrix norms) with high probability.

<u>Example:</u> Randomized Matrix Multiplication			В			R))
---	--	--	---	--	--	-----	---

• By preprocessing the matrix using "random projection" matrices , we can sample rows/columns much less carefully (uniformly at random) and still get nice bounds with high probability.

Matrix perturbation theory

• The resulting smaller matrices behave similarly (e.g., in terms of singular values and singular vectors) to the original matrices thanks to the norm bounds.

BYOUNGYOUNG LEE

Assistant Professor byoungyoung@purdue.edu

Assistant Professor of Computer Science byoungyoung@purdue.edu

Byoungyoung Lee

System Security, Software Security

• Vulnerability detection and elimination

Research Interests

- Trusted computing platforms
- Web privacy and security

Application Domains

Secure operating systems, Secure web browsers, Secure cloud platforms

COMPUTE

Byoungyoung Lee

Research Impacts

- Discovered +100 security vulnerabilities in commodify systems
 - Microsoft Windows Kernel, Linux Kernel, Google Chrome, Firefox, etc.
- Technology transfer
 - Google Chrome team adopted DangNull (use-after-free detection tool)
 - Firefox team adopted CaVer (bad-casting detection tool)
- Awards
 - 2015 Internet Defense Prize by Facebook and USENIX
 - 2015 The Best Applied Security Research Paper (3rd place) by CSAW
 - 2015 DARPA Cyber Grand Challenge (CGC) Finalist

COMPUTER SCIENCE

MOHAMMAD SADOGHI

Assistant Professor msadoghi@purdue.edu

Assistant Professor of Computer Science msadoghi@purdue.edu

Mohammad

Databases and Machine Learning

Research

Interests

- Real-time OLTP & OLAP Systems
- Role of (Virtualized) Modern Hardware (e.g., FPGAs, GPUs, SSDs) in Database Systems on Cloud
- Machine Learning and Data Mining to • Semantically Enrich Data
- Data Quality and Enriched Data • Curation/Integration
- Uncertainty and Inconsistency in Data • Management

ExpoDB: An Exploratory Data Science Platform

Flexible Query Processing (FQP) on a Reconfigurable Computing Fabric

deaths in United States, resulting in 100,000 loss of life annually

ROOPSHA SAMANTA

Assistant Professor roopsha@purdue.edu

Simplify Programming Reliable Systems for Experts

- Reduce the cognitive burden of programmers
- Automate tedious and tricky tasks Inference of synchronization such as locks in concurrent programs

Simplify Programming Reliable Systems for Novices

• Simulate personalized feedback given in traditional classrooms Automated feedback engines for programming assignments

HE WANG

Assistant Professor hw@purdue.edu

Assistant Professor of Computer Science hw@purdue.edu

He Wang

Mobile Sensing and Mobile Computing

- Localization
- Activity/Gesture Recognition

Research Interests

- Wearables
- IoT
- Data Analytics
- Security/Privacy

UnLoc: Unsupervised Indoor Localization

MoLe: Motion Leaks through Smartwatch Sensors

UnLoc: Unsupervised Indoor Localization

1.63 m accuracy, no infrastructure cost, no calibration needed.

trace display:

If trace If marke

MoLe: Motion Leaks through Smartwatch Sensors

Can Smartwatch Sensors Infer What You Are Typing?

Type a word W that is longer than 6 characters, MoLe will shortlist 10 words on average that will include W.

