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FFmpeg and a thousand fixes

http://j00ru.vexillium.org/?p=2211 Jan-10, 2014

2 person-years &
fuzzing on large
cluster

>1,000 bugs found 
and fixed



Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety 
and memory safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications 
written in C / C++ prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system
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Compiler extensions
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– Enforce memory safety for  
 a subset of data
– Embed high level details,

enforce runtime protection



  

Conclusion

● Protect applications in the presence of bugs
– Assume that unpatched vulnerabilities exist

● Enforcing strong policies for code
– For existing binaries, source code and language 

extensions, and new languages
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