

WarGames in memory:
Protecting applications in the presence of bugs

Mathias Payer <mpayer@purdue.edu>
Assistant Professor, Purdue University

FFmpeg and a thousand fixes

http://j00ru.vexillium.org/?p=2211 Jan-10, 2014

2 person-years &
fuzzing on large
cluster

>1,000 bugs found
and fixed

Software is unsafe and insecure

● Low-level languages (C/C++) trade type safety
and memory safety for performance
– Programmer responsible for all checks

● Large set of legacy and new applications
written in C / C++ prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through safe runtime system

Detect, protect, defend

Low-level
runtime
system

Language
features

Compiler
extensions

Low-level runtime system

Sandbox

Application

Kernel

Loader

System call policy

Compiler extensions

Source
Code

Executable
program or

library

Compiler

– Enforce memory safety for
 a subset of data
– Embed high level details,

enforce runtime protection

Conclusion

● Protect applications in the presence of bugs
– Assume that unpatched vulnerabilities exist

● Enforcing strong policies for code
– For existing binaries, source code and language

extensions, and new languages

Mathias Payer <mpayer@purdue.edu>
Assistant Professor, Purdue University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

