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Abstract
Herein, we introduce a novel methodology to generate urban morphometric parameters that takes advantage of deep neural networks 
and inverse modeling. We take the example of Chicago, USA, where the Urban Canopy Parameters (UCPs) available from the National 
Urban Database and Access Portal Tool (NUDAPT) are used as input to the Weather Research and Forecasting (WRF) model. Next, the 
WRF simulations are carried out with Local Climate Zones (LCZs) as part of the World Urban Data Analysis and Portal Tools 
(WUDAPT) approach. Lastly, a third novel simulation, Digital Synthetic City (DSC), was undertaken where urban morphometry was 
generated using deep neural networks and inverse modeling, following which UCPs are re-calculated for the LCZs. The three 
experiments (NUDAPT, WUDAPT, and DSC) were compared against Mesowest observation stations. The results suggest that the 
introduction of LCZs improves the overall model simulation of urban air temperature. The DSC simulations yielded equal to or better 
results than the WUDAPT simulation. Furthermore, the change in the UCPs led to a notable difference in the simulated temperature 
gradients and wind speed within the urban region and the local convergence/divergence zones. These results provide the first 
successful implementation of the digital urban visualization dataset within an NWP system. This development now can lead the way 
for a more scalable and widespread ability to perform more accurate urban meteorological modeling and forecasting, especially in 
developing cities. Additionally, city planners will be able to generate synthetic cities and study their actual impact on the environment.

Keywords: deep neural network, weather research and forecasting model, urban climate, urban boundary layer, WUDAPT, urban 
canopy parameters
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lation of the urban extent to parameters that interact with the model formulations. Hence, this study provides a method to generate 
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eling and forecasting, especially for data scarce regions.
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Introduction
Urban centers are economic hubs of the world that contribute 

about 60% of the global gross domestic product while accommo-

dating more than half of the world’s population (1). As urbaniza-

tion intensifies, cities experience extreme weather conditions 

such as compound flooding (2), and heatwaves (3). Additionally, 

urbanization has led to changes in weather conditions such as 

rainfall (4), urban heat island (5), and air pollution (6). Different 

Urban Canopy Models (UCMs) have been developed to incorporate 

and study urban interaction with the environment. Examples in-

clude single layer (7), multi-layer (8, 9), town energy balance 

(10), and community land model urban parameterization (11).
UCMs utilize urban morphometric details and provide a more 

realistic urban representation aiding the weather/climate model’s 
performance in simulating urban environments (12). The single- 
layer UCM incorporates detailed physics of the radiation re-
presentation, turbulent transportation, and assumes infinitely 
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long streets for urban geometry representation. Multi-layer UCMs 
are more sophisticated compared to the single-layer UCM in repre-
senting buildings and street layout. The energetics and internal 
wind as well as thermal effects are represented to provide a more 
explicit linkage with the urban canopy boundary layer, and coup-
ling with the atmospheric surface and boundary layer (13, 14). 
The urban models can be run in offline mode to conduct energy bal-
ance studies (15, 16) or can be coupled with numerical weather pre-
diction (NWP) or regional climate framework such as, Regional 
Atmospheric Modeling System (RAMS, (17, 18)), COSMO-CLM mod-
el (19), and the Weather Research and Forecasting model (WRF; (7)).

This study considers the WRF urban modeling framework. The 
WRF model is a mesoscale, non-hydrostatic, compressible, and one 
of the most widely used NWP model worldwide for operational and 
research purposes (20). The Noah land surface model used in the 
WRF model can be coupled with different urban parameterization 
schemes driven by approximately 30 input parameters for represent-
ing urban canopy (21). These Urban Canopy Parameters (UCPs) re-
present thermal, and geometric properties (including the building 
internal temperature), which play a role in urban boundary layer 
(22), precipitation (23), and urban heat island (24) simulations. In an 
ideal case scenario, the UCPs can be specified for each grid cell where 
such dataset is specifically generated and made available. If not, as on 
the default case, the UCPs are specified in the form of a look-up table 
in the standard WRF framework, for three broad urban classes (low- 
intensity residential, high-intensity residential, and commercial), 
which notably underestimate urban complex morphology.

Due to the lack of detailed UCPs, the urban NWP modeling com-
munity has been recently shifting towards the use of Local 
Climate Zones (LCZs) and the World Urban Database and Access 
Portal Tools (WUDAPT) initiative, which divide the urban surface 
into 10 different classes (commonly termed as LCZs) based on 
building height, the density of the buildings, vegetation fraction, 
and material thermal properties (25, 26). LCZs are being used in 
the numerous studies focusing on temperature (27), rainfall (12), 
and other environmental variables (28).

However, developing UCPs for these various urban classes is 
challenging. This is because mapping urban areas at street level 
for urban morphology is expensive, requires coordination and 

approvals from different agencies. Even when such data are avail-
able, integrating such data within urban models can be challen-
ging. Some of the examples of a large, community efforts 
through the US EPA, wherein UCPs are available for 44 US cities 
comprising the National Urban Database and Access Portal Tool 
(NUDAPT; (29)). There are similar datasets for select cities of 
China (30), including Guangzhou (31), Beijing (32), and European 
cities (as part of the project MapUCE, (33)). These datasets and 
the method for deriving UCPs using intensive manual interven-
tion, development, and processing of high-resolution datasets. 
Typically, building footprints and individual building heights 
which are difficult to obtain.

With the increasing urbanization in developing countries, there is 
a growing need to generate UCPs more widely. Towards that object-
ive, we introduce an automatic method for generating UCPs using 
an urban visualization approach. The work builds on the founda-
tional work of (34–36) that have been aligned with the WUDAPT 
(37, 38) initiative. This approach utilizes deep learning combined 
with procedural modeling to infer various urban features despite 
only having limited information, and then automatically generates 
a 3D city model and its UCPs. The translation of such synthetic data, 
into a weather modeling framework would potentially open an av-
enue for developing simulations for locales where such measure-
ments are lacking—which is more of a norm than the exception.

Accordingly, the study objectives described here are: (1) to 
introduce a novel automatic method to generate UPCs, (2) to dem-
onstrate the development of a UCP dataset for Chicago, USA, and 
(3) to integrate these UCPs with the WRF model and evaluate the 
performance of the WRF model using these derived UCPs.

Methods
Digital synthetic city generation
We have developed a novel deep-learning and procedural model-
ing based method for creating a city-scale 3D urban model, called 
in this paper Digital Synthetic City (DSC), from which we can de-
rive various urban morphology parameters. Our method uses sat-
ellite imagery and global-scale population and elevation data as 
input to our automatic method for producing a statistically 

Satellite Image

Segmented Image Google Earth Model3D Urban Procedural Model

A C D

B

Fig. 1. A preliminary automatic synthetic modeling of Chicago, obtaining a detailed procedural model that is statistically similar to reality (Google Earth 
shown as reference).
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similar and synthetic city-scale 3D urban model as output. The re-
sult is the ability to almost instantly create a plausible synthetic 
large-scale 3D urban model (Fig. 1).

The approach takes as input various geospatial products, sum-
marized in Table 1. It consists of three main components: (1) build-
ing and parcel area estimation, (2) procedural model generation, 
and (3) an optional procedural model optimization (38). As shown 
in Fig. 2, we first utilize an image segmentation network (i.e. 
U-NET (42, 43)) and then a novel upsampling and sharpening net-
work based on an autoencoder framework (44). Further, we com-
bine building segmentation with a building setback prediction 
network. An optional optimization step uses information about 
the number and height of a few percent of buildings in the target 
area to calibrate the generated city to the target location. The end 
result is the ability to segment and infer building footprints accur-
ately despite the relatively low-resolution of satellite imagery and 
the occlusions by nearby structures. The output of our method is 
a large spatial procedural city model consisting of 3D buildings dis-
tributed over the target area and registered in place with the road 
network, suitable for modeling urban areas worldwide for urban 
design in city planning and simulation. The method is leap-frog 
generational improvement from (34, 37) that develops a novel 
framework by considering the globally available datasets and up-
scaling method shown in Fig. 2. As a result, the similarity between 
the real and estimated morphological parameters is maintained. 
More information on DSC method is provided in the online supple-
mentary material text and Figures S1–S4.

Estimation of urban canopy parameters
The subset of UCPs under our current consideration, which are 
the typical main parameters of urban areas modeled by systems 
such as WRF, are: 

1. Building Height (ZR):

ZR =
N

i=1 Aihi
N

i=1 Ai

(1) 

where Ai is the plan area of the building, hi is the height of the 
building, N is the total number of buildings within a given 
region.

2. Standard deviation of building height (σz):

σz =

������������������
N

i=1 (hi − ZR)2

N − 1



(2) 

3. Roof width (Wroof): calculated by assuming buildings are rec-
tangles of equal area (A) and perimeter (P) as of building foot-
print.

Wroof =
P −

�����������
P2 − 16A
√

4
(3) 

4. Urban fraction (furb):

furb =
N

i=1 Ai

A
(4) 

where Ai is the area of the ith building footprint for a given 
LCZ, A is the total area of the given LCZ.

5. Building height percentage bins: for each LCZ, buildings are 
placed into bins based on their height with a granularity 
of 5m.

Table 2 shows the difference between the WUDAPT and 
DSC-derived values of UCPs. The height percentages per bin 
amongst the various LCZ classes are shown in Figures S6 and S7. 
The spatial plots of urban fraction, building height, and road 
width is shown in Figure S8.

Table 1. Summary of data sources used in the DSC generation.

Data name Data source Resolution Scale

Road vector Open street maps (39) — Most cities
Elevation data JAXA (40) 30 m Global
Population data LandScan (41) 1 km Global
Satellite data PlanetScope 3 m Global

Fig. 2. Segmentation and upsampling to obtain detailed building footprints, which are later converted to 3D building envelope models.

Table 2. WUDAPT and DSC-derived urban morphological 
parameters.

Parameters furb furbv ZR (m) ZR (m) 
(DSC)

Wroof 

(m)
Wroof (m) 

(DSC)

LCZ 1 1 0.81 37.5 30.21 15 19.14
LCZ 2 0.95 0.80 17.5 23.15 12.7 9.61
LCZ 3 0.9 0.77 6.5 19.38 5.7 5.40
LCZ 4 0.65 0.50 37.5 24.62 37.5 6.92
LCZ 5 0.7 0.79 17.5 25.67 33.3 5.89
LCZ 6 0.65 0.71 6.5 20.93 12.4 5.89
LCZ 7 0.85 — 3 — 2 —
LCZ 8 0.85 0.61 6.5 16.60 32.5 10.50
LCZ 9 0.3 — 6.5 - 10 —
LCZ 10 0.55 0.70 10 27.97 28.5 21.84

Currently, LCZ 7 (lightweight low-rise) and 9 (sparsely built) do not have 
DSC-derived values, hence WUDAPT values are used as default here.
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Modeling experiments and evaluation
One of the challenges that exist when creating such a high- 
resolution data set is, how to verify the output? It is important 
to highlight that DSC is not an exact replication of the urban 

morphology. In fact, the efficiency of the DSC framework lies in 
the flexibility to create variable grid resolution (spacing) urban 
morphological parameters in a “fast” manner (matter of minutes). 
The DSC output need to be evaluated for “fit for purpose” and not 
just the geometric reproducibility of a corresponding Google Earth 
or similar available dataset in the public domain.

Therefore, for assessing the suitability of DSC for urban model-
ing studies, we design a modeling experiment for a real-world case 
focusing on the Chicago downtown region using the WRF model.

DSC-WRF urban modeling
The simulations were performed using the Weather Research and 
Forecasting (WRF) model, version 4.2.1 (45). A typical model con-
figuration is considered. Fig. 3A shows the three nested domains 
centered over Chicago, USA, with a spatial resolution of 9, 3, and 
1 km for outermost, middle and inner most domains, respectively. 
The model was configured with 42 pressure levels with first model 
level located at 21.2 m and first 1 km vertical height containing 11 
model levels. The initial and boundary conditions are taken from 
the National Centers for Environmental Prediction (NCEP) Final 
Reanalysis dataset at 1 × 1 degree spatial and 6-hourly temporal 
resolution. The physics components include: the WRF single mo-
ment 6 class (46) for microphysics, (47) for shortwave, the Rapid 
Radiative Transfer Model for longwave radiation parameteriza-
tions (48), (49) for the planetary boundary layer, Noah (50) for 
land surface model, Building Environment Parametrization (BEP) 
(8) for the urban model, and (51) for the cumulus scheme (only 
for the outermost domain of 9 km spatial resolution). The LCZs 
for Chicago, USA, are generated using the crowd-sourcing method 
of (52). The training dataset, created manually, is obtained from 
the WUDAPT portal and random forest classification is applied 
to Landsat 8 imagery to derive the LCZs for the desired region. 
The final map is shown in Fig. 3B. The simulations are performed 
from 1/Jul/2018 00:00 to 7/Jul/2018 06:00 UTC where first 6 h are 
discarded as spin-up time.

The modeling experiments are divided into three simulations 
based on the source of land use/land cover and UCP values: (1) 
NUDAPT (Control), (2) WUDAPT, (3) DSC. The Control simulations 
uses National Land Cover Database land use/land cover with 
NUDAPT parameters, the three default WRF urban classes and 
corresponding UCPs. The WUDAPT uses the MODIS classes with 
additional urban LCZs and UCPs from (53); while. the DSC uses 
the WUDAPT classes with UCPs generated from our automatic 
method. The WRF simulations are evaluated using the 16 
Mesowest stations located in the innermost domain (shown in 
Fig. 3C). The root mean square error (RMSE), mean absolute error 
(MAE), and Pearson correlation coefficient (r) against the observa-
tional 2 m air temperature, 2 m relative humidity, and 10 m wind 
speed data from these stations are used to evaluate the different 
simulations. The details of Mesowest observation stations are pro-
vided in Table S1 and overview of methodology is shown in 
Figure S5. The urban heat island intensity is calculated by sub-
tracting urban to rural 2 m air temperatures.

The 2018 July 1–7, period represent the weather over Chicago, 
USA, after the hottest day (June 30) since 2012. On July 1, the tem-
peratures start to face until July 3, as the cold front departs 
through the region and a surface ridge shifts towards the east of 
the region. From July 3–5, the temperatures again start rising 
due to the moist and warm air mass over the area. On July 5, the 
heat and humidity help support the initiation of isolated and scat-
tered thunderstorms in the region. Finally, on July 6–7, the thun-
derstorms, the movement of the cold front, and the advection 

Fig. 3. (A) WRF domain configuration. (B) Local Climate Zone map for 
Chicago, USA. (C) Location of Mesowest observation over rural and urban 
regions.
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from lake breeze towards the urban area allowed the tempera-
tures to reduce.

Results and discussions
The notable weather features for 2018 July 1–7, over Chicago, USA, 
shows the temperature variations from 290 to 305 K, which con-
tain typical urban heat island feedbacks and land-lake breeze cir-
culation. Therefore, we discuss the results of the simulations for 
three key variables, temperature, relative humidity, and wind 
(speed and direction), that are impacted by urban structures.

Evaluation of WRF simulations
The performance of the WRF simulations is evaluated for day 
(sunrise to sunset; 05:00–20:00 LT), night (20:00–05:00 LT), and 
whole period (All) consisting of day and night (see Table 3). 
During the daytime, DSC outperforms WUDAPT and Control sim-
ulations for 2 m air temperature. However, 2 m specific humidity 
and 10 m wind speed is better simulated in the Control. The re-
duced 10 m wind speed in case of DSC is due to increased rough-
ness length (taller buildings) relative to WUDAPT and Control. 
The correlation coefficient during the daytime is relatively better 
for Control simulation. During the nighttime, 2 m air temperature, 
2 m specific humidity, and 10 m wind speed is better simulated by 
the DSC simulations. Comparing the entire period, WUDAPT 
shows performance better for 2 m air temperature and 10 m 
wind speed, while 2 m specific humidity is better simulated by 
Control. Thus, the mean statistics suggest that WUDAPT and 
DSC perform better than Control, and a negligible difference is 
noted between WUDAPT and DSC simulations. The DSC values 
are closer to the WUDAPT simulations for the entire simulation 
period (for latent, sensible heat fluxes, and friction velocity see 
Fig. S10). This highlights that the UCP values generated from the 
DSC are performing similar to the literature derived values, 

bolstering confidence in the automated supporting the method-
ology adopted in this study.

Here, it is important to highlight that the evaluation represent 
the effect of urban morphology by providing bulk values to LCZs. 
High-resolution gridded datasets such as (54, 55) are expected to 
provide better urban morphology. There are other sources of un-
certainty such as the lack of representation of street trees and ur-
ban vegetation (56). Other UCPs (such as albedo, emissivity, and 
thermal properties of the building material) that affects the local 
climate zones are not considered, thus adding uncertainty in the 
simulations. However, the automated city-scale urban morph-
ology generator framework adopted for urban weather modeling 
is novel and effective for regional studies.

Diurnal and urban heat island intensity
The time-series of the variables (shown in Fig. 4A,C,E) shows that 
all simulations follow the observations until 2018 July 3, where the 
2 m air temperature and 10 m wind speed drops to less than 290 K 
and 1 ms−1 respectively. On 2018 July 5, the increase in the 2 m 
specific humidity, reduction in 2 m air temperature is not well 
captured in the simulations. The simulation diurnal profile of 
the variables is shown in Fig. 4B,D,F. The Control simulation over-
estimates the afternoon 2 m air temperature by ≈1.5 K. The DSC 
and WUDAPT simulations show consistent behavior for 2 m air 
temperature and specific humidity and are closer to the observa-
tions. During the daytime, DSC shows a reduced 10 m wind speed 
while WUDAPT and Control simulations are closer to the observa-
tions. For, nighttime 10 m wind speed is better captured by the 
DSC simulations. The difference between the rural and urban 
temperature is shown in the form of urban heat island intensity 
(UHII, rural and urban stations shown in Fig. 3C) (see Fig. 5). The 
rural area starts warming from sunrise (05:00 LT) to afternoon 
(14:00 LT), while a counter effect is observed in the day to night 
transition, rural is cooling faster than the urban areas. Thus, 

Table 3. WRF Model evaluation for Control, WUDAPT, and DSC simulations.

Variable Simulation RMSE MAE r

Day (05:00–20:00 LT) 2 m air temperature (K) Control 3.34 2.61 0.67
WUDAPT 3.25 2.45 0.65
DSC 3.18 2.42 0.66

2 m specific humidity (g/kg) Control 2.38 1.76 0.80
WUDAPT 2.62 1.91 0.77
DSC 2.62 1.89 0.77

10 m wind speed (m/s) Control 1.80 1.40 0.57
WUDAPT 1.83 1.42 0.57
DSC 1.98 1.56 0.47

Night (20:00–05:00 LT) 2 m air temperature (K) Control 3.32 2.30 0.46
WUDAPT 3.12 2.28 0.54
DSC 3.07 2.25 0.54

2 m specific humidity (g/kg) Control 2.57 1.83 0.68
WUDAPT 2.26 1.65 0.76
DSC 2.20 1.60 0.77

10 m wind speed (m/s) Control 1.84 1.46 0.29
WUDAPT 1.72 1.36 0.37
DSC 1.54 1.20 0.38

All (00:00–23:00 LT) 2 m air temperature (K) Control 2.43 1.85 0.86
WUDAPT 2.34 1.78 0.85
DSC 2.38 1.81 0.84

2 m specific humidity (g/kg) Control 1.81 1.39 0.87
WUDAPT 1.85 1.44 0.87
DSC 1.85 1.41 0.87

10 m wind speed (m/s) Control 1.67 1.29 0.61
WUDAPT 1.63 1.26 0.63
DSC 1.71 1.32 0.56

Bold text represents best score. r is statistically significant (P-value <0.05).
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higher (>2 K) urban heat island intensity is noted for nighttime. 
DSC simulations captures afternoon urban cooling but underesti-
mates the nighttime UHII by ≈1 K. The reduction in the UHI may 
be attributed to the reduced urban fraction in DSC as compared 
to the WUDAPT. Overall, changing the UCPs from WUDAPT to 
DSC has non-linear feedback leading to changes in simulated 
weather inside and outside the city. Changes in the temperature 
of each LCZ and spatially are shown in Figures S11 and S12, re-
spectively. The kernel density estimates of 2 m specific humidity, 
2 m air temperature, and 10 m wind speed are also provided in 
Figure S9.

Wind speed and direction
Figure 6 shows the wind direction and speed for the Control sim-
ulations. The wind speed within the city is lower than the sur-
rounding areas, during all times of the day due to relatively high 
roughness lengths of the city. The WUDAPT simulation shows a 
negligible change in the wind speed within the city when com-
pared with the Control run (Fig. 6B,F,J,N). The DSC simulation 
shows a reduced wind speed from all the simulations. This change 
in wind speed has a small but notable non-linear effect on the 

Fig. 4. Mean of all stations for (A) 2 m air temperature, (C) 2 m specific humidity, and (E) 10 m wind speed from observations (Obs, solid line), Control 
(square marker solid line), WUDAPT (circle marker solid line), and DSC (triangle dashed line) simulations. Similarly, the composite diurnal cycle is shown 
in (B) 2 m air temperature, (D) 2 m specific humidity, and (F) 10 m wind speed. The shaded portions are ±1 standard deviation.

Fig. 5. Urban heat island intensity from Obs, Control, WUDAPT, and DSC 
simulations.
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atmospheric circulation dynamics, such as the land-sea breeze 
circulation. The relatively lesser change of 2 m temperature 
than the 10 m wind speed can be attributed to the significant dif-
ference in the building heights and roof widths that affects the 
roughness lengths, thus modulating the model outputs (see 
Fig. S8; (8)). Similar results were also observed by Wang et al. 
(57) and Loridan et al. (21) for offline simulations of the single- 
layer UCM. Additionally, the results from the Control simulations 
are in parity with (58).

Conclusions
UCPs are an important component of urban climate modeling. 
This study introduces a new methodology to calculate city-wide 
UCPs using an automatic deep learning-based synthetic data gen-
eration framework from globally available products. The newly 
generated UCPs utilized for environmental simulations in 
Chicago, USA using the WRF model. A total of three simulations 
consisting of a Control run (using NUDAPT dataset), WUDAPT 

(incorporation of LCZs), and DSC (using LCZs and new UCPs) 
were conducted. The results show that urban LCZs have a signifi-
cant impact on the simulation of air temperature. Moreover, the 
automatically computed DSC parameter values yield simulation 
results as good as, or sometimes more accurate, than WUDAPT 
(which requires crowd-sourcing and benefits from a hand-crafted 
dataset optimization). The changes in the UCPs also impacted the 
overall simulations by reducing the wind speed (due to increased 
roughness length) within the urban area and small changes in the 
temperature values (due to urban fraction). Thus, the automation 
rendered by the DSC method opens the opportunity to a more 
scalable and widespread ability to perform more accurate urban 
meteorological modeling and forecasting.

An overarching conclusion, the DSC renders a visualization of 
the urban canopy by producing urban structures/environment 
details that can be used in representing the urban areas within 
the UCMs. As future work, we see three avenues. Firstly, we would 
like to extend our DSC method to include support for all LCZ 
classes, potentially leading to increased accuracy. Secondly, we 

Fig. 6. 10 m wind speed (background) (ms−1) and direction at 00- (A–D), 06- (E–H), 12- (I–L), and 18- (M–P) hour average for the Control simulation (A,E,I,M). 
Difference between the 10 m wind speed (background) and direction of WUDAPT and Control (positive indicates WUDAPT is larger) (B,F,J,N), DSC and 
Control (C,G,K,O), and DSC and WUDAPT (D,H,L,P).
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would like to improve the accuracy of determining parameters for 
mostly green areas within the city and in the para-urban region. 
This may have a significant effect on temperature and humidity 
estimates. Lastly, we would like to tie our synthetic generation 
ability with urban planning policies so that what-if scenarios 
can be generated based on desired urban meteorological 
consequences.
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