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Figure 1: Arbitrary Urban Layout Generation. Our method generates realistic urban layouts given an arbitrary road
network (Left Pair). Moreover, given learned prior from a building layout, our method conditionally generates similar urban
layouts for the given arbitrary road network (Right Pair).

Abstract

Modeling and designing urban building layouts is of sig-
nificant interest in computer vision, computer graphics, and
urban applications. A building layout consists of a set of
buildings in city blocks defined by a network of roads. We
observe that building layouts are discrete structures, con-
sisting of multiple rows of buildings of various shapes, and
are amenable to skeletonization for mapping arbitrary city
block shapes to a canonical form. Hence, we propose a
fully automatic approach to building layout generation us-
ing graph attention networks. Our method generates real-
istic urban layouts given arbitrary road networks, and en-
ables conditional generation based on learned priors. Our
results, including user study, demonstrate superior perfor-
mance as compared to prior layout generation networks,
support arbitrary city block and varying building shapes as
demonstrated by generating layouts for 28 large cities.

1. Introduction
Layout generation is of significant interest today in com-

puter vision, computer graphics, and related fields. In par-
ticular, an urban building layout consists of a set of build-
ings arranged into arbitrarily shaped city blocks as defined

by a network of interconnected roads. Such layouts are
needed in order to provide urban configurations for enter-
tainment, simulation, and scientific applications such as de-
signing and evolving cities to address urban weather fore-
casting (Fig. 5), urban heat island modeling, and sky view
factor analysis, etc.

The capture and modeling of complex urban building
layouts has been pursued from several directions. 1) Com-
puter vision and photogrammetry works seek to metrically
reconstruct building layouts over large areas from satellite
and/or aerial imagery [11, 40, 12, 21, 64, 70, 34, 36, 15].
Nonetheless, these approaches are constrained by image
resolution, occlusion, and segmentation accuracy. 2) Urban
procedural modeling has made significant strides in gen-
erating the hierarchical components of a city such as road
networks, city blocks, parcels, buildings, and more (e.g.,
buildings [39, 67, 5], roads [42, 10], trees [22, 24, 31, 69],
parcels [35, 57] and even entire cities [56, 4]). Unfortu-
nately, the generation process requires time consuming and
expert knowledge in developing custom procedural rules to
create or update the content. 3) Inverse urban procedural
modeling attempts to remove the need of explicit rule spec-
ification by encoding heuristics specific to cities [6, 68].

Recently, some solutions have addressed inverse mod-
eling for layout generation; e.g., using graph-based meth-



Figure 2: Framework. Our method is trained in a VAE framework conditioned on arbitrary block shapes (e.g., from a
road network). The block shape is a binary mask encoded to latent space by a CNN-based encoder. Building layouts are
represented by a grid topology graph and its positional, geometrical, and shape information is encoded by a spatial transform
into a canonical representation. By using a graph attention network we codify the graph into a latent space. During decoding,
the block shape latent is utilized as condition for decoder to produce building layouts. Our method is able to conditionally
generate large urban layouts for arbitrary block shapes and building arrangements (i.e., we have processed 28 cities).

ods for structured object creation (StructureNet [38]), in-
terior layout design (HouseGAN [41]), land lot generation
(BlockPlanner [63]), and building generation (Building-
GAN [8]). However, none of these works focus on gen-
erating urban layouts containing arbitrary city block shapes
and varying building footprints such as those appearing in
cities worldwide.

Our work builds on three key observations.

• First, following the organization defined by proce-
dural modeling arbitrarily-shaped buildings within an
arbitrarily-shaped city block can be organized as a dis-
crete spatial data structure of non-overlapping objects
arranged into a few rows of buildings (e.g., one row
for large buildings, two rows for dense smaller struc-
tures, and multiple rows for sparser areas having main
buildings and auxiliary building structures).

• Second, capturing the aforementioned building layout
configuration can be performed with at least a 2D mes-
sage passing setup as afforded by a stubby grid graph
(i.e., one row of connected nodes/buildings, two rows
forming a ladder graph, or a few rows interconnected
as a shallow regular grid, as in Fig. 3.

• Third, by using skeletonization we can perform a
spatial transform to the aforementioned stubby graph
topology to support diverse urban block shapes.

Altogether, our fully automatic approach for building
layout generation uses a variational auto-encoder frame-
work using graph neural networks. First, we define a graph-
based representation of a block and building layouts that is
able to capture the inherent styles of multiple cities glob-
ally. Second, the encoder makes use of multi-pass aggrega-
tion and combination message passing as well as a spatial
transform to codify varying building shapes and layouts for
arbitrary city block shapes (Fig. 1). Third, the decoder gen-
erates varying building shapes and layouts from the latent
space conditioned on block shape (i.e., the distribution of
building layouts depends on the block shape). Unlike most

prior graph-based method, our scheme is able to accurately
capture block shape, building shape type, positional data,
and alignment as well. Finally, our synthesis process gen-
erates arbitrary maps based on the generated graph, poten-
tially spanning a large continuous area (e.g. a entire city).

To the best of our knowledge, our method is the first
to generate building layouts in arbitrary city blocks, and is
able to span diverse styles of 28 large cities across North
America (e.g., Chicago, Los Angeles, New York City... full
list in Sec. 4.1). In Fig. 1, our method generates realistic
urban layouts given arbitrary shaped road networks, and it
provides controllable generation given building layout pri-
ors. We provide comparisons to several prior related meth-
ods [2, 17, 26, 63, 25, 20] and show that none of them sup-
ports arbitrary block shapes, various building shapes and
layouts, nor have any been demonstrated at the scale of our
method. In addition, we show examples of conditioned gen-
eration, manipulation, interpolation, and ablation study.

Our main contributions include:

• Graph-based Representation for arbitrarily shaped city
blocks and building layouts amenable to deep learning.

• Canonical Spatial Transformation to encode building
layouts into a shape-independent canonical representa-
tion,

• Controllable Generation of realistic urban layouts for
arbitrary road networks (e.g. random, or conditioned
on a learned prior).

2. Related Works
The task of urban layout analysis from images as well as

design and modeling has a long history. The seminal paper
of [45] fomented urban procedural modeling, including that
of building masses [39], urban layouts [1, 16, 35], and par-
cel generation (e.g., [57], Esri CityEngine). This last work,
as well as [7], describe that the building layouts of a city
block usually consist of one of two fundamental styles, both
of which are afforded by our approach but without the need



to manually provide the procedural template. In addition,
interior layout approaches have also been developed such
as for furniture layout [66], mid-scale interior layouts [14]
and building interiors [37].

Recently, with the rise of deep learning [61, 50, 49, 53,
51], numerous other data-driven and network-based layout
generation approaches have been proposed, yielding im-
proved performance and automation once trained. Layout-
GAN [33] and LayoutVAE [26] present general 2D layout
planning tools. Alternative works [47, 54, 28] focus on
document or graphic layout generation. Recent advance-
ments in self-attention networks (e.g. Transformer) have
been applied to natural scene and document layout gener-
ation by [17, 2, 65]. Latest diffusion models are also in-
troduced to document layout generation [25, 20]. Other
methods have focused on urban scenarios. For example,
Building-GAN [8] generates 3D building structures, House-
GAN [41] arranges rooms within a single floor of a house.
Works by Ritchie et al. [48] and Wang et al. [60, 59] synthe-
size the layout of indoor scenes. Further, [62, 44] generate
interior plans for residential buildings. However, all previ-
ous works assume layout generated on a rectangular can-
vas. Moreover, the position and geometry of the predicted
bounding box is scaled to a finite set of categories (e.g. im-
age coordinates [26], vocabulary table [17, 2, 25, 20]). It
benefits from rectilinear alignment in some tasks (e.g. doc-
ument layout generation), but constrains the randomness
of building geometry as it may appear anywhere in a city
block. To the best of our knowledge, our method is the first
to handle arbitrary block-shapes/canvas and to include vary-
ing building/bounding-box shapes.

The approaches most relevant to our work are the
building-layout generator of [3] and the BlockPlanner
method of [63]. Bao et al. [3] assumes that a set of hard and
soft constraints are provided as input, and then generates a
single building layout and proposes a methodology to eval-
uate the ”goodness” of a layout with respect to the provided
constraints. While our goal is also to generate building lay-
outs, we seek a multi-building layout spanning an entire city
block based on a conditioned input or a provided style, and
then perform this task at scale (e.g., a fragment or more of a
city). Further, we wish the style, which is analogous to the
user-provided constraints in [3], to be inferred from exam-
ple data and not provided manually.

BlockPlanner [63] generates only rectangular building
shapes inside rectangular city blocks. Their graph-based
solution generates an approximate solution and then uses a
refinement step to obtain zero-gap building output, which
is an assumption of theirs (i.e., buildings in dense parts of
cities). In comparison, our method adds canonical spatial
transform to support arbitrary block shapes, can represent
various building shapes, uses a grid topology to afford more
complex building layouts rather than only a ring topology,

employs attention-based networks instead of strict message
passing, supports more buildings per block, and is demon-
strated on 28 large cities instead of only 1 (New York City).

Nonetheless, in Sec. 4.2 we perform explicit compar-
isons to the domain-specific method BlockPlanner [63], to
the natural scene layout method LayoutVAE [26], to self-
attention networks Gupta et al. [17] and its variational mod-
ification [2]. In all cases, our approach outperforms these
existing methods qualitatively and quantitatively.

3. Building Layout Generation

We describe our approach to deep building layout gener-
ation (Fig. 2). First, we summarize our graph representation
and normalization process for arbitrary city blocks. Second,
we provide details on our encoding phase. Third, we de-
scribe our conditional decoding/generation phase. Finally,
we provide information on our synthesis phase as well as
auxiliary algorithms.

3.1. Graph Representation

A urban layout is defined by a network of roads that
forms city blocks and within each city block a set of build-
ings. In Fig. 3, each city block B is represented by a graph
G of the multiple buildings within the block and by a set of
block shape features m.

Buildings. We represent the building layout of an arbi-
trary city block B using a stubby grid graph G (e.g., the
graph has many more columns than rows and each vertex
typically has 2 or 3 incident edges). We define the graph as
G = {V,E}, where V is a set of node vertices V = {vi},
i ∈ [1, N ] that each vertex vi describes each building, and E
is a set of edges E = {eij}, i, j ∈ [1, N ] between spatially
adjacent nodes/buildings. N is defined as the maximum
building count in one block. We empirically set N = 120
to handle >99% percent of real city blocks in our dataset.

Each vertex vi stores a building’s geometric and seman-
tic feature information. In particular, the per-vertex (or
building) features are the following:

• ei is the binary existence flag of this building (e.g., a
value of one implies the building exists, else zero).

• (xi, yi) is the physical position of building center.

• (wi, hi) is the width and height of the building’s ori-
ented 2D bounding box (the width dimension is paral-
lel to the main axis),

• si is an integer representing the building shape type
(described below), and

• ai is the occupancy ratio of the building area to the
oriented 2D bounding box area.



Figure 3: Graph Representation. Our method represents
any city block B using a normalized stubby graph repre-
sentation G (i.e., a grid graph with many columns and few
rows), and a set of graph-level features m. Canonical spa-
tial transformation finds the main axis (blue line) of an
arbitrary city block, and transforms each node’s spatial in-
formation by the relative distance to the main axis.

The aforementioned features {si, ai} represent each
building by a shape type and an occupancy ratio. In a pre-
liminary analysis, we found that buildings in our test ar-
eas can be fit with IoU=95.78% and Hausdorff Distance
= 1.36m (i.e., the average of maximum distance between
the contour of the actual building and our best-fit polygonal
building shape is 1.36m.) using one of four fundamental
parameterized shape types: Rectanglar, L-shape, U-shape
and X-shape. During the preprocessing phase, we use Pow-
ell optimization to determine the best-fitting building shape
type and calculate an occupancy ratio (see Supplemental
for more details). Both variables enable our later-described
synthesis step (Sec. 3.3) to generate a synthetic building
footprint.

Blocks. The block shape features m are composed of
a binary mask k and the mask scale l. We typically use a
mask resolution of 64x64 pixels. The longest side of each
block’s oriented bounding box is rotated to horizontal and
scaled to fit within the mask (see Fig. 3).

3.2. Variational Learning

In this section, we first describe the spatial transform of
an arbitrary urban layout into a canonical form, and then
describe the shape encoder setup which enables using block
shapes as a condition of the decoder setup (Fig. 2). We also
discuss our variational model structure and training scheme.

Canonical Spatial Transform. In order to support a
wide variety of urban layouts at arbitrary scales, we intro-
duce a transformation parameterized by block shape feature
m. It maps each building graph G to a canonical represen-
tation G′. Prior urban procedural modeling work [55] in-
dicates that urban layouts follow typical conventions which
we exploit to define the canonical representation. In par-
ticular, using the contour of block mask k we compute a
block’s 2D skeleton and modify its endpoints to obtain an
extended skeleton as a compact polyline structure forming
a main axis (Blue line in Fig. 3). Then, for each building

in G we compute its normalized position (x′
i, y

′
i in Fig. 3)

relative to one of the main axis polyline segments, and to
one of the minor axis perpendicular to a main axis line seg-
ment. The length of main axis and minor axis is utilized
to normalize building’s position and size, ultimately pro-
ducing the canonical G′. This spatial transform provides a
regularized spatial representation of building layout regard-
less of block shape as compared to direct scaling by most
former relative methods [63, 26, 17, 2]. Additional details
are in Supplemental.

Shape Encoder. To obtain a latent representation of
block shape feature m, a CNN-based autoencoder is trained
to reconstruct the binary mask k. The block scale l is
stacked with the binary mask as the second channel of the
input image. The encoder model has 4 layers of convolu-
tional layers and the corresponding decoder model is the
mirror image of this. The model is able to reconstruct a bi-
nary mask with IoU > 0.98. During our variational training,
the latent representation m′ encoded by the shape encoder
can be utilized as a conditional prior of the decoder.

Conditional Variational Training. As a conditional
VAE, our model aims to represent the conditional data dis-
tribution of p(G′|m′), which is intractable to compute. By
variational learning, the model approximates the distribu-
tion by maximizing its evidence lower bound (ELBO). The
objective function is as follows:

L(θ, ϕ) = E
qϕ(z|G′,m′)

[log pθ(G
′|z,m′)]−KL[qϕ(z,m

′|G′)∥p(z)]

(1)
where the approximate posterior qϕ(z|G′,m′) is param-

eterized by ϕ, and the decoder pθ(G′|z,m′) is a deep neural
network parameterized by θ. The prior distribution p(z) is a
standard Gaussian distribution in our training. Particularly,
our model should be able to encode and reconstruct G′ con-
ditioned by m′.

Graph Attention. We use a graph attention net-
work [58] (GAT) as the backbone of our encoder and de-
coder. Graph attention networks perform weighted multi-
layer messaging passing between connected nodes. In par-
ticular, the edges of our 2D grid graph topology enable mes-
sage passing between buildings next-to and in-back-of other
buildings. We denote node features in the canonical graph
as fi. Our formulation can be represented by:

f t
i = GAT (f t−1

i ) (2)

We collect all individual node feature vectors into feature
matrix F t = {f t

i }, i ∈ [1, N ], t ∈ [1, T ] and apply equation
Eq. 2 a total of T times. Then, the feature matrices from all
T iterations are aggregated as [F t, F 1, ...., FT ] to form a
512 dimensional normal distribution that is sampled by the
z of a variational reparameterization.

The decoder pθ(G
′|z,m′) is conditioned by m′. As

Fig. 2 indicates, we concatenate m′ with z as the input



of our decoder. Initially, a sampled latent space vector
z is pushed through a MLP to produce an initial feature
matrix F̂ 0 = {f̂0

i }, i ∈ [1, N ], which consists of sin-
gle feature vector for each node vertex/building. Then, a
similar multi-layer messaging passing, using Eq. 2, is per-
formed T times yielding F̂T . Finally, each vector compo-
nent f̂T

i within F̂T is decoded by independent MLPs for
predictions of each building feature element in Ĝ′ (e.g.,
{ei, xi, yi, wi, hi, si, ai}). Predicted features are calculated
by reconstruction loss. The weighted sum of each loss com-
ponent is back-propagated to graph attention networks for
weight updating.

Inverse Spatial Transform. With block shape feature
m, the spatial information of Ĝ′ (e.g., building position,
width, and height) is inversely transformed back to its orig-
inal scale and location.

3.3. Synthesis

In this phase, we generate building shapes within each
generated city block. Our goal is to produce building foot-
prints that are similar (but not necessarily identical) to the
original building coverages, positions, and shapes. Further
as shown in Sec. 4.4, we can produce such an output using
only a small fraction of the real-world data.

Our method synthesizes the aforementioned four build-
ing shape types (Rectangular, L-shape, U-shape, X-shape)
using a parameterized function (see Supplemental for de-
tails). For the buildings of a city block, the shape parameters
of each generated building type si are randomly perturbed
within a predefined range until a configuration best satis-
fying the generated occupancy value ai is found within a
maximum number of iterations. Then, the generated build-
ing footprint is rotated so that its width dimension is again
parallel to the block’s main axis.

4. Experiments
4.1. Training

Datasets. We collected datasets from 28 large cities
across North America (Chicago, D.C., New York City, At-
lanta, Dallas, Los Angeles, Miami, Seattle, Boston, Provi-
dence, Baltimore, San Diego, San Francisco, Portland, Mil-
waukee, Minneapolis, Austin, New Orleans, Phoenix, Den-
ver, Toronto, Vancouver, Pittsburgh, Tampa, San Jose, Nor-
folk, Austin, and Houston). The total number of city blocks
is 119,236, containing 2,513,697 buildings, which is 187-
times bigger than the training set of [63]. We split the data
80% for training, and 20% for validation. We obtained the
datasets by downloading 2D layouts from OpenStreetMap
(OSM) [43]. Minimal clean-up was done to simplify par-
allel multi-lane roads to single edges and to remove self-
looping edges.

Training Details. We performed an end-to-end training

of our pipeline. After various experiments, we set learning
rate lr = 0.001, and each training typically converges in
105 iterations (9 hours on a single NVIDIA A5000 GPU).
We determined the best configuration of loss functions to
be using L2 loss for all geometry features {xi, yi, wi, hi},
and cross entropy loss for categorized features {ei, si}, and
KL-divergence loss for z. The relative loss weight for ge-
ometry features, categorized features, and KL-divergence
loss is 4.0, 1.0, 0.5, respectively. We found additional regu-
larization losses (i.e., a loss penalizing overlaps [63]) do not
further reduce errors. The average inference time is 5.81ms
per city block by a single A5000 GPU.

4.2. Comparisons

We compared our approach to 4 related layout genera-
tion methods: LayoutVAE [26], Gupta et al. [17], VTN [2],
and BlockPlanner [63]. For first two methods, we utilized
the codes provided by the author’s repository of [17]. We
provided the correct bounding box count for LayoutVAE
and only retrained its BBoxVAE portion to predict bound-
ing box geometry. For [17], we transferred our dataset to
COCO format and retrained the network using default set-
tings in repository. During generation, we setup their top-
k sampling as k=5 to produce diverse layout outputs. For
VTN [2], we modified the codes of [17] by adding a varia-
tional training framework. For BlockPlanner [63], we only
received partial model structure source code from the au-
thors. We re-implemented the rest of the method to the best
of our ability, and retrained it on our dataset by the sug-
gested settings in their paper. Additionally, comparisons to
diffusion models [25, 20] are provided in Supplemental.

Quantitative Results. We generated 1000 urban lay-
outs by ours and by each existing method, and compared
to the same amount of real urban layouts. Our method is
conditioned on the road networks from real urban layouts.
The LayoutVAE is conditioned on the building count we
provided. VTN is conditioned on the corresponding real
building layouts. Gupta et al. [17] generation is fully ran-
dom. The set-to-set comparison is evaluated by 6 quantita-
tive metrics. Overlap index [32] is the percentage of total
overlapping area among generated building layouts within
the urban block. The Out-Block index is the percentage of
generated building layout area that is out of the urban block
contour. Wasserstein distance (WD) indicates the similar-
ity between two distributions. Specifically, we computed
the WD between the distributions of building counts and
bounding box geometry (location and size, centered around
the origin). Lower score indicates generated urban layouts
provide better similarity to the real world distribution of
building counts and geometry arrangement. We also com-
puted FID score [23] to evaluate diversity and quality of the
generated urban layouts.

Inspired by DocSim index [47], we design a similarity



Method L-Sim↑ Overlap↓ (%) Out-Block↓ (%) FID↓ WD↓ (bbx) WD↓ (count)

LayoutVAE [26] 4.49 33.39 11.15 94.54 7.24 -
BlockPlanner [63] 14.92 9.46 2.24 39.27 6.20 0.03
Gupta et al. [17] 17.59 3.61 7.58 47.06 2.23 6.12
VTN [2] 17.65 1.49 7.97 46.71 2.78 3.98

Ours 22.45 1.42 0.89 14.94 1.45 0.06

Table 1: Quantitative Results. We generate 1000 urban layouts and compare to the same amount of real urban layouts. Best
values are in bold, second best values are underlined. Our method outperforms other existing methods in 5 metrics.

metric LayoutSim (L-Sim) to evaluate the geometry simi-
larity between pairs of urban layouts. We first rotate each
of the two urban blocks to make the long side of its oriented
bounding box horizontal, and translate to its center loca-
tion without changing scale. Then we assign a matching
score for all pairs of buildings from two different urban lay-
outs. Pairs of buildings that are approximately overlapping
and with similar sizes will have higher scores. Then we
compute the maximum weight matching among all possi-
ble building pairs by Hungarian method [30]. The average
matching score is the L-Sim between two urban layouts.
The formula for matching score between building b1 and b2
is as followed:

S(b1, b2) = MinArea(b1, b2) · 2−c∥b1−b2∥2 (3)

The multiplier MinArea(b1, b2) returns the minimum
area of two buildings. Exponent factor ∥b1 − b2∥2 is the
L2 norm between the positions of two buildings. Match-
ing large buildings will tend to increase the matching score.
Large position difference will decrease the value of the
matching score. We set c = 0.02 to scale the relatively
large position difference value in the real world.

As Tab. 1 shows, our method clearly outperforms exist-
ing methods in 5 metrics and achieves the second best in
WD of building counts. Note that we provide building count
(the label set as described in original paper [26]) to Layout-
VAE. So it is unfair to us regarding the WD distance on
building count. We don’t report the value in the table.

Qualitative Results. Fig. 4 shows urban layouts gener-
ated by our method and other methods (LayoutVAE [26],
BlockPlanner [63], and VTN [2]). For improved fairness,
we provide ground truth building shape types and occu-
pancy ratio values to our competitors since they did not con-
sider building shapes. Nonetheless, the shown visual qual-
ity indicates that our method is still better able to capture
arbitrary block shape and provide good generated output. In
particular, Blockplanner [63] struggles to produce densely
distributed urban layouts as claimed. It might be due to two
reasons. First, the model is retrained on a larger and diverse
dataset (119,236 blocks, 28 cities) compared to the original
paper (637 blocks, 1 city); second, our urban layout genera-
tion task differs to its original land lot generation task (i.e.,
most buildings are not supposed to touch each other as in

their original case). VTN [2] produces rectilinear building
layouts regardless of block shapes. Strictly-rectilinear lay-
outs are common in document layouts, but far from realistic
in urban layouts.

User Study. We conducted a user study for perceptual
realism using our method and the above three prior meth-
ods. The study was performed in a two-alternative forced
choice (2AFC) manner. We generated 18 comparisons, each
containing a layout generated by our method and the same
layout generated by one of the three prior methods (thus 6
layout pairs for each prior method). The urban locations do
not overlap across the three sets. During the study, we pre-
sented two urban layouts side-by-side from different meth-
ods. Users were asked to choose the one that looks more
realistic to the best of their ability. We also included 2 ran-
dom duplicate questions for quality checking. Users that
answered differently to the same question were discarded.

In total 62 survey results were received. We discarded
replies that were finished too fast (less than 2 minutes), that
always answered the same choice, and that did not pass
the quality check. Replies from the remaining 50 valid
users are summarized. Our method was preferred by 97.3%
of answers over LayoutVAE [26], 86.7% over BlockPlan-
ner [63], and 88.0% over VTN [2].

4.3. Ablation Study

We performed a comprehensive ablation study of adding
and removing components of our solution to our method
and to prior methods. While the previous comparisons
show the superiority of our full method to prior methods as
published, we further analyzed the effect of providing our
canonical spatial transformation (CST) and also shape en-
coder (SE) to our competitors. In particular, CST was added
to all competitors, and the vector produced by SE was also
concatenated to the input vector of Gupta et al. [17] and
to the latent bottleneck vector of VTN [2] and BlockPlan-
ner [63] before decoding. For ablations on our model struc-
ture, we experimented with alternative graph convolutional
layers (e.g. GraphSAGE [18], transformer-based [52], and
GCN [29]) with depth T = 3. In addition, we varied atten-
tion depth (T ∈ 1, 2, 3) in our model structure.

We performed one-to-one comparisons using 1000 vali-
dation urban layouts, which is a comparison process differ-



Layoutvae VTN BlockPlanner Ours Real Data

Figure 4: Qualitative Results. Given the same road network, all above methods generate urban layouts multiple times and
we present the most similar one compared to the real data (similarity is evaluated by L-Sim index defined in Section 4.2.
LayoutVAE [26] fails in all types of block shapes. VTN [2] produces rectilinear layouts regardless of block shapes. Block-
planner [63] suffers overlapping and struggles under irregular block shapes. As compared to real data, our method is able to
capture the layout styles more faithfully.

ent to the set-to-set comparison in Sec. 4.2. This more re-
strictive comparison task comprehensively evaluates robust-
ness of overlap, position, and coverage rate. Position error
is the average percent of building position shifting over the
block length. Coverage error is the difference of total build-
ing area coverage rate compared to the ground truth rate.

Ablation results in Tab. 2 illustrate that CST and SE both
help robustness to arbitrary block shapes. It especially helps
reduce Out-Block index and position error. This indicates
our novelty has the potential to broadly benefit layout gen-
eration and improve adaptability to arbitrary canvas shapes.
Moreover, even when both mechanisms are added to all
competitors, our method still performs clearly better. Self-
ablation results show that graph attention networks outper-
form other alternative convolutional layers, and the deeper
structure improves model performance.

4.4. Controllable Map Generation

Given a pre-trained model, we are able to generate di-
verse and realistic urban layouts for cities around the world.

Apart from the random/conditional generation showed in
Fig. 1 and several more in Supplemental, we present several
interesting generation options including sparse prior gener-
ation, semantic manipulation, and interpolation.

Sparse Priors Generation. Our approach supports con-
ditioned generation given sparse building layouts as prior.
In particular, given a road network and a few initial blocks
of building layouts, we can generate more blocks with a
similar style. Fig. 5 uses only a random 5% of prior build-
ing layouts to generate a city: the latent vector of an empty
block is calculated as the distance-weighted sum of the
nearest k blocks given as prior (k = 5 works well). Nor-
mal noise is also added to the latent vector for diversity.

This generation ability is useful to provide data equity
for many/most cities globally, where complete layout in-
formation is not available. To evaluate this, we showcased
a well-modeled city. Fig. 5 models Chicago in which we
trained building height from [27] as additional building fea-
tures so that we can generate 3D building masses (still from
only 5% of prior). Then, we extracted a 3D urban mor-



Ablations Overlap↓ Out-Block↓ Pos-E.↓ Cov-E.↓

LayoutVAE [26] 28.14 11.08 18.52 24.02
BlockPlanner [63] 5.87 3.47 8.04 8.41
Gupta et al. [17] 3.54 7.43 10.50 0.49
VTN [2] 2.34 7.24 9.42 2.56

[26] + CST 28.00 8.12 15.09 24.34
[63] + CST 3.20 2.08 4.09 6.11
[17] + CST 4.15 5.18 7.69 1.90
[2] + CST 2.32 5.61 6.67 1.97

[63] + CST&SE 2.12 1.93 3.47 2.78
[17] + CST&SE 3.89 4.34 5.65 1.73
[2] + CST&SE 2.25 4.52 5.89 1.88

Ours - CST 4.86 2.23 4.40 3.94
Ours - SE 1.39 2.03 2.69 2.00
Ours - CST&SE 7.09 3.03 7.87 9.88

Ours (Xformer [52]) 1.08 4.40 6.00 0.38
Ours (SAGE [18]) 1.36 5.04 6.84 0.73
Ours (GCN [29]) 1.57 3.44 6.02 0.76
Ours (T=1) 1.38 1.30 3.41 0.88
Ours (T=2) 1.25 1.31 3.32 0.74

Ours* (T=3) 1.06 1.25 3.10 0.36

Table 2: Ablations. We report metrics (all in %) among all
alternative ablations. T is number of stacked graph attention
layers. More ablations in Supplemental.

phology suitable for an urban weather forecasting system,
Urban WRF [9]. The model generated by our method from
only 5% prior yields comparable local weather forecasting
results as that provided by the ground truth. Our average
per-pixel wind-speed prediction error is 0.23m/s (details in
Supplemental). Additional results are available in [46].

Semantic Manipulation. A semantic editing of building
layouts can be performed by exploiting plausible disentan-
glements. For example, we labeled building row numbers
(e.g., from 1 to 4) of 20K test urban layouts. We found la-
tent vectors for each row-label group form reasonable clus-
ters. If we translate a latent vector of a 1-row building layout
towards that of the 2-row building layout cluster center, the
layout will gradually have another row of buildings. Results
are provided in Supplemental for up to 4 rows of buildings.

Interpolation. Our method can generate urban layouts
by interpolating latent space vectors between two layouts.
In Supplemental, we show results from linearly interpolat-
ing either building layout latent vectors or block shape la-
tent vectors from one to another. The intermediate layouts
correspond to an intuitive style interpolation.

5. Conclusions and Future Work

We have presented a controllable graph-based method to
generate plausible urban layouts with arbitrary block shapes
and varying building shapes. Our approach exploits multi-
layer message passing using graph attention networks to en-
code and decode/generate the relationship between adjacent

Figure 5: Sparse Prior Generation. Top: we show a gen-
erated Chicago from only 5% prior data (shown in red), and
a Zoom-In. Blank areas indicate non-building structures
(e.g., parks, rivers, roads). Bottom: generated layout used
by a local weather forecasting model [9] yields almost iden-
tical wind speed simulation compared to the ground truth.

building structures. As opposed to image and pixel based
methods, our technique exploits that urban building layouts
are discrete, uses a stubby grid graph topology to support
multiple rows of building structures, fits buildings to a tax-
onomy of parameterized building shapes in order to sup-
port a variety of building forms, and uses a skeletonization
algorithm to map arbitrary city block shapes to a canoni-
cal form in order to better support a deep learning based
approach. Our results, including user study, show supe-
rior performance to prior methods (e.g., LayoutVAE [26],
BlockPlanner [63], Gupta et al. [17], and VTN [2]), ana-
lyzes different message passing schemes [29, 19, 13, 58],
and demonstrates many examples in large cities.

Our approach does have some limitations. First, our ap-
proach cannot represent city block contours with interior
boundaries. Second, we do not support all possible build-
ing shapes. Third, only up to a fixed maximum number of
buildings are supported in a block. Our method can handle
common dead-end roads, such as cul-de-sac’s (see Supple-
mental), but not all cases of dead-end roads.

As future work, we would like to ingest additional build-
ing semantics to produce more elaborate building struc-
tures, support further out-of-distribution layouts, and scale
our method to cities worldwide.
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