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Abstract. We take advantage of human intuition by encoding facades into a pro-
cedural representation. Our user-assisted inverse procedural modeling approach
allows users to exploit repetitions and symmetries of facades to create a split
grammar representation of the input. Terminal symbols correspond to repeating
elements such as windows, window panes, and doors and their distributions are
encoded as the production rules. Our participants achieved a compression fac-
tor that averaged 57% (min=12%, max=99%) while taking on average 7 minutes
(min=1, max=25) to compress an image. The compressed facades do not suffer
from occlusion problems present in the input, such as trees or cars. Our second
contribution is a novel rendering algorithm that directly displays the compressed
facades in their procedural form by interpreting the procedural rules during tex-
ture lookup. This algorithm provides considerable memory savings while achiev-
ing comparable rendering performance.
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a) 2.43 MB

b) c) 1.27 MB CF=48.7%

d) e) 366.5 kB CF=85.3%

Fig. 1. The user encoded a facade (a) procedurally with attention paid to conveying the varying
details (b) resulting in 44 procedural rules, 49% compression, and 10 terminal symbols (c). The
same facade was encoded again with less precision (d) resulting in only 30 procedural rules,
85% compression, and 9 terminal symbols (e). The user removed the occluding trees and each
encoding took under two minutes. The original image was rendered in 1.32 ms and the direct
compressed facade rendering was 1.73 ms for (b) and 1.54 ms for (d).
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1 Introduction

The most common facade representation is by texture images which occupy a large
amount of memory, often even more than the actual model geometry. Although im-
ages can be compressed, few techniques exist for their compressed rendering. Facades
contain repeated, structures, making them suitable for procedural representation [1–3].
The goal of inverse procedural modeling (IPM) is to find a procedural representation
of an input model [4] and it can be thought of as image compression. Existing IPM
methods require a preprocessed input in which the scene includes higher semantic in-
formation [5, 6]. This hinders the applicability of IPM in practice and is exacerbated by
the large variability of details in facade images.

We present a user-assisted approach for inverse procedural facade modeling. Our
key observation is that human visual perception provides global insight into structures
and can detect subtle details at varying scales while simultaneously judging their im-
portance. Humans are good at detecting repetitions and, due to previous experiential
knowledge, can account for missing data or incoherencies. Humans may not achieve an
(algorithmically) optimal facade compression such as [6], but they work directly with
unstructured images, they can complete missing information, and they can generate
representations that will be perceived as realistic.

We encoded the input image by indicating symmetries and repetitions during an
interactive session. The procedural rules are immediately available and the system also
shows the resulting compression of the facade as well as the original. The output of this
process is a set of repeating elements (terminal symbols of the grammar), and a set of
procedural rules that define the distribution of the terminals.

Our second contribution is an approach for direct compressed image rendering. We
store only the terminal symbols of the grammar while pixel color is calculated using a
direct lookup through the generated procedural rules. This presents considerable sav-
ings of the GPU memory while maintaining comparable efficiency of rendering. While
individual image rendering is slower by an average of 23% depending on the rules’
complexity. In an application testing the rendering of multiple houses the compressed
facade rendering is slower an average 17%.

Figure 1 shows an input facade that includes missing parts, large variability, and
obstacles. This facade was encoded procedurally in less than two minutes. In the upper
row the user aimed for a precise representation of the input leading to the compression
factor 49% and a high number of 44 procedural rules. The lower row shows the image
with compression of 85% and only 30 rules. The higher compression is achieved by sac-
rificing various unique details. These choices derive directly from aesthetic objectives;
an automated system would be poorly suited to achieve acceptable results. Moreover,
the user implicitly accounts for missing details.

2 Related Work

Procedural representation has been addressed in Computer Graphics by work rang-
ing from methods for pure procedural generation [2, 7–10] to inverse approaches that
attempt to find procedural representation of real buildings [11–13] or even vegeta-
tion [14].
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Recently, attention has been focused on procedural facade representation. Mueller
et al. presented what is likely the first method for procedural representation of facades
in Computer Graphics in [15]. Their approach builds on shape grammars and allows for
an automatic extrusion of facade features into a 3D representation. This approach was
later extended to interactive facade editing in [7]. Various approaches aim at automatic
generation of a grammar representation based upon an input facade. They can be cate-
gorized into techniques that use images as input, or those that use Laser Interferometry
Detection and Ranging (LiDAR) data sets. In the first class of algorithms that work with
images, there are a number of techniques that attempt to find symmetries within the im-
age’s structures. Musialski et. al introduced an automatic approach for facade repair
that exploits the facade symmetry in [16]. Teboul et al. addressed segmentation in [17],
where they use a combination of grammars, supervised classification, and random walks
to synthesize facades and recently a 3D reconstruction was presented in [18].

Grammar generation of facades from input images has been addressed only recently.
Boulch et. al. use bottom-up automated parsing to discover attributes from a predefined
grammar [19], and similarly Martinović et al. learns attributed context-free grammar
using Bayesian networks in [20]. Zhang et al. use an automated approach for automatic
grammar generation by using symmetry detection and evaluate different groups and
layers in [3]. A similar approach for automatic grammar generation from segmented
facades was presented in [6] in which the objectives were to generate minimal grammar
and a new facade synthesis. We are also acquiring an inverse procedural representa-
tion, but rather than new facade synthesis, we focus on compressed facade rendering.
Also, our approach uses human intuition to complete missing parts and irregularities.
Moreover, previous approaches require some kind of pre-segmentation and user identi-
fication of terminal symbols. This is a common requirement for the majority of inverse
procedural approaches such as [4].

LiDAR data have been addressed by a number of previous studies as well. A tech-
nique called adaptive recursive facade splitting has been used to reconstruct facades
from LiDAR data in [21]. Vanegas et al. used a generalized rewriting rule to describe
Manhattan-world reconstructed buildings [22]. Ceylan et. al introduced an image-based
3D building reconstruction framework that focused upon facades in [23]. Wan and Sharf
used grammars to aid in 3D reconstruction of faces from scanned urban facades [24].
Kerber et al. used symmetry detection with a feature descriptor for large scale urban
scenes in [25]. Li et al. used a combined approach in which images and LiDAR data
were used to create depth layers to complete 3D facades in [26].

Close to our approach is the interactive system for facade modeling [27]. Our ap-
proach exploits symmetries and user intuition in order to create facade representations.
The work [27] differs from ours in that it does not attempt to perform direct facade
rendering, nor does it show the actual procedural representation of the input.

3 Split Grammar

The objective of our work is to describe an input image as a context-free attributed split
grammar [2, 9, 15]. The split grammar is a quadruple

G = 〈ω,N, T,R〉 , (1)
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where ω ∈ N is the starting symbol of the grammar (the axiom) that usually cor-
responds to the entire facade. The non-terminal symbols N = {N1, N2, . . . , N|N |}
represent transformations and intermediate steps and can be thought of as groups or
structures. The terminal symbols T = {T1, T2, . . . , T|T |} are the final sub-images that
compose the input and R is a non-empty set of production rules in the form

N(p)→ op1(p){x1(p)}op2(p){x2(p)} . . .. (2)

The rules denote rewriting of the non-terminal symbol N(p) from the left-hand side
with a sequence of nonterminal, and terminal symbols x ∈ N ∪ T . Each symbol on the
right-hand side can be modified by an operation op. The operation op can be one of the
splitX , splitY , subdivX , subdivY , flipX , flipY , and rotateX .

Every (terminal and non-terminal) symbol is associated with a (rectangular) shape.
Terminal symbols represent a certain part of the input image, whereas non-terminals
correspond to areas that are composed of other non-terminals and/or terminals. We
define the compression of the input image as

cf =
1∑

scale(Ti)
, (3)

where scale(Ti) measures the relative size of the terminal symbol in the input image.
Though we could also add the size of the grammar to the compression, its size is usually
significantly smaller than the size of the images and can safely be ignored.

4 Interactive Application

1) Editing window 2) Procedural facade

3) Rules and the 
compression factor

Fig. 2. The user represents the
original facade (1) as a procedu-
ral representation. The application
shows the result in the second win-
dow, while the third window (3)
shows the procedural rules and the
compression factor.

We have developed an application that allows
the user to compress a facade during an interac-
tive session and represent it as a split grammar,
Eqn. (1). The application has three main windows
(see Figure 2). The first is the editing window that
shows the input facade and allows all user inter-
action. The second window displays the facade
that is the result of the procedural representation.
The image in the second window is always im-
mediately interpreted from the rules. The gram-
mar (non-terminals, terminals, rules) and gram-
mar statistics (compression factor, number of rules)
are displayed on the third window. This window is
observed by the user when she attempts different
procedural representations.

The application implements rules from Section 3, namely terminal and non-terminal
node selection, facade horizontal splitX and vertical splitY , symbol flip, symbol
rotation, and regular distribution of symbols via the subdivide command.

The user interface shows selected symbols with dark blue color, terminal symbols
in lighter blue, and non-terminal symbols with a pattern. In this way the user has visual
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control over the amount of encoded parts of the input image and can therefore make a
better estimate of the total area of terminal symbols that will need to be stored.

The interactive session starts with the complete facade that is represented as the
axiom ω. The user selects a symbol and applies an operation that also creates a proce-
dural rule. This process is repeated until the user decides that further modeling is not
necessary at which point the procedural model is saved. The result of the session is the
grammar G from Eqn. (1) where each terminal symbol is stored as a separate image.
The user can create rules that may not be optimal, however we do not perform any rule
optimization to avoid biasing the results.

5 Rendering

We present a new approach for direct procedural facade rendering. The terminal sym-
bols and the rules are stored on the GPU and the (u, v) texture coordinates are evaluated
directly from the grammar. Depending on the encoding, the compressed image may be
significantly smaller than the input image. However, as rule interpretation is required,
there is an overhead imposed by the texture color look-up.

There are two possible ways to implement this function: 1) the procedural rules
could be interpreted once and the expanded form stored as a long array of terminal
symbols and accompanying symbol operations, 2) the rules can be interpreted for every
pixel. We have implemented both approaches. Although the first approach would save
the overhead of rule evaluation, we observed performance to be significantly slower
(2.97ms vs 1.54ms for the texture from Figure 1 d)) on the current GPU architectures
(Shader Model 5.0, OpenGL 4.3) that are sensitive to branching and loops. For the fully
expanded rules, the GPU must traverse the array to check if the searched pixel belongs
inside the displayed region of terminals. This results in extensive branching. The loop-
ing and branching operations cannot be unrolled by the compiler and the expanded rule
includes various repeating if statements that present a significant penalty for rule run-
time execution performance. The second approach, where the split rules are stored on
the GPU and interpreted for each pixel, was more efficient on current GPUs, but it can
be different for future GPU architectures or rendering systems.

Let us recall (see Section 3) that the terminal symbols (images) are denoted by
T = {T1, T2, . . . , T|T |}, non-terminals by N = {N1, N2, . . . , N|N |} and the split rules
have form N(p)→ op1(p){x1(p)}op2(p){x2(p)} . . .. Each rule is encoded in a data
structure that stores the operation, parameters, and the set of terminal and non-terminal
symbols on the right-hand side. Each rule has an ID and the rules are stored in a table
that is indexed by the left hand side and has the right hand side as the table elements.
This table is stored on the GPU.

The rule interpretation begins with the axiom ω and the texture coordinates (u, v)
for which the color is queried. The rule with ω on the left-hand side is found in the table,
the right-hand side is scanned, and each operation (split, subdivide, flip, etc.) is eval-
uated. As the operations lead to a smaller part of the ω we check if the searched (u, v)
coordinates fall inside the evaluated operation. If yes, the symbol that was on the right-
hand side is located and further interpreted. If the new symbol is a non-terminal, the
interpretation continues with interpreting the right-hand side of the corresponding rule.
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The scanning stops if a non-terminal symbol is found. The (transformed) coordinates
of the (u, v) are used to look up the color.

The algorithm has theoretical complexityO
(
|R|
)
, where |R| is the number of rules.

This case would correspond to the ω being replaced by the non-terminals covering the
same area and eventually ending with an image that is the same size as the input. In
a practical implementation the rules split the input image into smaller parts, so the
behavior is ≈ O

(
log2|R|

)
. This, of course, depends on the strategy for the creation of

the procedural rules that is discussed in Section 6.1.

6 Implementation and Results

The system is implemented in C++ and uses an OpenGL for rendering, shaders were im-
plemented in GLSL 5.0, the system has been tested on Intel i7 CPU clocked at 3.2 GHz
with 16GB of memory and a NVIDIA K5000 Quadro GPU.

6.1 User Testing

We tested our approach on ten participants aged 20-30 years. All held undergraduate
degree in computer science or a related discipline, and all had some knowledge of pro-
cedural modeling. The objective was to interactively encode eleven facades (images
available on the project page at hpcg.purdue.edu) while maintaining visual similarity
with the input and maximizing the compression factor. We selected test facades such
that they 1) provided variability of structures, 2) allowed for comparison with previous
work [3, 28], and 3) included facades with occlusion problems. The participants were
first introduced to the goal of the task. Next, they completed a short training tutorial
that led them step-by-step to compress a simple schematic facade and explained every
action and result in detail. There was no time limit on the duration of the training and
all participants finished the training in an average of 11 minutes.

The overall compression was 57% with the standard deviation equal to 10%. The
maximum compression factor was 99% and the minimum 12%. Higher compression
was achieved by visually degrading the input and vice versa. The image can be better
compressed by replacing similar windows with some variation of a single instance.
We demonstrate this in Figure 4 where the first column shows the original image, the
middle column is the figure that corresponds to the highest compression factor, and
the last column shows images that have the lowest compression factor. Note the results
for the facade #8 are quite subtle, yet the compression went from 65% to 22%. The
compression of 99% of the facade 10 is an extreme example and washes out the visual
differences.

The results also show a degree of variability among individual subjects. The second
column of Figure 4 shows the average compression per participant for the entire set of
images (min=22%, max=69%).

The participants spent in average of 7 minutes compressing each image (min=1,
max=25). The average number of production rules was 52 (min=4, max=146).
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Rule Selection We analyzed the selected rules and discussed the strategy for image
compression with the participants in a group discussion. All participants independently
tested two different strategies. First they would attempted to isolate the most frequently
repeating large elements, such as windows, and convert them into terminal symbols.
That is also a common strategy in automated systems [3, 6]. Surprisingly this did not
lead to the best compression strategy and most participants quickly discarded this ap-
proach as inefficient.

The common strategy to which all participants independently converged was to find
the largest symmetrical parts of the image and divide it. This strategy was then repeated
until small elements, such as windows, were found. The terminal symbols were then
analyzed and some of them were merged to replace windows with small visual changes.

Occlusion Users use their intuition to quickly account for occluded parts of missing
structures as can be seen in Figures 1 and 3. Interestingly, users can create similar
facades by discarding obstacles as can be seen in Figure 3, where the right side of the
facade was replaced with the left one that was completed by non-occluded windows.

a) b)

Fig. 3. An image with occluded parts (1) can be quickly resolved by user intuition (b).

Comparison to Previous Work Images 1 and 2 from our testing set (hpcg.purdue.edu)
correspond to the images used by [28] (Figures 9 and 11) and Images 4, 6, 7, and 8 are
from [3] (Figure 9). While both methods focused on an automatic detection of structural
similarities in our work we have completely offloaded the detection of similarities to
human. The compression factor of the previous work was not their main aim but a side
effect. In order to find the compression factor we have manually calculated the number
of terminal symbols and the compression factor of each facade from [28, 3]. Table 1
shows the comparison between A: [28], B: [3], and C: our approach. The compression
factors reported by our method are the average numbers from the user study.

Our user-assisted approach leads to better results for all cases. The average CFs are
A:32%, B:17%, and C:54%. The number of terminal symbols has the major effect on
the size of the final representation and the averages were A:7, B:18, and C:13. It seems
the main reason for a higher compression factor of the user-assisted approach is in the
human tolerance to variability in the input images. It would likely be difficult to tune an
automatic system to be as tolerant to the variance in input images as are humans. Yet,
humans produce facades that are visually plausible.
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CF [%] # of T
Image A B C A B C

1 31 76 3 8
2 32 71 4 6
4 25 63 10 17
6 17 39 7 11
7 8 24 14 23
8 18 48 5 21

Table 1. Comparison of the compression factor and the number of terminal symbols among
A: [28], B: [3], and C: our approach.

6.2 Compressed Image Rendering

Compressed facade rendering comes at an additional cost for extra computation. We
have used the result from the user study to demonstrate the performance hit as a function
of the number of rules. The rules are different and having the same number of rules can
vary significantly in their composition. To account for this we have sorted the results
according to the number of rules. We have then calculated the average over intervals of
5 rules, displayed the normalized rendering time.For the worst case of 110 procedural
rules the rendering was two times slower than direct image rendering. For the average
case of 50 rules the performance was 23% slower (1.234ms vs. 1.525ms).

As rendering an individual image is a rare case, we have also created an example
of a real-world scenario. We created a set of 250 different buildings and rendered them
with and without compressed facades from the user-generated examples. The average
compression factor for the textures from the entire scene was 81%. The loading time
was 31s for uncompressed textures and 6s for compressed ones; the rendering time
was 1.39ms per frame for uncompressed and 1.62ms per frame for compressed (16%
performance hit).

7 Conclusions

We have presented a user-assisted approach for inverse procedural modeling of facade
images and their compressed rendering. Our approach treats the facade as a set of pixels
and visual consistency is judged by the user. Users quickly account for occluded sec-
tions and use their own intuition to compress global symmetries and identify visual dif-
ferences between similar elements. Images are compressed in an interactive session that
takes approximately two minutes per facade depending upon its complexity. During our
testing users achieved average compression of 57%. The original image is represented
as a set of sub-images and directly rendered by the GPU from the procedural rules.
The overhead for the image rendering depends upon the complexity of the procedural
representation and was on average 23% for an image composed from 50 procedural
rules. In a real-world scenario of a small city rendering, the performance hit was 16%.
An interesting observation is that subjects used different strategies for splitting, such as
dividing the elements that are usually considered atomic (i.e. windows or doors).
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1) 95% 48% 4)

72% 40% 8) 65%

22% 10) 99% 37%

Fig. 4. Example results of the testing. The first column shows the original image, the middle
column image with the highest compression factor, and the rightmost column shows the image
with the lowest compression factor. The high compression factor is compensated for by losing
variety of detail amongst structures (e.g., reflections in windows.)

One obvious limitation of our method is the need for manual editing. Though it
would have been possible to directly render images compressed by some existing au-
tomatic lossless method, users nonetheless achieved a good lossy compression factor
while preserving the quality of the output, since they were allowed to apply their own
individual judgment as to what could be discarded. Another potential limitation of our
study was the selection of our test group. It would have been interesting to see how a
more heterogeneous group of users might have performed.

Many possible avenues for future work exist. Recently, a number of automatic meth-
ods for facade encoding have appeared. One is an approach [28] that allows an account-
ing for varying facade visual properties which are then encoded as a parameter. It would
be interesting to implement their approach using direct GPU image rendering. Lastly, a
potentially promising caching strategy derived from this work could be implemented in
which similar pixels are identified and then processed by grammatical rules similar to
those created using our approach.
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