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Abstract. We introduce a novel framework for emotional state detec-
tion from facial expression targeted to learning environments. Our frame-
work is based on a convolutional deep neural network that classifies peo-
ple’s emotions that are captured through a web-cam. For our classifica-
tion outcome we adopt Russel’s model of core affect in which any par-
ticular emotion can be placed in one of four quadrants: pleasant-active,
pleasant-inactive, unpleasant-active, and unpleasant-inactive. We gath-
ered data from various datasets that were normalized and used to train
the deep learning model. We use the fully-connected layers of the VGG S
network which was trained on human facial expressions that were man-
ually labeled. We have tested our application by splitting the data into
80:20 and re-training the model. The overall test accuracy of all detected
emotions was 66%. We have a working application that is capable of
reporting the user emotional state at about five frames per second on a
standard laptop computer with a web-cam. The emotional state detector
will be integrated into an affective pedagogical agent system where it will
serve as a feedback to an intelligent animated educational tutor.
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1 Introduction

Facial expressions play a vital role in social communications between humans
because the human face is the richest source of emotional cues [18]. We are capa-
ble of reading and understanding facial emotions because of thousands of year of
evolution. We also react to facial expressions [13] and some of these reactions are
even unconscious [14]. Emotions play an important role as a feedback in learning
as they inform the teacher about the student’s emotional state [3,31]. This is
particularly important in on-line learning, where a fully automated system can
be adapted to emotional state of the learner [15].

We introduce a novel deep-neural network-based emotion detection targeted
to educational settings. Our approach uses a web-cam to capture images of the
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learner and a convolutional neural networks to detect facial expressions in real
time categorized by using Russell’s classification model [55] and Fig. 1, which
covers the majority of affective states a learner might experience during a learn-
ing episode. We also take the effort to deal with different scenes, viewing angles,
and lighting conditions that may be encountered in practical use. We use transfer
learning on the fully-connected layers of the VGG S network which was trained
on human facial expressions that were manually labeled. The overall test accu-
racy of the detected emotions was 66% and our system is capable of reporting
the user emotional state at about five frames per seconds on a laptop computer.
We plan to integrate the emotional state detector into an affective pedagogical
agent system where it will serve as a feedback to an intelligent animated tutor.

2 Background and Related Work

Encoding and understanding emotions is particularly important in educational
settings [3,31]. While face-to-face education with a capable, educated, and empa-
thetic teacher is optimal, it is also not always possible. People have been looking
at teaching without teachers ever since the invention of books and with the recent
advances in technology, for example by using simulations [43,66]. We have also
seen significant advances in distance learning platforms and systems [22,52].
However, while automation brings many advantages, such as reaching a wide
population of learners or being available at locations where face-to-face edu-
cation may not be possible, it also brings new challenges [2,9,50,61]. One of
them is the standardized look-and-feel of the course. One layout does not fit
all learners, the pace of the delivery should be managed, the tasks should vary
depending on the level of the learner, and the content should be also calibrated
to the individual needs of learners.

Affective Agents: Some of these challenges have been addressed by interactive
pedagogical agents that have been found effective in enhancing distance learn-
ing [6,40,47,57]. Among them, animated educational agents play an important
role [12,39], because they can be easily controlled and their behavior can be
defined by techniques commonly used in computer animation, for example by
providing adequate gestures [25]. Pedagogical agents with emotional capabilities
can enhance interactions between the learner and the computer and can improve
learning as shown by Kim et al. [30]. Several systems have been implemented,
for example Lisetti and Nasoz [37] combined facial expression and physiological
signals to recognize a learner’s emotions. D’Mello and Graesser [15] introduced
AutoTutor and they shown that learners display a variety of emotions during
learning and they also shown that AutoTutor can be designed to detect emo-
tions and respond to them. A virtual agent SimSensei [42] engages in interviews
to elicit behaviors that can be automatically measured and analyzed. It uses
a multimodal sensing system that captures a variety of signals that assess the
user’s affective state, as well as to inform the agent to provide feedback. The
manipulation of the agents affective states significantly influences learning [68]
and has a positive influence on learner self-efficacy [30].
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However, an effective pedagogical agent needs to respond to learners emotions
that need to be first detected. The communication should be based on real
input from the learner, pedagogical agents should be empathetic [11,30] and they
should provide emotional interactions with the learner [29]. Various means of
emotion detection have been proposed, such as using eye-tracker [62], measuring
body temperature [4], using visual context [8], or skin conductivity [51] but a
vast body of work has been focusing on detecting emotions in speech [28,35,65].

Facial Expressions: While the above-mentioned previous work provides very
good results, it may not be always applicable in educational context. Speech is
often not required while communicating with educational agents, and approaches
that require attached sensors may not be ideal for the learner. This leaves the
detection of facial expressions and their analysis as a good option.

Various approaches have been proposed to detect facial expressions. Early
works, such as the FACS [16], focus on facial parameterization, where the features
are detected and encoded as a feature vector that is used to find a particular
emotion. Recent approaches use active contours [46] or other automated methods
to detect the features automatically. A large class of algorithms attempts to use
geometry-based approaches, such as facial reconstruction [59] and others detect
salient facial features [20,63]. Various emotions and their variations have been
studied [45] and classified [24], and some focus on micro expressions [17]. Novel
approaches use automated feature detection by using machine learning methods
such as support vector machine [5,58], but they share the same sensibility to the
facial detector as the above-mentioned approaches (see also a review [7]).

One of the key components of these approaches is a face tracking system [60]
that should be capable of a robust detection of the face and its features even in
varying light conditions and for different learners [56]. However, existing methods
often require careful calibration, similar lighting conditions, and the calibration
may not transfer to other persons. Such systems provide good results for head
position or orientation tracking, but they may fail to detect subtle changes in
mood that are important for emotion detection.

Deep Learning: Recent advances in deep learning [34] brought deep neural net-
works also to the field of emotion detection. Several approaches have been intro-
duced for robust head rotation detection [53], detection of facial features [64],
speech [19], or even emotions [44]. Among them, EmoNets [26] detects acted emo-
tions from movies by simultaneously analyzing both video and audio streams.
This approach builds on the previous work for CNN facial detection [33]. Our
work is inspired by the work of Burket et al. [10] who introduced deep learning
network called DeXpression for emotion detection from videos. In particular,
they use the Cohn-Kanade database (CMU-Pittsburg AU coded database) [27]
and the MMI Facial Expression [45].

3 Classification of Emotions

Most applications of emotion detection categorize images of facial expressions
into seven types of human emotions: anger, disgust, fear, happiness, sadness, sur-
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prise, and neutral. Such classification is too detailed in the context of students’
emotions, for instance when learners are taking video courses in front of a com-
puter the high number of emotions is not applicable in all scenarios. Therefore,
we use a classification of emotions related and used in academic learning [48,49].
In particular, we use Russell’s model of core affect [55] in which any particular
emotion can be placed along two dimensions (see Fig. 1): 1) valence (ranging
from unpleasant to pleasant), and 2) arousal (ranging from activation to deacti-
vation). This model covers a sufficiently large range of emotions and is suitable
for deep learning implementation.

Fig. 1. Mapping of emotions from the
discrete model to the 4-quadrant model
(from Russel et al. [55]).

The two main axis of the Rus-
sel’s divide the emotion space into
four quadrants: 1) upper-left quad-
rant (active-unpleasant) includes affec-
tive states based on being exposed to
instruction such as confusion or frustra-
tion, 2) upper-right quadrant (active-
pleasant) includes curiosity and inter-
est, 3) lower-right quadrant (inactive-
pleasant) includes contentment and sat-
isfaction, and 4) lower-left quadrant
(inactive-pleasant) includes hopeless-
ness and boredom.

Most of the existing image databases
(some of them are discussed in Sect. 4.1)

classify the images of facial expressions into the seven above-mentioned discrete
emotions (anger, disgust, fear, happiness, sadness, surprise, and neutral). We
transform the datasets according to Russell’s 4-quadrants classification model
by grouping the images by using the following mapping:

• pleasant-active ⇐ happy, surprised,
• unpleasant-active ⇐ angry, fear, disgust,
• pleasant-inactive ⇐ neutral, and
• unpleasant-inactive ⇐ sad.

This grouping then assigns a unique label denoted by L to each image as:

L ∈ {active − pleasant, active − unpleasant, (1)
inactive − pleasant, inactive − unpleasant}.

4 Methods

4.1 Input Images and Databases

Various databases of categorized (labeled) facial expressions with detected faces
and facial features exist. We used images from the Cohn-Kanade database
(CK+) [27], Japanese Female Facial Expression (JAFFE) [38], The Multime-
dia Understanding Facial Expression Database (MUG) [1], Indian Spontaneous



Learning-Based Emotion Recognition from Real-Time Videos 325

Expression Database (ISED) [23], Radboud Faces Database (RaFD) [32], Oulu-
CASIA NIR&VIS facial expression database (OULU) [67], AffectNet [41], and The
CMU multi-pose, illumination, and expression Face Database (CMU-PIE) [21].

Table 1. Databases used for training the deep neural network.

Input database # of images sad happy neutral surprise fear anger disgust

CK+ [27] 636 28 69 327 83 25 45 59

JAFFE [38] 213 31 31 30 30 32 30 29

MUG [1] 401 48 87 25 66 47 57 71

ISED [23] 478 48 227 0 73 0 0 80

RaFD [32] 7,035 1,005 1,005 1,005 1,005 1,005 1,005 1,005

Oulu [67] 5,760 480 480 2,880 480 480 480 480

AffectNet [41] 28,7401 25,959 134,915 75,374 14,590 6,878 25,382 4,303

CMU-PIE [21] 551,700 0 74,700 355,200 60,900 0 0 60,900

Table 1 shows the number of images and the subdivision of each dataset into
categories (sad, happy, neutral, surprise, fear, anger, and disgust). Figure 2 shows
the distributions of data per expression (top-left), per database (top-right), and
the percentage distribution of each expression in the dataset (bottom-left). In
total we had 853,624 images with 51% neutral faces, 25% happy, 3% sad, 8%
disgust, 3% anger, 1% fear, and 9% surprise.

The lower right image in Fig. 2 shows the percentage of the coverage of each
image by label L from Eq. (1). The total numbers were: active-pleasant: 288,741
images (12%), active-unpleasant 102,393 images (34%), inactive-pleasant 434,841
(51%), and inactive-unpleasant 27,599 (3%). The re-mapped categories were used
as input to training the deep neural network in Sect. 4.2.

It is important to note that the actual classification of each image into its
category varies in each databases and some are not even unique. Certain images
may be classified by only one person while some are classified by various people,
which brings more uncertainty. Moreover, some databases are in color and some
are not. While it would be ideal to have uniform coverage of the expressions in
all databases, the databases are unbalanced in both quality of images and the
coverage of facial expressions (Fig. 2).

Also, certain expressions are easy to classify, but some may be classified
as mixed and belonging to multiple categories. In this case, we either removed
the image from experiments or put it into only one category. Interestingly, the
most difficult expression to classify is neutral, because it does not represent any
emotional charge and may be easily misinterpreted. This expression is actually
the most covered in the dataset that should, in theory, improve its detection if
correctly trained.
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Fig. 2. Statistics of the used datasets used: contribution per database and expression
(top row) and overall percentage of each expression (bottom left) and percentage of
each contribution after remapping to Russel quadrants Eq. (1) (bottom right).

4.2 Deep Neural Network

We used deep neural network VGG S Net [36] and Caffe. VGG S Net is based on
VGG Net that has proven successful in ImageNet Large Scale Visual Recognition
Challenge [54] and the VGG S is effective in facial detection.

Figure 3 shows the VGG S neural network architecture. The network is a
series of five convolutional layers, three fully-connected layers, eventually leading
to a softmax classifier that outputs the probability value. We modified the output
layer of the original net so that it generates the probability of the image to have
a label from Eq. (1). The training input is a set of pairs [image, L], where L
is the label belonging to one of the four categories from Russel’s diagram from
Eq. (1). During the inference stage, the softmax layer outputs the probability of
the input image of having the label L.

4.3 Training

We trained the network on images from datasets discussed in Sect. 4.1. We used
data amplification by using Gaussian blur and applying variations of contrast,
lighting, and subject position to the original images from each dataset to make
our program more accurate in practical scenarios. The input images were prepro-
cessed by using Haar-Cascade filter provided by OpenCV that crops the image
by only including the face without significant background. This, in effect, that
reduces the training times.

In order to have a balanced dataset, we would prefer to have similar number
of images for each label from the categories in Eq. (1). Therefore, the lowest
amount of images (inactive-unpleasant) dictated the size of the training set. We
trained with 68,012 images, batch size 15 images, we used 80,000 iterations,
and the average accuracy was set to 0.63 with 10,000 epochs. The training time
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Fig. 3. Deep neural network architecture used in our framework.

was about 70 min on an desktop computer equipped with Intel Xeon(R) W-2145
CPU running at 3.7 GHz, with 32 GB of memory, and with NVidia RTX2080
GPU.

5 Results

Testing: We divided the dataset randomly into two groups in the ratio 80:20.
We trained on 80% of the images, tested on the remaining 20%, and we repeated
the experiment three times with random split of the input data each time.

Table 2. Average and standard deviation of the three runs of our testing.

pleasant-active pleasant-inactive unpleasant-active pleasant-inactive

pleasant-active (70.0, 1.6) (22.3, 4.1) (2.0, 0.0) (6.3, 2.1)

pleasant-inactive (2.3, 1.2) (87.3, 0.5) (4.0, 0.8) (6.0, 1.4)

unpleasant-active (1.7, 0.5) (41.7, 0.9) (44.0, 1.6) (8.3, 5.7)

pleasant-inactive (5.0, 0.8) (12.0, 3.7) (9.3, 2.9) (62.0, 7.0)

Table 2 shows the average and standard deviation of the confusion matrices
from the three runs of our experiments and Fig. 4 show the confusion matrices
of the individual runs. The main diagonal indicates that pleasant-active was
detected 70% with standard deviation about 1.6% correctly and misdetected as
pleasant-inactive in 22.3%, unpleasant-active in 2%, and unpleasant-active in
6.3% of cases. Similarly, pleasant-inactive was detected correctly for 87.3% of
cases, unpleasant-active in 44% and the least precise was unpleasant-inactive
with 62%. This is an expected result, because the lower part of the Russel’s
diagram (Fig. 1) includes passive expressions that are generally more difficult to
detect. We achieved an overall accuracy of 66%.
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Fig. 4. Normalized confusion matrices for the results of our experiment.

Deployment: The trained deep neural network was extracted and used in real-
time session that categorizes facial expressions into the four quadrants of Russel’s
diagram. We used a laptop computer with a web cam in resolution 1,920× 1,080
equipped with CPU Intel Core i5-6300U at 2.4 GHz. We used the Caffe environ-
ment on Windows 10 and OpenCV to monitor the input image from the camera
and detect face. Only the face was sent to the our trained network as the back-
ground was cropped out. The neural network classified the image and sent the
result back to the application that displayed it as a label on the screen. An exam-
ple in Fig. 5 shows several samples of real-time detection of facial expressions by
using our system.

Fig. 5. Examples of real-time expression detection by using our system.

6 Conclusions

The purpose of this project is to develop a real-time facial emotion recognition
algorithm that detects and classifies human emotions with the objective of using
it as a classifier in online learning. Because of this requirement, our detector
reports a probability of an emotion belonging to one of the four quadrants of
Russel’s diagram.

Our future goal is to integrate the recognition algorithm into a system of
affective pedagogical agents that will respond to the students’ detected emotions
using different types of emotional intelligence. Our experiments show that the
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overall test accuracy is sufficient for a practical use and we hope that the entire
system will be able to enhance learning.

There are several possible avenues for future work. While our preliminary
results show satisfactory precision on our tested data, it would be interesting to
actually validate our system in a real-world scenario. We conducted a prelimi-
nary user study in which we asked 10 people to make certain facial expression
and we validated the detection. However, this approach did not provide satisfac-
tory results, because we did not find a way to verify that the people were actually
in the desired emotional state and their expressions were genuine - some par-
ticipants started to laugh each time the system detected emotion they were not
expecting. Emotional state is a complicated. Happy people cannot force them-
selves to make sad faces and some of the expressions were difficult to achieve
even for real actors. So while validation of our detector remains a future work,
another future work is increasing the precision of the detection by expanding
the training data set and tuning the parameters of the deep neural network.
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