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ABSTRACT

Accurately reconstructing the 3D geometry of a scene or object observed on 2D images is a difficult problem: there
are many unknowns involved (camera pose, scene structure, depth factors) and solving for all these unknowns
simultaneously is computationally intensive and suffers from numerical instability. In this paper, we algebraically
decouple some of the unknowns so that they can be solved for independently. Decoupling the pose from the other
variables has been previously discussed in the literature. Unfortunately, pose estimation is an ill-conditioned
problem. In this paper, we algebraically eliminate all the camera pose parameters (i.e., position and orientation)
from the structure-from-motion equations for an internally calibrated camera. We then also fully eliminate the
structure coordinates from the equations. This yields a very simple set of homogeneous polynomial equations of
low degree involving only the depths of the observed points. When considering a small number of tracked points
and pictures (e.g., five points on two pictures), these equations can be solved using the sparse resultant method.
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1. INTRODUCTION

Suppose a set of pictures of a 3D scene (or 3D object) is given. If the pictures were taken along a generic camera
path, it is possible to use them to reconstruct an approximation of the 3D shape of the scene. For example, this
can be done by tracking some distinguished scene points on several consecutive pictures and solving the set of
equations describing how the position of the tracked 3D points relates to their positions on the pictures. There
are several applications where this can be useful. For example, this can be applied to the automatic creation of
3D virtual models in computer graphics. Another application is the generation of depth maps for 3DTV.

In general, the numerical solution of equations is a challenging problem. In many cases, iterative methods
(e.g., gradient descent and Newton’s method) are the only solution tools available. But in the last ten years or
so, a number of effective non-iterative methods based on the concept of resultant (recently revived by Gelfand
et al.1) have been developed for the special case of polynomial equations. Some of these methods have even
been implemented in symbolic computation packages such as Maple2, 3 or Singular.4 However, most polynomial
equations encountered in practice are still solved using iterative numerical methods. This is mostly due to the
computational complexity and the storage requirements of the aforementioned symbolic methods. For example,
the upper limit on the number of variables that can currently be handled using the sparse resultant method is
believed to be around ten. Unfortunately, most problems encountered in practice involve a lot more than ten
variables.5 This is the case for the equations that concern us, the so-called structure-from-motion equations,
as each 3D feature point introduces 3 variables, while each camera position introduces 6. The sparse resultant
method is thus not practical for the structure-from-motion problem in its original form.

In order to modify the form of this problem, we use elimination. Elimination is the problem of taking given
a set of polynomial equations, say

p1(x, y) = 0,

p2(x, y) = 0,

...

pn(x, y) = 0,



and finding a set of equations

g1(x) = 0,

g2(x) = 0,

...

gk(x) = 0,

which are satisfied for a given x if and only there exists a y such that (x, y) is a solution of the original system. For
linear equations, this can be done by simple Gaussian elimination. The case of non-linear polynomial equations
can be treated using different methods including a resultant based method initially proposed by Bézout6 in the
18th century, as well as the more recent Groebner basis methods.7, 8 In our case, we performed elimination
on the set structure-from motion equations but without using any sophisticated method: we merely used a few
tricks from invariant theory. By successively eliminating more and more variables from the structure from motion
equations, we are able to reach a problem size that can be handled by some of the current result-based methods,
as we will demonstrate in the following.

It is well known that one can eliminate all the variables except for the pose parameters.9 This yields a simple
system of quadratic equations directly relating the camera pose parameters to the tracked points seen on the
pictures. This system of equations can be solved using the sparse resultant approach,10 among other methods.
However, it has been proved11 that pose estimation is an ill-conditioned the problem. This is due to the fact
that, from the pictures alone, a change in camera orientation is sometimes very difficult to distinguish from a
change in camera position. Thus attacking the structure-from motion problem by first reconstructing the pose
does not yield an accurate reconstruction. We thus use another elimination route: first eliminate the camera
pose completely. We do this in two steps. First, we eliminate the camera orientation parameters in Section
4. Second, we further eliminate the camera pose parameters in Section 5. Finally, in Section 6, we eliminate
the structure parameters as well. This yields a simple set of (3N-5)(J-1) equations in N variables, where N is
the number of feature points and J is the number of pictures. For example, with two pictures and five feature
points, we only have ten (homogeneous) equations and ten variables. Surprisingly, each step of this elimination
sequence can be achieved without a significant increase in the degrees of the polynomial equations: all equations
obtained are of degree two or three.

Notation and Assumptions:

For the remained of the paper, we will assume that we are working with an internally calibrated camera and that
the camera’s focal length is equal to one. We will assume that feature points have been tracked on a sequence
of pictures taken by this camera. The total number of feature points tracked will be denoted by N and the 3D
feature points will be denoted by Pi, for i = 1, . . . , N . The total number of picture taken will be denoted by J

and the 2D coordinates of point Pi as seen on picture j will be written as (xij , yij). We will embed each picture
point (xij , yij) in 3D by setting pij = (xij , yij , 1). The camera center position used to take picture j will be

written as Cj . The variable cij will be used to represent the ratio cij =
‖pij‖

‖Pi−Cj‖
. To simplify the notation, we

will later introduce a new variable γij = 1
cij

.

2. STRUCTURE-(AND POSE)-FROM-MOTION EQUATIONS

The equations relating the position of the 3D feature points (so-called structure) and the camera pose (i.e. camera
orientation and position) to the 2D position of the points tracked on the pictures can be written as9:

pij = cijFj

(

Pi

1

)

, for all i = 1, . . . , N and all j = 1, . . . , J, (1)

where cij is an unknown positive constant, and Fj is an unknown 3-by-4 matrix containing the camera parameters
corresponding to picture j. These are the well-known structure-from-motion equations, which have been studied



in depth in the literature. When the camera is internally calibrated, one can assume that the fundamental matrix
takes the form

Fj =
(

Rj Tj

)

,

where Rj is a 3D rotation matrix and Tj is a 3D translation vector, both unknown. The solution of this set of
equation is not unique. Indeed, Equations 1 only define the feature points Pi up to a rotation, a translation, and
a rescaling. In other words, Equations 1 define the shape of the scene but not its absolute placement in space or
its size.

3. POSE-FROM-MOTION EQUATIONS

Eliminating the feature points from Equations 1 is quite simple: just multiply both sides by the inverse of the
matrix Fj and 1

cij
. This yields an equivalent system of equations:

1

cij
F−1

j pij =

(

Pi

1

)

, for all i = 1, . . . , N and all j = 1, . . . , J.

Observe that the right-hand side is independent of the index j. So we can replace this system of equations by

1

cij

F−1
j pij =

1

cij̄

F−1

j̄
pij̄ for all i = 1, . . . , N and all j, j̄ = 1, . . . , J.

This can be rewritten as

cij̄

cij

Fj̄F
−1
j pij = pij̄ for all i = 1, . . . , N and all j, j̄ = 1, . . . , J. (2)

The above forms a complete set of Pose-from-Motion equations, which can be solved for the relative pose between
two pictures. This set of equations is well known in the literature, but we reproduce it here for completeness.
However, as we stated earlier, Fermueller and Aloimonos have shown11 that the problem of pose estimation is
ill-conditioned. So first solving this system for the pose will not yield an accurate result for the structure because
even a small error in the pose can yield a big error in the 3D points positions Pi’s. From our point of view, it is
thus more urgent to eliminate the camera pose, rather than the other variables. This is what we accomplish in
the two following sections.

4. STRUCTURE-AND-CAMERA-POSITION-FROM-MOTION EQUATIONS

In this section, we eliminate the camera orientation parameters from the structure-from-motion equations. As
mentioned earlier, these equations have previously appeared in an earlier publication,12 though in a slightly
modified version and with a more complicated justification

In order to explicitly express every equation as a polynomial equation, we first let γij = 1
cij

. To eliminate
the rotation matrix R from the equation, we first observe that the vectors Pi − Cj and γijpij are related by
an orientation preserving rigid motion. Since the invariants of this group action are well known, it is easy to
obtain a complete set of camera-orientation-free equations. Alternatively, we can obtain this set using some basic
algebraic manipulations. We first pick any i and ī among 1, . . . , N . We then have

pij = cijFj

(

Pi

1

)

,

pīj = cījFj

(

Pī

1

)

.

Taking the dot product of the left-hand-sides and right-hand-sides of these two equations, respectively, we obtain

pij · pīj = cijFj

(

Pi

1

)

· cījFj

(

Pī

1

)

.



Writing Fj =
(

Rj Tj

)

, we have

γijγījpij · pīj =
(

Rj Tj

)

(

Pi

1

)

·
(

Rj Tj

)

(

Pī

1

)

,

= (RjPi + Tj) · (RjPī + Tj)

=
(

Pi + RT
j Tj

)

·
(

Pī + RT
j Tj

)

.

Letting Cj = −RT
j Tj , we get a first type of camera-orientation-free equation:

γijγījpij · pīj = (Pi − Cj) · (Pī − Cj) .

Another way to remove the rotation matrices from the equations is to take three pictures and to consider the
quantity

pij · pīj × pĩj = cijFj

(

Pi

1

)

· cijFj

(

Pī

1

)

× cijFj

(

Pĩ

1

)

.

Again, writing Fj =
(

Rj Tj

)

, we have

γijγījγĩjpij · pīj × pĩj =
(

Rj Tj

)

(

Pi

1

)

·
(

Rj Tj

)

(

Pī

1

)

×
(

Rj Tj

)

(

Pĩ

1

)

,

= (RjPi + Tj) · (RjPī + Tj) × (RjPĩ + Tj) ,

=
(

Pi + RT
j Tj

)

·
(

Pī + RT
j Tj

)

×
(

Pĩ + RT
j Tj

)

.

Letting Cj = −RT
j Tj , we obtain a second type of camera-orientation-free equations:

γijγījγĩjpij · pīj × pĩj = (Pi − Cj) · (Pī − Cj) × (Pĩ − Cj).

Thus, the following equations, which relate the 3D feature points to the picture points without involving the
camera orientation, are all consequences of Equations 1:

γijγījpij · pīj = (Pi − Cj) · (Pī − Cj),

γijγījγĩjpij · pīj × pĩj = (Pi − Cj) · (Pī − Cj) × (Pĩ − Cj),

for all i, ī, ĩ = 1, . . . , N and all j = 1, . . . , J . The above system is slightly redundant. This is because, for any
v1, v2 ∈ R

3 which are not collinear, the set {v1, v2, v1 × v2} forms a basis for R
3. Thus, assuming that P1 − Cj

and P2 − Cj are not collinear, all equations written above can be obtained from the following (smaller) set of
equations.

γijγ1jpij · p1j = (Pi − Cj) · (P1 − Cj),

γijγ2jpij · p2j = (Pi − Cj) · (P2 − Cj), (3)

γijγ1jγ2jpij · p1j × p2j = (Pi − Cj) · (P1 − Cj) × (P2 − Cj),

for all i, ī = 1, . . . , N and all j = 1, . . . , J .

We can show that this system forms a complete set of camera-orientation free equations, i.e. that solving the
above equations for all Pi’s and all Cj ’s is equivalent to solving Equations 1 for all Pi’s, all Cj ’s and all Rj ’s
and forgetting the actual values of the Rj ’s. To do this, we simply show that Equations 1 are a consequence of
Equations 3. We begin by using a fact from invariant theory which states that if some vectors v1, . . . , vN and
w + 1, . . . , wN satisfy

vi · vk = wi · wk, for all i, k = 1, . . . , N,



then there exists an orthogonal matrix A such that vi = Awi, for all i = 1, . . . , N . Thus, for every index j, there
exists an orthogonal matrix Aj such that

(γjpij) = Aj(Pi − Cj), for all i = 1, . . . , N.

But the determinant of Aj cannot be negative, otherwise we would have

γijγ1jγ2jpij · p1j × p2j = −(Pi − Cj) · (P1 − Cj) × (P2 − Cj),

which contradicts the third equation (unless Pi − Cj ,P1 − Cj and P2 − Cj are co-planar.) Hence, each Aj is a
rotation matrix and we thus we obtain Equations 1.

The camera orientation are known to be the cause of numerical instability when attempting to solve Equations
1. It is thus expected that Equations 3 will yield a more stable solution for the structure than when attempting to
solve for all variables using Equations 1. Indeed, we have shown, experimentally,13 that numerically minimizing
the total square error of these new equations yields a more accurate and stable solution than minimizing the
total square error in the standard structure-from-motion formulation as in Lourakis et al.14 (the so-called bundle
adjustment method.15 )

Note that other authors have exploited the idea of using a camera-orientation-free formulation For example,
the cosine of the angles used in the equations of the so-called pyramid method16 can be obtained by taking the
ratio of some of Equations contained in our system. However, the degree-three equations contained in our system
cannot be fully recovered from the pyramid method equations.

5. (PURELY)-STRUCTURE-FROM-MOTION EQUATIONS

In this section, we eliminate the camera center coordinates Cj from Equations 3. To do this, we can simply
observe that the fact that for every j, there exists Rj and Tj such that

γijpij = RjPij + Tj , for alli = 1, . . . , N,

means that the jth point configuration

(γ1jp1j , γ2jp2j , . . . , γNjpNj)

has the same shape and orientation as the point configuration

P1, P2, . . . , PN .

Obtaining pose-free equations is thus easy using some standard results of invariant theory since the fundamental
invariants of the diagonal action of the group of rotations and translations in R

3 are well known.17 However,
we can also obtain the same result using basic algebraic manipulation. For example, the following equations are
all contained in the system of equations 3:

γ1jγ1jp1j · p1j = (P1 − Cj) · (P1 − Cj) (4)

γ2jγ2jp2j · p2j = (P2 − Cj) · (P2 − Cj) (5)

γ3jγ1jγ2jp3j · p1j × p2j = (P3 − Cj) · (P1 − Cj) × (P2 − Cj) (6)

γijγ1jpij · p1j = (Pi − Cj) · (P1 − Cj) for i = 2, 3, ...n (7)

γijγ2jpij · p2j = (Pi − Cj) · (P2 − Cj) for i = 3, 4, ...n (8)

γijγ1jγ2jpij · p1j × p2j = (Pi − Cj) · (P1 − Cj) × (P2 − Cj) for i = 4, 5, ...n (9)

Observe that
(Pi − P1) · (Pi − P1)



= ((Pi − Cj) − (P1 − Cj)) · ((Pi − Cj) − (P1 − Cj))

= (Pi − Cj) · (Pi − Cj) − 2(Pi − Cj) · (P1 − Cj) + (P1 − Cj) · (P1 − Cj), for i = 2, 3, ...n.

The expressions (Pi − Cj) · (P1 − Cj) and (P1 − Cj) · (P1 − Cj) are already contained in the equation set, and
the value of (Pi −Cj) · (Pi −Cj) is given by (Pi −Cj) · (P1 −Cj)× (P2 −Cj). So we can replace Equation 7 with

(γijpij − γ1jp1j) · (γijpij − γ1jp1j) = (Pi − P1) · (Pi − P1) for i = 2, 3, ...n

Similarly we can replace Equation 8 and Equation 9 with

‖γijpij − γ2jp2j‖
2 = ‖Pi − P2‖

2 for i = 3, 4, ...n

(γijpij − gamma3jp3j) · (γ1jp1j − γ3jp3j) × (γ2jp2j − γ3jp3j) = (Pi − P3) · (P1 − P3) × (P2 − P3) for i = 4, 5, ...n.

Thus we get the following equations, which relate the 3D feature points to the picture points, without referring
to the camera pose:

‖γijpij − γ1jp1j‖
2 = ‖Pi − P1‖

2

‖γijpij − γ2jp2j‖
2 = ‖Pi − P2‖

2 (10)

(γijpij − γ3jp3j) · (γ1jp1j − γ3jp3j) × (γ2jp2j − γ3jp3j) = (Pi − P3) · (P1 − P3) × (P2 − P3)

This system forms a complete set of pose-free equations. Indeed we can show that Equations 10 imply Equations
1 by proceeding in a similar fashion as in the previous section. We observe that, for any fixed j, we have

‖γijpij − γījpīj‖
2 = ‖Pi − Pī‖

2, for any i, ī ∈ 1, . . . , N.

We use a fact from invariant theory which states that if vectors v1, . . . , vN and w1, . . . , wN satisfy

‖vi − vk‖ = ‖wi − wk‖, for all i, k = 1, . . . , N,

then there exists an orthogonal matrix A and a translation vector T such that vi = Awi +T , for all i = 1, . . . , N .
Thus, for every index j, there exists an orthogonal matrix Aj and a translation vector Tj such that

γjpij = AjPi + Tj , for all i = 1, . . . , N.

But the determinant of Aj cannot be negative, otherwise we would have

γijγ1jγ2j(pij − p3j) · (p1j − p3j) × (p2j − p3j) = −(Pi − P3) · (P1 − P3) × (P2 − P3)

which contradicts the third equation (unless Pi − P3,P1 − P2 and Pi − P1 are not co-planar.) Hence, each Aj is
a rotation matrix.

6. DEPTH-FROM-MOTION EQUATIONS

The depth of a 3D point Pi with respect to the camera center of picture j is given by the value of γij . Thus,
in order to obtain a set of depth-from-motion equations, we need to eliminate all the variables except the γij ’s
from Equations 1. To do this, we observe that the right-hand sides of all the equations contained in Equations
10 are all independent of j. The the left-hand-sides for different j’s must be equal. We thus obtain the following
structure-and-camera-pose-free system of equations:

‖γijpij − γ1jp1j)‖
2 = ‖γij̄pij̄ − γ1j̄p1j̄)‖

2

‖(γij̄pij̄ − γ2j̄p2j̄)‖
2 = ‖(γij̄pij̄ − γ2j̄p2j̄)‖

2 (11)

(γijpij − γ3jp3j) · (γ1jp1j − γ3jp3j) × (γ2jp2j − γ3jp3j) = (γij̄pij̄ − γ3j̄p3j̄) · (γ1j̄p1j̄ − γ3j̄p3j̄) × (γ2j̄p2j̄ − γ3j̄p3j̄)

To show that this is a complete set, i.e. that Equations 1 is a consequence of these equations, we can proceed
exactly as in the previous section.



This system contains (3N-5)(J-1) equations in N unknowns. However, it is homogeneous, so its solution is
only defined up to a global scale factor. Since all γij ’s are strictly positive, we can set one of them, say γ11, equal
to one and solve for the remaining ones.

To obtain the smallest possible system of equations, we can consider J=2 picture (say j and j̄ ) and N=5
points (say i = 1, 2, 3, 4, 5) on each picture. We then have the following set of equations

‖γ1jp1j − γ2jp2j‖
2 = ‖γ1j̄p1j̄ − γ2j̄p2j̄‖

2

‖γ1jp1j − γ3jp3j‖
2 = ‖γ1j̄p1j̄ − γ3j̄p2j̄‖

2

‖γ3jp3j − γ2jp2j‖
2 = ‖γ3j̄p3j̄ − γ2j̄p2j̄‖

2

‖γ4jp4j − γ1jp1j‖
2 = ‖γ4j̄p4j̄ − γ1j̄p1j̄‖

2

‖γ4jp4j − γ2jp2j‖
2 = ‖γ4j̄p4j̄ − γ2j̄p2j̄‖

2

‖γ5jp5j − γ1jp1j‖
2 = ‖γ5j̄p5j̄ − γ1j̄p1j̄‖

2

‖γ5jp5j − γ2jp2j‖
2 = ‖γ5j̄p5j̄ − γ2j̄p2j̄‖

2

(γ4jp4j − γ3jp3j) · (γ1jp1j − γ3jp3j) × (γ2jp2j − γ3jp3j) = (γ4j̄p4j̄ − γ3j̄p3j̄) · (γ1j̄p1j̄ − γ3j̄p3j̄) × (γ2j̄p2j̄ − γ3j̄p3j̄)

(γ5jp5j − γ3jp3j) · (γ1jp1j − γ3jp3j) × (γ2jp2j − γ3jp3j) = (γ5j̄p5j̄ − γ3j̄p3j̄) · (γ1j̄p1j̄ − γ3j̄p3j̄) × (γ2j̄p2j̄ − γ3j̄p3j̄)

Alternatively, we can write a slightly simpler system, such as

‖γ1jp1j − γ2jp2j‖
2 = ‖γ1j̄p1j̄ − γ2j̄p2j̄‖

2

‖γ1jp1j − γ3jp3j‖
2 = ‖γ1j̄p1j̄ − γ3j̄p3j̄‖

2

‖γ2jp2j − γ3jp3j‖ = ‖γ2j̄p2j̄ − γ3j̄p3j̄‖
2

‖γ1jp1j − γ4jp4j‖ = ‖γ1j̄p1j̄ − γ4j̄p4j̄‖
2

‖γ2jp2j − γ4jp4j‖ = ‖γ2j̄p2j̄ − γ4j̄p4j̄‖
2

‖γ3jp3j − γ4jp4j‖ = ‖γ3j̄p3j̄ − γ4j̄p4j̄‖
2

‖γ1jp1j − γ5jp5j‖ = ‖γ1j̄p1j̄ − γ5j̄p5j̄‖
2

‖γ2jp2j − γ5jp5j‖ = ‖γ2j̄p2j̄ − γ5j̄p5j̄‖
2

‖γ3jp3j − γ5jp5j‖ = ‖γ3j̄p3j̄ − γ5j̄p5j̄‖
2

In a generic situation, the only difference between this system and the previous system is that it has two solutions
instead of one, the solutions being related by a reflection. This system has the advantage that it is only of degree
two. Setting γ1j = 1 and hiding the variable γ2j , we can obtain the sparse resultant using Emiris and Canny’s
method.18 The resultant matrix is a square matrix of size 31,519. However, the determinant of this matrix
turns out to be trivially equal to zero and so we cannot solve for γ2j directly from it. But following the approach
described by Emiris in Canny,18 we can consider the maximum minor of this matrix and use it in place of the
resultant.

Acknowledgments

The second author would like to thank Jie Shan for stimulating discussions. This work was funded in parts by
NSF grant 0434398.

REFERENCES

1. I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional
determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994.
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moyen qu’il convient d’employer pour trouver les équations,” Mem. Acad, Paris , pp. 288–338, 1764.

7. B. Buchberger, “An algorithm for finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal,” J. Symbolic Comput. 41(3-4), pp. 475–511, 2006. Translated from the 1965 German
original by Michael P. Abramson.
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