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ABSTRACT

Structure from motion (SFM) is the problem of reconstructing the
geometry of a scene from a stream of images. In this problem, the
geometry of the scene must be inferred from images, along with the
camera pose parameters. Bundle Adjustment (BA) is a refinement
method used to improve SFM solutions. It consists in simultane-
ously improving a set of initial estimates for all parameters (struc-
ture and camera pose) by minimizing a global cost function. It is
generally considered to be highly accurate, and so is typically used
as a last refinement step in most current SFM methods. Unfortu-
nately, estimating the pose of the camera from a stream of images is
an ill-conditioned problem. We thus propose a BA adjustment for-
mulation which does not involve solving for the camera orientations.
We tested this approach on several real world models. The numeri-
cal results obtained show that this approach is much less affected by
noise than traditional BA.

1. INTRODUCTION

Reconstructing the geometry of a 3D scene from a set of images is
an important aspect of image processing, computer vision, and the
simulation of 3D environments. A popular way to obtain the geome-
try of a scene is to acquire and process images obtained by a camera.
The problem of reconstructing the 3D geometry of a scene from a
set of pictures is calledstructure from motion (SFM). An important
case is when the external camera parameters are unknown (i.e. un-
calibrated), since accurately measuring these requires a complex and
expensive setup.

Unfortunately, SFM with an externally uncalibrated camera is a
very difficult problem. Despite decades of research, a satisfying so-
lution still has not been found. Why is SFM so difficult? One main
reason is that when the external camera calibration is unknown, the
problem of pose estimation is naturally embedded in SFM. The cam-
era parameters constitute a nuisance because they negatively impact
the robustness of the reconstruction. Indeed, it has been shown that
estimating the pose of a camera is an ill-conditioned problem [1].
This is due to an inherent confusion between the camera position
and the camera orientation which simply cannot be resolved based
on the pictures alone, regardless of the solution scheme used. Con-
sequently, numerical instabilities are observed in the reconstruction,
since the geometric structure of a scene is linked to the camera pose
estimates in a highly unstable manner.

The most popular solution available to improve the results of
current SFM methods is calledbundle adjustment (BA). BA is a re-
finement technique for SFM. It takes as input an imperfect solution
for the camera pose and 3D position of features of the scene and
refines this solution by minimizing a cost function based on the dif-
ference between the projection of the feature points and the tracked
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features on the images. But in this approach, the camera pose param-
eters are still being solved for, which leads to numerical instabilities.

In order to improve the numerical results of SFM, we thus pro-
pose a new formulation of BA which does not involve solving for
the camera orientation. This formulation is obtained using a com-
putational technique from invariant theory [2] which, under certain
circumstances, can be used to eliminate variables from a set of equa-
tions [3]. By eliminating the camera orientation parameters from
the standard SFM equations, we obtain a new set of SFM equations
which does not involve any rotation matrix. This new set of equa-
tions naturally leads to the formulation of a rotation matrix free cost
function to be minimized by BA. From a theoretical point of view,
one naturally expects that eliminating the rotation matrices from the
cost function will lead to better numerical results than standard BA.
We demonstrate this experimentally using several real-world mod-
els.

2. PREVIOUS WORK

The BA method was first proposed by Brown in the context of pho-
togrammetry [4]. It was later popularized in the computer vision
community by Hartley [5] and Triggs et al. [6]. BA consists in
solving for all the scene structure and the camera parameters si-
multaneously by minimizing a cost function equal to the sum of the
squares of the distances between the reprojections of the 3D recon-
structed points and the observed projections. The termbundle refers
to the rays of light joining the camera centers and the scene points
which are being adjusted to minimize the cost function. The mini-
mization is performed numerically using a non-linear least squares
method, which is typically chosen to be the Levenberg-Marquardt
minimization algorithm. But since the number of variables to be op-
timized is enormous, this minimization is very costly. Fortunately,
the problem exhibits a sparse structure which can be exploited to
speed up the computations. BA methods which exploit this spar-
sity are calledsparse bundle adjustment methods or SBA. Given a
good initial guess, BA is highly accurate, much more so than any
other SFM method currently available. So, in practice, BA is al-
most always applied to the results obtained with other methods, as a
last refinement step. But as we mentioned previously, the numerical
problems created by the need to estimate the pose are seen in this
approach as well, since the camera pose parameters are an intrinsic
part of the equations to be minimized.

The idea of eliminating the camera pose parameters to improve
numerical stability has been exploited in other contexts. For exam-
ple, in some early work Tomasi and Shi [7] proposed some SFM
equations where the camera orientation parameters do not appear
by considering the camera rays. They used these equations to com-
pute the direction of heading of the camera. Numerical experiments
demonstrated the robustness of this approach. Similarly, Tomasi [8]
described the image changes through the angles between the pro-
jection rays and showed how these can be used to reconstruct both



Fig. 1. Reconstruction Comparison for Structure and Motion Optimiza-
tion. Using a chessboard equipped with a mechanically tracked arm, we ob-
tained a ground truth reconstruction and compared it with theresults of BA
using cost function (4) and a standard SBA.

structure and motion in a two-dimensional world. Immunity to noise
of this method was also noted in experiments, although the results
were observed to be critically dependent on camera calibration.

More than ten years have passed since the publication of Tomasi
and Shi’s work and still no complete mathematical framework for
SFM without camera parameters has been developed. Why has the
idea of pose parameter elimination never been exploited to its full
extent? In particular, why was a BA without camera pose parame-
ters never proposed. This is probably due to the complexity of the
problem of variable elimination. Indeed, algebraically eliminating
variables from a set of equations is difficult, especially when the
number of unknowns in the equations is high, as is the case here.
In particular, we still have not been able to completely eliminate
the camera pose parameters from the SFM equations, although this
is the subject of ongoing research. However, Bazin and Boutin [3]
recently suggested a simple procedure to algebraically remove the
camera orientation parameters from the SFM equations. They also
illustrated the use of their method in a few different settings. In the
next section, we use a variation of their approach to obtain a camera
orientation free formulation of SFM leading to a camera orientation
free BA. Our SFM formulation is different than the ones originally
proposed by Bazin and Boutin. In particular, an assumption made
on the fourth coordinates used to parameterize the projective space
greatly simplifies the resulting equations, which will be stated in the
next section.

3. A NEW FORMULATION OF BUNDLE ADJUSTMENT

We are interested in reconstructing the geometry of a scene observed
by an image stream. More precisely, we want to determine the 3D
positions of the tracked features from their observed positions on
the pictures. The equations relating the tracked features and their
projections on the pictures can be written as follows:
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wherepij represents the 2D coordinates of the 3D feature pointPi

observed on picturej, cij is a constant, andFj is a 3-by-4 matrix
containing the camera parameters corresponding to picturej. Let us
assume that the indexi takes values from 1 toN , whereN is the

number of features tracked on the image, and that the indexj takes
values from 1 toJ , whereJ is the number of pictures taken. When
the camera is internally calibrated, one can assume that the matrix
Fj takes the formFj =

`

Rj tj

´

, whereRj is a 3D rotation
matrix andtj is a 3D translation vector.

Because of the presence of noise in the tracked feature measure-
ments, it is impossible to solve these equations simultaneously for all
i’s andj’s. All we can hope is to try to make the left-hand side of all
these equationsclose to a vector of zeros. In BA, this is formulated
as a least squares problem: one demands that the sum of the squares
of all the left-hand side expressions (the cost function) be as close
as possible to zero. The camera pose parameters are part of the cost
function through the matrixFj . In order to formulate a better cost
function, we propose to eliminate at least part of theFj matrix pa-
rameters from Equations 1. Since the most troublesome parameters
are the rotation matrices (e.g. camera rotation errors have significant
effect on the 3D position of distant points), we concentrate on elim-
inating these.

Eliminating parameters from the SFM equations is not straight-
forward, even though they are polynomial. Indeed, one could think
that the symbolic elimination tools developed for the case of poly-
nomial equations (e.g., Singular [9]) would be well suited for elim-
inating the nuisance parameters in this case. Unfortunately, the set
of equations we are dealing with is so big and involves so many
variables that these programs cannot handle the size of the problem.
Also, by restricting ourselves to polynomial functions, we are likely
to end up with equations of a higher polynomial degree than we be-
gan with. Indeed, since division by a variable is not allowed, the
more variables are eliminated, the more the degrees of the polyno-
mials in the basis tend to increase. This approach to variable elimi-
nation thus has the undesired likely potential of increasing the com-
plexity and the numerical instability of the problem.

In contrast with commutative algebraic approaches, the compu-
tational approaches developed in the context of differential geometry
are not restricted to polynomial equations. The one we used to elimi-
nate the camera orientation follows a systematic approach suggested
in [3]. The idea is to view the problem of camera orientation elimina-
tion as a problem in invariant theory: the camera orientation param-
eters are seen as Lie group parameters acting on the other unknowns
of the problems. To obtain a basis for all SFM equations which do
not involve the camera orientation parameters, one simply needs to
compute a basis for the invariants of this group action. This is ac-
complished by using a modern version of the moving frame method
developed by Fels and Olver [2]. This method consists in finding
an analytic expression for the group transformationg = ρ(x) which
will map any given pointx back into a pre-determined canonical po-
sition. The basis of invariants naturally appear in the coordinates of
the point x transformed byρ(x). Readers should refer to [10] for
a more detailed, yet accessible introduction. Using this method, we
obtained a set of equations equivalent to Equations 1, but which does
not involve any rotation matrices. This set of equations forms abasis
for all camera orientation free SFM equations, in the sense that any
other SFM equation can be written (locally) as a function of these
equations. This basis of equations can be expressed as

(Pi − Cj) · (P1 − Cj) − γijγ1jk1ij = 0,

(P1 − Cj)× (Pi − Cj) · (P1 − Cj)× (P2 − Cj)−γijγ2

1jγ2jk2ij = 0,

(Pi − Cj) · (P1 − Cj) × (P2 − Cj) − γijγ1jγ2jk3ij = 0, (2)

where the values of the constantsk’s are given by the coordinates of
the tracked features on the pictures as
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for i = 1, . . . , N andj = 1, . . . , J . (Note that the first equation
is always trivial fori = 1, 2 and the second equation is also triv-
ial for i = 1.) By construction, all the equations of 2 are invariant
under a simultaneous rigid motion of all the camera centers and 3D
feature points. They are also independent of the coordinate system
used for the images. However, they are not invariant under a rela-
beling of the feature points, but relabeling invariant equations can
be obtained by taking simple linear combinations of functions of the
above equations.

The only unknowns in these equations are the camera center
positions for each pictureCj , j = 1, . . . , J , the 3D features po-
sitionsPi, for i = 1, . . . , N , and the parametersγij , for all i, j,
(which are related to the depth disparity values.) There are thus
3N + 3J + NJ unknowns. The number of non-trivial equations
is 3J(N − 1). But the number of functionally independent equa-
tions is actually3J(N − 1) − 6 (because of the invariance under
rigid motion.) So forN andJ big enough, we can attempt to solve
these equations, or a subset of these equations, numerically.

Starting from these equations, there are several ways to formu-
late a rotation free cost function to be minimized for BA. For ex-
ample, since the right-hand side of each equation is equal to zero,
we could sum up the square of all the left-hand sides. But this
would lead to a computationally intensive BA, as very many vari-
ables would need to be optimized at the same time. However, the
sparse structure of the relationships between the variables could be
used to obtain an SBA method with decreased complexity. This is
the subject of ongoing research. In our experiments, we used po-
tentially less accurate but less computationally intensive methods.
For example, we solved for the position of the 3D features by di-
viding them into sextuplets of points and considering the projection
of these six points onto three pictures. Assuming that the index of
the six points considered arei = 1, 2, 3, 4, 5, 6 and that the pictures
considered arej = 1, 2, 3, the cost function takes the form
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˜2

+ [(Pi − Cj) · (P1 − Cj) × (P2 − Cj) − γijγ1jγ2jk3ij ]
2 . (4)

Using a Levenberg-Marquadt algorithm, we can minimize this cost
function by varying the values of the unknowns 3D pointsPi, for
i = 1, . . . , 6, the camera centersCj , for j = 1, 2, 3, and the param-
etersγij , for i = 1, . . . , 6 andj = 1, 2, 3. But using this formu-
lation for the cost function requires that the sextuplets of points be
chosen so that they can all be seen on all three pictures. Intuitively,
the more different the projections of these six points looks on the
three picture, the better. This requires a pre-processing step where
the sextuplets are formed based on their different observations on
common pictures. This pre-processing step is significantly less work
than evaluating a global cost function using all the points and all the
pictures.

To speed up the computations, we formulated an alternative cost
function requiring only pairs of points observed in six images, namely6
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This was done by considering the first equation of 2 withi = 1
and2. The two resulting equations were complemented with a third
equation which is the analogue of the first equation withP1 replaced
byP2 (which holds by symmetry.) For simplicity, we assume that the
camera center position is equal to the initial guess, and only optimize
the remaining parameters (Pi’s, γij ’s) based on the coordinates of
their projections on three pictures.

4. NUMERICAL EXPERIMENTS

The following experiments demonstrate that removing the camera
orientation from the cost function leads to a BA which is less sensi-
tive to variations in the initial guess than standard BA. Our numer-
ical experiments were done on streams of images with a set of fea-
tures tracked using the Kanade-Lucas-Tomasi feature tracking pack-
age [11]. Overall, we see a clear improvement of our method over
traditional BA as the error in the initial guess increases.

Our first test is to optimize the structure and motion of a cap-
tured model. To be able to accurate quantify the methods, the chess-
board dataset was captured with an in-house acquisition system us-
ing a mechanically tracked arm (Microscribe Arm G2LX manufac-
tured by Immersion Corp.) to obtain very precise measurements of
the camera pose (fraction of a degree precision) and chess board
position (millimeter precision) to be used as ground truth in this ex-
periment. A total of 48 images and 96 features were used in this
example. These were divided into 16 groups of sextuplets seen on
three images. The cost function was minimized group by group. We
compared the 3D reconstruction error (using Euclidean norm) of our
approach with that of a publicly available sparse bundle adjustment
method [12], for various amounts of error in the initial guess. The
results are plotted in Figure 1. The figure illustrates reconstruction
error, a percentage of the model radius, as a function of randomly-
added noise. The magnitude of the noise for camera center and point
estimates varies from 0 to 40% of the model diagonal and the mag-
nitude of the noise for camera rotation ranges from 0 to 12 degrees.
These results show that the cost function (4) leads to a better refine-
ment than standard BA, as the error in the initial guess increases.

Figure 2 represents the performance of the cost function (5)
compared to standard BA, for increasing amounts of error in the ini-
tial guess. The axis are similar to Figure 1. The noise for point
estimates varies from 0 to 25% and the camera rotation ranges from
0 to 12 degrees. Again we used [12] to obtain the result of SBA but
optimizing only for structure. Even though our version of BA does
not optimize the camera center positions and only optimizes small
groups of features at the time, it yields a significant improvement. In
fact, for comparison purposes, we show the performance of full op-
timization SBA and observe that we are able to slightly outperform
the full optimization.

A more visual illustration of the results of the our experiments
is given in Figure 3. In this experiment, we show reconstructions us-
ing various amounts of randomly-added noise. The original model
is shown in (a). A reconstruction obtained by our method using the
tracked features and initial guesses obtained via simple triangulation
of the 563 feature points is shown in (b). The middle row repre-
sents the giraffe reconstruction obtained with standard SBA using
[12], with increasing amounts of error in the initial guess. The bot-
tom row represents the results obtained with cost function (5), for
the same initial guesses. In each picture, we draw lines from the
points of the best reconstruction to the current reconstructed set.
Thus, larger reconstruction errors are clearly visible as longer and
much abundant lines appear in the picture. Visually, our method is
able to tolerate larger errors in the initial estimates. While the visual
aspect of the giraffes in bottom row are better than the middle one,



Fig. 2. Reconstruction Comparison for Structure Optimization. Using
the house data, we optimize the structure using both SBA and our method.
Overall, we achieve a clear improvement (even compared to SBA optimizing
both structure and motion).

the number of outliers is also a clear indication of the better quality
of our reconstruction over standard BA. Here, outliers are defined as
the reconstructed points which differ from the ground truth by more
than 30% of the radius of the world space.

5. CONCLUSION

We proposed a basis of equations for formulating an improved BA
cost function. These involve less unknowns than the ones used in
the standard formulation of BA. More precisely, the camera ori-
entation parameters, which are the most problematic parameters in
SFM, have been eliminated by algebraic manipulation. Using these
equations, we formulated a simple, rotation matrix free cost func-
tion for BA. We presented numerical experiments demonstrating that
this cost function leads to a BA which is more resilient to errors in
the initial guess than standard BA. The improvement in the result is
clear, even when the optimization is performed locally on sextuplets
of points and only considering three pictures at a time. Structure-
only computations can be significantly accelerated by considering
a modified cost function involving only pairs of points and six pic-
tures at a time. By assuming the camera center estimate is correct
(and ignoring any camera rotation estimates), the numerical results
can be obtained very quickly. Even with this simplified approach, a
better BA is obtained compared with the standard approach. We thus
conclude that removing the camera orientation parameters from the
cost function leads to a BA which is more robustness to errors in the
initial guess. In future work, we will attempt to improve the numer-
ical results obtained by performing a global optimization of all the
points and all the pictures simultaneously, while taking advantage of
the sparse structure of the problem to speed up the computations.
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