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ABSTRACT features on the images. But in this approach, the camera pose param-

eters are still being solved for, which leads to numerical instabilities.
In order to improve the numerical results of SFM, we thus pro-

ose a new formulation of BA which does not involve solving for

Structure from motion (SFM) is the problem of reconstructing the
geometry of a scene from a stream of images. In this problem, the

geometry of the scene must be inferred from images, along with th . . . S . )
camera pose parameters. Bundle Adjustment (BA) is a refineme e camera orientation. This formulation is obtained using a com-
putational technique from invariant theory [2] which, under certain

method used to improve SFM solutions. It consists in simultanet’ ‘ b d to eliminat ables tof
ously improving a set of initial estimates for all parameters (struc-:f'rcumgS ané:es,lpan te'!usfh 0 elimina e.vartlat. esirom aste ofequa-
ture and camera pose) by minimizing a global cost function. It igons [3]. By eliminating the camera orientation parameters from

generally considered to be highly accurate, and so is typically useﬁl]e. standard SF.M equations, we_obtam anew set of SFM equations
as a last refinement step in most current SEFM methods. Unfort vhich does not involve any rotation matrix. This new set of equa-
nately, estimating the pose of the camera from a stream of images -igns naturally leads to the formulation of a rotation matrix free cost

an ill-conditioned problem. We thus propose a BA adjustment forfunction to be minimized by'BA. F.rom a theorgtlcal pqlnt of view,
mulation which does not involve solving for the camera orientations®"€ naturally expects that eliminating the rotation matrices from the
cost function will lead to better numerical results than standard BA.

We tested this approach on several real world models. The numerj- d trate thi : all - | | Id mod
cal results obtained show that this approach is much less affected Qé(\/se emonstrate this experimentally using several real-world mod-

noise than traditional BA.
2. PREVIOUSWORK

1. INTRODUCTION The BA method was first proposed by Brown in the context of pho-

Reconstructing the geometry of a 3D scene from a set of images }Qgramm_etr)é [4|]_'| ltl was Iaterdp(T)puIarlzed Im ghe %(Amp“tef vision
an important aspect of image processing, computer vision, and ﬂ%:)m_munlty y Hartley [5] and Triggs et al. [6]. consists in .
simulation of 3D environments. A popular way to obtain the geome_solvmg for all the scene structure and the camera parameters si-

set of pictures is calledructure from motion (SFM). An important h  liaht ioining th d th .
case is when the external camera parameters are unknown (i.e. Jf.the rays of light joining the camera centers and the scene points

calibrated), since accurately measuring these requires a complex aWéI“Ch are being adjusted to minimize the cost fL_mctlon. The mini-
expensive setup. mization is performed numerically using a non-linear least squares

Unfortunately, SFM with an externally uncalibrated camera is anethod, which is typically chosen to be the Levenberg-Marquardt

very difficult problem. Despite decades of research, a satisfying Sdpinimization algorithm. But since the number of variables to be op-

lution still has not been found. Why is SFM so difficult? One maintlmlzed is enormous, this minimization is very costly. Fortunately,

reason is that when the external camera calibration is unknown, tHE€ Problem exhibits a sparse structure which can be exploited to

roblem of pose estimation is naturally embedded in SFM. The Camc:_peed up the computations. _BA methods which exploit_ this spar-
P b y impsity are calledsparse bundle adjustment methods or SBA. Given a

the robustness of the reconstruction. Indeed, it has been shown t od ”;E'al guers]s,dBA IS hllghly a_(lzckL)Jlrate,Smu_ch more soEE'Ila_n aTy

estimating the pose of a camera is an ill-conditioned problem [l].Ot er method currently available. So, in practice, IS a-

This is due to an inherent confusion between the camera positioftSt 8lways applied to the results obtained with other methods, as a
st refinement step. But as we mentioned previously, the numerical

and the camera orientation which simply cannot be resolved baséﬁ bl d by th d . h o thi
on the pictures alone, regardless of the solution scheme used. cdyoblems created by the need to estimate the pose are seen In this

sequently, numerical instabilities are observed in the reconstructiofRPProach as well, since the camera pose parameters are an intrinsic

since the geometric structure of a scene is linked to the camera poQélrt of the equatlo_ns_ to pe minimized. )
estimates in a highly unstable manner. The idea of eliminating the camera pose parameters to improve

The most popular solution available to improve the results offumerical stability has been exploited in other contexts. For exam-
current SFM methods is calldmindle adjustment (BA). BAis are-  Plé, in some early work Tomasi and Shi [7] proposed some SFM
finement technique for SFM. It takes as input an imperfect solutiorffauations where the camera orientation parameters do not appear
for the camera pose and 3D position of features of the scene arfy considering the camera rays. They used these equations to com-
refines this solution by minimizing a cost function based on the difPute the direction of heading of the camera. Numerical experiments

ference between the projection of the feature points and the track&lfmeonstrated the robustness of this approach. Similarly, Tomasi [8]
described the image changes through the angles between the pro-

This work was partly supported by NSF grant 0434398 jection rays and showed how these can be used to reconstruct both




number of features tracked on the image, and that the indakes

/ values from 1 toJ, whereJ is the number of pictures taken. When

/ the camera is internally calibrated, one can assume that the matrix
/ F; takes the formF; = ( R; t; ), whereR; is a 3D rotation

! matrix andt; is a 3D translation vector.

A Because of the presence of noise in the tracked feature measure-
/ ments, itis impossible to solve these equations simultaneously for all
—— 7 7's andj’s. All we can hope is to try to make the left-hand side of all
o — L ~ these equationdose to a vector of zeros. In BA, this is formulated

AiStandard e g as a least squares problem: one demands that the sum of the squares
4 of all the left-hand side expressions (the cost function) be as close
as possible to zero. The camera pose parameters are part of the cost
o function through the matri¥;. In order to formulate a better cost
Noise function, we propose to eliminate at least part of ffjematrix pa-
rameters from Equations 1. Since the most troublesome parameters
are the rotation matrices (e.g. camera rotation errors have significant
tion. Using a chessboard equipped with a mechanically tracked agnobw gffept on the 3D position of distant points), we concentrate on elim-
tained a ground truth reconstruction and compared it withréisalts of BA inating these.
using cost function (4) and a standard SBA. Eliminating parameters from the SFM equations is not straight-
forward, even though they are polynomial. Indeed, one could think
that the symbolic elimination tools developed for the case of poly-
structure and motion in a two-dimensional world. Immunity to noisenomial equations (e.g., Singular [9]) would be well suited for elim-
of this method was also noted in experiments, although the resuligating the nuisance parameters in this case. Unfortunately, the set
were observed to be critically dependent on camera calibration.  of equations we are dealing with is so big and involves so many
More than ten years have passed since the publication of Tomag@riables that these programs cannot handle the size of the problem.
and Shi's work and still no complete mathematical framework forAlso, by restricting ourselves to polynomial functions, we are likely
SFM without camera parameters has been developed. Why has tfeend up with equations of a higher polynomial degree than we be-
idea of pose parameter elimination never been exploited to its ful§an with. Indeed, since division by a variable is not allowed, the
extent? In particular, why was a BA without camera pose paramemore variables are eliminated, the more the degrees of the polyno-
ters never proposed. This is probably due to the complexity of thénials in the basis tend to increase. This approach to variable elimi-
problem of variable elimination. Indeed, algebraically eliminatingnation thus has the undesired likely potential of increasing the com-
variables from a set of equations is difficult, especially when theplexity and the numerical instability of the problem.
number of unknowns in the equations is high, as is the case here. In contrast with commutative algebraic approaches, the compu-
In particular, we still have not been able to completely eliminatetational approaches developed in the context of differential geometry
the camera pose parameters from the SFM equations, although thige not restricted to polynomial equations. The one we used to elimi-
is the subject of ongoing research. However, Bazin and Boutin [3hate the camera orientation follows a systematic approach suggested
recently suggested a simple procedure to algebraically remove the[3]. The idea is to view the problem of camera orientation elimina-
camera orientation parameters from the SFM equations. They alsn as a problem in invariant theory: the camera orientation param-
illustrated the use of their method in a few different settings. In thesters are seen as Lie group parameters acting on the other unknowns
next section, we use a variation of their approach to obtain a camef the problems. To obtain a basis for all SFM equations which do
orientation free formulation of SFM leading to a camera orientatiomot involve the camera orientation parameters, one simply needs to
free BA. Our SFM formulation is different than the ones originally compute a basis for the invariants of this group action. This is ac-
proposed by Bazin and Boutin. In particular, an assumption madeomplished by using a modern version of the moving frame method
on the fourth coordinates used to parameterize the projective spageveloped by Fels and Olver [2]. This method consists in finding
greatly simplifies the resulting equations, which will be stated in thean analytic expression for the group transformatjona p(z) which
next section. will map any given point: back into a pre-determined canonical po-
sition. The basis of invariants naturally appear in the coordinates of
3. ANEW FORMULATION OF BUNDLE ADJUSTMENT the point x transformed by(z). Readers should refer to [10] for
a more detailed, yet accessible introduction. Using this method, we
tained a set of equations equivalent to Equations 1, but which does
ot involve any rotation matrices. This set of equations forieses
fbr all camera orientation free SEM equations, in the sense that any
Bther SFM equation can be written (locally) as a function of these
equations. This basis of equations can be expressed as
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Fig. 1. Reconstruction Comparison for Structureand Motion Optimiza-

We are interested in reconstructing the geometry of a scene observ
by an image stream. More precisely, we want to determine the 3
positions of the tracked features from their observed positions o
the pictures. The equations relating the tracked features and th
projections on the pictures can be written as follows:

0
P; ij
cii Fj < 1 ) — ( plj ) =[ o0 (1) (Pi = Cj) - (P1 = Cj) = vigmjkiig =0,
0 (Pr — Cj) x (P; = Cj) - (P1 — Cj) x (P2 — Cj) = vij7¥i Y25 k2ij = 0,
wherep;; represents the 2D coordinates of the 3D feature pBjnt (Pi = Cj) - (PL = Cj) x (P2 = C§) = vijmjv2iksi; =0, (2)

observed on picturg, ¢;; is a constant, and’; is a 3-by-4 matrix
containing the camera parameters corresponding to pigturet us  where the values of the constatts are given by the coordinates of
assume that the indextakes values from 1 tdV, whereN is the the tracked features on the pictures as



This was done by considering the first equation of 2 with- 1

<p_T_ 1) . <pT_ 1) = Ry and2. The two resulting equations were complemented with a third
35 15 145, . R . . .
equation which is the analogue of the first equation viAthreplaced
(plTj, 1) X (piTj, 1) . <p1Tj, 1) X (pgTj, 1) = kai;, (3 byP (which holds by symmetry.) For simplicity, we assume that the
. . - camera center position is equal to the initial guess, and only optimize
(pij, 1) : (Pljv 1) X (szv 1) = ksij) the remaining parameter®(s, ~:,'s) based on the coordinates of

fori = 1,...,Nandj = 1,...,J. (Note that the first equation their projections on three pictures.
is always trivial fori = 1,2 and the second equation is also triv- 4. NUMERICAL EXPERIMENTS

ial for i = 1.) By construction, all the equations of 2 are invariant

under a simultaneous rigid motion of all the camera centers and 3B following experiments demonstrate that removing the camera
feature points. They are also independent of the coordinate systegientation from the cost function leads to a BA which is less sensi-
used for the images. However, they are not invariant under a relgye 1o variations in the initial guess than standard BA. Our numer-
beling of the feature points, but relabeling invariant equations caf.5| experiments were done on streams of images with a set of fea-
be obtained by taking simple linear combinations of functions of theres tracked using the Kanade-Lucas-Tomasi feature tracking pack

above equations. ) ) age [11]. Overall, we see a clear improvement of our method over
The only unknowns in these equations are the camera centgfygitional BA as the error in the initial guess increases.

positions for e.ach pictur€’;, j = 1,...,J, the 3D feature§ po- Our first test is to optimize the structure and motion of a cap-

sitions P, for i = 1,..., N, and the parameterg;, for all i,j,  ,red model. To be able to accurate quantify the methods, the chess-

(which are related to the depth disparity values.) There are thugoarq dataset was captured with an in-house acquisition system us-
3N +3J + NJ unknowns. The number of non-trivial €quations jng 3 mechanically tracked arm (Microscribe Arm G2LX manufac-
is 3J(N — 1). But the number of functionally independent equa- y,req by Immersion Corp.) to obtain very precise measurements of
tions is actually3J(N — 1) — 6 (because of the invariance under he camera pose (fraction of a degree precision) and chess board
rigid motion.) So forN and.J big enough, we can attempt to solve yssition (millimeter precision) to be used as ground truth in this ex-
these equations, or a subset of these equations, numerically. periment. A total of 48 images and 96 features were used in this
Starting from these equations, there are several ways to formuysyample. These were divided into 16 groups of sextuplets seen on
late a rotation free_ cost functl_on to be mlnlmlzz_ed fc_)r BA. For ex-three images. The cost function was minimized group by group. We
ample, since the right-hand side of each equation is equal to zergomnared the 3D reconstruction error (using Euclidean norm) of our
we could sum up the square of all the left-hand sides. But thignhrach with that of a publicly available sparse bundle adjustment
would lead to a computationally intensive BA, as very many vari-method [12], for various amounts of error in the initial guess. The
ables would need to be optimized at the same time. However, the,qits are plotted in Figure 1. The figure illustrates reconstruction
sparse structure of the relationships between the variables could '%?ror, a percentage of the model radius, as a function of randomly-
used to obtain an SBA method with decreased complexity. This igqqed noise. The magnitude of the noise for camera center and point
the subject of ongoing research. In our experiments, we used PQstimates varies from 0 to 40% of the model diagonal and the mag-
tentially less accurate but less computationally intensive methodsyiy e of the noise for camera rotation ranges from 0 to 12 degrees.
For example, we solved for the position of the 3D features by di-these results show that the cost function (4) leads to a better refine-
viding them into sextuplets of points and considering the projectionnent than standard BA, as the error in the initial guess increases.
of these s_ix points_onto thrge pictures. Assuming that th_e index of Figure 2 represents the performance of the cost function (5)
the six points considered afe= 1,2, 3,4, 5,6 and that the pictures  compared to standard BA, for increasing amounts of error in the ini-

considered arg = 1, 2, 3, the cost function takes the form tial guess. The axis are similar to Figure 1. The noise for point
Z Z (P — Cy) - (Py — Cj) — vijyijkuis)? + estimates varies from 0 to 25% and the camera rotation ranges from
i=1i=1 0to 12 degrees. Again we used [12] to obtain the result of SBA but

2 optimizing only for structure. Even though our version of BA does
[(Pr = C3) x (i = C5) - (P = Og) x (P2 = C) = 7712 kis not optimize the camera center positions and only optimizes small
+ (P = Cy) - (P1 — Cj) x (Py — C5) — vijvijvziksis)® . (4) groups of features at the time, it yields a significant improvement. In
Using a Levenberg-Marquadt algorithm, we can minimize this cosfact, for comparison purposes, we show the performance of full op
function by varying the values of the unknowns 3D poifts for timization SBA and observe that we are able to slightly outperform
i=1,...,6, the camera centet;, for j = 1,2, 3, and the param- the full optimization.
etersy;;, fori = 1,...,6 andj = 1,2,3. But using this formu- A more visual illustration of the results of the our experiments
lation for the cost function requires that the sextuplets of points bés given in Figure 3. In this experiment, we show reconstructions us-
chosen so that they can all be seen on all three pictures. Intuitivelypg various amounts of randomly-added noise. The original model
the more different the projections of these six points looks on thés shown in (a). A reconstruction obtained by our method using the
three picture, the better. This requires a pre-processing step whelf@cked features and initial guesses obtained via simple triangulation
the sextuplets are formed based on their different observations d¥ the 563 feature points is shown in (b). The middle row repre-
common pictures. This pre-processing step is significantly less workents the giraffe reconstruction obtained with standard SBA using
than evaluating a global cost function using all the points and all th¢12], with increasing amounts of error in the initial guess. The bot-
pictures. tom row represents the results obtained with cost function (5), for
To speed up the computations, we formulated an alternative co$ieé same initial guesses. In each picture, we draw lines from the
function requiring only pairs of points observed in six images, name|p?1ints Iof the best reconstruction to theI culrrent Lellconstlructed se(ti.
O 2 A2 T2 2 A2 Thus, larger reconstruction errors are clearly visible as longer an
j; “Pl <l %Jkn]] * [|P2 Gl %ka]] * much abundant lines appear in the picture. Visually, our method is
9 able to tolerate larger errors in the initial estimates. While the visual
(P2 = Cj) - (Pr = Cj) = v2zsmjkazg]” - (5) aspect of the giraffes in bottom row are better than the middle one,
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Fig. 2. Reconstruction Comparison for Structure Optimization. Using

the house data, we optimize the structure using both SBA andhethod.
Overall, we achieve a clear improvement (even compared to SBAZiNg
both structure and motion).

T &

the number of outliers is also a clear indication of the better quality -

of our reconstruction over standard BA. Here, outliers are defined asf) No outliers g) 0.5% outliers h) 1% outliers

the reconstructed points which differ from the ground truth by more_ ] ) - o

than 30% of the radius of the world space. Fig. 3. Visual Comparison of Initial Guess Sensitivity. (a) Photograph of
object; (b) Reconstruction of object; Reconstructionsiggmall, medium,

5. CONCLUSION and large amounts of error in initial estimates for SBA (c,dr&) our method

(f.g.h).

We proposed a basis of equations for formulating an improved BA
cost function. These involve less unknowns than the ones used i
the standard formulation of BA. More precisely, the camera ori- ; . . o -
entation parameters, which are the most problematic parameters in st_atlon analytical s_tereotnangulatlon, Tech. Rep. 43, Patrick
SFM, have been eliminated by algebraic manipulation. Using these Airforce Base, Florida.

equations, we formulated a simple, rotation matrix free cost func- [5] Richard I. Hartley, “Euclidean reconstruction from uncali-
tion for BA. We presented numerical experiments demonstratingthat ~ brated views,” inProc. of the Second Joint European - US
this cost function leads to a BA which is more resilient to errors in Workshop on Applications of Invariance in Computer Vision,

the initial guess than standard BA. The improvement in the resultis ~ London, UK, 1994, pp. 237-256, Springer-Verlag.

clear, even when the optimization is performed locally on sextuplets[6] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and An-
of points and only considering three pictures at a time. Structure-  drew W. Fitzgibbon, “Bundle adjustment - a modern synthe-
only computations can be significantly accelerated by considering  sis,” in ICCV ’99: Proc. of the International Workshop on

a modified cost function involving only pairs of points and six pic- Vision Algorithms, London, UK, 2000, pp. 298—-372, Springer-
tures at a time. By assuming the camera center estimate is correct Verlag.

(and ignoring any camera rotation estimates), the numerical result§7] c. Tomasi and J. Shi, “Direction of heading from image defor-
can be obtained very quickly. Even with this simplified approach, a* * ations,” inCVPR93, 1993, pp. 422-427.

better BA is obtained compared with the standard approach. We thuiS]

conclude that removing the camera orientation parameters from th
cost function leads to a BA which is more robustness to errors in the N )
initial guess. In future work, we will attempt to improve the numer- ?éjggces’ Los Alam_ltos,PCA, USA, June 1994, pp. 913-918,
ical results obtained by performing a global optimization of all the Computer Society Press.

points and all the pictures simultaneously, while taking advantage of[9] V. Levandovskyy G.-M. Greuel and H. Sghemann, “$\-

r}4] D.C. Brown, “A solution to the general problem of multiple

C. Tomasi, “Pictures and trails: A new framework for the
computation of shape and motion from perspective image se-

the sparse structure of the problem to speed up the computations. ~ GULAR::PLURAL 2.1,” A Computer Algebra System for Non-
commutative Polynomial Algebras.
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