
Virtual Campeche: A Web Based Virtual Three-Dimensional Tour

Jiri Zara and Bedřich Beneš and Rocio Ruiz Rodarte
CTU Prague,

ITESM, Campus Ciudad de México
ITESM, Campus Estado de México

zara@fel.cvut.cz
{bedrich.benes|caruiz}@itesm.mx

Abstract

We present a web-based application that allows a user
to, walk through, see, and interact with a fully three-
dimensional model of an old Mexican city. The city itself
motivates this work. Campeche is of enormous historical
value and has been placed by UNESCO on their list of the
World Cultural Heritage sites. A virtual visit can benefit
both tourists and scientists.

We show how the model was created and how certain
technical issues were addressed. The application runs in-
teractively over a modem-based connection. It first displays
primary visual clues and refines the details later. A data
prefetcher loads the potentially visible data in advance. The
system loads data from the neighborhood by which the user
passes using the VRML proximity sensors. In such a way
it loads the local neighborhood of the location of the visi-
tor in advance. The application is context-sensitive and can
display additional textual and image information.

1. Introduction

Implementing a virtual tour through a model of a city on
the web has become fashionable. Even so, there are many
problems to be solved. We describe our experience in creat-
ing Virtual Campeche; an old city located on the Yucatan
Peninsula (see Figure 1). Campeche has great historical
value and was declared a World Heritage site by UNESCO
in 2001 [11].

There are many reasons for creating virtual tours. The
most important is tourism as visitors can previously learn
about possible vacation destinations. Another reason is re-
lated to business: people can be interested on business,
commercial or real estate investment opportunities. Cer-
tainly one of the most important aspects is related to culture
heritage preservation and our commitment with future gen-
erations. This aspect as well as Campeche’s remoteness,

justifies our goal. The project joins the effort of local au-
thorities’ preservation task, by presenting Campeche’s dis-
tinctiveness in a unique way. By strengthening the identity
of the city, we help to preserve its legacy since Culture is
an intangible value that is not specifically preserved solely
throughout building restoration.

Figure 1. Campeche is located on the Yucatan
peninsula on the Gulf of Mexico

Campeche was founded by Spanish conquerors in 1540
at an ancient Maya settlement called Kin Pech. It became
the most important port of the Royal Spanish Navy but also
the target of numberless pirates attacks for almost a hun-
dred years. To protect the village from looting and destruc-
tion, the king of Spain ordered the construction of ram-
parts around the city. Twenty years of construction were
needed to finish a hexagon fortress and it’s 2.5 km of walls
surrounding the village. Seven bastions were strategically
positioned along the six meters high and 3.5 meters thick
walls. Ramparts were extended into the sea so ships could
dock safely inside and two more forts were built outside the
city. Campeche became the best-guarded port in America.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

Today, some original constructions are gone but the bas-
tions, forts and long sections of the wall are intact.

In our virtual model we have focused on important his-
toric objects: the fortress and the center of the city. We
provide a fully three-dimensional virtual tour that can be
experienced on any operating system and even runs fairly
fast over a modem connection. There is no need to install
special software; a common VRML viewer embedded into
a standard web-browser is sufficient. We have tested the en-
tire system with the Cortona VRML Client Version 4.2 [5]
on different platforms.

The paper is organized as follows. Previous Work,
presents different types of virtual tours created for web.
Section 3 explains the way we have obtained rough data. Its
processing is the topic of the following section. Section 5
describes how we constructed the three-dimensional mod-
els. Sections 6 and 7 describe web-based rendering, data
structuring and data transmission over the network. The last
two sections describe implementation, results, and the final
conclusions.

2. Previous Work

There are many virtual cities on the web; Glasgow [12],
New Orleans [13], Prague [14], Paris [15], Sydney [16], and
Toronto [17], among others. They were created in different
ways and can be classified as purely two-dimensional, semi-
three-dimensional, and fully three-dimensional.

Two-dimensional models are based on interactive maps
and are the most common. An image, textbox, sound, an-
other web-page, or a web-cam can be launched by clicking
on sensitive maps. These systems usually provide a search
engine to find places of interest.

Semi-three-dimensional representations based on Ap-
ple’s QuickTimeVR technology [6] are, surprisingly, the
most common type of virtual tour on the Internet. These are
panoramic views made from realistic renders or digitized
photographs which are stitched together for a complete 360
degree view. Users interactively scroll the panorama with
their mouse and keyboard to control their viewpoint. Quick-
TimeVR supports sensitive zones, nodes or hot spots, which
allow the user to connect to another view or launch an ex-
ternal application. For example, by clicking on a door, the
user calls another QuickTimeVR panoramic cylinder, which
produces an effect of passing through that door. Quick-
TimeVRs are easy to create and do not require advanced
technology or programming. Though, their results are lim-
ited: by adding connection nodes, the overall weight can
increment too much; perspective distortion can be disturb-
ing; scrolling the image provides only a limited sensation of
three-dimensional interaction and immersion.

Fully three-dimensional tours are not common. In fact,
we know of only Virtual Paris [15] that offers a walk

through over a couple of streets and Virtual Old Prague [14]
that is probably the first running complex virtual city on the
web. There are many issues which make them hard to im-
plement.

Our model of Campeche is fully three-dimensional and
is a simplified version of the Virtual Old Prague project [14,
18]. It uses three-dimensional VRML [10] textured models,
static photos, web-cams, sounds, and animations.

Common requirements for a virtual city include a real-
istic appearance, a list of available views and a route plan-
ning.

The most important requirement is a fast system re-
sponse. To provide this functionality our model is divided
into small chunks of data that are rapidly moved over the
Internet and delivered to the browser. Each data fragment
holds additional semantics and allows for progressive re-
finement of the scene. The model is unbounded and can be
scaled depending on the quantity of transferred data, net-
work speed, and rendering quality. [19].

Figure 2. The parts of Campeche that have
been included in our model in the first stage

3. Data Acquisition

To reconstruct a city we needed photos of each build-
ing taken with the same background light e.g. in the late
morning when the sun does not cast large shadows. They
were taken from an orthogonal position with no perspective
warp. However, at this hour the city was busy so each shot
had to be edited to eliminate cars and people. The process
is straightforward but monotonous and we needed several
visits of Campeche.

Figure 2 shows the part we model in three-dimensions.
Actually we have photos of more than 50% of the city cen-
ter consuming more than 700 MB. We now have three-
dimensional models of about 35 % of the city center streets.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

4. Object Reconstruction

While data acquisition was laborious, object reconstruc-
tion proven even more so. Human intervention was required
in all steps although some could be automated.

First, the shots obtained by a non-calibrated camera were
cleaned and the important parts selected. This can be par-
tially automated, but human assistance was always needed.
The shot histograms must be more-or-less equal and sharp-
ness must be similar. Also, a perspective correction warp
that must be applied to the majority of the obtained photos.

Corresponding images were then glued using software
for panoramic photographs. One good option was the MGI
Photovista [4], but there are others.

Once the shots were ready, the objects were recon-
structed into three-dimensional models. It was clear that
automatic object reconstruction from a set of photographs is
really difficult and that best approach was human-assisted.
The automatic approach works only in well defined condi-
tions, e.g., lights are constant and known, if the intensity of
the light does not vary, or if two perpendicular walls of the
same house are to be visible on the photo.

Figure 3. The two images (up) were used to
reconstruct the scene (down)

From various commercial photogrammetric systems we
should mention Photomodeller [9] and the University in
Berkeley Facade project [8] that is inspired by the success-
ful commercial product Canoma by MetaCreations. These
methods need a user assistance. There are other methods
that do not require user’s assistance, but they produce huge
amounts of data (triangles, vertices, textures). Even worse,
the data is non-organized (polygon soup) and it is difficult to
overlay hyper-links and semantics. The most general way,
and the way we used, is to download the models into 3D
Studio Max software and make adjustments by hand.

Figure 3 shows a set of images and the resulting three-
dimensional VRML model.

As mentioned above, object editing is a monotonous
work. To minimize it we have developed a special editor
(a snapshot is shown in Figure 4). The main purpose of
the editor is to load a VRML model and associate and edit
textures on its surfaces. The editor also permits defining
levels of detail (LODs) of the model, and assigning levels
of compression associated with the textures. The model can
be saved in the VRML format for later use in the system.

Figure 4. Our VRML texturer

5. Urban Models

While there are numerous papers on large visual
databases, this web-based application displays special fea-
tures:

• Data is structured into small chunks for rapid delivery
over the Internet,

• progressive LODs are available,

• a set of impostors is precomputed,

• potential areas of visibility are calculated before im-
plementation,

• the system is open to changes by non-programmers,

• search engines provide historical data, objects names
and other background information.

Experience has shown it is not efficient to store the entire
structure as one VRML model [19]. Instead the scene is
stored as a topological structure whose elements are located

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

in separate database. See Figure 5. The model is generated
on demand by a script that creates chunks of data that are
sent over the Internet to the client’s browser.

Figure 5. The logical and the topological data
structure

Data is stored in either a structured or unstructured for-
mat. The structured data reflects the plan of the city. This
is further divided into topological information, represent-
ing knowledge about the street layout, house neighborhood,
etc. The potential visibility areas are stored and, on the top
of this, there is semantic information for searching, route
planning, etc. All structured data has pointers into the un-
structured data.

The unstructured data stores three-dimensional VRML
models, photographs, textures, sounds, and web texts.
The three-dimensional models are represented in different
LODs as explained in the following sections.

6. Rendering

Carefully precalculated scenes allow for efficient render-
ing. The goal is to immediately display the clues that are vi-
sually important, and then add details i.e. display first object
silhouettes, then textures, and then less important details.
The principle of this approach is displayed on the Figure 6.

Figure 6. A model of a house in Campeche
represented in four LODs for web-based ren-
dering

Dividing the scene into small chunks of data makes this
approach possible. Each object is represented in progressive
LODs that are sent by the server when the scene is required.

The entire system is stored in hierarchies. The city lay-
out stores the maps together with potentially visible regions
(see in the next section). The data structures that represent
the streets keep lists of indices that point to the unstructured
data. These indices represent the objects that are located on
the street. When the user enters the street the objects in-
cluded in the cell and the adjacent potentially visible cells
are sent to the viewer with increasing details.

Textures of door, windows, and some visually impor-
tant parts are transferred in one composite image from the
server. LOD2 is therefore made of a VRML file and a com-
posite texture.

Example in the figure 7 shows several progressive steps
of scene as seen over very slow Internet connection.

This display technique is not optimal. The screen im-
age is refined as the user moves and this causes blinking
of object textures and object popping. While both can be
disturbing, this is the price for using standard hardware and
software. Any advanced solution, based on the progressive
meshes [3], would involve client side software. We declined
this option in favor of a simple implementation that runs ev-
erywhere.

7. Data Transmission and Visibility Issues

Special attention has been paid to the optimal balance
between the visual quality and amount of data transferred
over the web. The LOD principle helps to achieve not only a
good rendering speed but allows sending data progressively.
This can be seen in Fig. 5 where a number of triangles

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

Figure 7. The progressive scene display of
Campeche’s main plaza (Zocalo)

together with geometrical and texture data for a common
building are shown. However, VRML language does not
support smooth mesh simplification and creation as known
e.g. from [3] and thus unpleasant popping effects are visi-
ble. One way to achieve a better appearance would be to
set key distances (in which details are switched) to high
values. Consequently higher demands to a rendering sub-
system would slow down the virtual tour. The traditional
tradeoff between a speed and a quality in computer graph-
ics is thus solved in virtual reality - speed is given the clear
advantage.

7.1 Data Transmission

Since Virtual Campeche is a web-based application, it
was necessary to consider web specific features, namely
a stateless communication between a server and a client.
A client is responsible for maintaining user’s activities. It
checks user’s position and orientation in a city and is able
to recognize that new data has to be downloaded. A proper
selection of new data chunks can be computed either by a
server or a client. Two different approaches were studied:

1. A client sends a user’s position to a server together
with a list of already downloaded parts. The server de-
cides what data are missing and sends them to a client.

2. A client has the full information about neighboring and
visible parts around a user. It prepares a list of required
data and requests them from the server via standard
http protocol.

It is clear that the first approach increases a load on the
server, and is unacceptable for our purposes. We have cho-
sen the second method, where the client has to evaluate
topological and visibility information independently on the
server. Still, one important question remains - should the
client know this kind of information about the whole city
in advance or would be possible to build it incrementally as
a user walks through the town? In another words - should
the complete topology and visibility graphs be transferred
to a client in an initial phase (thus causing a delay before
the first image is rendered) or could they be split into small
subgraphs and transferred part by part to a client? The sec-
ond technique requires more elaborate organization of data
structures but is highly scalable. On the other hand, a client
cannot perform advance operations like route planning if
the topology graph is incomplete.

In the current version we prefer to keep the initial time
to minimum. We prefer to display some data, even in a
raw form, rather than to keep the user waiting. The neces-
sary information on neighboring and visible parts is subdi-
vided and attached to every part of a city. Such small data
structure could be downloaded from the server as a whole
at the beginning or just in time when a user requests a route
finding function. To solve the problem of finding a route
between places of interest, we plan to derive a simplified
topology graph from the whole city map that will include
important places only.

7.2 Potential Visibility

As stated before, a geometrical model of a city is com-
bined with structured data. The visibility is not computed
in a real-time, but in a preprocessing stage. Since the vi-
sibility information is coupled with a specific cell of a city

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

(e.g. a street, a square), we are interested in computing so
called potentially visible sets (PVS) instead of correct eval-
uation of visible objects from given user’s position in a city.
This approach is known as from-area visibility [2] or eye-
to-cell visibility [7]. The method we use is based on line
sampling. Lines originated in random places in given city
part are tested against other parts in randomly generated di-
rections.

Virtual users can walk only through the city streets, the
options for flying are implicitly disabled in the VRML plug-
in and that facilitates the data preparation significantly. We
do not need to get precise textures of roofs (simplified by a
predefined texture) we can avoid some invisible details.

Figure 8. Example of the potential visible
scene construction

The city layout is divided into cells (sometimes called
regions or blocks). A cell is an area where the visibility
does not change significantly. Each cell keeps the list of
indices of the objects that are inside. At the moment we en-
ter the cell the list of actually visible and potentially visible
objects is generated and the objects are transmitted over the
network in different progressive LODs.

Every cell has a precalculated list of visible cells as dis-
played in the figure 8. This list is stored in the structure
of directories on the server, but could be also stored in a
global table that could be available all the time. As the user
walks he or she is switching from cell to cell and the list of
potentially visible objects changes as well.

Let’s follow the example from the Figure 8. Let’s de-
scribe the topology of the cells by the visibility Table 1 that
has the following form:

cell visible neighbors
R1 R2 R3
R2 R1 R3
R3 R1 R2 R4 R5
R4 R3 R5
R5 R3 R4

Table 1. An example of visibility cells

Suppose the user is located in the R1. The system will
transmit the objects from the cells R1, R2 and R3. If the
user moves to the cell R2 the visibility will not change. At
the moment the user moves to the R3 the system must send
all the cells R1, R2, . . . , R5. The important thing is that
there the worst case is that the entire scene is transmitted.
The average amount of data in reality is reduced to less than
10% as shown in [19].

There is an unfortunate consequence of this approach.
The system does not keep any information about the client’s
status. If this would so, we could know what part of the
information that the client already keeps. In this case we
could reuse already stored information. VRML does not
permit any direct access to the internal structures of the
browser. Since we do not want to develop any application
that should be installed and we want the system to use the
standard browsers and VRML plug-ins, we depend only on
the system caches. According to our experience, the cases
of rotating and going back are not problematic and the cache
hit/miss rate is good if the user moves locally. It would be
interesting to optimize the system for these cases.

Applying the static potential visibility approach helps to
keep the bandwidth low. Another way how this could be
reduced is using billboards and impostors [1]. If the user
is far from some objects, they could be replaced by a tex-
ture. The large distance will assure there is no, or small,
distortion. The texture should be replaced as the user moves
closer. The entire set of billboards should be precomputed
in advance for the scene.

The data prefetching loading is done by means of VRML
Proximity Sensors [10]. Each cell is encompassed by a
cube with axis aligned to the coordinate system. Every en-
trance/exit to the proximity sensor causes loading/releasing
of predefined data packages. The cubes are intentionally
overlapping so the data is loaded in advance.

8. Implementation and Results

Virtual Campeche was motivated by a successful web
application Virtual Old Prague [14] but has been technically
simplified. High number of components used in the original
application (HTML, Java, PHP, mySQL, JavaScript) lead to
a platform dependency and could only be viewed on line.

Virtual Campeche uses a minimal set of technolo-
gies/components with the goal of running mostly off-line,
e.g. from a CD ROM or a DVD. We avoided Java applets
that are not very stable when connected to VRML browser
through an EAI interface. Thus only three technologies re-
mained: HTML, VRML, and JavaScript.

The Table 2 presents the data available for a web visitor
in the current version. The city is subdivided into 134 parts
that correspond naturally to streets and squares.

Virtual Campeche is captured in a reasonable size that is

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

Media Number Size [kB]
HTML text 31 84
Images used in HTML 52 1702
VRML models 137 250
Textures 161 2105

Table 2. The amounts of data used

acceptable even for users connected to the Internet via mo-
dem. It should be stressed that we processed 700 Megabytes
of raw input data coming mostly from photographs. Vir-
tual Campeche represents not only a qualitative jump from
static images to interactive virtual world but a significant
compression of information that still preserves the unique
atmosphere of the real Campeche.

Figure 9. Real photo (up) and a screen snap-
shot

We have tested the system in various configurations and
environments. The fastest response times occurred when
the system was installed locally. Response times were im-
mediate and the inevitable popping of the objects was small.

A remote implementation was also tested. The system
is on the broadband Internet in Prague and was tested from
Mexico. We have two connections, one is 100Mbs−1 and
the other was 48kb−1 modem connection. The response of

the first case was excellent and the system was perfectly dy-
namic. The modem connection was significantly slower but
usable. The primary system feature is that there is contin-
ual action and the user is never waiting for a response. The
worst case occurs when walking among white walls with
successive texture loading.

So far we have implemented the main park, cathedral,
Zocalo (center of the city), and the neighboring streets.
The system has sensitive areas providing textual informa-
tion about the place where the user actually stands. A con-
nection with web-cam should be available soon. Figures 9-
12 show snapshots from a virtual visit.

Figure 10. Screen snapshots

Figure 11. Screen snapshots

9. Conclusions and Future Work

We have presented the way we have modeled and re-
constructed a section of the historical center of the city of
Campeche. The result is a three-dimensional system that
runs efficiently even over slower modem connections.

Especially labor intensive was the 3D-modeling of ob-
jects from photographs. Many parts of Campeche are still
to be completed.

In the future we plan to add background data for each
object e.g., house names, their history, hotel booking info,
telephone numbers, and web-pages.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

Figure 12. Screen snapshots

We also plan to enhance the virtual city by videos and
web-cams.

There will be technical challenges. We are exploring an
aerial view of the scene that will allow the user to move
within the model by simple clicking, and also indicate their
new coordinates.

Virtual Campeche is part of a cultural project for the Na-
tional Institute of Anthropology and History, which deals
with digital inventory and virtual museography. Some bas-
tions of the fortress are now museums that exhibit Mayan
artifacts which are currently being digitized. Within Virtual
Campeche, Internet visitors will be able to enter a bastion-
museum and interactively admire three-dimensional VRML
reproductions of archeological artifacts.

10. Acknowledgments

We are grateful to the students of the Czech Techni-
cal University in Prague that handled data and photogra-
phy processing, and who implemented the VRML parts of
the project. Special thanks go to Rostislav Bundil, Martin
Hronı́k, Petr Zobal, Pavel Mařı́k, and Miroslav Michálek.
Thanks also to student Elena Reyes from ITESM CEM in
Mexico who made the web pages where the VRML world
is displayed.

We deeply appreciate the comments of the second ref-
eree of this paper.

This work has been partly supported by the Ministry of
Education, Youth, and Sports of the Czech Republic under
research program No. Y04/98: 212300014 related to infor-
mation technologies and communications.

References

[1] T. Akenine-Moller and E. Hainess. Real-Times Rendering,
second edition. A K Peters, 2002.

[2] J. Bittner, P. Wonka, and M. Wimmer. Visibility Prepro-
cessing in Urban Scenes using Line Space Subdivision. In
Proccedings of Pacific Graphics (PG’01), pages 276 – 284,
2001.

[3] H. Hoppe. Progressive Meshes. In Siggraph Confer-
ence Proceedings, Annual Conference Series, pages 99–108.
ACM Siggraph, 1996.

[4] MGI Photovista 2.0. www.mgisoft.com.
[5] Parallel Graphics, Cortona VRML Client.

www.parallelgraphics.com.
[6] QuickTime VR. www.apple.com/quicktime/qtvr/.
[7] M. Slatter, A. Steed, and Y. Chrysanthou. Computer Graph-

ics and Virtual Environments: From Realism to Real-Time.
Addison Wesley publishers, 2002.

[8] C. Taylor, P. Debevec, and J. Malik. Reconstructing Polyhe-
dral Models of Architectural Scenes from Photographs. In
Proccedings of ECCV’96, pages 659 – 668, 1996.

[9] The PhotoModeler 3D Modelling Tool.
www.photomodeler.com.

[10] The Virtual Reality Modeling Language. ISO/IEC 14772-
1:1997.

[11] UNESCO World Cultural Herritage.
whc.unesco.org/heritage.htm.

[12] Virtual Glasgow. iris.abacus.strath.ac.uk/glasgow/.
[13] Virtual New Orleans. www.planet9.com/earth/neworleans/.
[14] Virtual Old Prague Project. www.cgg.cvut.cz/vsp/.
[15] Virtual Paris . www.2nd-world.fr/.
[16] Virtual Sydney. www.planet9.com/earth/sydney/.
[17] Virtual Toronto. www.intoronto.com/.
[18] J. Zara. Concise tour to the virtual old prague. In Proceed-

ings of the EUROGRAPHICS 2002, Short Presentations,
pages 191–198. Eurographics Association,, 2002.

[19] J. Zara, P. Chromy, J. Cizek, K. Ghais, M. Holub, M. Mikes,
and J. Rajnoch. A Scalable Approach To Visualization of
Large Virtual Cities. In Proceedings of the Fifth Interna-
tional Conference on Information Visualization, pages 639–
644. IEEE Computer Society, 2001.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04)

0-7695-2160-6/04 $20.00 © 2004 IEEE

