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Abstract
We present a preemptive image-based method to reduce motion blurring. Motion blur appears when there is a relative
motion between the scene and the viewer/camera. A preemptive method pre-filters the content before being displayed in
order to mitigate the occurrence of motion blur. Our experiments and user study have shown that such preemptive methods
are fundamentally subject to producing visual artifacts as a consequence of unavoidable ringing or intensity oscillations.
Frequency-domain analysis shows that the energy weakened at certain frequencies leads to those artifacts. We present a
method to process alphanumeric content so that it has lower energy on frequencies eliminated by a given motion blur kernel.
Our processed image, whenmotion blurred, will have a sharper appearance and less artifacts as compared to various alternative
approaches. We demonstrate the effectiveness of the proposed technique with simulated and real-world experiments as well
as user feedback. Our results show that our approach yields content robust to motion blur while still being perceptually similar
to the original text.

Keywords Image processing · Motion deblurring · Visual system

1 Introduction

Motion blur is a fundamental vision phenomena that
occurs when an object is moving with respect to a sensor dur-
ing some finite exposure time. While the amount of motion
blur can be reduced by decreasing exposure time or reducing
the relative speed between the target object and the sen-
sor, it causes unavoidable difficulties in recognizing text and
objects and hinders computer vision as well. The occurrence
and hindrance of motion blur is well studied [14,28]. Motion
blur can be modeled as:

Ip = O(M(D(I ))), (1)

where I is the displayed image, D can be either a display
device or some printed version of I, M models the emit-
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ted light moving over a period of time, and O models the
observer (either a human or a camera), resulting in the final
perceived/captured image Ip, where ideally Ip = I .

Various prior methods attempt to mitigate the percep-
tion of motion blur. The most common scenario are post-
processing solutions, R(Ip) = R(O(M(D(I ))))), where R
is a digital deblurring algorithm (e.g., coded exposure pho-
tography [28], Lucy–Richardson deconvolution [21],Wiener
filtering [30], DeblurGAN [17]). However, these approaches
are fundamentally not possible for human observers, since
the post-processing cannot be added to the human visual
system, and its not always possible to obtain an R(Ip) = I .
Therefore, while reducing motion speed, reducing shutter
time (only in the case of cameras) or using high refresh rate
displays ameliorates motion blur none of these methods pre-
vent (or eliminate) motion blur.

Our main observation is that one can pre-filter a tar-
get image to compensate for motion blur so that upon the
occurrence of motion blur such content appears significantly
blur-free and sharp in the ideal case (Fig. 1); in other words,
our approach is preemptive:

I ≈ W (I ) = O(M(D(P(W (I ))))). (2)

Our preemptive method P(W (·)) alters the content I so
that upon going through the display, motion integration,
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Fig. 1 Preemptive text warping on displays for HVS; a scenario where
a user looks at the display (FHD 25” and 60cm distance) and the content
on the screen moves horizontally. b Original content displayed, a letter
“P” taking about 1/4 of the vertical space on the screen. c Simulated

blurred result when image b moves 24px per frame. d Alternate image
using our method. e Simulated result when image d moves at the same
speed, but appearing sharper than c

and observer steps, it appears sharper and blur-free to the
observer. Since the method is preemptive and done on the
image content itself, our solution is applicable to both human
and camera-based observers. This is unlike prior methods
which attempt to remove/minimize blur after the fact and/or
only improve the display D to reduce motion blur [1].

Our solution can be used in a variety of applications. For
example, our user study shows that motion blur, perceived
on high-quality and high-frame rate digital displays, can be
significantly reduced by our method (see Sect. 7). Therefore,
our method can make use of on-board inertial sensors to
improve personalized displays (e.g., phones, tablets, laptops)
undergoing displacements (e.g.,moving or shaking). Further,
digital signs and displays can adjust the content with our
technique to a measured relative motion (e.g., by using the
speed of the vehicle). The amount of blur can be determined
in advance, or in real time, so our method can be applied
during viewing.

Our preemptive approach to motion blur consists of three
main steps. First, we model the motion blur to be induced
by scene or camera motion parallel to the image plane. As in
previous works [6,14,19,28], we model such motion blur as
a convolution with a box kernel whose point spread function
(PSF) is proportional to the speed of motion. Second, we
alter the shape of a provided alphanumeric content so that
it does not contain frequencies discarded by the convolution
with the given box filter. While this can be accomplished
in the frequency or spatial domain, it is possible to inter-
polate between the original alphanumeric shapes and the
preemptive alphanumeric shapes in the spatial domain. Thus,
we pursue a spatial domain-based modification enabling a
trade-off between motion blur tolerance and content origi-
nality. Third, the altered alphanumeric content is given to
a pre-filtering engine [23] that generates a pattern designed
to improve contrast under a given PSF (in our case, motion
blur). Normally, such pre-filtering produces notorious visual
artifacts as a consequence of unavoidable ringing or inten-
sity oscillations. However, since our altered alphanumeric
content does not contain the frequencies discarded by the

prescribed amount of motion blur, the end result is signifi-
cantly free of these visual artifacts. Thus, the appearance of
the alphanumeric content is much cleaner.

We demonstrate the effectiveness of our approach in sim-
ulated and real-world experiments as well as in a user study.
Moreover, we compare the performance of our method to
various alternatives, and show it better preserves contrast and
sharpness of the modified alphanumeric content.

The main contributions of our work include:

– A preemptive text warping algorithm that yields con-
tent void of the frequencies discarded by a specified
motion blur (Sect. 4). Our algorithm can handle most
text/symbols provided in raster or vector format;

– A geometry-based method to interpolate between ideal
blur-tolerant appearance and initial appearance
(Sect. 4.3), thus enabling a quality/blur trade-off.

2 Related work

Deconvolution and Deblurring Methods The use of decon-
volution to reduce/remove motion blur is a well studied
problem [3], with techniques exploring both blind [5] and
non-blind deconvolution [10,12]. However, image decon-
volution is fundamentally a post-processing method, and
moreover, it is an ill-posed problem sensitive to small per-
turbations in the input data [34]. In the case of motion blur,
the associated PSFs discard spatial high-frequency details,
making it generally impossible to recover the original signal.
More recently, researchers have used deep learning tech-
niques to perform deblurring [17] and resolve details [36].
In other work, researchers have also tried to find blur in an
image and then determine whether the blur can and should
be deblurred [38].

Computational Cameras Several approaches have been
developed that alter the camera capture process or the cam-
era. Raskar et al. [28] proposed the use of a coded exposure
technique to preserve high-frequency content in the blurred
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images, thus improving deconvolution results. Fortunato and
Oliveira [11] presented a coded aperture solution based
on factorable masks that preserves high-frequency content,
allowing the recovery of depth and color from a single pho-
tograph using inverse filtering. Levin et al. [19] and Cho
et al. [6] describe how to facilitate blur deconvolution by
instantaneously moving the camera during capture. All these
techniques, however, are also post-processing. In contrast,
our technique preemptively modifies the input so that its
high-frequency spatial content is not (significantly) affected
by motion blur.

Computational Displays Prior work has proposed cus-
tom programmable and multilayer displays to compensate
for the viewer’s optical limitations (e.g., refractive errors)
[15,16,22,26]. Such solutions are intended to allow users to
see the displayed content without the need of spectacles or
contact lenses and are tailored for the needs of each indi-
vidual. Instead of optical aberrations of the visual system,
our method takes into account the motion blur PSF to gener-
ate content that looks sharp under the prescribed amount of
motion blur and does not require customized hardware.

Pre-filtering A few methods focus on filtering the image
before viewing (a.k.a pre-filtering) for resolution enhance-
ment (e.g., Lee et al.. [18]) and others for avoiding optical
aberrations. In this latter category, methods useWiener filter-
ing [2,4,15,25] or constrained total variation [23] to alter an
image but suffer from severe contrast reduction (e.g., 5-10×
loss) and/or visual ringing artifacts (i.e., unwanted inten-
sity oscillations). Somemethods perform spectral remapping
when down-sampling so as to preserve the appearance of
high-frequency structured patterns [13], but such a solution
is not effective to prevent motion blur.

3 Motion blur

3.1 Frequency response

Linear motion blur occurs due to relative translation at con-
stant speed between an object and a sensor, where the object
can be images shownon computer screens or real-life objects,
and the sensor can be a camera or a human. Motion blur can
be modeled in the spatial domain as a convolution with a box
kernel [6,14,19,28]. This means that the motion stage of the
image formation from Equation 1 is represented using a box
kernel K :

Iblur = M(D(I )) = K ⊗ D(I ). (3)

3.2 Snapping

Regardless of the pre-filtering methodology, the zeros in the
frequency response of the motion blur kernel will remove

certain frequencies present in the original content. A box
kernel of size k in the spatial domain is a rectangular function:

f (x) =
{
1/k if x ∈ [0, k]
0 otherwise

(4)

Its modulation transfer function (MTF) is a sinc function:

MTF( f ) = |F(X)| = sinc(kX) = sin kπX

kπX
(5)

with zeros points located at Zk = {±1/k,±2/k,±3/k, . . . }
(see blue curve in Fig. 2). This means that in any pre-filtered
image, frequencies in Zk are killed by the kernel. For exam-
ple, Fig. 3 (right) illustrates a target image of a single vertical
gray bar of width 42 pixels on a solid red background (top
row). The blurred image represents the appearance when
undergoing motion blur induced by a kernel of size 17 pixels
(second row). Pre-filtering the target image for a motion blur
kernel of size 17 creates thepre-filtered image [23] (third row)
which uponmotion blur results in a blurred pre-filtered image
exhibiting visual artifacts (Fig. 3 fourth row). The artifacts
inside and outside the gray bar are caused by the frequencies
removed by the zeros in the kernel’s frequency response (see
Fig. 2). The strength of the artifacts increases with number
of bars and higher contrast demands.

The target image can also be seen as a rectangular function
but with a different width T , and its MTF has zero ampli-
tude at ZT ∈ {±1/T ,±2/T ,±3/T , . . . }. If T = nk where
n ∈ N

+, then we have ZT ⊇ Zk , which means that the fre-
quencies killed by the kernel does not exist in the target. This
implies that the image content can avoid having energy on Zk .
Figure 3 (left) shows an experiment where we alter the width
of the vertical gray bar to be an integer multiple of 17 pixels
(the blur kernel size). Thus, the bar width in 34 pixels (top
row) and the zeros of the kernel’s frequency response align
well with the zeros of the vertical bar’s frequency response.
Thus, there is no energy in the content at the frequencies
canceled by the motion blur kernel. Therefore, pre-filtering
does not introduce ringing artifacts (bottom row, left). The
images in the right column are not a multiple of 17 hence
show ringing artifacts (bottom row, right). Thus, the image
formation process snaps together whenever bar width is an
integer multiple of the blur kernel size. A similar solution
applies to more complex content as well. For example, for a
case of multiple bars we must consider the background spac-
ingwhich should also be an integermultiple of the blur kernel
size. Further, the distance to the left and right boundaries of
the image must also be an integer multiple of the blur kernel
size (or very large as compared to the size of the text).
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Fig. 2 Frequency responseLeft: Fourier spectra of a motion blur kernel
(box filter) of size K = 17 (blue) and of one row of an image with a
single bar (Fig. 3) of width 34 in the middle (orange). Bar width is a
multiple of K , resulting in the zeros lining up and thus reduced artifacts

in the blurred pre-filtered image. Right: same blur kernel but imagewith
bar width of 42 (not a multiple of K ). The kernel removes frequencies
indicated by red dashed lines, which leads to visual artifacts

Fig. 3 Snapping A comparison of target images (top row), motion
blurred target (2nd row), pre-filtered target (3rd row), and blurred pre-
filtered target (4th row). See text for details

4 Content design

Our algorithm for designing alphanumeric content suitable
for pre-filtering consists of three stages: vectorization, snap-
ping, and interpolation. It supports solid-colored symbols by
applying our methodology separately to each color channel.
The ultimate goal is to produce an image Iwarp = W (I ) to
replace the image I so that its Fourier spectra does not have
energy in the frequencies killed by the kernel K . The result-
ing image Iwarp goes into the pre-filtering step described in
Sect. 5.

4.1 Vectorization

In a first step, we convert the alphanumeric symbols into
a vectorized format and divide each of them into multiple
horizontal slabs. In our method, the symbols to be displayed
can be represented using one of the following options:

– image vectorization (Xia et al. [35], Nehab et al. [24]);
– dot-matrix versions of the symbols [33]; or,
– splines of TrueType font glyphs, preferably sans-serif.

Note that the image vectorization approach supports any
symbol besides alphanumeric characters, such as graphical
symbols, road sign symbols, and so forth.

To divide a symbol into horizontal slabs, we use a ver-
tical sweep line algorithm [31]. We define an “event” on
the boundary of a symbol to be whenever its defining poly-
line/polycurve has a corner/kink. We place two horizontal
slab lines tangent to the top and bottomof the symbol, respec-
tively. Then, we sweep a horizontal line from top to bottom
and whenever an event of the vector format is hit, a new
horizontal slab line is added. The result is a partitioning of
the letter into horizontal slabs, where each slab may have
a different height (Fig. 4a). Depending on how the symbol
was rasterized some special treatment might be necessary.
For example, with a dot-matrix pattern we can either (i) sur-
round the pattern with a polyline and partition as described in
the previous paragraph, or (ii) use each row of the dot-matrix
pattern as a horizontal slab (Fig. 4d). Afterward, we replace
each foreground segment of a horizontal slab with blocks of
size K (Fig. 4b,e). Further, for the image vectorization case,

Fig. 4 Illustration of our method a Letters C and D rasterized from
a sans-serif font. They are divided into horizontal slabs (horizontal
dashed lines). b Letters C and D built using blocks of width K. c The
quadrilateral representation for the foreground segments of the letters. d
Dot-matrix representation of letters V and B. e The result when K = N .
f The result when K = 1.3N
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we further tighten the quadrilateral around each foreground
segment to the original content but ensure C0 continuity with
the foreground segment above and beneath it (Fig. 4c)—this
fitment is not necessary with dot-matrix versions because in
this case the original content is formed by rectilinear blocks.

We point out that letters require at least five horizontal
slabs since such is sufficient to distinguish the letters with
20/20 vision—this stems from the Snellen optotypes that use
at least 5 lines of one arc-minute each per letter.

4.2 Snapping

4.2.1 Definition: native kernel size

We define the native kernel size N to be the width of the
“stroke” used to draw a symbol. For dot-matrix symbols,
this is the size in pixels of one dot-matrix square. For the
vectorized or spline-based font, it is the horizontal width of
each foreground segment.

It is useful to express motion blur as a multiple of the
native kernel size N of a symbol. For example, given amotion
blur kernel size K that is larger than N , two options are to
enlarge the symbol or to increase the symbol weight (e.g.,
make the symbol bold face) so as to reduce the relative effect
of motion blur. This entails enlarging N and/or changing the
number of segments per horizontal slab of the letter. How-
ever, the most extreme case is when the symbol size is to be
kept constant (or is already at its maximum desired size) and
the symbol is already at its maximum weight. At this point
however, a minimum symbol topology must be maintained.
At least for English letters, while more segments might be
desired, a letter needs at least 3 segments per horizontal slab
(e.g., the middle horizontal row of an “O” must at least be
a foreground–background–foreground segment sequence).
Dot-matrix patterns and Snellen optotypes as small as 3x5
pixels (but more often 5x5 or 5x7) can produce distinct repre-
sentations for 26 letters and some alphanumerical symbols as
well. In this extreme case, the native kernel size of the letter
can be no more than 1/3 of the letter width. Altogether, using
N enables us to understand the effect of themotion blur inde-
pendent of the absolute values but rather in relation to the ratio
of the sizes of the native kernel and the motion blur kernel.

4.2.2 Snapping algorithm

The vectorization and native kernel size are used to alter the
symbol so that the resulting image W (I ) does not have fre-
quencies that would be removed bymotion blur. Thewarping
method is divided into two strategies:

– Fully Snappy: visual artifacts are eliminated because the
spacing between and among foreground and background
elements are all integer multiples of K ; and

– ForegroundSnappy: somevisual artifacts remain because
only the width of the foreground elements are an integer
multiple of K .

In the fully snappy configuration, the native kernel size
N is changed to match K . This approach is straightforward
for dot-matrix symbols but additional treatment is potentially
needed for vectorized fonts. For vectorized fonts, while mak-
ing N = K will causes the foreground to “snap” into place,
the space in between foreground segments of the symbol (i.e.,
the white-space or background) might not be a multiple of
K . Thus, the location of the surrounding foreground pixels
will need to be altered so that the background is also snappy.
This warping must be done while keeping at least C0 conti-
nuity (as well as foreground segments also being a multiple
of K ). Initially, we performed this alteration using a mesh-
warping scheme applied to the vertices of the vector-based
representation of each symbol. But, this led to several prob-
lematic mesh distortion and symbol recognizability issues.
For image-vectorized symbols, we instead rasterize all hori-
zontal slabs onto a grid of cells, each cell of width N . Then,
the grid cells mostly occupied by foreground segments are
considered foreground grid cells and the rest are the back-
ground grid cells (Fig. 4b).

For the foreground-snappy configuration, we only adjust
thewidth of the foreground segments. The Snellen optotypes,
as mentioned previously, inform us that at least 3x5 segments
are needed in order to distinguish between 26 English letters
and a set of numeric and punctuation symbols. In this case,
without making the letter any wider, we can scale each fore-
ground segment to be close, but not equal, to 1.5N (i.e., the
two foreground segments sum to almost 3N , leaving at least
a small sliver of background—see Fig. 4f). For vectorized
letters, this configuration also works but the maximum mul-
tiple of N that can be achieved depends on the ratio of the
native kernel size to the entire letter width. A foreground-
snappy configuration is useful because it does not alter the
width of the letter. However, it is limited to blur kernel sizes
K less than 1.5N , in general.

In summary, the content is typically designed based on the
relative size between the kernel and the targeted image:

1. If the kernel size is large, then we adopt a dot-matrix
design (Fig. 4d). Fully snappy design (Fig. 4e) is used if
K = N , otherwise (K > N ) one has to use a foreground-
snappy design (Fig. 4f).

2. If the kernel size is small enough, thenwe use a vectorized
representation of the letter (Fig. 4a) with some N ≥ K .
Fully snappy design is feasible (Fig. 4b), and we also
produce a trapezoidal representation of the original shape
(Fig. 4c) for the next optional step.
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4.3 Optional interpolation

We support an optional geometry-based interpolation
between the content designed for pre-filtering W (I ) and the
original symbol I . The aforementioned partitioning of the
symbol into horizontal slabs, and each slab into quads, can be
used to define a correspondence between the pre-filtered and
the original content. The parameterized version of symbol
warping W (I , t) interpolates each quad from its trapezoidal
form (at interpolation parameter value t = 0, Fig. 4c) to
its fully snappy form (at t = 1, Fig. 4b). Presumably, the 2
quadrilaterals have their parallel edges collinear. The inter-
polation is then straightforward, interpolating 4 corners of
the quadrilaterals respectively.

There is a perceptual dissimilarity in appearance of every
letter after being warped, and we notice that such dissimi-
larity varies by letter. For example, the appearance of letter
E does not change much after warping, but letters G and K
change drastically (see Fig. 8). Such dissimilarity is subject
to human perception. Rather than making subjective eval-
uations, we use the perceptual distance measure of Zhang
et al. [37]. Their deep learning-based method is trained to
provide a perceptual distance measure between two images.
Their system can be used to guide a perceptually linear
interpolation between the original and pre-filtered form of
each symbol. This means we can choose a threshold level of
perceptual distance and obtain a suitable per symbol interpo-
lation. For example, the letter E is straightforward to modify
for good pre-filtering, while K is harder. For various inter-
polant t values, we compute the perceptual distance between
non-warped letterW (I , 0) andW (I , t). Shown in Fig. 5, dis-
tance is low for all variants of E but increasingly higher for
K as t grows. Thus we can pick a single global maximum

Fig. 5 Perceptual dissimilarity for different letters at various inter-
polants. Letters with mostly horizontal/vertical straight strokes do not
differ much after warped, but others (curvy/diagonal strokes) have a
higher difference. With a chosen level of dissimilarity (e.g., the gray
dashed line at perceptual difference of 0.12), one can find the interpolant
for individual letters so that they are at the same level of perceptual sim-
ilarity to the original design (0.3 for K, 0.4 for G, 0.7 for J, and 1.0 for
E, since the gray line is above it for all interpolants). See Fig. 12 for an
example

distance threshold to select a set of letters that perceptually
deviate about the same amount from the original.

5 Pre-filtering and display

5.1 Algorithm

We pre-filter the snappy content so that when it undergoes
motion blur the result has a relatively sharp appearance with
few or no visual artifacts. The pre-filter minimization finds
an F that solves

Ipre = P(Iwarp) = argmin
F

‖K ⊗ F − Iwarp‖2,

where Iwarp = W (I , t) is the result from Sect. 4 and Ipre is
the resulting pre-filtered image.While there are multiple pre-
filtering options,we choose themethod ofMontalto et al. [23]
because it centers on producing a relatively high-contrast
result. However, rather than using a Zernike polynomial-
based PSF, we use a box filter one. Nonetheless, their total
variation-based solution can still produce pre-filtered pat-
terns with a controlled maximum relative total variation.
The resulting pixel values are constrained to the [0, 1] range
and resulting image exhibits higher contrast as compared to
Wiener filtering or inverse filtering. Examples of this pre-
filtering content are shown in Fig. 10.

Montalto et al.’s pre-filtering method, as well as others,
requires reserving intensity value ranges above and beneath
the maximum and minimum pixel values to be used by the
method. Based on recommendations by Montalto et al. [23],
we use 0.2 as theminimumbackground pixel value and 0.8 as
the maximum foreground pixel value. For 8-bit pixel values,
this range corresponds to [51, 204].

5.2 Ringing vs. contrast tuning

As mentioned above, Montalto et al.’s method allows us to
trade off contrast for the addition of total variation (which
appears as ringing artifacts) using a single scalar parame-
ter. A small parameter value means less ringing but also
less contrast; a large value results in more contrast at the
cost of additional ringing. Since our method helps with
reducing the unwanted effects of ringing artifacts, we can
essentially achieve an improved result with less visual arti-
facts. In Sect. 6, we explore the impact of this parameter (θ )
on the results of our preemptive technique.

5.3 Display calibration

For digital display usage, we must ensure the snappy content
is displayed with a linear intensity ramp. We computed Ipre
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Fig. 6 Left Letter P pre-filtered without warping, with calibrated color
(top left) and uncalibrated color (top right). The simulated blur of those
images is placed below them. For the uncalibrated image, color intensity
is not linearly mapped to the emitted irradiance, hence color inaccuracy
in the blurred result. Right The same layout but using snappy images.
The uncalibrated image, due to its usage of less color tones, does not
suffer much from color nonlinearity

in the intention that it should be used as K ⊗ Ipre. But in
reality, convolution happens after images are displayed, after
pixel values I are mapped to irradiance values D(I ). Usually
for consumer displays, a power function can describe the
monitor’s irradiance mapping:

Idisp = D(Ipre) = AI γ
pre

where popular γ values vary from1.8 to 2.2 and A normalizes
the dynamic range. To keep the linearity to go from Ipre to
Idisp = D(Ipre), we apply the inverse irradiance mapping
immediately after obtaining Ipre:

I ′
pre = D−1(Ipre) = (Ipre/A)1/γ ,

and display I ′
pre instead. Figure 6 shows the result of pre-

filtered images observed with blurring, using calibrated and
uncalibrated colors, and the uncalibrated images worsens the
perceived artifact.

6 Experiments

We have used our system to create multiple simulated and
real-world experiments shown in this section and in supple-
mentarymaterial. The system is implemented in C++/Python
and generates all results at near interactive speeds on a 2.9
GHz Intel i7 PC with 16 GB of RAM. For real-world cap-
tures, we use a 25-inch 60Hz HD display and a Canon EOS
Rebel T6i camera. For our user study, we use a 240 Hz
Full HD (1920 × 1080) 25-inch LCD display (the higher
FPS enables displaying faster motions). The compute time,
using a prototype CPU-only implementation, to automati-
cally generate a solution for a typical symbol is within 200
milliseconds—this includes vectorizing the font and snap-
ping (20ms), and pre-filtering (180 ms). The display/camera

radiometric calibration was done only once for all images in
this paper.

Figure 7 shows simulated results for two letters (E and K),
for various motion blur sizes (K = 20, 25, 35), including
fully snappy (left) and foreground-snappy (right) designs.
These letters were chosen because they represent two cat-
egories of symbols: easily snappable (E) and triangular
shapes (K). The latter requires one to trade off shape similar-
ity for robustness to motion blur. For each letter, we compute
a vectorized version (i.e., dot-matrix design in this case), a
pre-filtered version, and the blurred pre-filtered result (i.e.,
what “a person would see”). The letter E (as well as other let-
ters like T, L, I and H) is straightforward to make snappy and
thus its warped version has high similarity to the original one.
The letter K (aswell as R,N,M, and others) ismore challeng-
ing because of the background that must appear within the
general confines of the letter. The foreground-snappy solu-
tions do not need to be as wide, which is particularly useful
for the smaller kernel sizes, although at the cost of some
ringing artifacts.

Our approach handles colored symbols by performing the
content design of Sect. 4 and computing a pre-filtered solu-
tion separately for each color channels. Figure 8 illustrates
this by showing adjacent letters against a background, all
with different colors.

Fig. 7 Blur size variation Letters E and K generated using a 3× 5 dot-
matrix design for K = 20, 25, and 35 pixels (1st and 3rd rows) for fully
snapped (left) and foreground-snapped (right) designs. Letters blurred
after pre-filtering (2nd and 4th rows)

Fig. 8 Colored letters The original letters (left), when blurred after pre-
filtering (second row), exhibit some ringing artifacts. The snapped ones
(right) reduce the occurrence of such artifacts
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We can also optionally interpolate between our snappy
content design and the initial vectorized representation of
each letter. Figure 12b shows the letters “TVC” at different
interpolation states. At close to original (top row), the con-
tent exhibits ringing artifacts. Near the fully snappy solution
(bottom row) the artifacts are less noticeable. By choosing a
perceptual distance limit of 0.3, we can find the interpolation
value for each symbol that produces an output close to but
not more than 0.3 perceptual distance from the original. The
�P values, shown on left side of Fig. 12, are the perceptual
distance of the letters with respect to the original sans-serif
fonts according to Zhang et al.’s metric [37].

As described in Sect. 5.2, we can alter the trade-off
between ringing artifacts and contrast. A close inspection
of Fig. 9 reveals that the pre-filtered images exhibit progres-
sively more ringing artifacts as the value of the parameter
θ increases, while their corresponding blurred pre-filtered
counterparts become progressively sharper. The example
shown in Figs. 1b and 1d were obtained using θ = 1000.

Figure 10 compares our method with various alternatives.
In particular, we show the naive appearance of the motion
blurred word “FAST” considering K = 15 (Fig. 10a). Fig-
ure 10b shows the result obtainedwhen enhancing the content
using the Cornsweet illusion [7], where contrast on the edges
are increased. The letters still look blurry after being con-
volved with the kernel. Figure 10c shows the result of using
a Wiener pre-filtering, which achieves better sharpness after
blurred, but exhibit artifacts. Our approach (Fig. 10d) avoids
ringing artifacts and blurry edges, at the expense of the
appearance of curvy and triangular shaped fonts.

Although post-processing methods work in a different
stage, we show the results of deconvolution methods to

Fig. 9 Road sign variants Road sign shown in Fig. 1d with different θ
values used for pre-filtering [23]

Fig. 10 Comparison Word “FAST” in Arial font-face, preprocessed
with different approaches (left) and blurred by the same kernel with
K = 15pixels (right).aOriginal letters.bPreprocessedwithCornsweet
illusion. c Pre-filtered by Wiener deconvolution. d Our method

Fig. 11 Deconvolution Top: Part of a blurry photograph. Middle: top
image deconvolved by Lucy–Richardson using post-processing. Bot-
tom: The same image deconvolved using Fortunato’s method [12]

remove motion blur in Fig. 11. The top image is a part of
a camera-captured image which suffers from motion blur.
Two methods, Lucy–Richardson (LR) deconvolution [21]
and Fortunato et al. [12] are used. The deconvolution does
improve readability but leaves visual ringing artifacts and is
done digitally after capture—thus, it is not preemptive like
our method (see Fig. 9).

Figures 12, 13 and 14 show several examples captured in
the real world, using a video camera. Figure 12 shows a word
moving at 1px per frame (≈ 1.6cm / second) in front a video
camera capturing at 4 fps. Figure 12a shows the pre-filtered
content moving on a display. Figure 12b is what the camera
captures if the display–camera system is not radiometrically
calibrated. In contrast, Fig. 12c is the improved result after
radiometric calibration. The first four rows correspond to
perceptual distances of 0.1, 0.2, 0.3, and 0.4, respectively.
The last row corresponds to a fully snappy design. We also
included the original typeface at the top row as a compari-
son againstMontalto’smethod [23], i.e., pre-filteringwithout
altering the shape first. Both the uncalibrated (b) and cali-
brated (c) colors show that the original design exhibits visual
artifacts, while the snappy letters minimized the artifacts.
Our user study in Sect. 7 shows that the users perceive more
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Fig. 12 Geometric interpolation guided by perceptual distance and
real-world calibration: Letters “TVC” designed from Arial fonts, pre-
filtered and blurred using the same kernel. The original font-face is at
the top row, and the following rows at different perceptual distances
to the original design (�P values). a Pre-filtered letters for K = 15

pixels, displayed on a monitor, and moving 1 pixel/frame at increasing
perceptual distances from original. b Simulated blurred result of (a). c
Photograph of a without radiometric calibration, with exposure time of
0.25 seconds, during which the camera integrates 15 video frames. d
Same with c but with radiometric calibration

Fig. 13 Real-world experiment for varying motion speeds. (Left) Pre-filtered letters rendered to around 100 pixels wide and made snappy for
K = 15 pixels (top) and 21 pixels (bottom). (Right) Captured by a camera with corresponding shutter time

Fig. 14 Real-world experiment with printed content. (Left) static shot
of the scene. Letters “TOYO TIRES” and “20” are made snappy and
pre-filtered, printed and fixed on a toy car, facing toward the camera.
(Middle) a frame from the captured video (around 0:50 in the sup-

plementary video) while the car is in motion. (Right) close-up views.
Top: snappy text under motion blur; middle: pre-filtered text under the
same motion blur; bottom: number “20” of original design and blurred
pre-filtered version

artifacts on the non-snappy letters, to the point that it affects
reading.

Figure 13 has frames from a recorded video of a phrase
moving about the screen at two different speeds, correspond-
ing to blur kernel sizes of K = 15 and K = 21 pixels,
respectively. As the text moves and changes speed, a new
pre-filtered design is computed and shown (Fig. 13(left)).

Regardless, the captured blurred pre-filtered appearances are
nearly sharp and roughly similar (Fig. 13(right)).

Figure 14 shows howourmethodworks on printed content
(see supplementary video). We recorded a video of a toy car
moving down a slope due to gravity. The camera is facing the
car and is tilted such that it is horizontally aligned with the
slope. The text on the car suffers from motion blur due to the
motionof the car. Thenwecomputed snapped andpre-filtered
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text imagery, printed and fixed onto the car: “20” on the side
of the car, close to the existing text “20” that comes with the
toy car; “TOYO TIRES” on top, as an attempt to reproduce
the text above the rear tire. All the content on the car suffers
from the samemotion blur, but the pre-filtered images appear
sharp. The car’s motion is at constant acceleration instead of
constant speed, which we do not account for. Please see the
video in supplementary materials.

We recommend the readers to see the other part of the sup-
plementary video, which is similar to what the participants
saw in our user study. The clip has theword “PACE” shown in
3 different variants: original design, non-snappy pre-filtered,
and snappy pre-filtered. The reader is encouraged to pause at
any frame of the video and verify that it has sharp content,
but the original content (without pre-filtering) appears blurry
once the video starts to play and eye-tracking is established.
The video playback rate should be smooth and constant.

7 User study

7.1 Human perception of electronic displays

Upon perceiving an object in motion, human eyes can estab-
lish motion tracking to the object within 0.1 seconds [9].
While the eyes move at the same speed as the object, human
eye motion is continuous while the monitor refreshes the
screen every certain period of time. For example, for a moni-
tor of 60Hz refresh rate, once the human eye motion tracking
is established, then within any 16ms (≈ 1s/60) of time inter-
val between 2 monitor refreshes, the human eyes move but
the content on the monitor stays still. Assuming that the con-
tent moves K pixels every frame (as many rolling banners
do), then this would result in a perceived motion blur of size
K in the human eye. This is a perfect scenario where our
method can be applied.

7.2 Setup

In our user study, 22 volunteers observed 36 randomly
ordered pairs of moving images on a 25-inch 240 Hz dis-
play located about 25 inches in front of them (Fig. 1a). The
application updates the content at 60 Hz, in order to repli-
cate the behavior of regular 60Hz displays. The task was
to report the perceived level of sharpness/blurriness and of
artifacts in the bottom moving image compared to the top
moving image. The top moving image was always the base-
line (i.e., naively rendered content, snappy or non-snappy)
and the bottom image was either:

– control images: non-pre-filtered image, snappy or non-
snappy, or

Table 1 Choices we gave to users to respond on sharpness/blurriness
and artifact strength

Sharpness increase Artifact strength

Level Description Level Description

-2 Strongly blurrier 0 None

-1 Slightly blurrier 1 Mild

0 Similar 2 Medium

1 Slightly sharper 3 Strong

2 Strongly sharper 4 Severe

– experimental images: pre-filtered image, same snappi-
ness as the top image.

The image content was vertical bars or one letter (from the set
E, C, N, G, P) andmoved at one of a randomly selected speed
level: low (i.e., slow enough that motion blur was barely
present), high (i.e., as fast as possible but not disturbing) and
medium (i.e., the midway speed).

The users report their perceived sharpness/blurriness
increase/decrease and artifact strength with one of the 5
choices shown in Table 1. We designed 5 levels of increased
sharpness that the users can choose from, and map them to a
scale from – 2 to + 2. The level of artifacts is described from
“None” (not perceivable) to “Severe” (interferes the viewing
experience), and quantified from 0 to 4. We collected users’
feedback and group them by the image content (letters or
vertical bars) and motion speed.

7.3 Analysis

Our study shows that for all the test letters and vertical bars
at medium and high speeds, our approach provided increased
sharpness as compared to the corresponding control images
(see Table 2 and Fig. 15 top). Our approach also exhibits
reduced artifacts at medium and high speeds as compared
to the non-snappy pre-filtered content, at a statistical sig-
nificance of p-value less than 0.05 (see Table 3 and Fig.
15 bottom). In contrast, the non-snappy pre-filtered con-
tent only sometimes produced increased sharpness (see less
occurrence of p < 0.05 in Table 2) and always displayed
noticeable visual artifacts at medium and high speeds.

A few exceptions to the superior performance of our
method occurred at low speed for some content. In partic-
ular, the snappy pre-filtered letters E and N were reported
(with statistical significance) to be slightly more blurry than
the original versions. Upon close inspection, each had 1-
2 users that provided un-intuitive responses (e.g., perhaps
due to fatigue or confusion). Removing those user responses
would result in ourmethod also demonstrate increased sharp-
ness in those cases.
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Table 2 Statistics of increased
sharpness in the experimental
images and p-values compared
to the corresponding control
images

Content Snappy Low speed Medium speed High speed

Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value

Bars Y 1.36 ± 1.00 0.001 1.50 ± 0.70 0.000 1.40 ± 0.91 0.001

N 0.60 ± 0.91 0.023 0.30 ± 1.29 0.123 0.30 ± 1.35 0.234

Letter C Y 1.14 ± 0.69 0.008 1.57 ± 0.53 0.000 1.86 ± 0.38 0.000

N 0.71 ± 1.11 0.086 0.71 ± 1.25 0.055 1.28 ± 0.49 0.001

Letter E Y 0.11 ± 0.60 0.500 1.11 ± 0.11 0.001 1.44 ± 0.53 0.000

N 0.44 ± 0.73 0.097 0.67 ± 0.87 0.022 1.11 ± 0.60 0.000

Letter G Y 1.00 ± 0.50 0.007 1.44 ± 0.73 0.002 1.78 ± 0.44 0.000

N 0.89 ± 1.05 0.069 1.22 ± 0.83 0.001 1.00 ± 1.50 0.085

Letter N Y 1.00 ± 1.00 0.140 1.86 ± 0.38 0.000 1.86 ± 0.38 0.000

N 1.14 ± 0.38 0.000 1.57 ± 0.53 0.000 1.29 ± 0.49 0.000

Letter P Y 0.75 ± 0.89 0.021 1.63 ± 0.52 0.001 1.63 ± 0.52 0.000

N 0.25 ± 0.89 0.226 0.88 ± 0.99 0.025 1.13 ± 0.99 0.009

The bold values are p-values less than 0.05. It shows that pre-filtering does improve perceived sharpness in
both snappy (Y) and non-snappy (N) content, and snappy ones have a few more scenarios with significance
(p < 0.05) than non-snappy ones. See top row of Fig. 15 for plotted data of snappy content

Fig. 15 Data plot of Tables 2 (top) and 3 (bottom)

Table 3 Artifact level Content Snappy Low speed Medium speed High speed

Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value

Bars Y 1.07 ± 0.79 0.406 1.43 ± 0.90 0.012 2.05 ± 1.09 0.035

N 1.11 ± 0.53 2.11 ± 0.87 2.54 ± 0.96

Letter C Y 1.43 ± 0.53 0.145 1.71 ± 0.76 0.002 1.43 ± 0.79 0.000

N 1.86 ± 1.07 3.50 ± 0.50 4.00 ± 0.00

Letter E Y 1.44 ± 1.01 0.500 2.11 ± 0.60 0.001 2.00 ± 1.22 0.000

N 1.44 ± 0.52 2.67 ± 0.71 2.89 ± 0.60

Letter G Y 2.00 ± 0.87 0.297 2.00 ± 1.00 0.002 2.50 ± 1.27 0.008

123



Z. Yu et al.

Table 3 continued Content Snappy Low speed Medium speed High speed

Mean ± SD p-value Mean ± SD p-value Mean ± SD p-value

N 2.11 ± 1.05 3.44 ± 0.73 3.78 ± 0.44

Letter N Y 1.86 ± 0.69 0.178 1.86 ± 0.69 0.003 1.86 ± 0.90 0.002

N 2.00 ± 0.82 3.43 ± 0.53 3.85 ± 0.38

Letter P Y 1.50 ± 0.53 0.299 2.00 ± 0.53 0.003 2.13 ± 1.25 0.018

N 1.38 ± 0.52 3.13 ± 1.13 3.50 ± 0.93

The bold values are p-values less than 0.05. Both snappy (Y) and non-snappy images (N) are pre-filtered and
their appearance under motion exhibits artifacts perceived by human. Snappy text produces significant less
artifacts (p < 0.05) than non-snappy ones on medium and high speeds. See bottom row of Fig. 15 for plotted
data

8 Conclusions, limitations, and future work

We have presented a preemptive method to preserve contrast
and sharpness of text subjected tomotion blur. Our technique
prevents information loss by pre-filtering the target text in
such a way that the resulting frequency content has no rele-
vant information at the frequencies removed by the blur. We
demonstrated the effectiveness of our technique with simu-
lated and real-world experiments and a user study.

As limitations, our current approach cannot handle smooth
gradients or highly texturedpatterns.Moreover, for very large
kernel sizes, our mechanism resorts to creating very wide
symbols which might not be desirable.

As future work, first we would like to dynamically adjust
the parameters of our method in response to changes in
motion. Second, we plan to support general image content by
potentially also using rasterization and dithering techniques.
Finally, we wish to create content robust to a continuous
range of motion blur kernel size and thus alleviate the need
for accurate motion blur prediction.

Funding This work is funded by CNPq-Brazil (312975/2018-0),
CAPES Finance Code 001, NSF #1816514, NSF #2107096, and NSF
#1835739.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

References
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