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Abstract Quick creation of 3D character animations is an
important task in game design, simulations, forensic ani-
mation, education, training, and more. We present a frame-
work for creating 3D animated characters using a simple
sketching interface coupled with a large, unannotated mo-
tion database that is used to find the appropriate motion se-
quences corresponding to the input sketches. Contrary to
the previous work that deals with static sketches, our in-
put sketches can be enhanced by motion and rotation curves
that improve matching in the context of the existing anima-
tion sequences. Our framework uses animated sequences as
the basic building blocks of the final animated scenes, and
allows for various operations with them such as trimming,
resampling, or connecting by use of blending and interpo-
lation. A database of significant and unique poses, together
with a two-pass search running on the GPU, allows for in-
teractive matching even for large amounts of poses in a tem-
plate database. The system provides intuitive interfaces, an
immediate feedback, and poses very small requirements on
the user. A user study showed that the system can be used
by novice users with no animation experience or artistic tal-
ent, as well as by users with an animation background. Both
groups were able to create animated scenes consisting of
complex and varied actions in less than 20 minutes.
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1 Introduction

Animating a 3D character is a challenging task that has been
approached from three main directions. In artistic 3D ani-
mation, the animator uses a variety of techniques, such as
keyframe animation, parameter curve editing, inverse and
forward kinematics (IK/FK), and multiple targets morphing
to craft the character poses and motions. In data-driven an-
imation (e.g., motion capture), live motion is recorded di-
rectly from an actor, digitized, and then mapped onto a 3D
character. In procedural animation, a computational model
is used to create and control the motion, e.g., the animator
sets conditions for some type of physical or behavioral sim-
ulation.

Although existing 3D animation systems provide pow-
erful tools that are appropriate for precise character posing
and realistic motion, they are expensive, and have a steep
learning curve. The goal of rapidly posing 3D articulated
figures, although addressed by previous work, is not fully
solved. A good inspiration is traditional 2D animation where
the experienced animator sketches the main character poses
(keyframes) and the rough character movements using pen-
cil and paper and the assistant animator draws the missing
in-betweens.

Using 2D sketching to create 3D animation allows the
user to take advantage of the benefits of 2D modeling: intu-
itiveness, fast pose definition, and quick production of sim-
ple, first-pass animated scenes. This paper is not the first to
recognize the potential of sketches for 3D animation. The
problem has already been addressed in computer graphics
by various researchers [5, 19, 21, 22, 34]. However, most of
the previous work uses 2D annotated sketches and matches
each sketch with a single pose, either by extracting the 3D
pose directly from the sketch [19] or by matching and ob-
taining a single pose from an existing database [34].
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Fig. 1 The user sketches poses
with additional information
about the desired motion of
some joints (a). The system
finds the best matching
sequences in a large motion
database (b) and the user defines
if sequence blocks should be
interpolated or blended partially
together (c), which results in the
final animation (d)

Extracting motion sequences, rather than individual
poses, from hand-drawn sketches could be an effective
method to create simple, first-pass 3D character animations
because it provides frame-to-frame coherence and motion
continuity. The key observation of our approach is that an
animated scene can be effectively built by combining the se-
quences from the database containing poses corresponding
to the input sketches. In other words, the user input 2D pose
is used within the context of an existing animation. For in-
stance, when an animator sketches the walk “contact” pose,
it is very likely that the intention is to animate a walking
motion. With our approach, the contact pose sketched by
the animator is considered to be part of a walking sequence.
Therefore, the animator has the ability to select the identi-
fied walking sequence, or part of it, and is relieved of the
task of drawing additional walking positions. However, in
order to contextualize the pose within the motion, additional
information should be provided. We use simple motion and
rotation curve sketches to define the motion. In this way, our
approach is an extension of the previous work, because it
also allows for animation using single poses.

We introduce a framework for quick creation of first-
pass 3D character animations from 2D sketches, as shown
in Fig. 1. We use a simple and intuitive 2D sketching sys-
tem. Once the sketch is drawn, it can be enhanced by 2D
strokes that define motion and rotation of joints. The recon-
structed 2D pose with specified motion curves is matched
to a large database of motion data, and the corresponding
poses are found within the animated sequences that are used
as the basic building blocks of the final animated scene. The
user can select from a set of identified sequences, define the
beginning and the end of each sequence, and very quickly
compose the resulting animated scene by trimming, blend-
ing, or interpolating the sequences. The main contributions
of our work include:

1. using sequences from the motion database as basic ani-
mation building blocks with the detected pose considered
in the context of the animation;

2. a novel intuitive sketching interface that allows for a
quick definition of the character and its movements
through strokes defining joint motion and rotation; and

3. efficient matching of character poses with animation
curves from a large, unannotated database of motion se-
quences running in parallel on the GPU.

2 Previous work

Using sketches as 2D input to generate full 3D models
has been successfully applied in various areas of computer
graphics. One of the first attempts was a sketch-based mod-
eling system SKETCH [36] and Teddy [10] that used in-
put strokes for mesh creation. These works have been fol-
lowed by many, such as Gingold et al. [7], who created 3D
freeform surfaces from 2D sketches, or Rivers et al. [27],
who presented an approach for the creation of 3D models
from silhouettes. Recently, Lee et al. [17] presented a sys-
tem where the user draws a single sketch, and an improved
shadow image is derived automatically. They can generate
objects with correct proportions and spacing, and it could be
applied for 2D character drawing. Another area where 2D
sketching has been successfully used is for facial expres-
sions by [16] and [29]. Ulicny et al. [32] used sketching for
crowds. Thorne et al. [31] used a predefined vocabulary of
18 motions to create high level control for sketching a 3D
animation.

Sketching as an input for articulated characters has also
been suggested. An approach that is closely related to ours
is the work of Davis et al. [5], who created a sketch-based
system where the user draws a 2D stick model with anno-
tated joints and bones, and the system reconstructs possible
3D poses to create the final animation. This system, how-
ever, uses stick figures as the input, whereas ours uses sim-
ple freehand strokes that are more intuitive to many users.
Mao et al. [21] expanded this approach by online joint and
bone recognition during the sketch procedure. They applied
a projection method to the numerical solution by consider-
ing the joint range of motion and joint grouping. Annotated
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poses were used to create 3D animated character meshes
in [22]. Recently, physics has been used to enhance con-
trol of animated characters in [24]. Hecker et al. [8] pre-
sented a key framing and posing system for animating char-
acters with unknown morphologies that uses an inverse kine-
matics solver to animate the character. Recently, Lo and
Zwicker [20] presented a system that allows animation of
characters by sketching motion trajectory combined with a
search in motion database. However, their approach does not
allow creation of the pose that must be already created.

The aforementioned methods provided easy ways for
3D stick-figure reconstruction and creation of animation.
The problem with these forward approaches is that they
are prone to generating false positives; thus the user is
typically asked to correct the output. One preferred solu-
tion is by using databases of motion-capture data. Kovar
et al. [14] introduced motion graphs that were able to cre-
ate motions following desired paths from motion-capture
data. Arikan et al. [1] used cut and paste of motion-capture
data to generate natural looking animations. Another appli-
cation called MotionMaster [18] requires two user inputs:
labeled sketch with joint locations and a trajectory (mo-
tion curve). This system can find and refine a 3D Kung-Fu
motion-capture sequence. Since MotionMaster required de-
tailed initial sketches, Jianyuan et al. [23] introduced an eas-
ier approach that quickly creates natural motion by gestures.
However, their method also required a predefined skeleton.
Lin et al. [19] used a similar approach where the input is
an annotated stick figure drawn in a predefined camera posi-
tion. The extracted pose is then used for matching against a
database of motion-captured animations. However, their ap-
proach requires a user interaction during the semiautomated
matching. Recently, Wei and Chai [34] used an approach
similar to ours that exploits a motion-capture database with
predefined poses. This method has unique features such as
natural-pose creation using probabilities, the way to impose
constraints of the inverse kinematics for overcoming the
unnatural-posing problem, and a probabilistic learning sys-
tem that was trained to generate millions of poses. However,
this approach still requires the user to identify certain key
features in the input sketch, rendering the rapid creation of
animation problematic. Chao et al. [2] proposed a motion
retrieval and search method that analyzes joint trajectories
by using spherical harmonic functions. Jain et al. [13] used a
2D- to 3D-sketching system with a motion capture database.
Similar to our approach, their 3D poses are projected and
compared to 2D poses. Contrary to their method, where the
user is required to create virtual markers that aid the match-
ing, ours is fully automated. An important difference is that
our framework matches the pose within the context of pre-
defined motion sequences.

Several approaches related to our work allow for effi-
cient searching in motion-capture data. Krueger et al. [15]

used multidimensional kd-trees to improve searching and
Forbes and Fiume [6] have introduced data search using
weighted principal component analysis. Sakamoto et al. [28]
presented a mapping method of motions into an image
plane. The method improved searching motion differences
from motion captured data, but did not take into account
3D motion retrieval. Real-time motion-capture data has also
been used for a mapping to an animation in [12]. Pullen
and Bregler [26] introduced a support tool for incorporating
motion-capture data into animation by matching 2D motion
to motion-capture data. Instead of detecting a static pose, our
approach finds a pose within a motion context. Choi et al. [4]
suggested motion retrieval and visualization using stick fig-
ures including motion curves. They compared sketches with
projected stick figures using predefined camera location per
character. Although the proposed method succeeded to find
suitable motion, reconstructing 3D poses from sketches and
rotational curves was not considered.

A substantial body of previous work is related to map-
ping transformations between the 2D and the 3D pose. One
class of previous work attempts to determine the 3D position
by estimating the position of the 3D camera. For example,
Parameswaran et al. [25] calculate the 3D position of im-
portant points in a body-centric system, assuming that the
hips and shoulder joints are coplanar. Chaudhuri et al. [3]
presented an animation system that contains a camera re-
construction algorithm and a mesh retargeting method to
find correspondence between a drawn 2D sketch and a given
3D model. The model is deformed using view-dependent IK
to obtain the best match with the given sketch. However,
the user still needs to manually specify correspondences be-
tween the sketched character and the reference pose joints.
Our approach uses an automatic matching and camera posi-
tion estimation by adaptive projecting the 3D character.

Our solution is complementary to the previous work and
extends it in various directions. It is not intended to creating
exact and precise animation; main usage is quick animation
creation. It does not require extra information while draw-
ing the input model; only strokes to define main body parts
are needed. Additionally, a user can also specify joint mo-
tion and rotation curves, using strokes to better express de-
sired movement of the pose. Because it is a database-based
approach, it always provides a valid pose, as long as all
poses in the database are valid. Moreover, our method also
provides an estimation of camera position from the drawn
sketch. Instead of selecting and creating animation with just
single poses as a key frame, the matched pose is considered
to be a part of motion sequence from the database, and those
sequence blocks are used to build the resulting animation.

After this review of previous and related work, a brief
overview of the entire method is provided. The individ-
ual parts of the system’s pipeline are discussed afterward,
namely, sketching the 2D pose and its reconstruction in
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Fig. 2 The overall schema of our framework. A user-defined 2D sketch is converted into a 2D annotated pose that is matched to a 3D pose from
a large database. A segment of the sequence containing the detected pose is then used in the sequence editor to compose the final animated scene

Fig. 3 The user-defined
sketch (a) is extended by strokes
that define the 2D pose (b), the
pose is separated (c), and the
connected 2D pose is
extracted (d)

Sect. 4, the 3D motion-sequence database and 2D pose-
matching outlined in Sect. 5, and the final assembly of the
animation is in Sect. 6. After that, we present implementa-
tion and results in Sect. 7, and the paper is concluded with
a section discussing limitations and possible avenues for fu-
ture work in Sect. 8.

3 Method overview

The overall schema and the main blocks of our framework
are in Fig. 2. The animator draws a simple 2D sketch cor-
responding to a key character pose (e.g., keyframe). The
sketch can be in low detail and does not need to include
anatomically correct body proportions; even if the sketch is
very rough, the system is able to get a sufficient amount of
information to extract the 2D skeleton defining the pose and
comparing it against the motion database. This pose con-
tains semantic character information about arms, legs, head,
elbows, shoulders, knees, and spine.

The 2D pose itself can be a part of various 3D sequences
in widely different contexts. To supply additional informa-
tion that would help to better select the motion of the char-
acter, the user can optionally add motion or rotation paths
near joints (see Fig. 1b). For example, drawing a motion
curve near a hand joint indicates moving the hand, and an
arc or an ellipse around a joint represents its rotation. These
motion and rotation curves provide additional clues that are
used to further improve the pose-matching process.

In the next step, the 2D pose is compared to a large
database of 3D motion sequences. Because it would be dif-
ficult to directly compare 2D and 3D poses, projected 3D
poses from the database are compared with the input refer-
ence 2D pose; i.e., each 3D pose in the database is projected
from the estimated camera viewpoint. A similarity measure

is evaluated for each projection, the sequences are sorted,
the matched 3D pose is highlighted, and the sequences are
shown to the user.

The selected sequences are composed in the sequence ed-
itor into the final animation. An individual sequence can
be adjusted in time, trimmed, and two sequences can be
blended or interpolated. The process of sketching and se-
lecting a sequence is repeated until the desired animation is
created. The animation can be either viewed directly or ex-
ported into the common file formats used in professional an-
imation software. In the following sections, details of each
part of our framework are described and discussed.

4 2D pose sketching and reconstruction

Humans have the ability to perceive the 3D structure of the
character pose from a 2D drawing, and they can even guess
the implied motion from a static image or sketch. However,
this task is very complicated in automated recognition, and
there is no robust way of recognizing 2D sketches that could
be applied to direct 3D pose reconstruction. In our approach,
the 3D motion is recreated from 2D sketches by imposing
minimal requirements on the sketcher, who needs to draw
simple strokes identifying important parts of the character’s
body, such as spine, head, arms, and legs. Moreover, the user
can add strokes that identify the motion and rotation paths
of certain parts of the body. This information is later used to
match the pose to an animated sequence from the database
more efficiently.

4.1 Sketch-based 2D pose definition

The user can optionally draw a base 2D sketch as shown
in Fig. 3a, or upload into the system an existing sketch and
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Fig. 4 User sketched pose (a)
is reconstructed into an
annotated 2D pose (b)

use it as a reference image, as shown in Fig. 3b. The designer
draws curves identifying different parts of the character; the
drawing interface was designed with classical animators in
mind as they usually draw stick figures in the following
order: spine, head, left/right arms, left/right legs [35]. The
fixed order of the strokes of the sketch is the only require-
ment on the sketcher; they can be drawn quickly and with-
out consideration of the correct proportion of body parts as
shown in Fig. 3b and c. By using the fixed order, the char-
acter orientation is implicitly stated. Without this, for some
unusual positions such as character hanging upside down,
legs and arms could be erroneously switched. However, the
order of left/right arms and legs is not fixed and all four pos-
sible combinations are searched (Sect. 5). Once the sketch is
drawn, it is converted into a set of annotated line segments
and joints—a 2D pose as shown in Fig. 3d and described
below.

4.2 2D pose reconstruction

Because the semantic information of each stroke is explic-
itly known, the important parts, such as collar, pelvis, head,
hands, and feet, are identified and connected. We first re-
construct joints belonging to the spine. From the strokes of
arms and spine, the joint points defining the position of head,
neck, pelvis, and collar is extracted. Because the lower and
upper spinal joints do not significantly affect the 2D to 3D
matching, the lower and upper spinal joints are located as
evenly distributed from pelvis to collar.

In general, animators tend to draw the strokes defining
arms in the direction from shoulder to hand. By consider-
ing the distance between the two end points of the strokes
defining arms and their distance to the collar joint, we can
detect if the sketch was drawn from hand to shoulder, in the
opposite direction, or in any combination. From the arm ori-
entation, the position of hands is detected. The shoulder is
found when the arm is drawn significantly far from the col-
lar joint. The elbow joints are determined by considering the

angles of arm stroke. If there is a sharp angle in the stroke
defining arm, its location is assigned to the elbow joint. For
the opposite, the elbow is put in the center of the stroke.
The same mechanism is applied to the leg strokes to detect
knees and Fig. 4 shows an example of a 2D sketch and the
reconstructed and annotated 2D pose.

5 3D pose matching

Once the 2D pose is reconstructed from the sketch, its oc-
currences in the database of prerecorded motion samples
are searched. A shared advantage of all methods that use
the database is that the matching always finds a valid and
well-defined pose (assuming that the database includes only
correct poses). A disadvantage is that new poses cannot be
created because the content of the database is limited. More-
over, the time required to search in the database can become
a bottleneck.

5.1 Motion snapshot database

The motion sequence database from the CMU Graphics Lab
Motion Capture Database includes 4 million unannotated
poses in nearly 2,400 different animation sequences occu-
pying 3.1 GB of space and totaling 6.5 hours. The database
includes sequences in more than 40 different skeleton for-
mats, so they were converted into a single hierarchical skele-
ton structure. Our framework is intended for a quick anima-
tion creation; so the poses were simplified by removing toes,
fingers, and wrists. However, the pose structure contains es-
sential data for character animation such as joint hierarchy,
bone direction vectors, length of bones, and rotation angles.
The default Eulerian rotations were converted into quater-
nion representation [30] to prevent the gimbal-lock problem.

A direct look-up of the 2D pose for each 3D pose in the
sequence database would be difficult; it would find many
similar poses for closely located frames, and it would im-
pose large search time if the database were to be extended.
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Fig. 5 The initial sequence (a)
and the frames that have
significantly different poses (b)

Fig. 6 Sketched poses (up) and
poses found in the database

Also, the matching algorithm (Sect. 5.2) requires absolute
positions and rotations of joints, but the motion database
contains a relative animation position that is recalculated for
every animation frame. To overcome these issues, an addi-
tional database called the motion snapshot database is cre-
ated, storing each joint of the character in its absolute po-
sitions that simplifies the matching. Moreover, only poses
that have a significant difference are extracted and stored. As
shown in Fig. 5 the motion snapshot database also presents a
significant savings of storage space that, in effect, increases
the search speed.

Most sequential poses are similar to each other, as can
be seen in Fig. 5. Thus, we reduce the number of snapshots
in the database by saving significantly different poses. Two
frames are considered significantly different if the average
angular difference of all joints is higher than a predefined
threshold (15° in our application), or if a single joint moves

more than a predefined threshold (45° in our application) be-
tween the frames. The motion snapshot database stores only
significantly different frames and it has about 200,000 dif-
ferent poses out of the 4 million from the input. This reduces
application memory requirements in the matching phase sig-
nificantly.

5.2 2D to 3D pose matching

In the next step, we detect 3D poses that match the 2D input
pose. Because the sequences are independent, the 3D pose
matching is done on the GPU in parallel. Sample results of
the lookup can be seen in Fig. 6.

A correct projection of the 3D pose to match the 2D pose
requires estimating the camera position in which the sketch
has been drawn, and it is done by an iterative approach. First,
each 3D pose from the snapshot database is projected from
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Fig. 7 The estimation of the camera position. From the initial camera position, reference and matched skeleton are compared and best fit is
selected. Angle associated with the best fit is used to refine the camera position until differences are insignificant

Fig. 8 2D pose matching. The
pose is sampled from the six
principal directions (a), the best
match is found, and
refined (b, c)

Fig. 9 In the first pass of the
matching algorithm, only the
main parts of the skeleton
expressing the overall pose are
compared (a); the best
candidates from the first pass
are compared in the second
pass (b). Bone weights were
established after discussion with
animators and they define
significance of each bone during
the matching process (most
significant are the limbs)

six basic views: front, back, left, right, top, and bottom (see
Fig. 8). Top and bottom views have low priority because an-
imators rarely draw sketches from these views, and they can
be difficult to detect because of the overlapping curves in the
pose. The projected 3D poses are then compared with the
reference 2D pose, and their angular similarity is evaluated.

The view with the best fit is selected, and the match is
further improved by binary searching of the area around
this viewing direction and its neighbor views. This process
continues iteratively until the differences between the de-
tected viewpoint and the two successive steps are insignifi-
cant (Fig. 7).

To evaluate the robustness of our algorithm, we loaded
600 random poses from the database and put the camera at
random locations obtained from regularly sampled points on
a sphere. The 3D pose was projected from that direction,
joint positions were jittered, and we then attempted to find
the original pose in the database. The results show that even
with high jitter values above 5 % which changed the pose
significantly, the success rate was above 75 %. This has been
later verified by the user study, where the intended poses
were found for the vast majority of the sketches.

Bone matching priority We have observed that the angles
between different parts of the body express the overall pose
better than the actual joint positions, and there is no need to
normalize poses. This is the reason why angles rather than
joint positions were used for the comparison. When com-
paring 2D poses with the projected 3D pose, some bone re-
lationships are more relevant to overall pose configuration:
spine line (pelvis to collar joints), hand lines (shoulder to
hand joints), and leg lines (hip to foot joints), as well as limb
joints such as elbow and knee, are also important, since they
provide the configuration of arms and legs.

Based on this observation, a two-pass method for pose
detection has been developed (Fig. 9). The first pass quickly
discards invalid poses by detecting differences between the
most important parts of the character. The best 10 % poses
of the candidates from the first pass are then compared in-
depth in the second pass, the poses are sorted, and the best
options are displayed to the user. The threshold of 10 % has
been found by measuring the error of the search, which was
2.5 %, as compared to the full search using only the more-
precise second pass. However, the two-pass approach re-
duces the search time to 30 %. Further increasing this thresh-
old brought no significant improvement to the search. Tech-
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Fig. 10 Pose definition with
motion curve (down) helps to
find the intended flip sequence

niques based on kd-trees [15] or weighted PCA [6] could be
used if a faster search is necessary.

Let us denote the normalized 3D bone vector vi and the
corresponding normalized bone vector from the 2D pose ui .
Because the exact camera location is known from the pre-
vious step, vi is orthogonally projected from the camera re-
sulting in v⊥i . Let us denote αi the angle between the pro-
jected vector from the 3D pose and the corresponding vector
from the 2D pose

αi = arccos(v⊥i · ui ).

The normalized error ε between the 2D pose r and the
3D projected pose p⊥ is then

ε(p⊥, r) = 1

n · π
n−1∑

i=0

wiαi, (1)

where wi is the importance weight of each bone as shown
in Fig. 9 and n is the number of joints in the pose. Although
the comparison is the same for both passes, the bones and
the importance weights (see Fig. 9) are different for each
pass. Importance weights were established according to the
priority of the bones determined after a discussion with ani-
mators. Lastly, the pose matching score between the 3D pose
p and the 2D pose r is

Sp(p, r) = 1 − ε(p, r). (2)

Although the matching process converges rapidly, it be-
comes computationally intensive with a high number of
poses. However, the sequences in the database are indepen-
dent, and the matching process can be easily parallelized.
We have implemented this algorithm on the GPU by using
CUDA and the matching process takes less than one sec-
ond for direct pose comparison and less than five seconds

for comparisons with curves. This performance enables us
to run multiple matching steps for all possible configura-
tions of the pose with swapped left/right hands and legs in
order to explore more configurations and resolve ambigu-
ities. These ambiguities result from the fact that the order
of left/right hands and legs is not fixed and also comparing
hands and legs of hand-drawn 2D character with predefined
3D characters yields to multiple possible configurations.

5.3 Motion and rotation curves matching

The static pose matching gives reliable results for static
poses, but it can be further improved by considering the pose
in the context of the motion sequence. The user can define
two kinds of additional motions—motion or rotation of a
joint by sketching a curve in the proximity of a joint (see
Figs. 10 and 11). This is inspired by the sketch design in
2D animation, and it is intuitive and easy-to-understand not
only for professional, but also for novice users.

Motion curve The node affected by the user-sketched mo-
tion curve is detected by finding the closest joint to the cen-
ter of the bounding box of the curve. If this is not the in-
tended node, the user can override this automatic selection.
The sketched curve is first resampled and smoothed into ap-
proximately 100 points to simplify the further steps. The two
principal perpendicular directions of the sketched motion
curve are detected using principal component analysis algo-
rithm (PCA). The curve is then transformed so that the first
sample point is in the origin, and the main axis is aligned
with the x-axis of the coordinate system. The curve is then
divided into monotonous blocks, and each block’s direction
is coded as one of the four: up-left, up-right, down-left, and
down-right. Each block is then sampled in a predefined num-
ber of points, for which the first derivative c′ and the curva-
ture κ are calculated.
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Fig. 11 The rotating character
(down) was found with the help
of the sketched rotation curve
around the hip

In the next step, the motion curve matching score
Sm(p, r) between 3D pose p with the motion curve cp and
the 2D pose r with the motion curve cr is calculated. The
3D pose p is considered within a one-second time inter-
val (±1/2 sec). The motion curve of the compared joint is
then projected from the camera view and compared with
the user-sketched curve. The projected curve is divided into
monotonous blocks, and the prevailing directions are com-
pared with the input. If the directions do not match, the
matching score is set to zero. If all parts of the curve have
the same direction, the Sm(p, r) is calculated as

Sm(p, r) = 1 − 1

2n

n−1∑

i=0

(∣∣c′
p(i) − c′

r⊥(i)
∣∣ + ∣∣κ(i) − κ⊥(i)

∣∣),

(3)

where c′⊥(i) and κ⊥(i) are the first derivative and curvature
of the ith block of the projected curve cp .

Rotation curve We can assume that the rotation curve
(Fig. 11) is essentially a circular arc that can be unprojected
by using determined camera position (Sect. 5.2), and the an-
gle of the rotation can be measured in 3D. To apply the rota-
tion, we need to find the rotation axis and the rotation angle.

The affected node of a rotation curve is detected by find-
ing the closest joint to the center of the curve (similar as
with motion curve). The curve is then resampled, and the
PCA finds the principal directions. The rotation curve is an
arc distorted by projection so that the two radii of the ellipse
can be detected. By comparing the radii, the ellipse is un-
projected, the rotation axis is tilted, and the best candidate
bone that is parallel to the 3D axis is found. The angle of
rotation αr is then calculated from the two end points of the
joint rotation curves.

The joint rotation axis and the rotation angle are com-
pared during the database curve matching. Similar to the
motion-curve matching, the rotation curve is considered
within the context of one second of the animation. The rota-
tion angle of the joint is calculated by numerical integration
over the time interval resulting in the rotation angle of the
joint αp for the interval of one second. The rotation angles
are then compared, resulting in the rotation curve matching
score

Sr(p, r) = 1 − |αp − αr |
2π

. (4)

5.4 Sequence selection

Depending on the user-provided input, there are various op-
tions for pose matching. The final matching score of the 3D
pose p and the 2D pose r is denoted by S(p, r) and it is used
to sort the matched sequences that are offered to the user for
selection.

Pose matching only If the user provides a single 2D pose
with no additional information, the pose matching score
from Eq. (2) becomes the absolute score so that S(p, r) =
Sp(p, r).

Pose matching with rotation or motion curve If the user in-
puts a pose with motion and rotation curves C = {c1, c2, . . . ,

c|C|}, the final score is evaluated as the weighted sum of the
pose- and curve-matching results

S(p, r) = (1 − w) · Sp(p, r) + w

n

|C|∑

i=1

Si(p, ri), (5)

where Sp(p, r) is the pose-matching score from Eq. (2),
Si(p, ri) is the motion- or rotation-curve-matching scores
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from Eqs. (3) and (4) depending on whether ci is a motion
or a rotation curve, and if w is the user-specified weight. We
use w = 0.25 in our application that makes the pose match-
ing more important than the curve fitting.

Multiple pose matching If the user specifies multiple
poses with or without curves, we use an approach inspired
by [33] who use weighted linear blending to create the
output sequence. Let us denote the input 2D poses R =
{r1(t0), r1(t1), . . . , r|R|(t|R|)} and the matching attempts to
find multiple poses in the same sequences. We assumed that
each pose is allotted to a different time step t1 < t1 < · · · <

t|R|. The score for multiple matches is then calculated as a
weighted sum of the contributing poses.

S(p,R) =
|R|∑

i=1

(
Sp(p, ri) · G(ti, t)

)
, (6)

where Sp(p, ri) is the score of the ith pose from Eq. (2) or
from the pose with curve Eqs. (3) and (4); t is the relative
time of the pose p; ti is the relative time of the ith pose; and
G(ti, t) is the weight of the contribution of the Gaussian.

When the scores of all poses are evaluated, the sequences
are sorted according to their score, and the user selects the
best-fitting one.

6 Sequence editor

The sequence editor allows the user to align the sequences’
view directions by rotating the selected sequence and also to
efficiently combine the selected sequences into the final ani-
mation. The sequences can be trimmed, resampled, blended,
and interpolated. The operations that use multiple sequences
also use the motion and rotation curves, if supported, to as-
sist the transition.

An existing sequence can be trimmed from the begin-
ning or from the end. In the extreme, the entire sequence
can be trimmed into an individual pose. However, if the mo-
tion curves were used for certain joints, the pose will still
contain the information about their motion that will be used
in the interpolation and blending. If the timing of a sequence
needs to be modified, it is resampled by changing its length
in the sequence editor.

Two sequences can be blended into one by connecting
the trajectories of motions and rotations from different se-
quence blocks. This operation is applied when the user lo-
cates the sequences in the sequence editor in such a way that
they (partially) overlap. The quaternion interpolation [30] is
used to avoid the gimbal-lock problem. Similarly, if two se-
quences are separated in time, the quaternion interpolation
is used to connect them.

The final animation can be previewed directly in our
framework, or it can be exported and further processed in an

external application. Although blending and interpolating of
the sequences provide an easy and quick way of prototyp-
ing, the sequence editor has some limitations, e.g., it cannot
change the path of the animation or natural motion transi-
tions are not guaranteed.

7 Implementation and results

Our framework is implemented in C++; it uses OpenGL and
GLSL for rendering of the character poses and CUDA for
fast, parallel sequence matching. All tests were done on an
i7 Intel CPU equipped desktop with 16 GB of memory, and
NVIDIA GTX 480 graphics accelerator.

The user interface was designed to be as simple as pos-
sible. It has five panels to control the animation process:
sketching, transition, matching, animation, and pose selec-
tion as can be seen on the accompanying video.

The sketching panel contains tools to sketch the pose us-
ing strokes. The user can load a background image as a ref-
erence for drawing strokes. The strokes are indicated by dif-
ferent colors for a better control, and each stroke can be re-
drawn if necessary. Motion and rotation curves are also de-
fined by strokes.

When the sketch is finished, it is matched with the
database, and the matching panel shows the most similar
sequences containing the drawn pose in descending order.
The feedback is immediate, and the sequences are animated.
They can be stopped, slowed down, or zoomed, and the user
can select any of them by scrolling through results. The
GPU-oriented implementation provides immediate results
and stores the order of the entire database of 6.5 hours on
an off-shelf computer. In addition, our approach does not re-
quire additional database pre-processing, so that any motion
capture data can be used immediately.

Performance comparisons between the GPU and the CPU
matching with various iterations during the camera search-
ing process is shown in Table 1. GPU comparison is 500–
800× faster than matching using only the CPU and it allows
for real-time search of the best fitting poses.

The selected sequence is brought to the transition panel
where it can be further edited by trimming, blending, and re-
sampling. All changes can be immediately seen in an anima-
tion panel where they are composed into the final animation,
which can be exported into the common animation formats
and further edited in professional animation programs.

A user study was performed to evaluate our framework.
Four professional animators with experience in using ani-
mation packages and five novice users were asked to cre-
ate three sequences demonstrating animations with vary-
ing complexity. The novice users needed additional time to
get familiar with the interface (this time is also included
in the measurement). There was no limit on the number of
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Table 1 Performance
comparison between CPU and
GPU implementation

Iterations 32 64 128 256

CPU (Core i7 920, 2.66 GHz) 9,351 ms 18,647 ms 37,711 ms 75,193 ms

GPU (NVidia Geforce GTX480) 17 ms 28 ms 48 ms 88 ms

GPU Speedup 550.0588 665.9643 785.6458 854.4659

Fig. 12 The resulting animation showing the composition of three dif-
ferent dances. The first sequence showing a classical dance blends with
a modern dance that is interpolated into another sequence of modern
dance. Line (a) shows the input sketches, (b) shows the used sequences

with the detected poses, and (c) shows the sequences generated as a re-
sult of processing the detected sequences. The last line (d) shows the
final animation

sketches, nor on the maximum and minimum durations of
the sequences, and the participants were free to use any se-
quence blocks with the only requirement being that the re-
sulting animation should follow the provided scenario.

Sit-stand-run-flip-fall (SSRFF) The first animation is
shown in Fig. 1 and consists of a sitting character that stands
up, walks, starts running, flips over an obstacle, and falls on
the ground. It is a fairly complex animation requiring variety
of sequences that demonstrate all aspects of our system. On
average, this animation took about 20 minutes to complete.
At least 6 sketches (average 10) and 5 sequences were used
to complete the task. The length of the resulting animation
varied from 8 to 19 seconds with an average of 14.6 seconds.

Dance The second sequence required the test subjects to
create an animation that would mix various dance styles. As
a result, they combined several classical dances with modern
dances, as shown in Fig. 12. This animation shows usage of
the interpolation and blending between various sequences.
It required at least 4 sketches (average 6.75) and 4 sequence
blocks. Length of the final animation was around 20.4 sec-
onds (longer parts from motion sequences were used), and
it took about 12 minutes to complete. This sequence has re-
quired a variety of motion and rotation curves for the de-
fined poses. The motion curves helped to distinguish a sim-
ple walk from dancing motion, where the body moves in a
specific way.

Picking a coin In this acting example, the character finds
a coin, grabs it, and then flees the scene (Fig. 13). The pur-
pose was to create a scene that could be used as part of a
real scenario. A variety of animations was used, as well as
motion sequences. The average animation was 11 seconds
long, it was created with 4 sketches and 3 sequences (walk,
pick, and run), and it took under 10 minutes to complete.

Table 2 shows the averaged values of time that anima-
tors spent creating the animation, how many sketches were
drawn, how many sequences were used to build it and what
its resulting length was. As additional information, anima-
tors used 35 % of the time for the operation of interpolation
and about 65 % for blending. Most of the blending opera-
tions were also trimmed at least from one side.

The SSRFF animation was the most complicated require-
ment; it took the most time to create, about 20 minutes and
used 10 sketches on average. In traditional software pack-
ages like Maya, even a highly experienced user would take
several hours to preform a similar task. In all animations, the
subjects spent most of the time was selecting the right se-
quences in the list and editing them. Also, sequence blocks
used were tied with the number of sketches drawn (some
sub-sequences required more than one sketch with motion
curves). We have observed that users tend to draw the poses
first and if a good match is not found, they extend them with
the motion or rotation curves to refine the search. An ex-
ample is common motions, such as walk and run, which are
very general, and they are present in different variations in
many motion sequences. These sequences were refined and
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Fig. 13 An action sequence of
picking a coin was created from
three sketches (a). The detected
sequences (b) were blended (c)
resulting in the final
animation (d)

Table 2 Results of the user
study Animation Creation

time (min.)
# of Sketches # of Blocks Animation

length (s)

SSRFF 20.9 10 5 14.7

Dance 12.3 7 4 20.3

Pick a coin 9.8 4 3 10.9

matched much more easily with the help of the motion and
rotation curves. In general, sequences from the large motion
database significantly speed up the animation process, and
it is possible to create a rough first-pass animation within
minutes.

Participants were also asked to comment on the intuitive-
ness of the interface. They found drawing simple skeleton
and using motion curves to refine the motion intuitive and
easy to use. Also the fixed order of drawing the figure was
not perceived as a limiting factor, as most of the animators
tend to draw in the same order.

Time required to create the animation was approximately
the same for the novice and also professional users. That
seems to indicate our system can be used without any prior
experience with the animation software and techniques be-
cause the way our application is used differs from the tra-
ditional animation packages. However, more in-depth user
study would be required to justify this assumption. Also,
the learning process seems to be fast, after a 15 minutes of
demonstration, participants were able to create their own an-
imations.

Figure 14 shows different motions that are created by our
system using simple sketches. Samples of the animations
created by the participants are included in the accompanying
video.

Additional evaluation was performed by comparing our
algorithm with the Dynamic Time Warping (DTW) ap-
proach introduced in [18]. We have tested 2,000 motion
curves. Each curve was randomly jittered 500× by displac-
ing its vertices perpendicularly by distance given as a per-
centage of the curve length. So jittering by 0.1 displaced the

vertices randomly by 10 % of the length of the curve. Af-
ter that, the curves were resampled so that they have exactly
12 vertices that was the maximum reasonable time for the
DTW algorithm. The randomization step was increased by
1 %. Then the input and the randomized curve were com-
pared using our algorithm and DTW.

Precision of the similarity detection is shown in Fig. 15.
The x-axis shows the randomization of the input curves and
the y-axis shows the percentage match. As can be seen, our
method provides better result.

The speed of the comparison depends on the number of
compared vertices. The DTW is a recursive algorithm and
its processing time increases exponentially; comparing 15
sampling points for two curves took more than 45 seconds.
However, in order to achieve a good accuracy we require to
match at least 50 points from the input curve, which was
impossible using the DTW (the comparison time was over
several hours). Our method required only 5 ms to compare
curves with 50 sampling points, thus we conclude that the
DTW algorithm is not suitable for processing in real-time
whereas our methods performs well.

8 Conclusions and future work

We have presented a framework for a quick creation of first-
pass 3D character animations from 2D sketches using a large
motion database. The basic building block of our framework
is a sequence from the database with a registered pose or
multiple poses. The sketches can be enhanced by motion or
rotation curves that help the searching process and the com-
bination of the detected sequences into the final animation.
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Fig. 14 Kung-fu to boxing
motions (a), soccer kicking to
baseball swing motion (b), and
backstroke to the butterfly
swimming motion (c)

Fig. 15 Comparison of
precision of our method and
DTW

The additional motion curves allow defining the pose in the
context of the animation that is useful for common anima-
tions such as walk. These sequences can then be refined,
and the motion curves provide an important detail that helps
the animation process. The user study indicates that there is
no significant difference for advanced animators and novice
users as all participants were able to create the animated
sequences quickly and they used all the functions that the
framework provided.

Our system has various limitations. The first is that it
allows for the creation of an individual character that can-
not be used in the context of a scene, it cannot inter-
act with objects, or different characters in the scene. The
second limitation stems from the fact that our system is
used for quick creation, so it does not support the anima-
tion of hands, toes, or facial expressions. Another limita-
tion is that our method is not suited for finding subtle mo-
tion differences. This limitation is common to database-
oriented approaches. It is partially alleviated by the mo-
tion curves that allow for better tuning of the detected re-
sults, but further editing of the selected models is usu-
ally necessary to create detailed animations. Moreover, the
expressive power of the system is given by the content
of the sequences stored in the motion database, and the
user cannot create new sequences or sequences that go be-
yond the simple blending or interpolation of existing se-
quences.

There are several possible extensions of our work. One
would be in allowing the character to follow a defined
path [18]. It would be a simple extension of the sketching in-
terface, but extra work would be necessary to assure that the
motion is realistic even for sharp edges or abrupt motions.
Additional options to provide better navigation of the char-
acters would be by spatial keyframing of [11] or by motion
curves of [20]. Another avenue for future work would use
multiple characters. An interesting approach was recently
presented by Ho et al. [9], who used extended motion and
retargeting for multiple animated characters by exploiting
scene and character semantics. Also, in order to evaluate
results more precisely, an in-depth user study with a large
sample of professional and novice users would be required.
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