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Abstract

We report on 3D printing of artifacts with a structured, inhomogeneous interior. The interior is decomposed into cells defined by
a 3D Voronoi diagram and their sites. When printing such objects, most slices the printer deposits are topologically the same and
change only locally in the interior. The slicing algorithm capitalizes on this coherence and minimizes print head moves that do not
deposit material. This approach has been implemented on a client/server architecture that computes the slices on the geometry side.
The slices are printed by fused deposition, and are communicated upon demand.

Keywords: 3D printing, additive manufacturing, 3D Voronoi diagram, inhomogeneous volumes, client-server architecture,
geometric queries

1. Introduction

Object properties and performance characteristics depend, to
a large extent, on the structure of the object’s interior. For in-
stance, the strength of polycrystalline material cannot be de-
termined without information about the shape and orientation
of the interior cells, and their material composition. The outer
boundary of the object normally determines the geometry of the
object and reflects intended functionality, but the functionality
must be supported by appropriate interior structure. In partic-
ular, the structure of the interior determines properties such as
density, elasticity, stiffness, fatigue, current flow, sound absorp-
tion, thermal conductivity, and other salient properties of the
material.

In order to analyze and study these properties in detail, many
researchers model the interior structures of the objects as an ag-
gregation of cells. A cell structure based on Voronoi tessellation
is one of the most popular approaches in these studies, since it
can generate realistic homogeneous and heterogeneous struc-
tures in both 2D and 3D. In fact, Voronoi tessellations can be
considered to subsume many types of cell decomposition where
the Voronoi sites are arranged in a special way. For instance,
when the sites lie on the vertices of a regular grid we obtain a
regular subdivision into blocks. In the following we assume a
general position site arrangement unless otherwise noted.

We consider representations in which the volume is parti-
tioned into cells where each cell has an interior with specific
geometric and/or material specifications. For example, a partic-
ular cell might be stipulated to have

• a particular strength in a given direction,
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• or a particular regular geometric structure of a certain char-
acteristic,

• or be a specific, homogeneous material, and so on.

We investigate a manufacturing approach in which cells are
separated by a membrane structure, and the interior is fabricated
using filament deposition equipment or other fabrication tech-
niques that proceed in the usual layer-by-layer methodology.
We restrict to manufacturing the membrane separating the cells
of the object partition. Specifically, we assume a cell geometry
defined by a 3D Voronoi partition of the interior. The Voronoi
partition is defined by a set of interior points, the sites of the
partition. The sites may be specified explicitly as part of the
design. Each such point has attributes that are a description of
the cell interior. The attributes are sufficient to unambiguously
specify cell interior. Examples include stipulated material, ho-
mogeneously filling the cell; variable density material where
the density at a point x in the cell might be a function of the
distance of the point from the cells site; empty cells; and so on.
Cells are therefore convex polyhedra, except for cells that share
part of the exterior boundary of the object. The representation
is implicit in the sense that the cell specification is given by the
sites along with the outer geometry of the object.

We will describe how to manufacture the cell membrane
throughout the interior. Our algorithm is incremental, exploit-
ing the fact that many successive slices are topologically the
same, and that slices that differ topologically often differ only
locally. Those differences are characterized by only a few cases.
More than that, the algorithm seeks to deposit each membrane
layer such that, at no time, the head requires repositioning with-
out depositing material, unless the external boundary requires
it.

The remainder of the paper is structured as follows. After
a review of the literature is presented in the next section, the
algorithm for our proposed manufacturing paradigm is given
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in the third section. The paradigm is evaluated with various
experiments and the results are summarized in Section 4. The
paper concludes with some remarks in Section 5.

2. Background

Voronoi based modeling is used in different fields of sci-
ence and engineering for many applications. Material scien-
tists employ Voronoi tessellations to model and simulate poly-
crystalline materials under different conditions to analyze their
physical properties. In these simulations, each Voronoi cell cor-
responds to a crystalline cell in the aggregate and the cells form
the basis of finite element models used to determine elastic and
plastic behaviors of the so modeled materials [1].

Besides analyzing elastic and plastic properties, researchers
also analyze sound absorption [2] and thermal insulation [3]
properties of materials using Voronoi-based models. Further
afield, food scientists [4] model fruits to understand their qual-
ity and how to preserve them after harvesting. Here, the inter-
cellular transportation of gases (O2 and CO2) and water is the
most important aspect for the preservation of fruits [5]. Inter-
cellular passages are modeled by cutting off some corners and
edges of the Voronoi cells.

Current CAD/CAM software has been developed to serve
conventional machining operations, such as milling and turning
of homogeneous materials. Conventional CAD/CAM systems
are therefore poor at designing objects with heterogeneous in-
terior. Moreover, the subtractive methodology of milling and
turning is unnatural for fabricating heterogeneity. When the de-
sign files are converted to the STL format, only the geometric
information of the outer profile of the objects is stored. Al-
though computer scientists already criticized the STL pipeline
almost two decades ago [6], it remains a dominant format in
3D printing systems. When it is employed, the properties of
the objects (material, color, etc.) defined in the corresponding
CAD model are not transferred to the standard STL formats.
Instead, users seeking to create parts with inhomogeneous inte-
rior are forced to edit their models using the software of the 3D
printers, and must make do with the capabilities of the machine
being used. In the case of FDM printers, such as the Makerbot,
the printer software typically restricts the interior structure to a
regular pattern, for instance hexagonal tubes, to be instantiated
by a preselection of a few diameter choices. In order to over-
come this problem in additive manufacturing, new standards for
file systems are needed for assigning structural properties to the
objects. Unfortunately these emerging standards are not used
by the current commercial 3D printers. The STL format is still
de-facto the dominant format in this field.

There have been various studies to fabricate artifacts where
spatially varying colors and properties are defined in advance to
perform the required functionality [7, 8, 9]. In these works, the
interior of the objects are filled with the material that generates
the color and functional patterns stipulated for the outer pro-
file. Project Maxwell e.g. [10], is one of the earliest efforts to
develop heterogeneous manufacturing paradigms. The project
proposed to employ shape optimization techniques on the ob-
jects to be printed in order to realize functional properties via

geometrical representations. The problem with this approach
is that the current commercial 3D printer technologies are not
capable of printing the required interior structures.

Heterogeneous objects could be manufactured after sampling
the interior using a voxelization as described in the studies
[8, 9, 11]. Since these approaches are not compatible with
current CAD software, researchers prefer developing their own
application specific software using voxel-based modeling. The
proposed 3D editing properties are not as powerful as commer-
cial CAD software. So, the geometry of the objects is mod-
eled in some CAD system and then exported into the research
software. Properties are assigned in the research software. In
one of these studies, Doubrovski et al. [9] proposed a lay-
ered manufacturing paradigm to overcome the limitations of the
CAD/CAM tools. They proposed a bitmap-printing method to
produce layers of different material composition and demon-
strated their approach by printing a customized prosthetic joint
socket. The test object incorporated pressure-sensing elements
in the interior. Their approach did not compute planar object
slices, and instead utilized the default voxel resolution of the 3D
printer. They focused on realizing the required material proper-
ties through local material composition of the slices.

Another way to fabricate heterogeneous articles is to parti-
tion the model so that the generated STL files will represent
interior structure. A recent study using this paradigm is done
by Prevost et al. [12]. They can shift the center of gravity of
the artifacts by designing the interior to consist of cells, some
of which are empty, others filled with material. As a result, the
fabricated objects can stand in unexpected poses. Depending
on the cell configuration and composition, several STL files are
sliced and some of the slices printed at the same time. In a
different study using separate design files, Lu et al. [13] mod-
eled the interior of the objects with Voronoi cells and hollowed
the interior of these cells to increase the strength-to-weight
of the objects. It is a common characteristic of these studies
[8, 9, 12, 13] that they use resin based 3D printers.

In another remarkable study, Ge et al. [7] introduced the
concept of printed active composites, a different type of het-
erogeneous structure. They utilize a CAD file representing the
fiber architecture at the lamina and laminate level. With their
approach, they were able to build a self-folding and opening
box. They conjecture that their approach can print objects hav-
ing spatially varying material properties.

Voronoi cells are commonly utilized in material sciences to
model polycrystallines, molecular structures and porous struc-
tures because Voronoi cells model the internal geometry more
realistically than other modeling approaches. With Voronoi-
based models, where the smallest spatial elements are repre-
sented as single Voronoi cells, researchers try to analyze the
behavior of the modeled structures under various physical con-
ditions. For instance, Nygards and Gudmundson [14] modeled
the geometry of dual-phase steel using Voronoi cells, and em-
ployed uniaxial tensile tests to determine the stress-strain be-
havior of the models. When compared with the experimental
data, their models did well except near the end of the elastic re-
gion. In another similar study, Biner [15] utilized Voronoi cells
to discretize the functionally graded materials and used this



model to comment on the thermo-elastic behavior of the mate-
rials at different temperatures. In another recent study, Katani et
al. [16] similarly utilized Voronoi cells to model the microstruc-
ture of dual-phase steels. They constructed Voronoi cells from
the images of a scanning electron microscope and used a dam-
age model to gain insight into possible failure mechanisms of
the materials under different loading conditions. Besides stud-
ies of materials using Voronoi cells, porous structures have also
been modeled utilizing Voronoi diagrams; e.g., in the study of
Kou et al. [17]. After constructing Voronoi tessellations, they
merge some of the cells to form concave cells according to the
requirements of the application. Furthermore, they use the ver-
tices as the control points and generate B-Spline curves to de-
limit cells, thereby achieving a more natural appearance.

As we will prove below, there are specific topological
changes that the cross section of a 3D Voronoi tesselation un-
dergoes, as the cutting plane sweeps through it. These changes
may trigger some events of the specific applications. There are
two main types of transitions. The first one is about the appear-
ance or vanishing of cells in the layout and the second one is
about the local arrangements between the neighboring cells. In
the second event, the number of the edges of the cells changes
by a switching operation. At an intermediate position, of the
sweep plane, in the case of the second event, there occurs a
vertex having four edges in general. These changes also occur
in random soap bubble structures [18]. Analyzing multicom-
ponent metallic glass models, Gellatly and Finney [19] utilized
radical planes to track the distortions in the local structures.
Radical planes vary in their normal direction based on cell ge-
ometry. In contrast to using radical planes to observe the dis-
tortions, Li et al. [20] employed normal planes of the third
dimension of the grain boundary network. As in the study of Li
et al. [20], we will consider the topological transitions between
the adjacent slices (normal to z-axis) of the object to be printed.

Bio-printing is another field of additive manufacturing where
heterogeneity is necessary to fabricate personalized tissues and
organs. In one of the recent studies in tissue engineering, Khoda
and Koc [21] proposed a novel heterogeneous scaffold mod-
eling approach for additive manufacturing processes. They
achieve the given heterogeneity by varying the distance be-
tween the deposited filaments at the optimum angle in each
layer. An important aspect of their approach is that they main-
tain continuity and connectivity of the extruded filaments. In
another study, the main focus is on a medial surface representa-
tion of the organ/tissue obtained as a pruned Voronoi diagram of
sites densely distributed across the organ surface; [22]. Chow et
al. [23] developed a geometric modeling paradigm for porous
structures utilizing 2D Voronoi diagrams, to be used especially
in tissue engineering applications. They build 3D structures by
perturbing the Voronoi sites, moving them along chosen trajec-
tories. The trajectories are then discretized, and consecutive
intermediate site positions are used to define layers stacked in
the vertical direction. This generation paradigm naturally leads
to a 3D printing strategy.

With the above-mentioned models, researchers can design
and 3D print artifacts that have superior properties (higher
thermal conductivity, better sound absorption, increased stiff-

ness, etc.) and customized geometric shapes as compared to
conventional 3D printing. Although 3D printing is ideal for
manufacturing solids with heterogeneous interior, the current
manufacturer-provided 3D printing software is not capable of
producing artifacts having heterogeneous cellular structures. In
particular, there are no universal standards representing hetero-
geneity [17].

Voxel-based representations may be considered samplings of
the object interior and are accurate to the density of the sam-
pling [11]. When the density is increased, the number of vox-
els grows by the third power, thus imposing limits on scaling
to high-density object designs. Variable density sampling re-
introduces the problem of representing the volume regions in
which a sampling has a particular density. Thus, voxel-based
representations are of limited applicability and generality.

3. Algorithm

3.1. Print Setup

In our experiments, we have decoupled the link between the
CAD file and the printer, bypassing the proprietary software
that creates the STL file. We generate the printer (machine)
code directly and drive the printer from a Raspberry micro-
computer that requests the G-code for the STL slices one-by-
one, when the printer is ready for the next slice. This setup,
although for this paper unnecessary, was chosen in anticipation
of future experiments in which the dialogue between printer
and CAD system is naturally bidirectional and seeks to explore
in greater depth the query-based architecture proposed in [24].
The advantages argued there include latency hiding when client
and server are communicating over large geographic distances;
coping with very large STL files; as well as semantic integrity;
to mention a few.

3.2. Objectives

We distinguish printing head movements, in which material
is extruded or solidified, from fast movements during which no
material is extruded or solidified. In analogy to G-code termi-
nology, we refer to the latter as fast travel.

The objectives of this work are two-fold:

1. Eliminate fast travel. This implies that material is to be de-
posited in a single sweep. A sweep consists of contiguous
segments each of which deposits material.

2. Exploit the fact that the topology of consecutive slices
changes in many cases only locally or not at all.

We achieve the first objective by constructing, for each slice, an
Euler cycle that covers all edges of the slice, appealing to well-
known graph-theoretical facts. The cycle traverses each edge of
the slice twice without any fast travel.

The second objective is accomplished by restricting the inte-
rior structure of the print slice to a spatial Voronoi tessellation.
Here, we must analyze how the transition of the slicing plane
past a vertex of the 3D Voronoi tessellation changes the slices.
By randomly perturbing the sites defining the Voronoi tessella-
tion, by a small distance, we can serialize the change events and



avoid a raft of special cases that can lead to complicated topo-
logical changes and, moreover, would invite robustness issues
familiar from computational geometry [25].

When printing an object, we restrict to printing the mem-
branes enclosing each Voronoi cell, assuming that these sep-
arating surfaces are composed of the same material. As ex-
plained before, there are many possibilities for structuring the
interior of the Voronoi cells, by specific materials, densities,
grain direction, and so on. They are beyond the scope of this
paper, however.

3.3. Slice Structure and Euler Cycle Determination

The input to the algorithm is a spatial Voronoi diagram and
the object boundary. For simplicity we assume that the bound-
ary is polyhedral. We assume that the Voronoi sites are in gen-
eral position. This assumption can be enforced by randomly
perturbing the sites prior to the Voronoi diagram construction.
With the positive z axis the direction of slice deposition, we as-
sume that every plane z = k intersects the part boundary in a
number of disjoint simple polygons. This assumption is natural
for 3D printing, and could be removed by adding update events
for the exterior boundary, to the sweep algorithm below. Later
we will remark further on topological changes in the boundary
arcs of the slices. For now, we consider just one simple polygon
as part boundary.

Given a connected graph G, an Euler cycle is a cycle of edges
that includes every edge exactly once. It is well-known that an
undirected graph has an Euler cycle if, and only if, every graph
vertex is incident to an even number of edges. If the graph is
directed, moreover, then the number of incoming edges should
be the same as the number of outgoing edges, for every graph
vertex.

Given a graph, a simple cycle is a cycle of edges
(uk, uk+1), k = 0...m, where um = u0 and the vertices u0...um−1
are distinct. If the graph is directed, moreover, the cycle edges
(uk, uk+1) are used consistently with their direction unless noted
otherwise.

The boundary polygon, and the interior edges of each slice
are a planar graph with undirected edges. We replace every
undirected graph edge with a pair of directed edges in opposite
direction. This results in a graph whose every vertex is incident
to an even number of edges, and where the number of incom-
ing edges equals the number of outgoing edges, for each graph
vertex. Therefore, the graph has an Euler cycle.

More specifically, since the slice graph is planar, it partitions
the plane into cells bounded by simple cycles of directed edges.
The outside of the object, moreover, forms one cell bounded
entirely by boundary edges. We could lay out the cells one-by-
one, each cell boundary printed completely before moving to
the next cell. This strategy will generate fast travel as shown
in Figure 1. Pick one cycle, cycle 1 for instance, and begin the
layout at vertex u. When finished, we lay out cycle 2, beginning
at u so as to avoid fast travel. This ends again at u, so we start
cycle 3 also at u, ending again at u. At that point the head must
execute fast travel, since no further cycles share vertex u.

Figure 1: When cycle boundaries are printed one-by-one, the print head must
do fast travel some of the time.

A better strategy is to print along an Euler cycle. One such
cycle, also beginning at vertex u, is

u, 9, u, v, u, 2, 3, 2, 1, 10, 9, 8, 7, 6, 7,
v, 4, 5, 6, 5, 4, 3, 4, v, 7, 8, 9, 10, 1, 2, u

The planar slice at z = k intersects the part boundary and
the Voronoi diagram in line segments, each a pair of directed
edges as explained before. Each cycle is bounded by a simple
loop of edges directed such that the cycle interior is to the left.
The directed edge (u, v) is the co-edge of the directed edge (v, u)
and vice-versa. The algorithm for determining an Euler cycle
is a straightforward depth-first graph traversal. It recursively
builds the Euler cycle L, a global data structure, and is called
with arguments C and e, where e is a directed edge and C is the
simple cycle of the graph bounded by e.

Initialize L, to an empty list

Call Euler(e,C), e any edge,

C the cycle bounded by e

Euler(e,C):

01. mark e and C

02. append e to L

03. let e’ be co-edge of e,

C’ the cycle bounded by e’:

04. if C’ is not marked:

05. call Euler(e’,C’)

06. goto step 08

07. otherwise, as C’ is marked:

08. let f be the next edge bounding C

09. if f is not marked:

10. set e to f and go to step 1

11. else return

The three cases that are handled are summarized in Figure
2. If the adjacent cycle C′ is not yet marked, Case (a), the
recursion will process C′ before continuing the traversal of C.
If C′ is marked but the edge f is not, Case (b), we continue to
add edges of C to the Euler cycle L. Finally, if C′ is marked
and all edges of C have already been processed, Case (c), then
the recursive call that initiated processing cycle C must have
entered C with edge f , from cycle C”. In this case we return to
cycle C” and continue to process it.



Figure 2: The three situations when computing an Euler cycle. The star indi-
cates that a cell is marked.

Cases 1 and 3 Case 2

Figure 3: Graph update events.

Correctness of the algorithm is established by a routine in-
duction on the number of cycles. Running time is proportional
to the number of graph edges, since the graph was assumed
connected. Moreover, the graph is planar, hence the number of
edges is linear in the number of graph vertices. Finally, since
sites are in general position, interior vertices are of valence 3.

3.4. Events
The z-coordinates of the Voronoi vertices divide the z axis

into intervals. Absent changes in the boundary, the planes z = k
with k in an interval generate isomorphic graphs. More than
that, edge length and slice vertex positions vary linearly with k.
When the plane crosses a Voronoi vertex, the graph changes in
a simple manner that is governed by the incident 3D Voronoi
edges. We now discuss these changes and how to exploit them.

At the initial position, the slicing plane intersects the part and
is below the Voronoi vertices inside the part. The initial graph
is obtained by intersecting the initial plane with the facets of the
part and of the Voronoi diagram. Its simple cycles are computed
with a standard algorithm. Edge e is linked to its co-edge e′ and
is also linked to the next edge in its simple cycle. We construct
an Euler cycle via a depth-first traversal, as explained above.

We update the graph and the Euler cycle at the Voronoi ver-
tices. By general position, the Voronoi vertices have distinct
z values, hence no 3D Voronoi edges are perpendicular to the
z axis, and each vertex has four incident edges in 3D-space.
There are three cases (Figure 3):

1. If one Voronoi edge lies above the sweep plane, a triangle
comprised of three pairs of (slice) graph edges collapses
into a vertex.

2. If two Voronoi edges lie above the sweep plane, an ori-
ented pair of graph edges collapses to a vertex and then
expands into another pair of edges.

3. If three Voronoi edges lie above the plane, a graph vertex
expands into three pairs of edges that form a triangle.

The graph is updated by removing the collapsed edges, adding
the new edges, and placing them in clockwise order around the
incident vertices.

Figure 4: Cycle update for Case 1. Inverse direction shows one of three Case 3
configurations.

Figure 5: Case 3 cycle updates involving U-turns.

The updates to the Euler cycle are described next. They are
complicated by the fact that the path fragments, at the change
location, can be distant parts of the Euler cycle, yet must be
updated in constant time. Moreover, because of prior events,
the local topology of the Euler cycle need not correspond to the
depth-first construction of the initial Euler cycle.

In Case 1, the Euler cycle is updated by dropping the edges
that enclose the disappearing triangle. Then, the edges that
were incident to the collapsing triangle are connected respect-
ing the previous connectivity. See Figure 4. Note that there are
several cases how the disappearing triangle connects the black
directed edges. Some of them are seen in the illustration of
Case 3. Nevertheless, connecting the black edges correctly is
straightforward. Furthermore, since the connectivity is kept,
the result must be again an Euler cycle. Finally, the connec-
tions can be done in constant time if the edge list of the Euler
cycle is doubly linked and each directed graph edge is linked to
its use in the Euler cycle. The details are routine.

Case 3 is the inverse of Case 1. In Case 3, the six directed
edges incident to the vertex that expands into a triangle are con-
nected in one of three ways: No U-turn, one U-turn and three
U-turns, at the old edges. Figure 4 shows the case of no U-turn,
when transforming the right configuration into the left. The
other two cases are shown in Figure 5.

In case 2, the two edges that collapse and leave the graph
are replaced by the two edges that enter the graph, as shown in
Figure 3. The Euler cycle update proceeds as follows: The four



Figure 6: Case 2 update with intermediate step.

directed edges that do not disappear are connected as if they met
in a common vertex. This involves retracting or dropping the
vanishing edges in the Euler cycle. After the new pair of edges
has been added into the graph, they are used in the new Euler
cycle connecting the four edges. This may involve extending a
U-turn. Figure 6 shows the 2-step method.

3.5. Boundary Cycles

When the slicing plane passes a vertex on the boundary the
resulting events will have more cases and so will the number of
incident graph edges. Here, we cannot directly perturb bound-
ary vertices to reduce the number of cases, but we can employ
the same idea that was used in segment intersection to serial-
ize the state changes; e.g., [26]. Briefly, imagine the normal
of the slicing plane tilted by an infinitesimal angle against the
z-axis. The effect is that the event-triggering vertices intersect
one-by-one, and so are serialized. Therefore, the cycles that
need updating can be processed one-at-a-time.

We have analyzed a number of update situations that proceed
much like the cases discussed above, but more edges may be
involved and Voronoi cells may be divided. A typical case for
boundary updates occurs when printing the base of the poly-
centric joint (Figure 19). Here, we pass from printing a ring-
shaped cross section to three ring sectors. Note that there is also
the option to recompute an Euler path if the topological change
becomes too complicated.

Figure 7: Experimental set-up.

4. Experimental evaluation of the manufacturing paradigm

We evaluate the performance of the proposed manufactur-
ing paradigm for 3D printers using a MakerBot Replicator 2X
printer. The experimental set-up is illustrated in Figure 7.
The printer has two nozzle heads and is directly connected
to a single-board computer (Raspberry Pi) through USB. The
single-board computer operates as a server sending slice files
to the printer upon request, the printer being the client for this
interaction. In turn, the raspberry requests the slice files from
the CAD system, wirelessly, and in this role the CAD system
is server and the raspberry is client. The motion paths for the
slices are generated by the CAD system and are conveyed to the
raspberry, slice by slice or all at omce, depending on the choice
of the user.

During the slice by slice protocol, the motion paths are de-
scribed with the native instructions of the printer driver embed-
ded into the motherboard. When sending all slices at once, we
utilize a post-processor to convert the nozzle head motions into
a single G code file. This is done because the printer driver
is not capable of handling multiple G code files for the same
artifact. On the CAD side, we use two different software pack-
ages. The geometric modeling of the artifact shape is done in
Rhinoceros 3D. The Voronoi tessellation (i.e., the interior struc-
ture) and the generation of paths are accomplished in Grasshop-
per, an add-on visual programming environment for Rhinoceros
3D. In addition to the built-in functional blocks of Grasshop-
per, we have supplementary Python scripts that implement the
algorithms proposed in this paper and also communicate with
the raspberry wirelessly. With this strategy, we do not need
to convert the design files into STL files before printing: We
slice the model and generate motion commands within the same
CAD software as opposed to the conventional approaches in
3D printing. This eliminates the interoperability problems be-
tween CAD/CAM software. In the following subsections, the
performance of the proposed manufacturing paradigm is evalu-
ated from different perspectives.

4.1. Printing of a cube

Before printing complex artifacts, we first explore the
paradigm on a cube with a size of 50 mm. There are 30 ran-
domly distributed Voronoi sites in the cube. The schematic of
the cube and its 3D print version are seen in Figure 8. Here
we have divided the cube into 5 equal parts in order to assess
the print quality of the interior faces. Among them, the yellow



(a) (b)

Figure 8: Cube with 30 Voronoi cells.

Figure 9: Top view of the yellow segment of the cube shown in Figure 8(b)
with partially covered faces.

segment is the worst because some of the faces have shallow
angles with the horizontal (slicing) plane. The top view of this
yellow part is shown in Figure 9. The reason for this failure
is that there are not enough beads to cover the faces at these
angles. The lowest possible angle for the faces to get covered
depends on the radius of the nozzle extruding the material and
the resolution in z axis of the printer as illustrated in Figure
10. The angle is calculated as α = sin−1(∆z/2r). Considering
our printer, the lowest angle is (∆z = 0.1 mm, r = 0.2 mm)
14.5◦. We assume here that the diameter of the extruded ma-
terial is equal to the diameter of the nozzle, which gives the
lowest achievable angle for the specified printer. However, this
is not the case in practice. In order to decrease the fabrication
time and print high-quality artifacts with higher resolutions, the
nozzle heads move at a speed due to which the printed diameter
of the extruded material is less than the diameter of the noz-
zle. That is, after the extruded material sticks to the table or to
the previous layer, it is stretched and extruded at the same time
and its diameter is decreased. The ratio between the distance
traveled and the amount of the extruded material determines

Figure 10: The lowest angle.

Figure 11: Extruding more material.

Figure 12: Covering horizontal faces.

the actual width of the edges. As a first attempt to cover these
problematic faces, we decreased this ratio and printed the same
segment of the cube as again; see Figure 11. As expected, the
faces at angles with the horizontal are greater than the lower
limit (14.5◦) of the printer, are covered fully.

As a second experiment, we kept the ratio at its default value
and covered the regions between the consecutive edges of the
same face, so obtaining a ladder like structure. The same seg-
ment of the cube was printed using white filaments with this
method and provided in Figure 12. This approach covers the
faces better than the first one, but if the ladder beads are longer
than approximately 5 mm, they will sag and the corresponding
faces will not be planar.

We offer three additional ideas to solve this problem without
adjusting the printer settings.

1. The first idea is simply to use a 3D printer that has a higher
resolution in the z-direction. That is, the minimum layer
height of the printer should be less than the current one,
which is 100 µm. In order to justify this solution, we
printed the problematic part of the cube with a 3D printer
having 25 µm layer resolution as provided in Figure 13.
As can be inferred from the figure, the limit angle, defined
in the first paragraph of this section, decreased consider-
ably (from 14.5◦ to 3.6◦), but the horizontal faces are not



Figure 13: High resolution printer.

covered anyway.
2. The second idea is to stretch the cells along the z axis such

that the slopes of the faces increase. We explored this idea
on the same cube by multiplying the slopes with 4 and 2.
The resulting quarter and half models of the cube are given
in Figure 14. The quarter model on the left of the figure
has no coverage problems, but one of the faces of the half
model at the top left corner was not printed well. In order
to have better results with this solution, the mean of the
slopes of the faces should be considered before multiply-
ing.

3. The last solution is to adjust the Voronoi sites such that the
resulting 3D diagram will have faces with higher slopes.
As an example, the same size of the cube is tessellated
with 30 Voronoi sites in different ways and shown in Fig-
ure 15. The position of the Voronoi sites are determined
randomly in a) and as can be seen there are many faces
that are difficult to cover completely. In case b), the z
coordinates of the Voronoi sites are assigned to the same
value resulting in an extruded 2D Voronoi diagram. This
is similar to the conventional interior filling patterns of the
current 3D printers, except that it is not uniform. If the ap-
plication does not require heterogeneity in the z axis, then
this would be an option in order to get higher quality ar-
tifacts. In case c), the z coordinates of the Voronoi sites
are restricted to be between 22.5 mm and 27.5 mm. As can
be seen from the figure that the slopes of the faces of the
Voronoi cells are now higher and more printable than the
random tessellation approach.

One of the main objectives of this study is to eliminate the
fast travels at each slice. The cube given in Figure 8 is used to
assess elimination of fast travel. The size of the cube is 50 mm
and there are 30 Voronoi sites randomly distributed. We com-
pare our method with two other methods and, for a fair compar-
ison, we disregard the bottom and top covers of the cube which
are both 1 mm in thickness. As summarized in Table 1, when
we use the official software of the printer (Makerbot Desktop)
with 13 % infilling and 0.2 mm layer thickness, there are ex-
actly two separate motions that deposit material continuously,
at each slice: one for the outer shells (2 of them) and the other

Figure 14: Slope modifications.

a) b)

c)

Figure 15: Voronoi tessellations: a) random b) constant z c) restricted z.

for the interior filling (hexagons). In order to maintain continu-
ity while extruding hexagons, a full hexagon and 2 extra edges
are extruded at the slice 2n and the remaining 4 edges of the sec-
ond hexagon are deposited at the next slice 2n+1. The second
method shown in the table is based on covering each Voronoi
cycle one by one and later extruding the outer boundary in order
to have all the edges covered twice. As expected, the number of
motions with this method is much more than with the other two
methods since there is fast travel between the many motions
per slice. Although there are 30 cells in the cube, in each slice
roughly 14 Voronoi cycles are covered in each slice on average,
due to the random 3D tesselation. Table 1 includes in the av-
erage the additional motion needed to cover the boundary. The
third method is the Euler approach proposed in the paper. It re-
quires a single extruding motion per slice and requires no empty
travel. Since the number of motions directly affects the printing
time and the quality of the artifact, elimination of the fast travels
was one of the objectives of this study. In the G-code files, we
need to have 3 different commands between consecutive mo-
tions: extraction, fast travel, and restart. Thus, elimination of
the fast travels indirectly results in decreased G-code file sizes,



Table 1: Comparison of the number of continuously extruding motions when
printing the cube.

Method Total Number
of Motions

Average Number
of Motions / Slice

Printer software 480 2
Naive Voronoi 3643 15.18
Euler approach 240 1

Figure 16: Inner and outer paths printed with different colors.

an added benefit.

4.2. Separation of the inner and outer paths
One of the aspects of our paradigm is that the generated con-

tinuous Euler loops can easily be divided into inner and outer
paths. Depending on the application and the capabilities of the
printer, these paths can be utilized to print artifacts having dif-
ferent materials or colors at the interior and at the outer bound-
aries. We implemented this attribution of the paradigm with our
two nozzle headed 3D printer. Black and white filaments were
used while printing the sample artifact as shown in Figure 16.
There are black scratches on the white faces of the sample due
to the difficulty in adjusting the retraction heights in dual print-
ing. If a 3D printer capable of extruding different colors from
the same extruder is used, these marks would be absent.

4.3. Interior filling of cells
Another important attribution of the proposed manufacturing

paradigm is that the interior of the Voronoi cells can be filled
with different patterns using various materials or colors depend-
ing on the capability of the printer. The motion paths of the
interiors may be merged with the main loop of the slice if they
are of the same material/color or they may be generated sepa-
rately. This aspect of the paradigm was realized on a sample
box shape using white and green filaments as shown in Figure
17. In this example, the offsets of the cycles are used to gen-
erate the interior pattern. The resulting offsets are then merged
together into a spiral for the corresponding nozzle head. Due to
the same problem mentioned in the previous subsection, there
are undesirable white and green smudges on the filled region.
Instead of offsets, other patterns can be used to fill the interior

Figure 17: One of the interior cells filled with offsets.

of the cells. For instance, the beads may be aligned in the di-
rections of the applied forces on the artifacts, so increasing the
strength.

4.4. Test cases

We fabricated two different parts with structured interior to
illustrate a few functionalities of the proposed paradigm. In the
first case, the moving P of Purdue University is printed with
the conventional and the proposed approaches. These printed
artifacts are compared in terms of their self-standing ability,
print time and material consumption. As a second test case, we
printed the stationary part of a three ball polycentric joint [27].
We tessellated Voronoi sites according to the stress distribution
in this example.

4.4.1. The P
After we designed the P in Rhinoceros 3D, it was first fab-

ricated using the official software of the printer which requires
STL files of the designed artifacts. The design and the printed
object are shown on the upper row of Figure 18. Owing to the
fact that the interior is filled with hexagons homogeneously, the
center of gravity of the artifact is not shifted and it is to the right
of the base of the P. Thus, it is not possible for the P to stand
on its own. In order to make it stand, we increased the density
of the Voronoi sites on the left of the object, as shown in the
bottom row of the figure. For the tessellation, we followed the
framework explained in the appendix. Due to the higher den-
sity of the Voronoi edges, more material was extruded on the
left section of the P which shifted the center of gravity. In addi-
tion to the functional disadvantage, the P with a homogeneous
interior (13% infill) required more material than the heteroge-
neous P and required 38% more time to print according to ho-
mogeneous printing with 0.1 mm layer height; see Table 2. We
compare the time with the first homogeneous case because we
use the same extrusion ratio (extruded material per unit motion,
mm/mm) with the high resolution case and we print each edge
twice. Note also that the material consumption in the homoge-
neous cases is slightly different. Theoretically it should be the
same since in both cases the volume to be filled is exactly the



Figure 18: Homogeneous and heterogeneous fillings of the P. Note the diagonal
line extruded in the homogeneous P, at the upper right. It is due to a bug in the
software that comes with the MakerBot.

Table 2: Comparison of the prints of the P.

Interior Layer
Height Material Print

Time
Homogeneous 0.1 mm 13.77 g 105′

Homogeneous 0.2 mm 13.01 g 51′

Heterogeneous 0.2 mm 7.05 g 76′

same. This difference is due to the fact that the interior filling
patterns of the two cases are not identical.

4.4.2. Three ball polycentric joint
As a second test case, we printed the stationary part of a three

ball polycentric joint [27]. After modeling the base part bound-
ary, we distributed the Voronoi sites inside the volume accord-
ing to the high stress regions pointed out by Alaci et al. [27].
That is, there are more sites at these regions in order to increase
the strength of the part. As a part of the design, these Voronoi
sites may also be placed such that the manufactured part will
have desired directional properties. The sites are located around
the mean height of the part, as discussed before in Section 4.1.
The designed model, Voronoi tessellation, printed part and the
functional joint are shown in Figure 19. We printed the mov-
ing part of the joint using a resin based 3D printer along with
its conventional fabrication pipeline. Our approach consumed
less material and printed in a shorter time as shown in Table 3.

Note that the outer shape of the object is not constant along
the z axis. Three slots are designed for the balls on the moving
part of the joint. These topological changes constitute a discon-
tinuity that is addressed by trimming the cells that extend into
the slots. It seems simplest to just restart the Euler loops above

Table 3: Comparison of the prints of the joint.

Interior Layer
Height Material Print

Time
Homogeneous 0.1 mm 74.21 g 568′

Homogeneous 0.2 mm 72.12 g 281′

Heterogeneous 0.2 mm 22.84 g 243′

Figure 19: Design and fabrication of the three ball polycentric joint.

Table 4: Extruded material (mg) per motion for different approaches.

Case Conventional Voronoi
The P 57.4 117.5
The Joint 17.7 35.1

the transition to the slots, but this ignores the fact that sites be-
low impact the cell boundaries above in the continuing interior.
Therefore, the lower boundary of each of the three slots, and
subsequently the side walls of the slots, contribute to the part
boundary and thus change the Euler path at the incipience of
the slots. The pruning of the Voronoi cells that must be done is
analogous to the pruning that was done below. Topologically,
printing proceeds from one to three boundary loops. The gen-
eral case is a transition from m to n boundary loops and requires
further research. his issue needs further investigation to better
understand how best to transition from n to m boundary loops.

We further compared our Voronoi based approach with the
conventional homogeneous printing approach in terms of the
amount of extruded material per continuos motion. These ra-
tios are presented in Table 4. While calculating them, we as-
sumed that bottom and top surfaces have the same number of
motions as the intermediate layers. As expected, our approach
extrudes more material per motion even though it has less ma-
terial consumption overall. This results in more uniform beads,
since the continuity of the extrusion process is maintained, and
less surface irregularities.

4.4.3. Further cases
In addition to the previous two test cases, we have printed

several other objects with our paradigm as shown in Figure



Figure 20: Various artifacts

20. The two examples in the top row show that the proposed
manufacturing paradigm is suitable for the construction of dif-
ficult structures. With the Voronoi based modelling, mechani-
cal properties of the bricks in the construction could be altered
and the multi-directional load bearing capacities could be ar-
ranged. Furthermore, as in the case of the keystone in the arch,
the interior of some the cells/bricks could be filled with mate-
rials that expand over time to create compressive forces on the
neighbouring cells/bricks. The examples at the bottom row of
Figure 20 are provided to show that the approach has no restric-
tion on the complexity of the boundary faces. The problem we
have with the horizontal faces of the cells are also valid with the
horizontal boundary faces. In these situations, supporting walls
can be used for proper printing as in the conventional approach
with FDM.

5. Discussion

The traditional approach of treating each slice as a separate
structure ignores the fact that, in many cases, there is a high de-
gree of similarity between consecutive slices, geometrically as
well as topologically. This is trivially the case when the interior
of the object printed is filled with a fixed pattern that has little
functional significance. A structure derived from a 3D Voronoi
diagram, on the other hand, has functional significance, as evi-
denced by the extensive literature on the subject. Therefore, the
inter-slice coherence and the small number of possible topo-
logical changes is significant. Furthermore, the query-based
client-server architecture favors incremental slice transmission
that increases scalability and can support compact slice encod-
ings.

When printing empty Voronoi cells, faces with a low slope
present difficulties. We developed several ways to ameliorate

Figure 21: Perspective view of the artifact.

this problem. They deserve to be explored further in application
contexts. In certain application contexts Voronoi diagrams are
a starting point for modeling a cellular structure. The Voronoi
cells are then modified, resulting in the final cell shape. Scal-
ing might be an elegant tool in such domains. Non-empty cells,
on the other hand, do not have the difficulty of printing faces
with shallow slope. Nevertheless, how to print the cell inte-
rior efficiently deserves additional consideration of cell content
coherence, density and structure.
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Appendix. A framework for Voronoi tessellation

We consider shifting the center of gravity (CG) of a proto-
typed part, using irregular 3D Voronoi tessellation. Determin-
ing where to place sites so that the design requirements are sat-
isfied would be tedious if not forbidding. In this example ap-
plication, the center of gravity of the artifact will be modified
by developing an irregular Voronoi tessellation of the interior.
Similar approaches can also be employed for different physical
properties of the artifacts as mentioned in the introduction and
literature review.

The design approach will be elaborated through an example
artifact shown in Figure 21. It consists of two pyramids and one
box sections. If the object is filled homogeneously, it is obvious
that the CG will be to the right of the box section. The aim of
the interior design is that the artifact should stand on its own on
one of the rectangular faces of the box section. This is done by
relocating the CG into the box region.

Before determining the heterogeneous tessellation, we do a
regular tessellation (hexagonal) as in Figures 22 - 24 and get
the weights of the sites according to the corresponding physical
properties. This approach will help us evaluate the heteroge-
neous Voronoi tessellation without calculating the Voronoi dia-
gram each time.

The weights of the sites will depend on the surface areas of
the cells. These weights are shown as a temperature plot in Fig-
ure 25. As can be inferred, the weights are higher at the brown



Figure 22: Sites of the regular Voronoi tessellation.

Figure 23: Perspective view of the regular tessellation.

Figure 24: Half of the printed artifact with regular tessellation.

Figure 25: Temperature plot of the weights.

Figure 26: Voronoi tessellation based on the temperature plot.

and red regions; that is, sites in these regions are dominant in the
calculation of the CG. We will make use of these regions while
tessellating the Voronoi sites to satisfy the design goal. A sam-
ple irregular tessellation is provided in Figure 26. It is obtained
by adding sites to the high-temperature regions with a regular
pattern that allows fast estimation of the resulting shifted po-
sition of the CG. This step is repeated until the design goal is
reached. Another way to effect site relocation would be to let
the user click with the mouse, moving sites from where they are
to where they should be. These activities can be guided in de-
tail by updating the temperature plot periodically. A rich case
history can be so assembled that would become a knowledge
base that allows automating the process in time.

As stated earlier, we do not need to calculate the Voronoi di-
agram to determine exactly the weights of the sites. Instead, we
use the weights obtained from the regular tessellation, thereby
decreasing the computation time. If this configuration satisfies
the design requirements, then the 2D and 3D Voronoi diagrams
can be computed as in Figures 27 - 28. The 3D diagram is
obtained by perturbing the z-axis values of the Voronoi sites as
discussed in the paper. The method works very well empirically
and is validated by an exact calculation of the CG position. The
designed artifact is also printed, Figure 29, to further prove that
the CG is within in the box region. Since it is almost symmet-
rical with respect to the mid-plane, only half of it is printed to
show the interior.



Figure 27: Resulting extruded 2D Voronoi diagram.

Figure 28: Resulting 3D Voronoi diagram.

Figure 29: Half of the printed artifact with 3D Voronoi tessellation.
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[6] A. Dolenc, I. Mäkelä, Rapid prototyping from a computer scientist’s point
of view, Rapid Prototyping Journal 2 (2) (1996) 18–25. doi:10.1108/
13552549610128198.

[7] Q. Ge, H. J. Qi, M. L. Dunn, Active materials by four-dimension print-
ing, Applied Physics Letters 103 (13) (2013) 131901. doi:10.1063/1.
4819837.

[8] N. Oxman, Variable property rapid prototyping, Virtual and Physical Pro-
totyping 6 (1) (2011) 3–31. doi:10.1080/17452759.2011.558588.

[9] E. L. Doubrovski, E. Y. Tsai, D. Dikovsky, J. M. P. Geraedts, H. Herr,
N. Oxman, Voxel-based fabrication through material property mapping:
A design method for bitmap printing, Computer-Aided Design (2014) 1–
11doi:10.1016/j.cad.2014.05.010.

[10] D. Dutta, N. Kikuchi, P. Papalmbros, F. Prinz, L. Weiss, Project maxwell:
Towards rapid realization of superior products, in: Solid Freeform Fabri-
cation Symposium, DTIC Document, 1992, pp. 54–62.

[11] V. Chandru, S. Manohar, C. E. Prakash, Voxel-based modeling for layered
manufacturing, Computer Graphics and Applications, IEEE 15 (6) (1995)
42–47.

[12] R. Prévost, E. Whiting, S. Lefebvre, O. Sorkine-Hornung, Make it
stand, ACM Transactions on Graphics 32 (4) (2013) 1. doi:10.1145/

2461912.2461957.
[13] L. Lu, B. Chen, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye,

C. Tu, D. Cohen-Or, Build-to-last, ACM Transactions on Graphics 33 (4)
(2014) 1–10. doi:10.1145/2601097.2601168.

[14] M. Nygårds, P. Gudmundson, Three-dimensional periodic voronoi grain
models and micromechanical fe-simulations of a two-phase steel, Com-
putational Materials Science 24 (4) (2002) 513–519.

[15] S. Biner, Thermo-elastic analysis of functionally graded materials using
voronoi elements, Materials Science and Engineering: A 315 (1) (2001)
136–146.

[16] S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Tora-
bian, S. Schmauder, Microstructure Modelling of Dual-Phase Steel Us-
ing SEM Micrographs and Voronoi Polycrystal Models, Metallography,
Microstructure, and Analysis 2 (3) (2013) 156–169. doi:10.1007/

s13632-013-0075-7.
[17] X. Y. Kou, S. T. Tan, Heterogeneous object modeling: A review,

Computer-Aided Design 39 (4) (2007) 284–301. doi:10.1016/j.cad.
2006.12.007.

[18] D. Weaire, N. Rivier, Soap, cells and statistics—random patterns in two
dimensions, Contemporary Physics 25 (1) (1984) 59–99. doi:10.1080/
00107518408210979.

[19] B. Gellatly, J. Finney, Characterisation of models of multicomponent
amorphous metals: the radical alternative to the voronoi polyhedron, Jour-
nal of Non-Crystalline Solids 50 (3) (1982) 313–329.

[20] S. F. Li, J. K. Mason, J. Lind, M. Kumar, Quadruple nodes and grain
boundary connectivity in three dimensions, Acta Materialia 64 (C) (2014)
220–230. doi:10.1016/j.actamat.2013.10.033.

[21] A. K. M. B. Khoda, B. Koc, Functionally heterogeneous porous scaffold
design for tissue engineering, Computer-Aided Design 45 (11) (2013)
1276–1293. doi:10.1016/j.cad.2013.05.005.
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