
Published by the IEEE Computer Society 0272-1716/11/$26.00 © 2011 IEEE IEEE Computer Graphics and Applications 35

Digital-Content Authoring

Large-Scale Physics-Based
Terrain Editing
Juraj Vanek and Bedřich Beneš ■ Purdue University

Adam Herout ■ Brno University of Technology

Ondřej Št’ava ■ Purdue University

Terrain editing is an important element of
a digital-content creator’s workflow. Ter-
rain databases of digital elevation models

are freely available, various approaches for proce-
dural terrain generation exist, and users can edit
terrains with a variety of tools and software. (For
more background on terrain editing, see the side-
bar.) Easy-to-use physics-based simulations could
potentially improve interactive-content creation
and authoring for computer animation and the
entertainment industry, providing an additional
dimension of control for terrain modeling.

But physics-based editing isn’t common prac-
tice, for two main reasons. First, simulations
usually are unintuitive, difficult to control, and
unpredictable. Second, and more important, inter-
active editing is usually possible only at a small
scale because computations are time-consuming
and require much memory. Attempts to edit large
datasets are usually below interactive frame rates
because the methods simply don’t scale well.

However, many physics-based simulations are
spatially separable and can execute in parallel. This
localizes editing operations—users can apply them
only to areas needing simulation. Additionally,
the frequency of changes varies over the terrain,
so areas with many changes can be simulated
with higher precision and areas with less variance
require less precision.

On the basis of these observations, we’ve devel-
oped a physics-based system for large-scale terrain
editing. It’s user friendly, intuitive, accessible, suit-
able for digital-content authors (such as game de-

signers, artists, and 3D modelers), and assumes no
in-depth knowledge of physics-based simulations.
To address scalability issues, we harness the simu-
lations’ parallelism and provide an adaptive GPU-
amenable solution. With our approach, users can
interactively edit terrain sizes that they couldn’t
with previous approaches.

System Overview
Our terrain consists of multiple layers of materials
and uses a layered data representation.1 This allows
efficient representation of differ-
ent materials and their erosion
and deposition.

In our system, the preprocess-
ing (see Figure 1) includes data
definition and subdivision into
tiles of different resolution. The
input data can be defined in dif-
ferent ways. Each layer can be
generated procedurally, loaded
as a single large texture, or mosaicked interactively
from various files. In the last mode, the user de-
fines each layer by dragging the input images over
the layer and dropping them at a desired location.
A user-selected blending mode then merges the in-
put image with the existing data. The image can be
added, multiplied, or subtracted from the existing
layer. Our input data isn’t restricted to a rectan-
gular domain because tiles for some layers might
not be present. We call our data structure virtual
layered terrain.

After the system defines the virtual terrain, it

Most terrain modelers fail on
large-scale phenomena and
focus only on limited effects.
An intuitive physics-based
system can process terrain
sizes that weren’t possible
with previous approaches.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

36 November/December 2011

Digital-Content Authoring

further analyzes and divides the terrain into tiles.
The computer’s main memory stores information
about tile properties and placement, and the
system uploads and processes this data on the
GPU as needed.

After preprocessing, the virtual terrain is ready
for editing (see Figure 2). Users can apply op-
erations such as smoothing, pulling, and push-
ing vertices and parts of the terrain; selecting ar-
eas; and copying and pasting. Editing mode uses
physics-based simulation. We’ve implemented

two physics-based operations: thermal weath-
ering and hydraulic erosion (for more infor-
mation, see the sidebar). The system periodically
evaluates each modified tile to determine whether
the tile generator should recalculate its resolution.
Concurrently, it calculates a mip-map pyramid for
each tile. Finally, the system renders the virtual
terrain.

Our system includes strong GPU support. It im-
plements all simulations and editing operations as
GPU shaders. The tiling scheme allows for efficient

P rocedural terrain-modeling approaches employing frac-
tals,1 multifractals, and hypertextures2 can be used to

generate arbitrarily sized datasets. However, they provide
no reasonable user control, and the results might often
appear unrealistic. One procedural approach employs user
interaction to sketch ridges and valleys that guide a fractal
system,3 but this approach is ad hoc, isn’t physically based,
and doesn’t allow terrain editing.

Researchers have extended other procedural approaches
by using example-based modeling to modify the terrain’s
shape and structure to a predefined pattern.4 However,
such approaches don’t allow small terrain changes or sup-
port physics-based editing.

The available software packages (such as Bryce or
Terragen) usually provide no physics-based editing tools or
fail to edit large-scale phenomena.

F. Kenton Musgrave and his colleagues introduced
physics-based approaches to terrain modeling by water
diffusion and thermal weathering.5 Chris Wojtan and his
colleagues extended this in many directions, including
corrosion and erosion, on the basis of materials’ chemical
properties.6

Norishige Chiba and his colleagues performed 2D simu-
lations of hydraulic erosion, the most important long-lasting
terrain-forming phenomenon.7

Bedřich Beneš and Rafael Forsbach introduced layered
data representation for erosion simulation.8 Later, Beneš
and his colleagues introduced a full 3D simulation of hy-
draulic erosion.9

Xing Mei and his colleagues improved erosion simula-
tion by offloading it to the GPU.10 Ondřej Št’ava and his
colleagues modeled erosion of both running and still wa-
ter on multilayered terrains.11 These two approaches pro-
vide good user control for small to medium terrains, but
because of GPU memory and performance constraints,
they’re unsuitable for large terrains.

Whereas most of the these approaches are based on the
Eulerian solution of Navier-Stokes equations for fluid dy-
namics, Peter Krištof and his colleagues used the Lagrang-
ian solution by means of smoothed-particle hydrodynamics
coupled with hydraulic erosion.12 However, rapid increases

in the number of particles required for the simulation can
hinder this solution.

References
 1. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman,

1982.

 2. K. Perlin and E.M. Hoffert, “Hypertexture,” Proc. Siggraph,

ACM Press, 1989, pp. 253–262.

 3. A.D. Kelley, M.C. Malin, and G.M. Nielson, “Terrain Simulation

Using a Model of Stream Erosion,” Proc. Siggraph, ACM Press,

1988, pp. 263–268.

 4. H. Zhou et al., “Terrain Synthesis from Digital Elevation Models,”

IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 4,

2007, pp. 834–848.

 5. F.K. Musgrave, C.E. Kolb, and R.S. Mace, “The Synthesis and

Rendering of Eroded Fractal Terrains,” ACM Siggraph Computer

Graphics, vol. 23, no. 3, 1989, pp. 41–50.

 6. C. Wojtan et al., “Animating Corrosion and Erosion,” Proc.

Eurographics Workshop Natural Phenomena, Eurographics Assoc.,

2007, pp. 15–22.

 7. N. Chiba, K. Muraoka, and K. Fujita, “An Erosion Model Based

on Velocity Fields for the Visual Simulation of Mountain Scenery,”

J. Visualization and Computer Animation, vol. 9, no. 4, 1998, pp.

185–194.

 8. B. Beneš and R. Forsbach, “Layered Data Representation

for Visual Simulation of Terrain Erosion,” Proc. 17th Spring

Conf. Computer Graphics (SCCG 01), IEEE CS Press, 2001, pp.

80–86.

 9. B. Beneš et al., “Hydraulic Erosion,” Computer Animation and

Virtual Worlds, vol. 17, no. 2, 2006, pp. 99–108.

 10. X. Mei, P. Decaudin, and B.-G. Hu, “Fast Hydraulic Erosion

Simulation and Visualization on GPU,” Proc. 15th Pacific Conf.

Computer Graphics (PG 07), IEEE CS Press, 2007, pp. 47–56.

 11. O. Št’ava et al., “Interactive Terrain Modeling Using Hy-

draulic Erosion,” Proc. Eurographics/ACM Siggraph Symp.

Computer Animation (SCA 08), Eurographics Assoc., 2008,

pp. 201–210.

 12. P. Krištof et al., “Hydraulic Erosion Using Smoothed Particle

Hydrodynamics,” Computer Graphics Forum, vol. 28, no. 2,

2009, pp. 219–228.

Further Reading in Terrain Modeling

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 37

out-of-core simulation. (This term usually refers to
a procedure that doesn’t fit in the main memory
and is offloaded from a hard drive. We use it loosely
to describe a simulation that doesn’t fit into GPU
memory and is loaded from the main memory.) The
system processes all affected tiles on the GPU; it
loads the results back into the main memory only
when necessary. Support for frame buffer objects
allows for seamless full GPU-supported rendering
of the generated terrain with advanced real-time
effects, such as high-dynamic-range rendering,
screen space ambient occlusion, parallax mapping,
shadows, and refractions for water.

Terrain Tiling
Here, we examine more closely how our system
divides terrain into tiles.

Tile Resolution
Each tile resolution must be to the power of two.
Moreover, it must fall within the user-defined
range 2min, 2min+1, …, 2max. In our implementation,
the lowest efficient tile resolution was min = 5; the
upper limit was constrained by the available main

memory. Values greater than max = 10 resulted in
frequent swapping between the GPU and the main
memory, thus slowing the simulation. Although
each tile covers the same area, the actual resolution
depends on the tile’s complexity (see Figure 3).

We determine tile complexity by a metric that
measures the overall differences of terrain al-
titudes. First, we find the entire terrain’s mini-
mum and maximum altitudes. For each tile, we
then perform parallel reduction on the GPU. We
successively scale the tile down to a resolution of
32 × 32 pixels and find the difference between the
tile’s minimum and maximum altitudes. We then

Input

Large texture

Virtual terrain

Images

Procedural input

for (int i=0;i<max;i++){
 a=i<<123;
 b=a>>231;
 …

Tile generator Figure 1. Data
preprocessing.
Virtual layered
terrain consists
of tiles of
different
resolutions.
Each layer
can be loaded
as a whole,
generated
procedurally,
or composed
from multiple
images.

Edit

Simulate

Update tiles Render

Figure 2. Terrain editing. Users can edit each tile manually or through
the physics-based simulation. After the terrain changes, the system
evaluates the affected tiles and, if necessary, changes the tile resolution.
The entire terrain is visualized in each step.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

38 November/December 2011

Digital-Content Authoring

normalize the difference into an interval defined
by the minimum and maximum values from the
entire terrain.

To find the tile resolution, we linearly map the
normalized difference onto the selected interval of
texture resolutions. Because each tile consists of
various layers of materials, the calculation executes
several times on each layer. The tile resolution
depends on the most complex layer. This method is
efficient, runs on the GPU, preprocesses the input
data, and evaluates tile changes on the fly.

After a tile has been updated, either by user in-
teraction or physics-based simulation (see Figure 2),
we evaluate its content to determine whether to
resample the texture to a higher or lower resolu-
tion. We apply our algorithm for resolution selec-
tion on the modified tile and compare the selected
resolution with the actual one. If the actual reso-
lution is different, we resample the tile. We also
update the virtual terrain’s global minimum and
maximum, so a change to a single tile can cause a
resampling of tiles covering different areas.

Physics-Based Simulation on a Mip-Map
We use two erosion algorithms; both are fully
implemented on the GPU. The first is for ther-
mal weathering, which causes small particles of
a material to fall from elevated locations and pile
up. The material’s inner friction slows the fall-
ing, which stops when the piled material reaches
the talus angle. This angle is approximately 30
degrees for sand, which is the value we use in our
implementation.

The second algorithm is for hydraulic erosion,
which is caused by running water and the forces it
exerts on the terrain. Various hydraulic-erosion al-

gorithms exist (for more information, see the side-
bar); our system uses force-based hydraulic erosion.
The force applied to the terrain separates a certain
amount of material that’s transported in the run-
ning water and eventually deposited at a different
location when the water slows. The key element
of an efficient hydraulic-erosion algorithm is the
coupling of the erosion-and-deposition model with
the water transportation. We use the pipe model,
which is an approximation of the solution of the
Navier-Stokes equation for fluid simulation applied
to a special case of shallow-water transportation.2

In our simulation, the material on the topmost
layer and the water can change locations. The
topmost layer is the only one that’s eroded, and the
deposited material is also deposited to the topmost
layer. The topmost layer needn’t always be the
same. For example, an eroded layer of rock might
be deposited on sand. Both erosion algorithms are
material preserving.

Each data point of the tile stores the water level,
water flow, and height of each layer of material.
These data are efficiently packed into texture on
the GPU and accessed via shaders. Several values
must be recalculated in each simulation step; the
new values depend on the values from the previ-
ous steps:

 ■ Water flow is a vector computed from the water-
height differences between the selected cell and
the neighboring cells.

 ■ Water height is the actual water level; it depends
on the inflow and outflow from and to neigh-
boring cells.

 ■ Layer composition must change according to the
force-based erosion. Fast-flowing water captures
sediments from the topmost layer and deposits
them elsewhere when the water flow slows.

 ■ The angle between neighboring cells determines
the amount of removed material due to thermal
weathering.

Although the tile resolution reflects the terrain’s
complexity, it doesn’t necessarily reflect the flowing
water’s complexity. Because the physics simulation
is the most complicated procedure, we use another
spatial subdivision for each tile. We generate a
mip-map pyramid of textures and calculate the
hydraulic erosion at the level corresponding to
the moving water’s speed. Intuitively, slow water
exerts smaller forces on the terrain; we can apply
this effect to smaller resolutions. In this way, we
trade the physics-based simulation’s numerical
precision for application speed.

Each tile that contains water stores the mip-map

Figure 3. Terrain tiles. Each tile covers the same area of the virtual
terrain, but its resolution depends on the underlying layers’ complexity.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 39

pyramid. We denote the maximum resolution of
tile D as D(w, h), where w represents width and
h represents height, and its n mip-map levels as
D(n), where each pixel in a higher level contains
averaged data from the previous level’s four
corresponding pixels. Theoretically, we could use
an arbitrary cascading scheme, but mip-mapping
works particularly well on GPUs.

We evaluate the hydraulic-erosion algorithm’s pre-
cision on a per-pixel basis. To determine each pixel’s
level, we calculate an importance map, A(w, h), for
each tile. The map has the same resolution as the
pyramid’s highest level and stores an index to each
mip-map level (see Figure 4). We determine the
map’s value from the maximum value of the water
flow normalized over terrain. The maximum is then
mapped to the number of mip-map levels. We use the
importance map’s value to select the actual mip-map
level, from which we calculate the hydraulic erosion.

Accessing the mip-map cascade could produce
significant calculation overhead. So, we use the
mip-map only to determine the resolution at
which to calculate the erosion. We merge the mip-
map into a 2D image, denoted by D̂(̂w, ̂h) : ŵ = w,
ĥ = h, that has the same resolution as the pyra-
mid’s highest level. We merge the mip-map levels
into a single texture by a successive lookup into
different mip-map levels, comparing the actual
value with the importance texture and broadcast-
ing the values D̂(̂w, ̂h) into the four corresponding
pixels (see Figure 5). In Figure 5, we calculate only
pixels A through D and E through L at the highest
precision. We calculate the other values at lower
resolution and broadcast their values to multiple
pixels. Figure 6 shows the pseudocode for hydrau-
lic erosion on the mip-map pyramid.

The algorithm tests each pixel of the pyramid’s

highest level N times, where N is the number of
mip-map levels. If a pixel’s importance value is
equal to its value from the merged map (step 3
in Figure 6), the physics-based erosion algorithm
executes. When the algorithm ends, the system
recalculates the mip-map and merged map.

We can infer the adaptive calculation’s speedup
from Figure 5c. The original tile has a resolution of
8 × 8 pixels; however, we calculate only 20 unique
values (A–T).

Interactive Editing
Interactive editing exploits the spatial locality
of changes invoked by the terrain modifications.
When the user employs a brush tool to edit terrain,
the system detects the affected tiles, transfers them
to the GPU, and applies the editing operation. The
active-tile lookup occurs quickly because each
tile’s address is derived from the terrain origin and
information about the cursor position.

If an editing operation changes the height dif-
ferences in terrain, the automated mechanism for
determining tile resolution will immediately deter-
mine the resolution and resample it in real time.

Implementation
We performed all tests on a desktop PC with Win-
dows 7 (with 64 bits, a 2.67-GHz Intel i7 920, and
an Nvidia GTX 480), using 1.5 Gbytes of mem-
ory. We implemented our system in C++; it uses
OpenGL 4.0 and the OpenGL Shading Language
(GLSL). GLSL strongly supports hardware mip-
mapping by allowing data fetching from different
levels. GLSL version 400 also includes functions
allowing single-instruction fetching of surround-
ing texels (called texture gathering). Moreover, all
major GPU manufacturers support GLSL.

(a) (b)

Figure 4. (a) Terrain on the edge of a lake, with water flowing over the bank. (b) The corresponding importance map. This is used
to determine the precision used for the calculations.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

40 November/December 2011

Digital-Content Authoring

Our system uses several 2D data structures:
water level, sediment level, water flow, and terrain
layers. We implement water flow and terrain layers
as four-channel 32-bit floating-point textures;
water and sediment levels are packed into a single
two-channel texture.

The importance map adds a channel, and the
original data textures are automatically converted
into mip-maps on the GPU. Mip-map merging
occurs in separate data structures, which again
represent water and sediment heights, flow, and
terrain. The importance map has additional
memory requirements and requires additional
work to calculate cascade levels and merge them
into a single data texture. Overall, our approach
would need 50 percent more memory if it didn’t
use tiling. However, in our practical examples, we
saved approximately 30 percent memory.

The Eulerian approach to fluid simulation is suit-

able for GPU implementation because it can fully
utilize the GPU’s parallel computing. All cells can
be calculated independently of each other because
they use values only from neighboring cells created
in previous simulation steps. During the rendering
loop, writing and reading from the same data tex-
ture at the same time isn’t allowed. We solve this
by first rendering the terrain into a mip-map chain
and then merging the result into a final image. We
then use the merged data in the next step as a read-
only texture for mip-map generation.

The implementation uses frame buffer objects
and fragment shaders to perform all screen-space
calculations. Writing into data texture is per-
formed by attaching the texture to frame buffer
objects and drawing it as a full-screen quad with
the shader activated. Because the system uses a lot
of dynamic branching with indexed arrays, it re-
quires a fast GPU, with support for an OpenGL
version higher than 3. On GPUs with OpenGL 4
support, we can use fast instructions to gather all
surrounding fragments around active fragments.

Rendering employs OpenGL 4 with a program-
mable graphics pipeline. Each tile contains a rect-
angular mesh, with the number of polygons based
on the tile resolution. The mesh is displaced by a
compound height of terrain and water layers in
a vertex shader. We then visualize the result in a
fragment shader. Each terrain layer has different
color textures; we blend the colors to create smooth
transitions between layers according to each layer
of thickness. Water is displayed on top of the ter-
rain and is partially blended with the terrain layers.

Results
Figure 7 shows an example of interactive edit-
ing. The user initially created procedural terrain

P Q

Q
A B

Mip-map levels D Importance map A Merged map D̂

C D

E F

G H

I J

K L

M N

O

P Q

R S

T

0 0 1 1 1 1 2 2

0 0 1 1 1 1 2 2

2 2 2 2 2 2 0 0

1 1 3 3 3 3 0 0

2 2 3 3 3 3 0 0

2 2 3 3 3 3 0 0

3 3 3 3 2 2 2 2

2 2 2 2 2 2 2 2

A B
M N

C D

E F

O G H

R
I J

K L

R
S

0

1

2

3

T

(a)

(b) (c)

Figure 5. Merging (a) mip-map levels D, using (b) importance map A, into (c) the merged map D̂. We broadcast
values from higher levels of the mip-map into lower levels (see the upper-left quadrant).

Input: Merged data structure D̂, importance map A
Output: New mip-map D(N)

1 for each mip-map level i = 0 to N do
2 for all pixels in D̂ do
3 if the pixel has the same importance level
 A(x, y) == i then
4 calculate physics on this level of detail
 D(i)(x, y):= DF(D̂(x, y))
5 end if
6 end for
7 end for
DF computes hydraulic erosion

Figure 6. An algorithm that implements hydraulic erosion on a mip-
map. Instead of calculating the erosion for each pixel, it is evaluated
with varying precision according to the underlying water and terrain
complexity.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 41

from Perlin noise in three layers of material, each
at 4,096 × 4,096 resolution (see Figure 7a). This
model was loaded into the system and tiled. The
entire model has a theoretical size of nearly 3
Gbytes, but the tiled size was only 1 Gbyte. The
user then employed three images at 1,024 × 1,024
resolution (see the insets in Figure 7b) and added
them to the terrain using blending mode. The sys-
tem automatically recalculated tile resolution (see
Figures 7c and 7d). This editing took less than 15
seconds; tile recalculation and thermal weathering
took approximately 25 milliseconds.

Figure 8 shows a real-data digital elevation model

of the Grand Canyon that was artificially flooded
by a strong water source. The simulation time was
100 ms per frame, and the terrain resolution was
8,192 × 4,096.

Figure 9 shows an example of interactive phys-
ics-based erosion. A scene with a mountain of dif-
ferent materials that has been eroded by a water
source manually positioned over them (see the
blue circle). The simulation time was 25 ms per
frame; the resolution was 4,096 × 4,096. The ex-
ample shows how the different materials erode at
different speeds and how the sand is being depos-
ited at the foot of the mountain.

(a) (b)

(c) (d)

Figure 7. Large-terrain editing. (a) The input scene at 4,096 × 4,096 resolution before interactive editing. (b) The scene after
interactive editing. The user added several patches of terrain (shown as successive insets) at 1,024 × 1,024 resolution, edited
some valleys and mountains, and ran hydraulic erosion on certain areas. The overall editing took 10 seconds, and the simulation’s
average runtime per frame was 23 ms. (c) The corresponding tiling of the input scene. (d) The corresponding tiling of the scene
after interactive editing. Areas with a large variation in altitude are in higher resolution than areas with a small variation.

(a) (b)

Figure 8. Employing a digital elevation map of the Grand Canyon. (a) The original map, which had a resolution of 8,192 × 4,096
pixels. (b) An erosion simulation using the map as input. This shows the underlying terrain flooded from various sources of water.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

42 November/December 2011

Digital-Content Authoring

Figure 10 shows a very large scene that didn’t
fit in GPU memory. The original 12,288 × 12,288
scene was tiled into 12,288 × 12,288 tiles with
1,024 × 1,024 maximum resolution. The scene
used approximately 2.5 Gbytes of memory. The
average simulation time was 43 ms per frame. On
the GPU, the scene used a maximum of 1.5 Gbytes
and ran at 12 fps for both rendering and simula-
tion. For more on the simulations, see http://doi.
ieeecomputersociety.org/10.1109/MCG.2011.66.

Tile Size and GPU Memory
The actual size and, consequently, total number of
tiles significantly affect performance. Intuitively,
a large number of tiles will decrease performance
because of tile synchronization overhead. A small
number will obfuscate the performance gain of
the importance map and varying tile resolution.
Because different aspects can influence the effect
of the number of tiles, we’ve created a benchmark
that determines the optimal number of tiles.

As the shape of the simulation time curve in Fig-
ure 11 shows, the measurements confirm our in-
tuition. The best performance occurs for tiles cov-
ering approximately 1 to 5 percent of the virtual
terrain’s area.

The GPU memory has a hardware limit. Because
most calculations occur on the GPU, storing as
many tiles as possible on it is beneficial. We could
fit up to 256 tiles with small resolution (128 pixels)
or a few large tiles (1,024 pixels) into GPU memory.
However, the application is fully functioning even
when processing much larger scenes that don’t fit
into GPU memory. This is because the OS driver
will swap the least-recently-used memory pages
into the main computer memory.

Tiles are synchronized directly on the GPU. If a
pixel lies on a tile’s border, the system selects the
neighboring cells from the appropriate tiles because
all tiles can access textures from their surrounding
tiles. This process guarantees seamless transition
of water flow and the accompanied material among
tiles of the same resolution. When neighboring
tiles have different resolutions, the system uses
hardware-level linear interpolation when fetching
values, which introduces a minor interpolation
error. However, this error wasn’t significant in our
experiments.

Table 1 shows the performance and memory
requirements of the scenes from this article. We
rendered all the scenes in nonadaptive mode at the
maximum-possible resolution with 928 Mbytes of

(1)

(3)

(2)

(4)

Figure 9. Interactive editing using a physics-based brush (the blue circle) with localized rain. The object is
made of hard material with soil on its top. This example shows how different materials erode at different
speeds and how sand is being deposited at the foot of the mountain.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 43

memory; the timing was a nearly constant 34 ms.
Our adaptive method shows an average speedup of
1.46 and an average memory savings of 75 percent.

Simulation Error
To bring the physics-based terrain editing to
interactive frame rates, we introduce numerical
simplifications at different levels. Some sources
of possible errors are different tile resolutions,
evaluation of the hydraulic erosion at varying
levels of detail, and conversion of data from
different resolutions (merging between mip-
maps and between neighboring tiles in different
resolutions). Tracking the simplifications’ effect
and comparing them in depth would be difficult.

However, we intend this approach for interactive
editing, not for physically precise simulations.
The pipe model we use for the shallow-water
simulation isn’t an exact physical simulation.
Moreover, fluid simulation is a dynamic system
and is extremely sensitive to initial conditions.
A small change in those conditions will cause a
system to significantly diverge in the solution after
a few steps, even for physically exact simulations.

We tried to ensure that the simplifications and
inducted inaccuracies wouldn’t create visually
distracting errors. Merging between different
levels, for example, can cause oscillations in the
water simulation. Linear interpolation between
different levels smoothes visual artifacts and
is more visually plausible than faster nearest-
neighbor interpolation. Figure 12 shows a sequence
of a large scene with water erosion simulation.

Visual artifacts can appear on tile borders when
adjacent tiles have different resolutions. Although
data synchronization errors can be small, visual ar-
tifacts happen because each tile uses its own poly-
gonal mesh, and there can be visible cracks between

two meshes with different mesh densities. We could
remove this problem by putting all tiles on a single
large mesh and using the appropriate terrain LOD
(level-of-detail) algorithm. Although the terrain-
tiling error is potentially problematic, especially for

(a) (b)

Figure 10. Handling a very large scene. (a) The entire scene, which took up 2.5 Gbytes at 12,288 × 12,288 resolution. (b) A detail.
The scene occupied 1.5 Gbytes of GPU memory and was eroded and rendered on the GPU at 12 fps.

16(256); 512 pixels

350

300

250

200

150

100

50

0

Ti
m

e
(m

s)

10(100); 768 pixels

8(64); 1,024 pixels

6(36); 1,536 pixels

4(16); 2,048 pixels

Tile count

Figure 11. Large scene simulation as the function of tile size. Large
numbers of small tiles create considerable performance overhead;
small numbers of large tiles don’t utilize the adaptability efficiently. A
reasonable tile size is approximately 1 to 5 percent of the terrain area’s
total size.

Table 1. Time and memory requirements.*

Scene Time (ms) Speedup Memory (Mbytes) Savings (%)

Figure 3 25.4 1.34 700 75

Figures 7a, 7c 23.6 1.44 784 78

Figures 7b, 7d 21.1 1.61 698 75

Figure 8 22.7 1.45 770 82

*The table doesn’t include the scene from Figure 10 because it can be edited only in
adaptive mode.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

44 November/December 2011

Digital-Content Authoring

neighboring tiles with significantly different resolu-
tions, it was minimal in our experiments.

Our approach still has several notable issues
and potential pitfalls. The mip-map subdivi-

sion will be ineffective for large water dynamics
scenes (such as rain). The tile resolution subdivi-
sion will be ineffective for white-noise scenes or
scenes with high-frequency information equally
spatially distributed.

Also, as we mentioned before, when the simu-
lation exceeds the GPU’s available memory, the
driver swaps memory pages from the GPU with the
main memory. This incurs a performance penalty.
In-house memory management, such as per-tile
least-recently-used cache, could address this prob-
lem and let users edit larger datasets.

Finally, good error evaluation and analysis could
improve the algorithm’s robustness.

Many possible avenues for future work exist.
Our current implementation resamples all af-
fected tiles immediately, which is costly. We could
implement a priority queue that would process
only the tiles that are being edited or that have sig-
nificant visual importance. Also, we’re convinced
our approach will allow the incorporation of not
only different physics-based methods but also new
editing techniques.

Acknowledgments
We thank Nvidia for providing graphics hardware.
This work has been supported by US National Science
Foundation grants NSF IIS-0964302 and NSF OCI-
0753116 (Integrating Behavioral, Geometrical and
Graphical Modeling to Simulate and Visualize Urban
Areas), research program LC-06008 (Center for Com-
puter Graphics), and research plan MSM0021630528.

References
 1. B. Beneš and R. Forsbach, “Layered Data Representa-

tion for Visual Simulation of Terrain Erosion,” Proc.
17th Spring Conf. Computer Graphics (SCCG 01),
IEEE CS Press, 2001, pp. 80–86.

 2. N. Holmberg and B.C. Wünsche, “Efficient Modeling
and Rendering of Turbulent Water over Natural
Terrain,” Proc. 2nd Int’l Conf. Computer Graphics and
Interactive Techniques in Australasia and South East
Asia (GRAPHITE 04), ACM Press, 2004, pp. 15–22.

Juraj Vanek is a PhD student in Purdue University’s
Department of Computer Graphics and Multimedia. His
research interests include real-time rendering, procedural
modeling, and physics-based computer graphics. Vanek re-
ceived an MS in computer science from VUT Brno and is
a PhD student of computer graphics at Purdue University.
Contact him at vanek@purdue.edu.

Bedřich Beneš is an associate professor and Purdue Uni-
versity Faculty Scholar in Purdue University’s Department
of Computer Graphics Technology. His research interests in-
clude procedural modeling, real-time rendering, and general-
purpose computing on GPUs. Beneš has a PhD in computer
science from Czech Technical University in Prague. Contact
him at bbenes@purdue.edu.

Adam Herout is an associate professor in Brno University of
Technology’s Department of Computer Graphics and Multi-
media. His research interests include real-time rendering,
video compression, and GPU computing. Herout received a
PhD in Computer Science from VUT Brno. Contact him at
herout@fit.vutbr.cz.

Ondřej Št’ava is a PhD student in Purdue University’s
department of Computer Graphics. His research interests
include procedural modeling, real-time rendering, and GPU-
based computer graphics. Št’ava received an MS in computer
science from Czech Technical University in Prague. Contact
him at ostava@purdue.edu.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

(a)

(b)

Figure 12. Comparing our simplified simulation with a detailed one.
(a) The adaptive version of a scene. (b) The scene with full erosion
simulation. We ran both simulations for 550 frames to ensure the water
had enough time to propagate through the scene. There were no
significant visual differences.

Authorized licensed use limited to: Purdue University. Downloaded on August 14,2020 at 13:55:40 UTC from IEEE Xplore. Restrictions apply.

