
DOI: 10.1111/cgf.12353 COMPUTER GRAPHICS forum
Volume 00 (2014), number 00 pp. 1–11

PackMerger: A 3D Print Volume Optimizer

J. Vanek1, J. A. Garcia Galicia1, B. Benes1, R. Měch2, N. Carr2, O. Stava2 and G. S. Miller2

1Computer Graphics Department, Purdue University, West Lafayette, IN, USA
{vanek, garci191, bbenes}@purdue.edu

2Adobe Research
{rmech, ncarr, ostava, gmiller}@adobe.com

Abstract
We propose an optimization framework for 3D printing that seeks to save printing time and the support material required to
print 3D shapes. Three-dimensional printing technology is rapidly maturing and may revolutionize how we manufacture objects.
The total cost of printing, however, is governed by numerous factors which include not only the price of the printer but also the
amount of material and time to fabricate the shape. Our PackMerger framework converts the input 3D watertight mesh into a
shell by hollowing its inner parts. The shell is then divided into segments. The location of splits is controlled based on several
parameters, including the size of the connection areas or volume of each segment. The pieces are then tightly packed using
optimization. The optimization attempts to minimize the amount of support material and the bounding box volume of the packed
segments while keeping the number of segments minimal. The final packed configuration can be printed with substantial time
and material savings, while also allowing printing of objects that would not fit into the printer volume. We have tested our system
on three different printers and it shows a reduction of 5–30% of the printing time while simultaneously saving 15–65% of the
support material. The optimization time was approximately 1 min. Once the segments are printed, they need to be assembled.

Keywords: Digital Geometry Processing, Geometric Modeling, Computational Geometry Modeling

ACM CCS: Categories and Subject Descriptors I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling,
I.3.8 [Computer Graphics]: Applications.

1. Introduction

Additive manufacturing (3D printing) brings digital objects into
the real world. A large variety of printing technologies exist, but
they all share a few main characteristics. They create the object by
adding layers of material that melt or are glued together and this
process requires support in order to print overhangs. On any 3D
printer, both the cost of the material (main and supporting) and time
of printing are proportional to the amount of material used. This
makes it prohibitive to print large objects, since the object volume
grows with the third power of its size. There is also a limitation on
the dimensions of single printed parts for a given printer.

One observation of our approach is that it is usually faster and
cheaper to print a thin layer around the object surface (the object
shell) rather than the entire volume [WWY*13]. Some printers al-
ready support this optimization, and those that do not can be made
to do so by converting the input object into a thin shell. A second
observation is that an object with thin parts can be divided into
segments that can be packed for better printing while decreasing
the printing time and saving the amount of support material. Also,

objects that exceed the size of the printing tray must be segmented
prior to printing [LBRM12]. The printed parts are then reassembled
after printing, usually by gluing. As the price of the printing material
can be high, the saved volume often outweighs the fact the object is
segmented. There are several advantages to converting to thin shell
and dividing the model prior to printing. The conversion into thin
shells results only in a quadratic increase with scale of the amount
of material and indirectly the printing time, making it more feasible
to print larger objects at a reasonable cost. Shells or thin parts can be
packed together into one printing batch, reducing the time needed
for each print run and eventually saving the supporting material. In
some cases, proper segmentation and orientation of shells can even
make usage of support material unnecessary.

1.1. Related work

Detecting issues with objects intended for 3D printing is a re-
cent topic in ‘Computer Graphics’. Bickel et al. [BBO*10] used
a data-driven model to design and fabricate materials with desired
deformation behaviour for multi-material printers. Telea and Jalba

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

1

2 J. Vanek et al. / PackMerger

[TJ11] used voxel-based analysis to detect parts of the model unsuit-
able for printing (e.g. regions thinner than printer resolution). Stava
et al. [SVB*12] presented a framework for detecting problematic
parts of the model, and a method for their automatic correction by
thickening, inserting supporting struts and hollowing. The approach
of [ZPZ13] detects structural issues by performing approximate
analysis and determining the loads based on geometry and material
properties only. Hildebrand et al. [HBA13] addressed the prob-
lem of the directional bias in 3D printing with orthogonal slicing
into segments and assigning the best possible printing direction for
each segment. Recently, Bacher et al. [BBJP12] developed methods
to segment articulated figures into fabricatable parts and designed
friction joints to make the printed model fully capable of posing. A
similar framework is proposed by Cali et al. [CCA*12], where spe-
cial attention is paid to designing joints that do not wear out quickly.
Close to our approach is the work of [LBRM12] where objects larger
than the printing volume are divided into pieces and then printed
separately. However, their work does not solve the problem of saving
the printing material and is aimed at printing large objects. Material
saving has been addressed by [WWY*13], where the object is con-
verted into a truss skin-frame structure. Prévost et al. [PWLSH13]
introduced an optimization solution to create 3D printable objects
that can stand against gravity. Large data sets required for complex
multi-material 3D printing were addressed by [VWRKM13] where
a programmable pipeline is used to generate spatially varying 3D
material properties. Chen et al. [CLD*13] propose a framework for
transferring the user-defined model specifications into a material-
specific representation, allowing the system to print multi-material
objects with desired properties.

One of the key components of our approach is 3D model seg-
mentation. An overview of segmenting techniques was presented
by [Sha08]. Most of the techniques for 3D segmentation seek to
segment the model in an intuitive way, for example, segment the
model of a human body into meaningful parts like head, hands, legs
and the rest. For example, the method of Katz et al. [KT03, KLT05]
segments a mesh hierarchically using graph cuts with fuzzy seg-
ment boundaries which are refined to obtain smooth cuts, and this
approach can also be used to extract the object skeleton. Another ap-
proach based on hierarchical segmentation was used by Attene et al.
[AFS06], where the segmented clusters are approximated by basic
primitives such as cubes, cones or spheres. Cohen-Steiner et al.
[CSAD04] showed how a mesh can be segmented and a surface
approximated according to shape properties. Robust segmentation
algorithm was presented in [SSCO08] which introduced a shape-
diameter function that measured the diameter of an object’s volume
for each surface point and segmentation is based on thresholding
these diameter values. A segmentation can be done also with random
cuts, as demonstrated by Golovinskiy and Funkhouser [GF08]. An
advantage of random-based segmentation techniques is their speed
and suitability for real-time applications, as shown by Lai et al.
[LHMR08] who segmented the mesh with the use of random walks.
Best segmentation results, comparable to the segmentation created
by humans, are achieved with the use of machine-based learning.
Such methods can also label created segments based on the collec-
tion of training meshes, as demonstrated by [KHS10]. The above-
described methods provide very good results for segmentation into
meaningful parts. However, segmentation for 3D print ing requires
different criteria such as constraints on the size of the segments, or

making the cross-sectional area suitable for future assembly, and
these methods cannot be used directly.

Packing is an important problem related to our work and due
to its nature it is a nondeterministic polynomial time-hard prob-
lem. Various heuristics have been used such as simulated annealing
[Dow93], Monte Carlo optimization [HKSY25] and genetic algo-
rithms [WC10]. Most of the previous work deals with the special
case of packing orthogonal boxes such as [MPV00]. The unused
space in bounding boxes makes this approach not suitable for our
purposes as we are packing arbitrary shapes. A notable exception
is [CSR10] where they define a mathematical framework based on
phi-functions to pack arbitrary shapes. Levy et al. [LPRM02] in-
troduced a different, height field–based approach and demonstrated
how to use it to store and compress meshes as geometry images.
This approach was later extended by Sander et al. [SWG*03] to
generate texture atlases. Apart from computer graphic applications,
packing is relevant in very large scale integration circuit design,
where the objective is to minimize the chip volume [PF09].

1.2. Contributions

We introduce PackMerger, a novel algorithm that improves the ef-
ficiency of printing 3D objects by converting them into shells and
breaking them into smaller parts. The shells are generated by hol-
lowing out the volume of the object and are then divided into a set
of small segments. The segments are merged and packed together
according to a cost function that evaluates the efficiency with which
the parts can be packed into a smaller volume. Further optimiza-
tions attempt to minimize the cross-sectional area of each pair of
segments and the number of segments. The result is a small volume
with tightly packed segments representing the input object. This
packed configuration is printed while saving the printing material
and decreasing the printing time.

An example in Figure 1 shows an object that was first printed as a
single object on an Objet30 printer in 13.5 h using 351 g of support
material. Our framework reduced the printing time to 9.5 h and the
packing used 229 g of support material yielding a 30% time savings
and a 35% material savings. The optimization took 1.5 min and the
object was glued together in 15 min.

Our framework can be applied to printing a single object, printing
multiple objects or printing objects that do not fit the printing area
and would have to be printed in multiple passes using existing
techniques [LBRM12].

2. System Overview

The input of our algorithm (Figure 2) is a 3D polygonal watertight
mesh, as only meshes with a well-defined and closed volume can
be 3D printed (non-closed meshes with overlaps would lead to
ambiguities and failures). The output of our algorithm is a tightly
packed set of meshes (segments) suitable for 3D printing.

During pre-processing the input is converted into a thin shell
by hollowing. This step saves the printing material and allows for
better packing than the original full volume. The boundary shell is
then converted into a set of tetrahedral cells using tetrahedralization
[Si10].

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

J. Vanek et al. / PackMerger 3

Figure 1: A 3D object was automatically divided into a set of similarly sized segments that can be easily assembled together and printed.
The overall printing time was reduced from 13.5 h to 9.5 h (saving 30%) and the amount of support material was reduced from 351 g to 229
g (saving 34%). The optimization was completed in approximately 1 min and the final object assembly took about 15 min.

Order
OpƟmizaƟon

Height Field-
Based Packing

Merging

Packing and MergingSegmenta on
Seeding

Region Growing
and Clustering

Packed Mesh

Pre-Merging
Glue Area

Small Volume

Preprocessing
Shell ExtracƟon

TetrahedralizaƟon

Input 3D Mesh

Figure 2: System overview. The input 3D mesh is pre-processed and converted into a volumetric shell. The shell is divided into a set of
segments that are pre-merged, if they would cause problems during final assembly (small volume or small cross-sectional area). The updated
segments are then tightly packed and merged together, resulting in a printing configuration that saves supporting material and speeds up the
printing.

In the second step, the segmentation converts the shell into a large
number of segments. It first chooses a certain number of tetrahedra
to act as seeds that are then expanded into segments by clustering. In
all examples in this paper we used a fixed number of 100 segments.
However, the smallest size of a segment could be an individual
tetrahedra.

The over-segmented mesh could be directly optimized but the
large number of segments would be difficult to assemble after print-
ing. Therefore, our framework connects some segments in the pre-
merging step using several criteria. First, it is desirable to avoid
small cross-sectional areas between segments that would be diffi-
cult to glue. Therefore, we connect neighbouring segments with a
small cross-sectional area. Second, tiny volumes may be difficult
to assemble, so we merge small segments to larger ones. After pre-
segmentation, mesh boundaries are smoothed to improve the visual
appearance and to simplify assembly.

The previous steps create segments that have similar volumes
and can be packed in the packing and merging stage. The opti-
mization uses a height field-based packing. As the order in which
the segments are accommodated affects the resulting packing, the

packing is tightly coupled with the tabu search heuristic [CPT09]
that optimizes it. Also, during the packing, further merging occurs
that reduces the number of segments. The packing and merging
phases attempt to minimize by optimization of the unused space,
total bounding volume and the number of segments. The output is a
set of packed segments that are ready for printing.

Our framework can be used to directly pack a set of objects
without segmentation and multiple objects can be segmented and
packed at once.

3. Pre-Processing

The input watertight, two-manifold boundary mesh is converted
into a thin inner shell using uniform mesh re-sampling. The re-
sampling builds a uniform volumetric voxel representation of the
inner volume, with each voxel containing its signed distance from
the original surface.

The width of the shell was set to a fixed value of 3 mm in all our
experiments. This value provided stable structures for all objects in

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

4 J. Vanek et al. / PackMerger

this paper. If better structural stability would be needed, the width
could be increased, truss shells could be inserted [WWY*13] or the
objects could be made structurally sound, for example by using the
method of [SVB*12].

The inner surface of the shell is reconstructed using the Marching
Cubes algorithm. Although this does not provide a smooth mesh and
better techniques exist, the inner shell is invisible after the object is
assembled, so the quality of the inner shell surface is not a concern.
From the surface shell, a tetrahedral volumetric mesh is generated
using constrained Delaunay tetrahedralization [Si10].

4. Segmentation

The input of the segmentation is the object O that is represented as a
volumetric, tetrahedral cell-complex. The output is a set of segments
S = {S1, S2, . . . , Sn}, where n = |S| is the number of segments. The
set S exactly covers O. The volume of O is denoted by Vo and its
bounding box volume by Vbo. The object’s volume is calculated as
the sum of volumes of all tetrahedra and it remains constant during
processing.

The objective of the segmentation is to generate segments S

of approximately equal volume that is much smaller than the
overall available printing volume. Moreover, the neighbouring
segments should have cross-sectional areas larger than some prede-
fined minimal value. Both criteria simplify the final object assem-
bly. The segmentation consists of two steps: seeding and clustering.
We use parallel k-means clustering of [Sha08] on the tetrahedral
mesh.

The objective of seeding is to find cluster centroids distributed
equally along the tetrahedral structure. Seed locations are found in
an iterative manner by locating one seed at a time. The seeding first
randomly places a single seed and grows it until the desired volume
is reached (1% of the total object volume Vo in our examples). Seeds
are then placed sequentially into random, unassigned tetrahedra and
they grow into the maximum volume as well. The process stops
when there is not enough available space to grow any other seed.
The results of seeding are locations of cluster centroids ci that cover
the input set of tetrahedra (see Figure 3a).

The next step is clustering, attempting to segment the mesh into
equally sized connected parts. The clustering takes the set of clus-
ter centroids ci as the initial seeds. The output of the clustering
is a set of IDs for each tetrahedron assigning them to a segment
Si . We use the Euclidean norm to measure distances in the dual
graph between connected vertices. A parallel growth process is per-
formed, expanding each cluster by adding adjoining unassigned
tetrahedra.

Our algorithm ensures that all clusters form a single connected
component throughout the growth process as a tetrahedron can be
added to the cluster only if there is a path from the seed through the
cluster to the tetrahedron. Growth stops when all tetrahedra have
been assigned a cluster.

All clusters are then re-grown again to reflect changes in the cen-
troids that serve as new seeds. The clustering ends when centroids
stop changing their location significantly (we use ε = 10−3 as the

(d) Segments (c)

(b) Clustering(a) Seed posiƟons

Small volume

Small cross-secƟonal area

Figure 3: Segmentation first finds suitable seed positions (a) that
are used to cluster the tetrahedra to near-to-equal segments (b). In
the pre-merging step small segments are merged (c) resulting in a
set of segments covering the input object (d).

minimum distance between ci in two consecutive iterations) or a
maximum number of iterations is reached (50 iterations in our im-
plementation). In most cases, the cluster centres stop changing their
position before 10 iterations were reached. The result of clustering
is the set of segments S covering O (see Figure 3b).

Speed of the segmentation is a linear function of the model com-
plexity represented by the number of tetrahedra and it takes seconds
for a medium-complexity model (100k tetrahedra). Segmentation
runs only once and the created segments are used throughout the
rest of the optimization pipeline.

5. Pre-Merging

The segmentation creates a set of segments with similar volume
that can be merged later. We over-segment the object to allow more
aggressive merging in the next steps. The segmentation may produce
segments unsuitable for the final assembly of the printed object
such as segments connected with a small cross-sectional area that
are difficult to glue or small segments (see Figure 3c). Pre-merging
addresses these problems by combining segments based on two
heuristics: the cross-sectional area should allow good gluing and
segment volume should be larger than a minimum value. We also
impose the restriction that parts cannot be merged if their bounding
box volume would exceed the maximum printing volume.

The segment connectivity is stored in a weighted graph G(V,E),
with vertices vi ∈ V representing segments Si and edges eij ∈ E

representing two neighbouring segments vi and vj sharing a com-
mon boundary. A weight aij : E → R is assigned to each edge eij ,
where aij is the cross-sectional area of the segments vi and vj . The
graph G is represented by its adjacency matrix M . Merging two
segments vi and vj corresponds to contraction of the edge eij .

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

J. Vanek et al. / PackMerger 5

(a) (b)

(c) (d)

Figure 4: Pre-merging connects segments that would be difficult to
assemble such as tiny cross-sections and small volumes: (a) shows
the initial segments; (b–d) show segments merged while increasing
the smallest segment volume and cross-sectional area.

‘Cross-sectional area merging’ assures better segment gluing by
maximizing aij . The pre-merging iteratively finds the smallest aij

and the corresponding segments are merged. This process continues
until the smallest aij is above the critical threshold (10 mm2 in our
experiments).

‘Volume merging’ connects segments with small volumes to-
gether. We select the segment with the smallest volume and merge
it with its neighbour which has also the smallest volume. This phase
stops when the smallest segment has its volume above the minimum
limit (5% of Vo in our implementation).

The previous steps can generate jagged-edge boundaries between
clusters. This is an unwanted effect both visually and structurally, as
such boundaries negatively affect the appearance of the segmented
object and their uneven surface can lead to difficulties during glu-
ing. We smooth each segment’s boundary (inner and outer) by us-
ing Laplacian smoothing [HDZ05]. Each vertex on the boundary
is averaged with its neighbours resulting in the smoother bound-
ary with better adhesion properties. Figure 4 shows an example of
pre-merging.

6. Packing and Merging

The goal of packing is to arrange segments in S tightly together
into a packed configuration P with an optional additional merging.
The volume of P is equal to Vo (the optimization does not change
the volume of the object) and the packed configuration bounding
volume is denoted by Vbp.

The support volume Vs of an object is the additional volume
necessary to print objects with overhangs. It is defined as the volume
under all facets of the object with normals pointing down, that is, if
the angle αs between the horizontal plane and the normal lies in the
range [0◦,−180◦]. The angle αs depends on the actual type of the

(a) (b)

(c) (d)

Figure 5: The effect of the parameter w from Equation (1) on the
configuration. (a) Initial segments, (b) w = 0.5, (c) w = 0 (minimal
support) and (d) w = 1 (minimal volume).

printer. For example, printers using ‘Fused Deposition Modelling’
have this angle more relaxed and are able to print overhangs up
to αs = 45◦ while stereo-lithography–based printers insert support
under whole faces with αs = 0◦. Although the supports do not have
to fully cover the facet due to printer-specific optimization, we
account for the full volume in our optimization in order to provide
comparative results.

The objective of packing and merging (see Figure 2) is to mini-
mize the bounding box volume Vbp, the support volume Vs and the
number of segments n in packed configuration P . The optimization
assigns to each segment Si a translation, represented by the coordi-
nates of the centre of mass (xci

, yci
, zci

), and a rotation, represented
by corresponding Euler angles (αci

, βci
, γci

). Our system attempts
to minimize the following cost function:

f (P) = w Vbp + (1 − w) Vs, (1)

where Vbp is the volume of the axis-aligned bounding box of the
packing configuration, Vs is the total support volume and w ∈ [0, 1]
is the weight between the bounding box volume and support volume
optimization.

Note that neither the cross-sectional area nor number of parts is
included in Equation (1). The reason is that the cross-sectional area
has already been optimized in the pre-merging phase, where the
goal was to connect parts with area too small to be glued together.
The additional merging attempts to optimize the number of parts
using the order optimization and the height field–based packing as
independent blocks.

The user-defined w helps to optimize packing for specific types
of printers. Figure 5 shows different objectives for the packing
optimization. Figure 5(a) shows the initial segment position, (b)
the packing optimizes Vbp and Vs with equal priority w = 0.5, (c)
packing only optimizes the support volume w = 0 and (d) packing
optimizes only the bounding volume w = 1. In our experiments, we
use w = 0.75 as it was giving good results in minimizing both Vbp

and Vs .

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

6 J. Vanek et al. / PackMerger

The optimization consists of three modules (see Figure 2):

(1) Merging finds segments to merge and performs the operation.
Input is the list of segments Sk and output is a new list Sk+1

where segments Si, Sj ∈ Sk were merged into Sr ∈ Sk+1.
(2) Order optimization sorts the list of segments L : S → N. Since

the next stage packs one segment at a time, different permuta-
tions of S significantly affect the final result. The input is the
list S and the output is the ordered list L(S).

(3) Height field–based packing takes segments from L(S) one by
one and calculates their position and orientation minimizing
the function (1). Input is the ordered list L and outputs are the
translations and rotations of each segment.

The order optimization uses the height field–based packing as a
subroutine to search and test for the optimal order of the list (see
Figure 2). After the optimal packing is found, new merging is done
and the process is repeated. This way each list of segments Si has
an optimal packing associated with it. The final result is the best
packing.

Several bin-pack approaches exist, but they either do not work
with arbitrary shapes in 3D space, or are prohibitively slow. Al-
though there have been mathematical models for how to describe
general shapes by [CSR10], to the best of our knowledge, no im-
plementation of such packing in 3D space has been developed yet.
Therefore, we decided to use a simpler approach with modified
height field–based packing with order optimization that can be ad-
justed to better suit our needs and allows for fast GPU-oriented
implementation.

6.1. Height field–based packing

At each step of the optimization, a packing configuration P and its
cost Equation (1) are calculated. Various packing strategies exist
(see Section 1.1) and in our work we have extended the height field–
based packing (a.k.a ‘the Tetris packing’) of [SWG*03] for packing
3D texture atlases.

The packing starts with an ordered list of segments L(S) and
attempts to pack each Si ∈ L one by one in the given order. The
height field itself is defined as a discrete 2D array that stores the
upper horizon of all contained objects defining the distance from the
printing tray (see Figure 6a). In order to find the optimal position
T (Si) of the segment Si , we iterate by moving Si by the fixed step
defined by the grid resolution (1–10 mm in our experiments) through
the 2D height field and aligning the bottom of the segment with the
top of the height field (e.g. dropping the part on the top of the height
field). When the object location is found, the amount of wasted space
(support volume) is evaluated as the difference between the height
field and the lower part of Si (Figure 6b). The part position with
minimal wasted space (or minimal bounding volume, depending on
parameter w) is selected as the best and the part is added to the
height field.

We do not count the volume of the empty space (if the object
is hollow) towards the wasted space; we assume that segmentation
splits the object into parts without holes or highly concave areas. If
in any case the part would be hollow, it will have no influence on

(a) IniƟal
height-field

(b) New segment
(in red)

(c) Test different
locaƟons

(d) Test different
rotaƟons

(e) The best
locaƟon found

(f) Update the
height field

Figure 6: Overview of steps in height field–based packing. The
main goal is to find the position of the incoming part that minimizes
the wasted space VS (in red).

0

200

400

600

800

1000

90 80 70 60 50 40 30 26 22 18

Rota on increment (degrees)

Packed volume(cm3)

0

500

1000

1500

90 80 70 60 50 40 30 26 22 18

Rota on increment

Time (s)

Figure 7: A smaller rotation angle leads to better packing, but the
computation time increases significantly.

the object position in the height field as the volume of the hole does
not add to the wasted space.

We also rotate the segment in each location in order to improve
packing and minimize the wasted space in the packed configura-
tion. The segment is rotated around all three main axes in fixed
increments. Figure 7 shows the effect of the rotation angle on the
packing and the calculation time. Lowering the angle improves
packing quality. Unfortunately the complexity of packing is expo-
nential. We found a good value for the rotation angle to be around
30◦. This provides a good compromise between the calculation time
and packing quality.

To avoid very tight packing, we insert a small gap between seg-
ments so that the configuration can be printed and the support mate-
rial removed. We use a gap of 1 mm. Although the thickness of the
glue required to connect two parts could be also accounted in this
gap. However, in practice the glue thickness is much smaller than
the printer resolution and is thus considered negligible.

6.2. Order optimization

The result of the previous step is a packing configuration P of S for
the given order of segments. However, the order of segments can
lead to significantly different packing configurations with different
costs.

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

J. Vanek et al. / PackMerger 7

390,000

440,000

490,000

540,000

1 6 11 16 21 26 31

25% revised
50% revised
75% revised
100% revised

Figure 8: The convergence of the tabu search for different percent-
age of revisions. The x-axis shows the number of iterations and the
y-axis the cost function.

Having a list L(S), there are n! possibilities for sorting it. We use
the tabu search optimization [KS98] that has polynomial complexity
to find a near to optimal solution and that has been used with success
for packing problems [CPT09].

Each step of the tabu search is defined by a permutation Li and
it has associated cost Equation (1) that is the result of the height
field–based optimization. The neighbourhood N (Li) is defined as
all possible swaps of the elements of Li and a move is another
permutation Li+1 ∈ N (Li).

Once the move is made it is placed into a list of forbidden moves
called the tabu list, for a certain number of iterations m (called tabu
memory). This helps the optimization to escape from local minima.
In our experiments we fix m = 3.

At each step the optimization keeps track of the best permuta-
tion Li that has been found so far. The search starts with random
permutation L0 and searches N (L0) for a move that minimizes the
function Equation (1) and that is not in the tabu list. Then it moves
to that permutation Li+1 and updates the tabu list. If necessary, it
also updates the global minimum L. The optimization ends if L

has not been updated for a certain number of iterations (10 in our
implementation). Figure 8 shows the convergence of the tabu search
in our application. The x-axis shows the number of iterations and
the y-axis shows the cost function.

The size of neighbourhood N (L) grows rapidly with the num-
ber of segments (|N (L)| = O(n2)). Instead of exploring all moves,
we use random sampling and we review only a fraction of the
neighbourhood. This saves calculation time and permits certain
variations that improve the search further. The effect of this se-
lection is shown in Figure 8. We see that a random sample per-
forms better than exhaustive search because not taking the greedy
choice gives the algorithm an additional way to escape from local
minima.

6.3. Additional merging

For easier assembly, it is desirable to finish with as few parts as
possible while still obtaining the lowest volume possible. Based on
this observation, we insert additional merging into the optimization
pipeline. This merging is implicit in the objective function Equa-
tion (1) since merging two segments tends to decrease the support
volume Vs and the bounding volume Vbp . The reason for this is
that even though it could happen that the packing would put the

segments next to each other (a rare case for arbitrary shapes), there
would still be a gap between them. Merged segments also reduce
the gluing area, contributing to simpler assembly. The additional
merging is part of the packing optimization and therefore differs
from the pre-merging step described in Section 5.

Every time a merge is performed, the optimization loop between
order optimization and height field–based packing is repeated (see
Figure 2). Therefore we select a random edge eij from the adjacency
graph. We use the weight between the bounding box and the support
volume optimization w(e) as a merging strategy (see Figure 5).
This strategy is repeated until further merging is impossible, for
example, until we have merged all parts into a single one or the
merged parts exceed the available printing volume. After exploring
different merged configurations we select the one with minimal
volume. Typically, we end up with no more than 10 segments after
this step.

7. Implementation and Results

The system is implemented in C++ and uses OpenGL for visual-
ization. All tests were run on an Intel i7 CPU clocked at 3.2 GHz
with 16 GB of memory. The object’s shell is generated as a uniform
offset from the original mesh using MeshLab [mes13] and the Tet-
gen library [Si13] generates a tetrahedral representation of the shell.
All original input objects are considered as solid.

The height field–based packing implementation makes extensive
use of the GPU. The height field is obtained by drawing the packing
configuration in the top-down orthogonal projection and height field
values are read from the z-buffer. The z-buffer is also used when the
position and rotation of the new segment is examined, by rendering
the back side of the object into a separate z-buffer. The support
volume is obtained by subtracting these two buffers (Figure 6b).
To reduce memory transfers between the CPU and GPU, an array
of copies of each segment is created. Segments are placed next to
each other and the support volume calculations are performed on
each chunk of z-buffer during each copy step, so that multiple con-
figurations are examined in parallel. The GPU solution also makes
the packing speed invariant to the model complexity. Although the
total processing time is linear with the number of segments, it is
influenced by the bounding volume of the packed configuration—
a larger volume means more traversing over the height field and
longer calculations.

7.1. Printed examples

We used three 3D printers representing different printing technolo-
gies: stereo-lithography with photo-polymers (Stratasys Objet30),
fused deposition modelling (FDM) with PLA plastic (Makerbot
Replicator) and FDM with polypropylene-like material and soluble
support (Stratasys uPrint). Table 1 summarizes printing times and
used support material for examples in the paper.

Table 1 also contains the time needed to run the optimization.
Computational time depends on the number of segments, but in most
cases optimization took less than 1 min. The most time-consuming
part (80%) is the order optimization, as it runs the height-based

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

8 J. Vanek et al. / PackMerger

Table 1: Printing times and used support material savings for our experiments. Original models are solid before optimization.

Objects Printer Print time (orig.) Print time (packed) Vs (orig.) Vs (packed) Time saved Vs saved Opt. time # of parts

Arch (Figure 9) uPrint Did not fit 14 h 18 min Did not fit 60.6 cm3 N/A N/A 124 s 11
Bunny (Figure 1) Objet30 13 h 43 min 9 h 30 min 351 g 229 g 4 h 13 min (31%) 122 g (35%) 97 s 13
Molecule (Figure 11) Objet30 15 h 55 min 12 h 03 min 264 g 160 g 3 h 52 min (24%) 156 g (39%) 56 s 12
Sphere Objet30 6 h 23 min 4 h 13 min 110 g 39 g 2 h 10 min (34%) 71 g (65%) 28 s 6
(Figure 10) Replicator 2 h 43 min 2 h 18 min 17 g 11 g 0 h 25 min (18%) 6 g (35%)
Table (Figure 12) Replicator 1 h 05 min 1 h 02 min 16 g 16 g 0 h 03 min (5%) 0 g (0%) 14 s 4
Group (Figure 13) Replicator 6 h 18 min 6 h 14 min 53 g 52 g 0 h 04 min (1%) 1 g (2%) 41 s 5

Figure 9: An object larger than the printing tray (shown in the figure) (a) was automatically segmented into pieces that fit the tray (b) and it
was printed in a single print (b). It was then assembled in less than 5 min (c).

packing multiple times. The height field–based packing takes less
than 1 s on the GPU.

The time required to remove the support material is important
as well. With FDM printers, support structures use the same pri-
mary material, and must be removed by breaking them out of the
model which can result in damage to the model. Precise removal
can take tens of minutes, especially with large objects. Stereo-
lithography printers use different support material that is weaker,
making removal of it much easier—a strong stream of water ef-
fectively removes all support material within minutes and keeps
surfaces relatively intact. A soluble support material leaves the sur-
face of the original object perfectly clean but dissolving it takes
hours.

An object larger than the printing tray is shown in Figure 9(a). It
has been automatically divided into 11 segments that were packed in
the printing tray as shown in Figure 9(b). The overall printing time
was 14 h on the uPrint printer and it used 60 cm3 of support material
and 167 cm3 of the primary material. The object was assembled in
less than 5 min. As the object could not be printed in one piece we
cannot report the estimated time or compare it to the un-optimized
object.

‘The Stanford bunny’ in Figure 1 was automatically segmented
into 13 pieces. The overall printing time was reduced from 13.5 h to
9.5 resulting in a 30% saving and 35% of the support material was
saved by using 229 g instead of 351 g. The final object was glued
together in 15 min.

Figure 10: (a) Tight packing was achieved for a sphere saving 65%
of the support material on the Objet30 printer; (b) shows the solid
and the assembled sphere.

‘The Sphere’ in Figure 10 is an example of the best case for our
algorithm. The sphere was segmented into six parts and the printing
time on the Objet30 printer was reduced by 34% from 6.5 h to 4 h.
Material savings were even more significant as 65% of the support
material was saved by using only 39 g instead of 110 g. The time
savings were 18% for the FDM printer (see Table 1).

‘A molecular’ model was first segmented with no cross-sectional
area in mind as shown in Figure 11(a). The final model was printed
and savings of time and material were substantial (60%). How-
ever, it was impossible to assemble it because of the very small
cross-sectional area for gluing. Then the cross-sectional area was
considered during pre-merging. The model was segmented again,
the new model was printed in Figure 11(b), and assembled as shown
in Figure 11(c). Figure 11(d) shows the packing configuration for

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

J. Vanek et al. / PackMerger 9

Figure 11: The model was first segmented without considering the
cross-sectional area resulting in a model that was impossible to
assemble (a). The model was segmented again with the gluing area
considered, optimized, printed (b) and assembled (c); (d) shows the
printing tray with the packing configuration (almost 40% savings
of material).

Figure 12: Example of printing on an FDM printer. Packed config-
uration (b) and the printed object (a).

the final model. The printing time for the complete model was al-
most 16 h and for the packed model it was 12 h, resulting in a 24%
saving. The original model required 264 g of support material that
was reduced to 160 g.

The table in Figure 12 was printed on an FDM printer (Makerbot
Replicator). We observed that with FDM printers segmenting and
packing does not always lead to material and time savings. A large
number of segments is not desirable as those printers spend more
time printing the object boundary than the inner space. Also supports
on such printers behave differently as large overhang angles can be
tolerated that can make estimation of the support costs inaccurate.
In this case, printing of the packed group took only a few minutes
less than the original object.

Multiple object packing shown in Figure 13 demonstrates that
the packing stage can be separated from the rest of the pipeline and
can be used to pack arbitrary groups of objects. A smaller cup was
automatically packed inside the big cup and the two crystals were
inserted inside the smaller cup that led to the minimum bounding
volume. Separating and cleaning the cups after printing took less
than 5 min.

Figure 13: A sample packing of groups of objects: (a) shows the
initial, random placement of objects, (b) packed configuration and
(c,d) printed results. Note that the two crystals have been placed
inside the smaller cup and the smaller cup inside the larger cup.

Results show that our system is not equally suited for all printer
types. The best results were achieved with the Objet30 printer that
uses a lot of support to print objects and printing time is influenced
by the total object volume only. On the other hand, the worst results
were achieved on FDM-based printers such as the Replicator. This
can be explained by the printing mechanism of FDM printers where
the printer spends much more time printing the object surface than
the interior structure (which is a some kind of regular fill). With
an increasing number of parts, a larger surface area is printed that
results in slower printing.

The previous work of [WWY*13] also saves material and our
method might not achieve such large savings (70%). However, there
are important differences between both approaches. Our method
optimizes both the support and the printing volume without changing
the object structure (the only exception is conversion into the shell),
whereas the work of [WWY*13] aims to reduce the primary material
support with large transformations of the initial object into a skin-
frame structure, without any optimization of the printing time and
the support material.

8. Conclusions

We have presented PackMerger, a framework that improves the
efficiency of printing 3D objects by breaking them into smaller
parts and packing them tightly. Our algorithm converts the input
object into shells that are divided into a set of small segments.
The segments are merged and packed together. The result of our
algorithm is a small volume with tightly packed objects that saves
the printing material and decreases the printing time. Comparison
of our approach to the existing packing algorithms is problematic.
Most 3D packing algorithms work only with restricted shapes or,
like [CSR10], improve an initial configuration. Our algorithm starts
with a random configuration and uses packing together with the part
order optimization.

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

10 J. Vanek et al. / PackMerger

Our framework can be applied to printing a single object, printing
multiple objects or to printing objects that do not fit the printing
area and would need to be printed in multiple passes. We show that,
depending on the object and printer type, the printing time can be
reduced by up to 30% while simultaneously saving up to 60% of
support material. The objects require manual gluing after they are
printed. We have tested our framework on three different printers.
Although some printers do not use support material, the speed of
printing was higher for most of the examples in our paper.

The obvious limitation of our method is the need for manual
assembly and that users might prefer to print the object as whole
even though the cost will be higher. Possible assembly problems
could occur if the method would be applied to CAD parts with
intricate internal structure since our method is optimized for the
thin shells extracted from solid objects. Also, if the model has a
very complex geometry with thin prevalent features (tree, chain,
cage, etc.), the segmentation and assembly would be problematic
due to low cross-sectional areas of the connecting parts. Another
one is its limited use for FDM printers that already print only the
thin shell with a less dense structure inside the object, yet even for
those printers we can use the method to save support material and
to split the object in order to print it at a scale that does not fit the
print volume.

There are many possible avenues for future work. We would like
to test our method with alternative state-of-the-art packing algo-
rithms to see if any additional efficiency can be gained. Our seg-
mentation is not taking into account visibility of the seams, and for
better visual quality we could make cuts along natural seams on the
model or use other, more advanced approaches for high-quality seg-
mentation reviewed in Section 1.1. Although we have not found that
random merging of pieces is a limitation in our work, an even tighter
coupling between merging and packing could be explored. Finally,
we would like to automatically add connectors between pieces like
in the work [LBRM12] along with automatically generated assem-
bly instructions that can ease the model assembly process.

References

[AFS06] ATTENE M., FALCIDIENO B., SPAGNUOLO M.: Hierarchical
mesh segmentation based on fitting primitives. Vision Computing
22, 3 (Mar. 2006), 181–193.

[BBJP12] BÄCHER M., BICKEL B., JAMES D. L., PFISTER H.: Fabricat-
ing articulated characters from skinned meshes. ACM Transac-
tions on Graphics 31, 4 (July 2012), 47:1–47:9.

[BBO*10] BICKEL B., BÄCHER M., OTADUY M. A., LEE H. R., PFISTER

H., GROSS M., MATUSIK W.: Design and fabrication of materials
with desired deformation behavior. ACM Transactions on Graph-
ics 29, 3 (2010), 63:1–63:10.

[CCA*12] CALÌ J., CALIAN D. A., AMATI C., KLEINBERGER R., STEED

A., KAUTZ J., WEYRICH T.: 3D-printing of non-assembly, articu-
lated models. ACM Transactions on Graphics 31, 6 (Nov. 2012),
130:1–130:8.

[CLD*13] CHEN D., LEVIN D. I. W., DIDYK P., SITTHI-AMORN P.,
MATUSIK W.: Spec2Fab: A reducer-tuner model for translating

specifications to 3D prints. ACM Transactions on Graphics 32, 4
(2013), 135:1–135:10.

[CPT09] CRAINIC T. G., PERBOLI G., TADEI R.: Ts2pack: A two-
level tabu search for the three-dimensional bin packing problem.
European Journal of Operational Research 195, 3 (2009), 744–
760.

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational
shape approximation. In ACM SIGGRAPH 2004 Papers (New
York, NY, USA, 2004), SIGGRAPH ’04, ACM, pp. 905–914.

[CSR10] CHERNOV N., STOYAN Y., ROMANOVA T.: Mathematical model
and efficient algorithms for object packing problem. Computa-
tional Geometry 43, 5 (2010), 535–553.

[Dow93] DOWSLAND K. A.: Some experiments with simulated an-
nealing techniques for packing problems. European Journal of
Operational Research 68, 3 (1993), 389–399.

[GF08] GOLOVINSKIY A., FUNKHOUSER T.: Randomized cuts for 3D
mesh analysis. ACM Transactions on Graphics 27, 5 (Dec. 2008),
145:1–145:12.

[HBA13] HILDEBRAND K., BICKEL B., ALEXA M.: Orthogonal slicing
for additive manufacturing. Computers & Graphics 37, 6 (2013),
669–675.

[HDZ05] HANSEN G., DOUGLASS R., ZARDECKI A.: Mesh En-
hancement: Selected Elliptic Methods, Foundations and Ap-
plications. World Scientific Publishing Company, London,
2005.

[HKSY25] HIROYUKI Y., KEISHI S., SHIGETOSHI N., YOJI K.: The 3D-
packing by meta data structure and packing heuristics. IEICE
Transactions on Fundamentals of Electronics, Communications
and Computer Sci. 83, 4 (2000), 639–645.

[KHS10] KALOGERAKIS E., HERTZMANN A., SINGH K.: Learning 3D
mesh segmentation and labeling. ACM Transactions on Graphics
29, 4 (July 2010), 102:1–102:12.

[KLT05] KATZ S., LEIFMAN G., TAL A.: Mesh segmentation using
feature point and core extraction. The Visual Computer 21, 8-10
(2005), 649–658.

[KS98] KREHER D. L., STINSON D. R.: Combinatorial Algorithms:
Generation, Enumeration, and Search. CRC Press, Florida, 1998.

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Transactions on Graphics 22, 3
(July 2003), 954–961.

[LBRM12] LUO L., BARAN I., RUSINKIEWICZ S., MATUSIK W.: Chop-
per: Partitioning models into 3D-printable parts. ACM Transac-
tions on Graphics 31, 6 (Nov. 2012), 129:1–129:9.

[LHMR08] LAI Y.-K., HU S.-M., MARTIN R. R., ROSIN P. L.: Fast
mesh segmentation using random walks. In ACM Symposium on
Solid and Physical Modeling (New York, NY, USA, 2008), pp.
183–191.

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

J. Vanek et al. / PackMerger 11

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least squares
conformal maps for automatic texture atlas generation. ACM
Transactions of Graphics 21, 3 (July 2002), 362–371.

[mes13] MESHLAB: Retrieved from http://meshlab.sourceforge.net/,
May 2013.

[MPV00] MARTELLO S., PISINGER D., VIGO D.: The three-dimensional
bin packing problem. Operations Research 48, 2 (2000), 256–
267.

[PF09] PAVLIDIS V. F., FRIEDMAN E. G.: Three-Dimensional Inte-
grated Circuit Design. Morgan Kaufmann Publishers Inc., Mas-
sachusetts, 2009.

[PWLSH13] PRÉVOST R., WHITING E., LEFEBVRE S., Sorkine-
Hornung O.: Make it stand: Balancing shapes for 3D fabrication.
ACM Transactions on Graphics 323, 4 (2013), 81:1–81:10.

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6 (2008), 1539–1556.

[Si10] SI H.: Constrained Delaunay tetrahedral mesh generation and
refinement. Finite Elements in Analysis and Design 46 (2010),
33–46.

[Si13] SI H.: Tetgen: A quality tetrahedral mesh generator. Retrieved
from http://tetgen.berlios.de/, May 2013.

[SSCO08] SHAPIRA L., SHAMIR A., COHEN-OR D.: Consistent
mesh partitioning and skeletonisation using the shape diameter
function. Vision Computing 24, 4 (Mar. 2008), 249–259.

[SVB*12] STAVA O., VANEK J., BENES B., CARR N., MĚCH R.: Stress
relief: Improving structural strength of 3D printable objects. ACM
Transactions on Graphics 31, 4 (July 2012), 48:1–48:11.

[SWG*03] SANDER P. V., WOOD Z. J., GORTLER S. J., SNYDER J., HOPPE

H.: Multi-chart geometry images. In Symposium on Geometry
Processing (Aachen, Germany, 2003), pp. 146–155.

[TJ11] TELEA A., JALBA A.: Voxel-based assessment of printabil-
ity of 3D shapes. In International Conference on Mathematical
Morphology and Its Applications to Image and Signal Processing
(Verbania-Intra, 2011), pp. 393–404.

[VWRKM13] VIDIMČE K., WANG S.-P., RAGAN-KELLEY J., MATUSIK

W.: Openfab: A programmable pipeline for multi-material fab-
rication. ACM Transactions on Graphics 32 (July 2013), 136:1–
136:12.

[WC10] WANG H., CHEN Y.: A hybrid genetic algorithm for 3D bin
packing problems. In BIC-TA’10 IEEE, Changsha (2010), pp.
703–707.

[WWY*13] WANG W., WANG T. Y., YANG Z., LIU L., TONG X., TONG

W., DENG J., CHEN F., LIU X.: Cost-effective printing of 3D objects
with skin-frame structures. ACM Transactions on Graphics 32,
5 (2013), 177:1–177:10.

[ZPZ13] ZHOU Q., PANETTA J., ZORIN D.: Worst-case structural anal-
ysis. ACM Transactions on Graphics 32, 4 (July 2013), 137:1–
137:12.

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Video S1

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

