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Figure 1: The support material generated by the built-in 3D printing software for MakerBot R©ReplicatorTM 2 a) and the amount
of support material b). Our solution c) reduces the amount of the support material d), leads to faster printing, and higher quality
of the fabricated model.

Abstract
We introduce an optimization framework for the reduction of support structures required by 3D printers based on
Fused Deposition Modeling (FDM) technology. The printers need to connect overhangs with the lower parts of the
object or the ground in order to print them. Since the support material needs to be printed first and discarded later,
optimizing its volume can lead to material and printing time savings. We present a novel, geometry-based approach
that minimizes the support material while providing sufficient support. Using our approach, the input 3D model
is first oriented into a position with minimal area that requires support. Then the points in this area that require
support are detected. For these points the supporting structure is progressively built while attempting to minimize
the overall length of the support structure. The resulting structure has a tree-like shape that effectively supports
the overhangs. We have tested our algorithm on the MakerBot R©ReplicatorTM 2 printer and we compared our
solution to the embedded software solution in this printer and to Autodesk R©MeshmixerTMsoftware. Our solution
reduced printing time by an average of 29.4% (ranging from 13.9% to 49.5%) and the amount of material by
40.5% (ranging from 24.5% to 68.1%).

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—I.3.8 [Computer Graphics]: Applications—

1. Introduction

Three-dimensional (3D) printers can fabricate virtually any
shape captured by a 3D model. They can create models from
various materials and they can even combine multiple mate-
rials together. Today’s 3D printers typically fabricate the ob-

ject by additive layering of a material that is fused together
layer by layer. Because of the lower prices of 3D printers
and materials, digital fabrication is becoming available to
the general public. In this work we will focus mainly on
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Fused Deposition Modeling (FDM) printers since they are
very common, inexpensive, and widely used.

The printing process starts from the bottom of the printing
tray and continues successively layer by layer to the top.
This causes problems for overhangs that cannot be printed
because there is no supporting layer beneath them. The 3D
printers based on FDM and Stereolitography (SLA) technol-
ogy solve this problem by creating support structures for the
overhanging parts (see Figure 1 a)). The support structures
need to be manually discarded after the printing. Some print-
ers use cheaper material for the supporting structures but in
other cases the main printing material is used. For example,
the FDM printers use the main printing material for support
structures. The support material adds cost to the printing. For
SLA printers, the price of the support material can be almost
half of the price of the primary material.

It is beneficial to minimize the amount of support mate-
rial. Less supports contribute to the faster printing time, less
cleaning of the 3D model, and reduces the overall price
of the object. Existing support generators, usually built-in
within the 3D printer software, do not produce optimal sup-
porting structure and the amount of extra material required
for the supports is unnecessary high as shown in Figure 1 b.
The supports are usually inserted as vertical columns and
they connect the overhangs with the nearest underlying point
on the printing tray or on the model itself.

We present a geometry-based solution that attempts to min-
imize the amount of supports without compromising the
model printability. In our framework, the input model is first
oriented in a way to minimize area that needs to be sup-
ported. Overhang points requiring the support are then de-
tected. From these points, the support structures are itera-
tively built. Instead of column-like supports projected from
the surface, we use tree-like structures that effectively sup-
port all overhangs. Branches are progressively merged until
only one column is reached. This approach greatly reduces
the length of the supports, while considering properties of
the printer and object printability. Our solution is optimized
for FDM printers, as they are the most accessible 3D printers
on the market regarding price of the device and material.

We compared our solution to the supports gener-
ated by MakerBot R©MakerwareTM, a 3D printing
software supplied with MakerBot R©3D printers, and
Autodesk R©MeshmixerTM [Aut14] software that also
provides support generation. Compared to the built-in
MakerwareTM, our solution provides significant savings for
both the material and printing time. On average, the printing
of all objects took 29.4% less time and consumed 40.4%
less material. The savings against MeshmixerTMsoftware
was less significant but on average, our solution was still
capable of reducing the printing time by 11.8% and the
material usage by 12.4%.

2. Previous work

Computer graphics models are mathematical representations
of shapes and forms that are usually designed for direct vi-
sualization on the computer screen. Just very recently, when
3D printers became widely available, it has been noted that
the 3D models may not be structurally sound, they may not
be suitable for printing, and they may cause problems dur-
ing or after fabrication. This problem has motivated many
researchers. Most of them addressed the possible printabil-
ity and structural problems of the 3D models before they
are printed. Telea and Jalba [TJ11] used voxel-based analy-
sis to detect unprintable parts, e.g. parts thinner than printer
resolution that could result in disconnected parts. Stava et
al. [SVB∗12] presented a FEM-based framework to detect
the most common structural problems. Part of the frame-
work was automatic methods to relieve stress from the model
through thickening, hollowing, or inserting struts into the
model. An alternative to the costly FEM analysis has been
proposed by Umetani and Schmidt [US13]. Their approach
is based on detecting the geometric relationships between
cross-sections of the object. The weakest cross-sections are
found and, based on their orientation, printing direction is
changed to increase the model strength. Recently Zhou et
al. [ZPZ13] used a method to perform structural analysis
based on the geometry and material properties only, search-
ing for the worst possible loads likely causing damage to the
model. Hildebrand et al. [HBA13] attempted to minimize di-
rection bias and different tensile strength between distinct
layers of the material by slicing the object into parts with
optimal printing directions determined for each part. Prevost
et al. [PWLSH13] introduced a model analysis to generate
objects that are stable in a rest position.

Several attempts to reduce 3D printing volume through sup-
port optimization have been published. The simplest way to
reduce the need for supports is to select the right object ori-
entation on the printing tray, as addressed by Alexander et
al. [AAD98]. The faces of the convex hull of the object rep-
resented the possible rest position to examine and the best
position is selected based on the criteria of minimal support
volume and the contact area. Recently, Vanek et al. showed
how to pack objects into a 3D printing tray to speed up the
printing and reduce support material volume [VGB∗14]. An-
other way to reduce build volume is segmenting the model
into multiple parts, as proposed by Luo et al. [LBRM12].
Possible cuts were found by using a beam search strategy
with several optimization criteria such as part size, structural
soundness, and visual impact. Connectors were generated on
the cuts to make parts easier to assemble. In some cases,
human interaction was needed to better select the cuts and
lower visual impact on the model. A limitation of this ap-
proach was using the planar cuts only, without following the
model features. Also, as the primary idea of this work was to
make possible building objects larger than the printing tray,
no support optimization has been employed.
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Figure 2: System pipeline. The 3D model is first oriented into the position that requires the least amount of support. Points
requiring support are then detected and the support structure is constructed by recursively connecting these points with the
ground or the object itself. The result is a self-supporting and printable 3D model.

The work of Wang et al. [WWY∗13] addressed the problem
of reducing the material usage in 3D printing more directly.
The input model was converted into a skin-frame structure
that is lightweight, while still maintaining the stiffness of
the original object. Authors also showed basic optimization
of the model supports by first detecting the overhang points
and second generating simple, rod-like supports by connect-
ing the overhanging points to the nearest point on the mesh
or on the ground. A more advanced approach, similar to our
solution, has been used in Autodesk R©MeshmixerTM [Aut14]
with tree-like supporting structures. The support generator
requires some user interaction, it is not fully automatic, and
it can fail in some cases. Moreover, as it is a part of the pro-
prietary software, the exact description of the algorithm is
not available. Our solution is fully automatic and achieves
higher savings.

The construction of skeletal structures or trusses that are
similar to our supporting structures has been studied in struc-
tural design. Several works on how to optimize the topol-
ogy of trusses exist in the field of mechanical engineering
(see the book of Bendsoe [Ben03]). However, the problem
of optimal structures connection also arises in many other
fields, for example circuit design [CW05] and wireless net-
works [MDJ∗06]. Different criteria of optimality have been
explored by Cheng [Che95], where the author proposes for-
mulations for minimum weight, minimal stress, and no buck-
ing constraints in the generated structure.

We use a pure geometrical approach in our work and the
problem of minimizing the support structure is related to the
minimum Steiner tree problem that has been addressed in
many ways (see the surveys [GP68] and [HR92]). In par-
ticular, the support structure generation can be described
as the Euclidean Steiner Minimal Tree problem (ESMT).
This problem is at least NP-Hard. Several heuristics exist
but most of them work only in 2D. The work of Toppur and
Smith [TS05] is one of the few approaches in the 3D space
that uses heuristics and gives a solution in O(n2). Our solu-
tion uses a similar heuristic that is adapted to fulfill the extra
constrains that arise in our setting.

3. Overview

Support structures are needed to print overhangs that are
parts of the model that do not have support from below as
shown in Figure 4. The most obvious support structures are
struts perpendicular to the printing direction, a solution cur-
rently supported by 3D printing software, as shown by the
red lines in Figure 4. However, this solution consumes a lot
of material and is slow for printing. The 3D printers usu-
ally tolerate certain non-perpendicular angles for the support
structures and the struts can be inserted under angles smaller
than 90o. Our task can be expressed as an optimization prob-
lem that minimizes the total length of the support structure
while maintaining the ability to print overhangs.

The system pipeline is shown in Figure 2. The input is a
3D model represented by a boundary mesh. Further input
parameters of our framework are 3D printer dependent and
they include: minimum layer thickness the printer is able to
produce and maximum surface angle the printer can print
without errors (critical angle αc on Figure 4).

In the first step, the object is oriented to a position that
minimizes the area with overhangs by using the method of
Alexander et al. [AAD98]. During the evaluation of the best
position, parts of the model that need to be supported are
detected. These parts are sampled (with sampling distance
dependent on 3D printer capabilities) and points that require
support (overhangs) are inserted into an ordered list. Orien-
tation with the fewest overhang points is selected. The con-
figuration with the smallest area that requires support does
not need to lead to the shortest support structure. Figure 3
shows this dependency for the object from Figure 6. The
object was rotated to 50 random positions and the support
structure was constructed. The graph depicts the area requir-
ing support and the actual support length. While using the
sampling from all direction would lead better result, it would
be also time consuming. Therefore, we use this simpler and
faster heuristics.

The goal of the next step is to provide structures that mini-
mize the total length of the resulting support structure. This
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Figure 3: A graph of the relation of the total support length
and the support area for the object from Figure 6 rotated to
50 random positions.

structure has a tree-like shape as it starts with the list of
points that need to be supported (leaves) and gradually con-
verges into one support (trunk) that connects to the ground
or other parts of the mesh as shown in Figure 7. The structure
is converted into a polygonal mesh that connects the original
object in a way that is printable and easy to remove.

4. Overhang Detection

We can detect the following three types of overhangs.

• Point overhang is a point that is positioned lower than its
neighboring points (local or global minimum).

• Face overhang is a triangular face. It is considered an
overhang if the angle α between the plane defined by the
face and the printing direction vector YP is higher than
the critical angle αc. Figure 4 shows two examples The
face f1 has α1 < αc and it can be printed without support.
However, face f2 has the angle α2 > αc and therefore it
requires support.

• Edge overhang is defined similarly to face overhang. Edge
normal is defined as the average of the normals from the
two incident faces.

Figure 4: Point and face overhangs. A point is considered
an overhang if all its neighboring points are located higher.
A face needs support if the angle between the face plane and
the printing direction vector YP is higher than the critical
angle αC.

The value of critical angle αc is a crucial part of the opti-
mization. The key observation is that 3D printers are capa-
ble of printing the faces with quite a large angle deviation
from the printing direction vector. More specifically, most

of the FDM printers are capable of printing faces deviating
by up to 45o from the printing direction vector. The exact
value of the αc varies from printer to printer and is not gen-
erally accessible. We have measured the αc by a series of
experiments printing the struts with different values of αc
and observing at which angles the struts started to collapse
as shown in Figure 5.

Figure 5: An example of the printed test setup used to find
the value of αc and the optimal length of supporting strut.

The support is generated for points. Therefore, to support
faces and edges we sample them by using uniform sampling.
The sampling rate is directly related to the printer resolu-
tion. For example, if the resolution is 0.1 mm, it is safe to
sample the overhang area with point distance equal to this
distance. In practice, since the FDM printers are capable of
stretching the melted plastic over the distance larger than
their resolution, the sampling distance can be larger and we
used 0.25 mm in our experiments. We use a quick hardware-
oriented scanline rasterization algorithm to find sampling
points on the triangles. The result of this step is the set of
points P requiring support as shown in Figure 6.

Figure 6: Input 3D model with points requiring support
sampled with different sampling distances.

5. Support Structure Generation

We restrict our support structures to linear connections only.
Let’s define a vector ~v perpendicular to the printing direc-
tion;~v is usually pointing up against gravity. Every point p∈
P should be supported by a structure that connects it with a
point s. The location of this point is limited by the angle be-
tween the vectors ~sp and ~v that must be less or equal than
the critical angle αc. This space has a shape of a cone with
its apex in p (see Figures 9). The set of valid points s ∈ S is
inside the cone such that the vector ~sp has an angle α ≤ αc
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Figure 7: Progressive building of the support structure. The strut diameter is dynamic; the first iteration is thinner than the last
iteration as it is supporting less weight.

with vector ~v. We will refer to it as a support cone C, as it
defines the space where point s can be located such that the
linear structure ps will support printing of point p.
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Figure 8: Two points p1 and p2 requiring support in 2D and
their supporting cones C1 and C2. The feasible space H to
put a support point s that would support both points is in the
intersection of the cones and the optimal place to put s is on
the highest point of H. The resulting support structure for
this case is on the right with the point t marking an intersec-
tion with the ground plane.

Having two points p1 and p2 with their support cones C1
and C2 (see Figure 8 left) their intersection H includes all
feasible places where we can put a support point s that would
support both points p1 and p2. Let’s also define t as the clos-
est point on the ground to s (Figure 8 right). We have decided
to use heuristic by selecting the closest intersection between
two cones as the location of the point s (highest point of H
on Figure 8) as it gives good results in minimizing the total
length of the structure.

The union of all support cones Ci from all pi ∈ P defines
the space where the supports for the whole object can be
placed. This union will be searched for intersections between
cones as they mark places where the support structures can
be merged in the branching points.

The supports are built as a set of connected linear struts. We
define a geometric graph G = (V,E) whose set of vertices V
is the union V = P∪S∪T , where:

1. P is a set of points on the mesh that need support,

2. S is a set of branching points where supports are merged
together, and

Figure 9: Practical example of supporting cones generation.
Support cones are placed with their origin at the overhang
points and they represent space where the potential supports
can be placed (left). By using the algorithm to find all cone
to cone and cone to mesh intersections, supports are merged
in the branching points, creating a tree-like structure (right).

3. T is a set of points where support structure intersects with
the model surface or the printing tray (see point t on Fig-
ure 8 right).

The optimization goal is to determine points in T and S that
minimize the sum of the lengths of all edges e ∈ E(G). This
problem is related to the Euclidean Steiner Minimal Tree
(ESMT) problem identified by Hwang and Richards [HR92].
The goal of ESMT is to find the tree of minimal length that
makes the input set of points connected. In order to achieve
this, it is permissible to add points that minimize the dis-
tance, and such points are called Steiner points. In our case,
the geometric tree lies in 3D space and we have the addi-
tional constraint that the points in S (Steiner points) need
to be inside the supporting cones C of the vertices that are
adjacent to them. The complexity class of the ESMT in 3D
Euclidean space is not known, but it should be at least as
hard as is in the plane which is NP-complete, as shown by
Toppur and Smith [TS05]. Therefore, the use of a heuristic
to solve this kind of problem will be necessary.

Our solution to the problem consists of several steps and we
use the plane sweeping algorithm. We know that for two
points in V , the optimal point s ∈ S supporting them lies
at the intersection of their supporting cones (Figure 8). We
group points by pairs and insert a support point s in this
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place. Since we select a local minimum for every pair of
points and we build our support tree iteratively from them, it
is a greedy strategy.

The input of the algorithm is a list of overhang points P,
sorted from top to bottom, and sorted list of cones c ∈ C
placed at every overhang point p ∈ P representing the space
where the potential supports can be considered and where
the intersections will be searched for. Then for each p ∈ P
and associated c ∈ C we perform the following steps.

1. Find the nearest intersection of c with the mesh m and
the set of all other cones C \ c. We compute cone to cone
intersection with a procedure similar to the one described
by [Ebe08]. Cone to mesh intersection is computed on
the GPU by drawing the cone geometry with the mesh
and reading the minimum depth value marking the inter-
section point.

2. Select the intersection s nearest to the point p and corre-
sponding intersected cone ci (cf. Figure 8 for illustration).
If this intersection is further than m, remove p and c from
the corresponding lists and continue to Step 1.

3. Insert s into the ordered list P so that s will become
the new overhang point. At this point, two support lines
(from p and from origin of ci) merge at s into one.

4. Add cone in the place of s, remove p from P and c with
ci from C

5. Get a new point p from P and repeat the procedure while
P is not empty.

This algorithm progressively builds the supporting structure
until all intersections that exist are with the mesh and the
ground only (Figure 7). At each step, every point p∈ P is ei-
ther preserved or grouped with the neighboring point. There-
fore, as the size of P is reduced linearly, the algorithm has a
complexity O(n). The most expensive part of the process is
computing the intersection of a support cone with the mesh.
The actual implementation uses the GPU and depth buffer to
find the intersections (see Section 7).

6. Strut Design

1 2 2*1.11 = 2.22 3 1+2*1.11 = 3.22 2+1.41 = 3.41 3.14 

Figure 10: Tested extrusion profiles for the support struc-
ture.

The output of the algorithm is a tree structure with points
and connectivity information. To make this structure print-
able, a conversion of the supporting structure into a printable
boundary mesh representation is necessary. The conversion
is done by extruding the cross-section profile along the line

connecting two points in the structure. The profile should be
quickly printable while providing good support.

The profiles can be categorized depending on how many
printing head movements are required to print one layer.
Single movement means the support cross-section is a line
or circle, two movements form a T-like shape, three move-
ments can form a triangle, etc. To select the best profile,
we conducted tests on the MakerBot R©ReplicatorTM 2 printer
and evaluated the profiles from Figure 10. From left to right,
the number of printing head movements required to print the
profile increases and we selected sample profiles constructed
from one, two, and three lines. Profiles with four or more
lines took too long to print.

We have printed various shapes by using the above-
described profiles and tested their stability and their print-
ing time. One- and two-line profiles showed unsatisfactory
support for the model surface. Closed profiles (circle and tri-
angle) were unsuitable because the 3D printer tends to fill
the inside of the profile, resulting in a longer printing time.
The most feasible was the N-shaped profile, as it requires
only three movements of the printing head and, at the same
time, it supports the entire area of a square. The thickness of
the profile is equal to the printer resolution.

Appropriate diameter of the supporting strut depends on
multiple factors such as strut length, tensile strength of the
material, thickness of the deposited layer, movement speed
of the printing head, among others. It would be possible
to consider full structural analysis to progressively compute
stress while the object is being built, but it would be compu-
tationally expensive. Therefore, we have decided to address
the problem from the geometric point of view. We consid-
ered only the length and angle of the support and performed
tests to find the relationship between the support strut di-
ameter, length, and angle. Since it is problematic to directly
estimate these parameters as they depend on the 3D printer
and used material, we conducted experiments with different
diameters of supports along with various strut lengths and
angles. Figure 5 shows an example of such experiment. For
each combination of settings we noted whether the support
collapsed and what the quality of support structure was.

DIAMETER: 1mm

length/angle 0 10 20 30 40 50

1cm 4 4 4 4 4 4

2cm 4 4 4 4 4 4

3cm 4 3 4 3 3 3

4cm 3 3 3 3 3 1

5cm 3 3 3 3 1 1

6cm 2 2 2 2 1 1

Quality scale:

0 - broken

1 - partial

2 - low

3 - medium

4 - high

Table 1: The stiffness experiment for the strut with 1 mm
diameter. Quality of the supports was subjectively evaluated
on the scale [0,4]. High values (4,3, green) mean strut was
printed without problems whereas low values (2,1, yellow)
indicate that strut was damaged or collapsed entirely.
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Table 1 shows the results on the color scale from green (sup-
port strut printed without any distortions) to yellow (strut
was damaged and collapsed completely). We can see that di-
ameter 1 mm is safe to use until lengths up to 3 cm with
an angle no larger than 30o. Diameter 1.5 mm can be used
up to 6 cm in length and a 50o angle. Exact expression of
diameter from angle and length proved to be difficult, as
more time-consuming prints with different diameters would
be necessary. We did not test the struts with variable weights
at the end because it would lead to a large number of test
prints.Based on test results, we used this heuristic to deter-
mine the diameter:

d = k.l.α, (1)

where d is the strut diameter, α is the strut angle, and k is
the length-to-angle coefficient. The value of k was estimated
from test runs with three different diameters (0.5, 1.0, and
1.5 mm) on lengths from 1 to 6 cm and angles from 0o to
50o. In total, 108 combinations have been printed. Based on
the test analysis, k = 0.0015 was giving satisfactory results.

The struts have variable diameters as they are computed in-
dependently for each strut end by using Eqn (1). Diameters
are thinner at the top of the strut and greater at its end. The
reason is the smooth transitions in branching point as the first
iteration of supports is short and thin while the last iteration
is much longer and needs to be thicker (Figure 7). Since the
resulting structure has a tree-like shape, an alternative way
to determine correct diameters could be by using an algo-
rithm considering the relation of branch radii in biological
trees [HBM03].

To allow easy detachment of the support from the rest of
the model, a tip is added at its end as shown in Figure 11.
Correct length of the tip depends again on the 3D printer
and experiments were necessary to find the best value (we
used the length of 1 mm).

Figure 11: Tips are added at the ends of the support struts
for easier removal from the model.

7. Results

We have implemented our system in C++ with the use of
OpenMesh library for mesh processing, Qt library for user
interface, and OpenGL API to render the results. All tests
have been performed on a PC equipped with Intel Core i7
920 2.67 GHz and nVidia Quadro K4000 with 4 GB VRAM.

The most computationally intensive part is finding the inter-
sections of cones with the mesh. It has been implemented on

the GPU by drawing cones and mesh into the depth buffer
and extracting the lowest value that represents the closest
intersection. The benefit of this implementation is that the
supports are calculated in a matter of seconds

Our testing platform was a 3D printer
MakerBot R©ReplicatorTM2 with PLA material, standard
layer thickness 0.2 mm and capable of printing overhangs
with a critical angle up to 50o. This value was determined
by testing, as the manufacturer does not provide this
information. We used default (medium) quality settings for
all prints.

We have compared our support generator with two
available systems: MakerwareTM, the 3D printer soft-
ware shipped with MakerBot R©printers [Mak14] and
Autodesk R©MeshmixerTMsoftware [Aut14]. All software set-
tings were kept to the default with the exception of
MeshmixerTM– in order to get comparable results, we set the
same critical angle and support diameter we used in our ap-
plication. Because our application uses a dynamic diameter
while MeshmixerTMuses a fixed one, we used a compromise
value of 2.5 mm.

Eight triplets of models (24 in total) were printed. Some of
them are shown in Figure 13. Table 2 summarizes statis-
tics for all models showing the printing time, model weight,
and percentage of the material and time saved when com-
paring our method against the others. Results show that in
all cases, our solution achieved a significant improvement
above the built-in MakerwareTMsoftware. The average sav-
ings were 40.5% for material (ranging from 24.5% to 68.1%)
and 29.4% for time (ranging from 13.9% to 49.6%). Fig-
ure 13 (rightmost column) shows the difference in the vol-
ume of removed support material.

Figure 12: Comparison of supports generated by Mesh-
mixer (left) and our solution (right).

Compared to the MeshmixerTMsoftware, the savings were
not so significant but overall, our solution was able to save
11.8% more time (ranging from 2.4% to 22.5%) and 12.4%
more material (ranging from 1.4% to 35.5%). We believe
that the main contributor to the faster printing time of our
solution are generally shorter supporting structures, as sup-
ports generated by MeshmixerTMappear to be longer (see
comparison on Figure 12). The N-shaped profile of the strut
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Replicator 2, PLA, medium quality

Model time (min) weight(g) time(min) weight(g) time(min) weight(g)

saved time 

(Makerware)

saved time 

(Meshmixer)

saved material 

(Makerware)

saved material 

(Meshmixer)

Tree 355 37.96 231 18.78 179 12.11 49.58% 22.51% 68.10% 35.52%

Molecule 197 33.18 138 18.24 117 14.21 40.61% 15.22% 57.17% 22.09%

Armadillo 220 44.56 165 27.97 161 27.54 26.82% 2.42% 38.20% 1.54%

Arches 182 45.60 150 28.86 146 28.45 19.78% 2.67% 37.61% 1.42%

Bird* 93 20.75 N/A N/A 80 14.35 13.98% N/A 30.84% N/A

Wheel 503 82.51 374 61.91 347 60.33 31.01% 7.22% 26.88% 2.55%

Dragon 220 39.96 210 34.01 167 30.17 24.09% 20.48% 24.50% 11.29%

* Bird model generated by Meshmixer was unprintable AVERAGE: 29.41% 11.75% 40.47% 12.40%

STD DEV 12.25% 8.88% 16.27% 13.89%

Makerware Meshmixer Clever supports

Table 2: Statistics of printed examples showing the printing time, total model weight with supports, and savings compared to
the MakerwareTMand MeshmixerTMsoftware.

also prints faster, consumes less material, and leaves less dis-
turbing marks on the surface as compared to the round pro-
file used by MeshmixerTM.

Less support material also means faster cleaning of the ob-
ject and a cleaner surface. Figure 13 shows that there is no
visible difference in the model surface quality among differ-
ent support generators after the supports have been detached
from the model.

8. Conclusion

We have introduced an optimization framework attempting
to minimize the supporting structures needed to 3D print ob-
jects containing overhangs. The object is first oriented into
an optimal position and points requiring the support are de-
tected. A tree-like structure supporting these points is con-
structed by merging the struts from initial points (leaves) into
a single strut (stem) by using a greedy strategy. This sup-
port structure is fast to build and requires much less material
to print than supports generated by other 3D printing soft-
ware packages with support generators. We have been able
to save almost one half of the support material as compared
to 3D software shipped with the 3D printer while printing
the model significantly faster.

Possibly the most serious limitation of our approach is that
our support builder considers only the angle and length of
the supporting strut. Our approach is geometry-based. As a
progressive structural analysis of each printed layer would
be time consuming, we do not provide any structural evalu-
ation whether the support is able to withstand the weight of
the supported part or shear forces during printing. It could
be determined using software solution of [SVB∗12], or with
more extensive testing with different heights at the end of
struts. Another limitation is that many parameters, such as
the critical angle, sampling distance, and support diameter
are closely connected to the selected 3D printing platform
(we have used MakerBot R©ReplicatorTM 2). Even though we
were able to estimate these parameters by running various
tests on the printer, it would be good to provide a more robust

solution to this problem. Also, even though our greedy algo-
rithm finds a good and fast solution, the question whether it
is actually the minimal support structure remains to be an-
swered.

We believe that most of the limitations could be addressed as
future work. With added structural constrains and optimized
structural analysis one would be able to compute stress and
estimate if the strut will be able to support the overhang. A
different approach would be to create solid support structure
and progressively carve holes to lighten the structure while
maintaining structural stability. Moreover, it could further
improve the solution if we could find a fast strategy to find an
optimal rotation rather than using the current minimal area
criterion. Exact values for the critical angle, sampling dis-
tance and other parameters required for optimization could
be obtained by a closer cooperation with 3D printer manu-
facturers.
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