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Abstract—We propose a novel approach for the reconstruction of urban structures from 3D point clouds with an assumption of

Manhattan World (MW) building geometry; i.e., the predominance of three mutually orthogonal directions in the scene. Our approach

works in two steps. First, the input points are classified according to the MW assumption into four local shape types: walls, edges,

corners, and edge corners. The classified points are organized into a connected set of clusters from which a volume description is

extracted. The MW assumption allows us to robustly identify the fundamental shape types, describe the volumes within the bounding

box, and reconstruct visible and occluded parts of the sampled structure. We show results of our reconstruction that has been applied

to several synthetic and real-world 3D point data sets of various densities and from multiple viewpoints. Our method automatically

reconstructs 3D building models from up to 10 million points in 10 to 60 seconds.

Index Terms—3D Modeling, 3D reconstruction, laser scans, buildings, Manhattan world.

Ç

1 INTRODUCTION

AUTOMATIC reconstruction of urban structures has
attracted the attention of researchers from many

different areas and it has found its way into numerous
applications such as mapping, navigation, and computer-
aided design. Common desires include automation in the
reconstruction process of one or more buildings, robustness
to noise in the measurements/observations, the ability to
cope with missing data (e.g., due to occlusions), and the
capacity to handle data sets of different sampling densities
within a single scan or among various scans.

Numerous reconstruction methods in computer graphics
specialize in specific types of objects (e.g., buildings and
facades [1], [2], [3]) in order to make assumptions about the
sampled geometry, and focus on customizing the recon-
struction process of generic objects according to specific
modeling and rendering objectives (e.g., [4], [5], [6]). State-
of-the-art methods for reconstructing 3D geometry from
range scans and photographs, including those focused on
buildings and facades, focus on issues related to data
quality and data completeness. On the one hand, methods
based on photographs (e.g., structure from motion or dense
stereo [7]) provide a relatively dense sampling of a
building’s exterior and, given a sufficiently large number
of images, a sufficiently complete sampling can be obtained
as well. However, dense correspondences need to be
robustly and accurately established to obtain range data.
On the other hand, 3D laser scans omit the dependence on

dense correspondence to obtain range measurements, but
the sampling density and sampling completeness can vary
significantly during scanning, especially when capturing
large structures such as buildings. Scanning can be
improved by laboriously using many laser scans (e.g., [8]),
but in general it is impractical to obtain a large number of
scans of a building’s exterior.

The main idea of our work is to incorporate assumptions
about building geometry to improve 3D laser-scanning
reconstruction. While some methods pursue a local analysis
in order to complete relatively small areas of missing
samples (e.g., [9], [10]), these approaches cannot handle
large missing areas and typically assume a dense sampling
most everywhere else. Instead, we make assumptions about
the possible geometrical configurations of the building and
use them to limit the possible 3D shapes. This enables
robustly extracting the underlying 3D building model even
from sparse and incomplete 3D point clouds. One such
family of geometrical configurations are buildings belonging
to a Manhattan world (MW) [11] which contains structures
with a predominance of three mutually orthogonal direc-
tions. The MW assumption has been used in several methods
to obtain 3D structure from images capturing building
interiors (e.g., [12]) and exteriors (e.g., [13], [14]).

We propose the first solution, to the best of our
knowledge, which uses the MW assumption to enable the
automatic and robust calculation of complete building
masses from unorganized 3D point clouds obtained from
ground-level 3D laser scans, or LIDAR (Fig. 1). Our
approach uses the following three key observations:

. surface description—the local geometry represented
by points sampling a MW building can be
described by at most one of four fundamental
types that are robustly identifiable and can be used
in subsequent automatic processing (tWall, tEdge,
tCorner, tEdgeCorner);
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. volume description—since the buildings contain only
axis-aligned planes, it is possible to describe the
volumes within the bounding box of the building that
are inside and outside of the building mass, even for
nonconvex building masses; data that do not belong
to the planes can be quickly discarded, and

. data description—the data described in the multiple
axis-aligned planes are inherently redundant; this
results in the ability to robustly reconstruct portions
of a building not observed from one view direction
but indirectly included in others.

Our approach consists of two main steps. The first
classifies each 3D point by a surface description type. As
shown in Section 3.1, in a MW building there are 47 possible
local surface shapes which, after considering symmetries due
to rotations and flips, can be classified into four fundamental
types: walls, edges, corners, and edge corners. To determine
each point’s classification, the algorithm inspects the local
point neighborhood and analyses the compatibility of the
classification with all neighboring points. In the second step,
the building mass is reconstructed from the classified points.
The classified points are organized into a connected set of
clusters from which a volume description is extracted. Each
point cluster describes a portion of a wall that is connected to
neighboring clusters via edges and/or corners. The con-
nected clusters are then represented by an adaptive set of
quadrilaterals obtained from recursive subdivision. A ray-
casting algorithm is then used to calculate the interior and
exterior volumes of the building from the quadrilaterals. The
large set of small volumes that collectively represent the
building mass is then coalesced and simplified to provide a
polygonal description of the MW building.

Our approach has been applied to several synthetic and
real-world 3D point data sets of various densities, from
multiple viewpoints, and with up to 10 million points, that
resulted from capturing a single building. Scans sampling
more than one building need to be previously segmented.
Point sample density in reconstructed areas ranged from
under ten to a few hundred points per square meter. All
processing is automatic and operates on a standard desktop
PC. Our reconstructions are processed from unorganized
3D point clouds in 10 to 60 seconds per building running on
a single core of the CPU.

2 PREVIOUS AND RELATED WORK

As previous work we focus on methods that use unorga-
nized 3D point clouds, obtained from laser scans or LIDAR
devices. A first group of methods focus on reconstructing
buildings geometry from airborne LIDAR data. In general,
this group of approaches concentrates on reconstructing
roofs, producing building footprints, and/or computing
2.5D building models. The body of work in this area is
large, thus we highlight some recent papers. Zhou and
Neumann [15] proposed a streaming framework for
reconstructing buildings from large aerial LIDAR data sets
and Poullis and You [16] an automatic 2.5D reconstructions
from aerial data. Matei et al. [17] describe how to obtain
buildings in dense urban areas. Verma et al. [3] focus on
segmenting points belonging to the roof surface and to the
ground surface, and then fit a collection of roof models
chosen from an a priori defined set. While a recent work by
Kelly and Wonka [18] could be used to create additional
geometry for the 2.5D reconstructions generated by this
type of methods, their work infers facade geometry by
procedurally extruding the building footprint, and will not
use sampled data to guide the modeling process. Numerous
approaches have been proposed in the areas of photo-
grammetry and remote sensing and we refer the reader to
the survey by Tarsha-Kurdi et al. [19] for additional works.

Some reconstruction methods use assumptions about the
underlying geometry in order to improve robustness (e.g.,
[20], [21]). In building reconstruction, the assumption of
planarity is one of the most common but it alone does not
always result in complete and closed 3D models. The
library of assumed primitive shapes can be expanded to
include more complex shape priors. Lafarge et al. [22] uses
a library of 3D parametric blocks for reconstructing simple
building models, Nan et al. [1] use boxes to reconstruct
building models from LIDAR data and relies on user input
to guide the reconstruction process.

A second group of methods focus on reconstructing the
facades of buildings, often using ground-based scans. For
example, Liu and Stamos [23] register 2D images to 3D
ground-level scans. Zheng et al. [2] use global consolidation
and manual input to complete partial scans of building
facades, and Früh and Zakhor [13] generated textured
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Fig. 1. System Pipeline. (a) The input to our system consists of unorganized 3D point clouds. (b) A local surface description type is assigned to each
point. (c) Typed points are organized into a connected set of clusters from which a volume description is extracted. For purposes of visual evaluation,
the reconstructed volume is superimposed over the original point set, including noise and obstacles (d), and textured with photographs of the
buildings (e).
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facade meshes from laser scans obtained while driving on
public roads. It is worth noting that many image-based
methods also focus on facades and produce good results
but typically require user intervention.

Several hybrid and more specialized approaches have
also been proposed that combine the previous two groups.
Früh and Zakhor [24] merge scan data with images to
obtain urban models. Grammar-based methods join proce-
dural modeling with terrestrial and aerial range data to
detect and parse 3D point clouds of buildings [3], [14], and
to complete and reconstruct building models. However, the
reconstruction efforts require significant manual input in
the form of manual model editing or specifying the
grammar [25]. Progress has been made in automating the
discovery of the procedural rules that form the underlying
building grammar (e.g., [26]), but to our knowledge such
has not been applied to noisy unorganized 3D point clouds
resulting from laser scans. Our approach builds upon the
MW assumption first proposed by Coughlan and Yuille
[11]. Starting with 2D images, the MW assumption has been
used to reconstruct building interiors [12] and exteriors [27],
[14]. Related to our approach is the work of Schindler and
Bauer [28] who propose shape priors but applied only to
facade-level details. Haala et al. [29] fit a piecewise planar
boundary representation to LIDAR data, but assume the 3D
points are triangulated and a building floor plan is
provided beforehand.

3 SURFACE DESCRIPTION

Our approach for building reconstruction proceeds in two
main steps (Fig. 2). First, input 3D points are classified by
calculating the local surface shape classification. The
classification eliminates unwanted points from the data
set, provides robustness to noise, and later helps to
complete missing data. In particular, since within a point’s
neighborhood there might be points from surfaces at
different orientations, explicitly classifying points as be-
longing to either segments of walls, corners, or edges is
useful to recover local shape. In the second step, the
building volume is described by merging the classified
points and filling-in the volume. The classification provided
by the first step implicitly indicates the connectivity
between different faces of the model.

It is worth noting that our method does not assume
sampled points to be exactly located at walls, corners, or
edges—instead, we classify the local shape around each
point and find a potentially different, but nearby, pivot
point. A pivot point corresponds to the corner point or to a

point on the edge axis. Thus, a building corner can lie “in
between” point samples.

While existing approaches were considered for classify-
ing the sampled points (e.g., [30], [31]), we opted to create a
new method that specifically exploits the MW assumption
in order to achieve classification in linear time on the
number of points (i.e., constant time per point) and to
support classifying points based not only on the normal
directions of their containing plane, but also on the local
surface shape. A related work is that by Toldo and Fusiello
[30], which proposes J-Linkage to fit arbitrary planes to data
points corrupted by noise and outliers, and then classifies
the points based on these planes. Their classification does
not detect points that belong to two or more planes, and has
superlinear complexity, thus not well suited for scaling
efficiently to millions of points.

For the description of our approach, we assume without
loss of generality, that the point cloud has been rotated so
that the dominant triple of directions in the MW world are
aligned with the x-, y-, and z-axis.

3.1 Manhattan World Local Shapes

Three predominant surface directions in MW geometry give
rise to three possible surface normal directions and four
fundamental local shape types. The local shape surround-
ing a point of a MW surface manifold must belong to one of
the categories denoted as tWall, tEdge, tCorner, tEdgeCorner
(Fig. 3). Shape types tWall, tEdge, and tCorner have,
respectively, one, two, and three predominant surface
directions. Shape type tEdgeCorner is used to denote a
region where a plane and an edge intersect and form a
shape that resembles a concave corner. Each shape type has
several possible directions and rotations. The signed
direction indicates the dominant orientation of the shape
(i.e., along the positive or negative x-, y-, or z-axis)—an
unsigned direction implies the same shape type can be
oriented in either direction. Each shape type can also be
rotated around the axis of the given direction (i.e., a rotation
by 0, �=2, �, 3�=2). Using the aforementioned shape types,
tWall has three unsigned directions, and one unique
rotation per direction, for a total of three tWall types. Shape
type tEdge has three unsigned directions and four unique
rotations per direction, for a total of 12 tEdge types. Shape
type tCorner has no orientation and eight unique rotations.
Shape type tEdgeCorner has three signed directions and four
unique rotations per direction, for a total of 24 tEdgeCorner
types. Altogether, there are 47 possible local shapes in a
MW building, but each can be described by one of four
fundamental shape types. Fig. 4 shows 35 of the 47 shapes.

In unorganized 3D point clouds, the surface normal or
local point connectivity information needed for estimating
the local shape is typically not provided but can be
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Fig. 2. System overview.

Fig. 3. Shape classification. Each of the four shape types are shown.
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estimated from the local neighborhood of each point. The
optimal neighborhood size to estimate the fundamental
shape type depends on the local density of the sample
points and on the amount of the noise in the input samples.
In practice, the point sample density varies and point
samples have error. Thus, in order to determine a plane, the
neighborhood must contain at least three points but having
more points is beneficial.

3.2 Shape Classification

The classification of a MW point sample pi ¼ ðxi; yi; ziÞ, for
i 2 ½1; N�, is achieved by defining a neighborhood ball
around the sample point, determining the value of a fitting
function to the MW planes, computing the pivot points of
such planes, and determining the direction and rotation of
the corresponding shape type. The pivot point is the center
of the shape type about which the local surface produces
the edges of the shape type. The exact pivot point will in
most cases not coincide with any sampled point but it is
expected to be nearby, and it is assumed that at least one of
the points within the neighborhood ball is a reasonable
approximation. Further, the initial shape types are refined
using a reinforcement scheme (Section 3.3) and the
direction/rotation of the shape type is later used for the
volume description process (Section 4). Not all input points
are classified—points with a high fitting-error or points
insufficiently reinforced are ignored.

3.2.1 Neighborhood Ball

For each sample point pi, a neighborhood ball centered on pi
and of radius r is defined as

Bðpi; rÞ :¼ pk : pk � pij j < r; k 2 ½1; N�f g;

and contains all the sample points pk that lay inside the ball.
We denote the elements of Bðpi; rÞ by fb1; . . . ; bmi

g. In our
implementation, the radius r is either automatically
computed to be large enough to ensure a user-specified
minimum number of points or is provided by the user. For
brevity, we define Bi ¼ Bðpi; rÞ.

3.2.2 Fitting Function

To fit to the MW planes and to compute the pivot point, we
use a function that measures the deviation of every point
within Bi from each of the possible MW planes. For every
neighborhood Bi there is a pivot point b�i such that the
fitting error is minimized when the planes are pivoted at b�i .
In order to find a good pivot point, we use every point
bi 2 Bi and evaluate the fitting error using

"ij ¼
X

bj2Bi

ðminðjbix � bjx j; jbiy � bjy j; jbiz � bjz jÞÞ;

where bj 2 Bi refers to all points bj inside ball Bi and i 6¼ j.
We choose the bj that minimizes "ij and denote it by b�i . The
associated fitting function is called "�i . Because of the noise
in the data, there is in general no more than one point that
minimizes "ij.

3.2.3 Shape Types and Directions

For each point pi, we inspect the number of times the value of
"�ij was obtained from each of the x, y, or z components and
choose the best fitting shape type. In particular, we define

Cidim ¼
X

bj2Bi

ðarg min "�ij ¼¼ dimÞ;

where dim denotes the axis x, y, and z. The counters Cix , Ciy ,
and Ciz are used to determine the direction of the shape
type of pi using the following reasoning. The dominance (or
lack of it) of a direction is an indicator of the point’s shape
type. For instance, if Cix=mi � 1, then for most points in Bi

the component along which the distance was minimum is x.
This implies the points in Bi likely lie on a single plane and
the normal vector of the plane is the x-axis. The shape type
then becomes tWall on the Y Z plane. Analogously ðCix þ
CiyÞ=mi � 1 indicates most points in Bi are likely to lie on
two planes forming an L-shaped edge along z-axis; the
shape type in this case is a tEdge spanning the XZ and Y Z
planes. If all counts have approximately the same values,
then there are no dominant directions and the points in Bi

are likely to lie on three planes forming a corner.
The shape type classification computes for each point the

aforementioned ratios for all possible shape types. The shape
type with the largest ratio, yet above a minimum threshold
(set experimentally to 0.8), is chosen. Outliers will be
detected, and removed, during the later reinforcement step.

3.2.4 Shape Rotations

While points of type tWall are invariant to rotation, the
rotations of points of type tEdge, tCorner, and tEdgeCorner do
need to be computed. We define signed distance values

Sidim
¼
X

bj2Bi

ðbjdim
� b�dimÞ;

where each term evaluates for an axis dim ¼ x; y; z, as the
sum of the signed differences between all the points in Bi

and the pivot b�. The signs of Six , Siy , and Siz are used to
determine the rotation of the shape type. For instance, if
the shape type has been determined to be a tEdge along the
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Fig. 4. Local shapes in a MW building. All of the shapes for types tWall, tEdge, and tCorner are shown, together with 12 of the 24 shapes for type
tEdgeCorner.
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z-axis, then there are four possible rotations about z. Each
rotation will place the shape in a different quadrant of the
XY plane. If Six > 0 and Siy > 0, then the shape is in the
positive X and positive Y quadrant. If Six < 0 and Siy > 0,
then the shape is in the negative X and positive Y

quadrant, and so forth.

3.3 Reinforcement

Given the initial shape types, the classified points within
each neighborhood ball are used to reinforce tEdge/
tEdgeCorner and tCorner classifications and to further
improve the accuracy of each pivot location. For instance,
a sample point pi classified as tEdge spanning the XZ and
Y Z planes should have a large fraction of its neighbors (e.g.,
>0:75) be tWall’s on the XZ and Y Z planes. If this is the
case, the position of the pivot point b�i will be modified by
making the x coordinate equal to the mean x coordinates of
its Y Z plane tWall neighbors, and the y coordinate equal to
the mean y coordinates of the XZ plane tWall neighbors. If
this is not the case, the point is considered unclassified. To
prevent circular dependencies, the reinforcement process is
applied sequentially: points classified as tWall reinforce
tEdge’s/tEdgeCorner’s, then tEdge’s/tEdgeCorner’s reinforce
tCorner’s. The result is a potentially smaller, but more
accurate, set of classified point samples and their corre-
sponding pivots.

4 VOLUME DESCRIPTION

In the second step, our method uses the previously
classified points to construct volumes that approximate
the geometry sampled by the points. This second step is
performed in several substeps. First the classified points are
joined to form nearly coplanar clusters, which, in turn, are
connected to their adjacent clusters. Then, a set of thin boxes
is adaptively subdivided to approximate each cluster. A
ray-casting algorithm is then used to connect and fill the
interior volumes and the boxes are used to accelerate this
process. Finally, the volume is filled-in and simplified to
yield the final 3D polygonal model.

4.1 Classified Point Clustering

The classified-point clustering algorithm produces a set of
triangulated and interconnected clusters and exploits our
MW assumption to compute a set of axis-aligned bounding
boxes (AABBs) for approximating the cluster. The input to
clustering is the set of classified points pi whose fitting error
"�i is less than a given threshold.

4.1.1 Cluster Creation and Triangulation

Two points pi and pk are in the same cluster if and only if
there is a valid path of classified points between them. To
succinctly describe what constitutes a valid path let’s
restrict ourselves to a cluster of points in the Y Z plane.
We use the notation tWallX to imply a tWall whose normal
is along the x-axis. Similarly, tEdgeXY, tEdgeXZ, and
tCornerXYZ implies the normals of the edge or corner
are along the x-axis, y-axis, and/or z-axis as implied by the
labeling. A valid path is composed of an ordered sequence
of points fq1; q2; . . . ; qmg that satisfy:

1. q1 ¼ pi and qm ¼ pk,
2.

8i : T ðqiÞ
¼ ðtWallXjtEdgeXY jtEdgeXZjtCornerXY ZÞ;

3. 8i : qi � qiþ1j j < r, and
4. jqix � qðiþ1Þx j < �.

The criterion 1 requires pi and pk to be the starting point
and ending point of the path. The criterion 2 specifies that
all points in the path must be of the same type/direction or
of a compatible type sharing a common plane and the
operator T ð�Þ returns the shape type of a given point. The
criterion 3 ensures adjacent path points are closer than a
threshold distance r. The last criterion 4 specifies that any
two consecutive path points must be approximately
coplanar (i.e., on the Y Z plane in this case). For example,
a valid path can exist between two tWalls on (nearly) the
same plane, or a valid path can exist between a tEdge
sharing a plane with a tWall.

The aforementioned clustering criteria produce a parti-
tioning of the tWall’s (i.e., a tWall is assigned exactly to one
cluster) and produces shared points only for tEdges,
tCorners, and tEdgeCorners spanning the expected planes
implied by their directions and rotations.

The points in the same cluster are then triangulated to
obtain a mesh-based representation of the cluster. Large
triangles are omitted. In practice, the resulting triangulation
produces a fairly accurate representation of convex and
nonconvex building faces (e.g., Fig. 10b).

4.1.2 Adaptive Bounding Boxes

For each triangulated cluster, we calculate a recursive set of
axis-aligned bounding boxes. The AABBs will speed up
the process of ray casting described in the next section.
Because of the near-coplanarity criterion during cluster
creation, the depth of an AABB (i.e., the length of the side
perpendicular to the dominant plane) is usually small. The
initial AABB is the bounding box of the entire cluster whose
width and height are recursively split until reaching a
minimum box size (i.e., the box is not split along the depth
dimension) (Fig. 5). The minimum box size is set by default
to 1 meter and can be modified by the user to control the
detail of the reconstruction.

4.2 Volume Rays

Volume rays are used to compute the 3D region enclosed by
the meshes created during the clustering step. For a selected
MW axis, the AABBs can be used to create two structured
grids representing both facades of the building along the
selected axis. One possible algorithm to recover the interior
volume from these grids consists in sorting the faces (i.e.,
planar components of the structured grid at different
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Fig. 5. Adaptive bounding boxes for cluster representation.
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coordinate values along the axis) in ascending order along
the axis and sweeping them in sorted order. Given an initial
face, it is swept along the axis until it is obstructed by
another face. Then, the obstructing face starts sweeping and
the unobstructed portion of the previous face continues
sweeping. The sweeping (extrusion) of these regions results
in a set of adjacent and nonintersecting volumes.

An alternative simple and efficient method is to densely
sample the structured grid (faces) with rays. Provided there
are no missing or incomplete faces in the data set, each ray
will intersect an even number of faces. From the sorted list
of faces intersected by a ray, the portions of the ray that lie
inside the geometry can be easily determined. The
reconstructed volume would be defined by the union of
all the volume ray portions that were determined to lie
inside the building (Fig. 6).

In practice, reconstructed faces can be missing or
incomplete, and the number of faces intersected by a ray
can be odd indicating an incomplete geometry. Hence, in
our method, we make a conservative decision to ignore the
volume regions returned by rays with an odd number of
intersections (i.e., we only keep rays with even number).

A benefit of our approach is that by combining the
results of using volume rays along multiple axes, we obtain
redundancy which can be exploited to account for the
aforementioned missing data samples. Therefore, a volume
that is not described by one of the grids of rays is often
successfully captured by the others.

4.3 Smoothing and Simplification

Several postprocessing steps are followed to obtain a
smoother, more accurate and more compact representation
of the building volume including removing rays of low
confidence, adding support rays, snapping rays to other
rays of high endpoint frequency, and simplifying rays.

4.3.1 Estimating Ray Confidence

Similar to the reinforcement process for classifying points
using contextual information (i.e., the shape types of
neighboring points), the confidence of a ray is evaluated
based on the coherence with its neighboring rays. Ray
confidence is useful to remove thin groups of one or more
rays that may result from regions where the intersection
count was falsely even. To evaluate the confidence of a ray
r, we first compute the overlap between r and each of its
neighbors. The neighborhood of a ray is a d� d subgrid of
the structured ray grid, centered in r (d was experimentally
set to 5). Then, for each neighbor s of r, we compute the

ratio between the length of the projection of s onto r, and
the length of r. The confidence of r is a normalized sum of
these ratios, weighted by the grid distance from s to r. The
length of a ray is the sum of the lengths of the portions of
the ray that lie inside the geometry Intuitively, the
confidence of a ray is raised by the presence of other rays
with similar extents in the immediate neighborhood.

4.3.2 Adding Support Rays

An optional criterion that is useful for buildings whose XY
cross sections are monotonically decreasing upwards (i.e.,
the building cross section of floor f þ 1 is always contained
in the building cross section of floor f) is to add support
rays in all the vertical positions under the ray, all the way to
the base of the building. Often in street-level LIDAR data
sets only the uppermost portion of a building is not
occluded by other faces. Downwards completion makes a
basic inference of the presence of rays that are not observed
in the data but that should nevertheless be in the building
given MW assumptions.

4.3.3 Snapping and Simplification

We perform additional snapping and simplification opera-
tions. Small deviations in the ray endpoints can be
compensated for by snapping such endpoints to nearby
planes where a significantly higher number of ray end-
points already lie. This step uses information of the grid in
one of the directions (e.g., grid on Y ) to modify the rays in
the other direction (e.g., grid on X).

Further, to avoid the number of recovered rays from
growing too quickly, simplifications are made after any of
the above postprocessing operations, including closing
small gaps in consecutive rays, and merging overlapping
rays on a same ray grid position. Interior rays (i.e., rays that
are surrounded by other rays in all neighbors) are also
removed after postprocessing.

The end result is a sparse collection of rays that
collectively describe the building volume. The volume
occupied by each ray can be coalesced and exported for
subsequent geometrical modeling tasks.

5 IMPLEMENTATION DETAILS

Since the data sets we use contain up to 10 million points,
we use a hash-based spatial partitioning data structure to
efficiently store and access the 3D points. For instance, our
breadth-first clustering algorithm (Section 4.1) is reduced to
nearly OðNÞ complexity on the number of classified points.
This is achieved by performing comparisons only with
points in nearby neighbors that are extracted in constant
time from the hash structure, instead of running costly
comparisons between all pairs of points. Our hash function
uses the x, y, and z coordinates of each point to compute the
index of the partition element in which the point belongs.

To efficiently access the rays, we use an additional ray
grid data structure which allows for constant-time access to
any ray when given its starting position. Since neighbors of
rays are very frequently queried, providing such a constant
lookup time is highly beneficial as it avoids a potential
bottleneck of the system.
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Fig. 6. Color coded number of intersections for each volume ray. An
even count indicates the volume ray contains building interior.
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6 RESULTS AND DISCUSSION

We have applied our method for reconstruction of several
real-world buildings using publicly available 3D point
data sets [32]. Results are shown in Figs. 1, 12, 10, and 11.
All reconstructions are fully automated and take from 10
to 60 seconds. For each building, the system automatically
computes a neighborhood ball radius to ensure that at
least half of the balls have 20 or more points inside them.

6.1 Classification and Clustering

Computing the type of each point in the data set and
partitioning them into clusters are the key components of the
pipeline. Fig. 7 shows how the reinforcement process
(Section 3.3) further improves the quality of the classifica-
tion. Fig. 8 focuses on some points of type tWall Fig. 8a and
tEdge Fig. 8b. The colors indicate the direction of each type.
Points of type tWallX are shown in red, and points of type
tWallY are shown in green. Points of type tEdge are shown as
an extruded L rendered in two colors, corresponding to the
estimated directions of the faces that meet at them. Fig. 8c
shows a close up of the two clusters of points of type tWallX
and tWallY that connect at several points of type tEdgeXY.
Notice how the use of typed points allows for a correct
clustering of the points in regions where the classification
uncertainty is high (gap between green wall and red wall in
part Fig. 8a).

6.2 Robustness to Point Sample Noise and Density

We have evaluated the sensitivity of our approach to varying
levels of noise and density in the point sample. For this
purpose, the fitting errors between a ground-truth geometry
and its reconstructions are computed and visualized (Fig. 9).
The ground-truth geometry is a synthetic model of an
artificial building that was devised to exhibit the three tWall
types and at least five different types of each one of the other
shape categories (tEdge, tCorner, tEdgeCorner). We use a
synthetic model instead of a particular real-world building
for the evaluation because 1) a model of an existing building

will necessarily have nonzero error, and 2) the mass model of
any real-world MW building can be constructed by
assembling one or more of these shape types.

Fig. 9 shows in the top row the synthetic sample model,
one of the point samples that were computed on it, and the
reconstructed 3D model for that particular sample. The
matrix at the bottom of the figure shows the computed
reconstructions for varying levels of point density (hor-
izontal axis) and noise (vertical axis). The local error of the
reconstruction is visualized on the surface of the model
using the color coding defined by the color scale on the
right side of the figure. The error of a reconstructed face is
computed by measuring its distance to the closest parallel
face in the ground-truth model. As it is expected, the
reconstruction error is minimal for a point sample with high
density and low noise (bottom right model), and becomes
larger as the density decreases or as the noise increases. In
general, the amount of noise in the input data most directly
affects the reconstruction error and also the amount of
reconstruction error is usually on par with the noise level.

6.3 Reconstructed Buildings

Fig. 10 shows the reconstruction of the mass of a castle-like
building with two towers. Fig. 10a shows the raw input data
that are used for reconstruction, which includes points
sampled on nearby trees and other objects that are not part
of the building structure. Fig. 10b shows the triangulations
of the clusters of typed points that are further used to
estimate the volume (Figs. 10d and 10e). To highlight the
importance of counting the number of cluster boxes
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Fig. 7. Type reinforcement based on neighboring classified points.

Fig. 8. Clusters of points (c) connecting tWalls (a) and tEdges (b).

Fig. 9. Reconstruction error for varying point sample density and noise.
Starting from point samples generated on the surface of a synthetic
model (top), several reconstructions are computed using our method
(bottom). The error of several reconstructions generated from point sets
of varying levels of density and noise is computed and visualized using a
color coding (right).
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intersected by volume rays, Fig. 10c shows the result of
computing volume rays without counting. This criterion is
essential to accurately reconstructing the mass of buildings
with nonconvex volumes.

Fig. 11 pictorially shows the pipeline of our method. The
images in the left column show the input points (top) and
their classification into tWall types (middle) and tEdge
types (bottom) for surface extraction. The middle column
shows the clustering of points (top), the triangulation of
each cluster (middle), and the subdivision bounding boxes
used to represent each triangulation. Notice how non-
convex facades (e.g., the front ones) are accurately
represented by these boxes. The right column shows the
raw volume rays before postprocessing (top), the extracted
volume after ray cleaning (middle), and a manually
texture-mapped model (bottom). The good fit of the
reconstructed geometry to the 3D points is evidenced by
the overlap of the points with the volume (middle) and by
the good match of the texture (taken from a front
photograph of the facade) to the building mass.

Figs. 1 and 12 show two more reconstructed buildings,
together with the 3D points, and for Fig. 1, the typed points
and cluster triangulations. All contained points sampled on
trees, benches, lamps, and/or nearby parked vehicles, that

were automatically discarded by our approach, omitting
any data clean-up preprocessing.

6.4 Non-Manhattan-World Regions

Our results show that non-MW regions of the buildings are
typically not reconstructed. This is an expected consequence
of the fact that points sampled on non-MW regions (e.g., hip
and slanted roofs) are not classified and thereafter ignored in
the point clustering, triangulation, and adaptive boxes fitting
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Fig. 10. Reconstructed castle-like building with nonconvex volumes. (a) Input 3D points. (b) Clusters of classified points. (c) Naı̈ve volume rays
reconstruction. (d) Our complete volume ray reconstruction using intersection count criteria. (e) Side view of reconstructed building showing the
adapted volume rays.

Fig. 11. System Pipeline showing: points classification (left), clustering and triangulation (middle), and volume ray reconstruction (right). The left side
facade of the building is partly occluded by a tree a no cluster of triangles and adaptive boxes are created in this region. The volume rays generated
by the triangulations on the front and back facades allow for a complete reconstruction in spite of the missing the data.

Fig. 12. Example of reconstructed building.
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steps. Ignoring these points is a design choice that limits
the reconstruction to MW geometry and that avoids that
sample points originating in non-MW regions interfere with
the correct reconstruction of MW regions. This choice enables
our method to reconstruct the regions in a building that are
MW-compliant without imposing the harder requirement
that the entire geometry be MW-compliant. In some cases,
non-MW regions are approximated by the volume rays
reconstructed from connecting meshes that are MW-com-
pliant. Gable roofs, in which only two of the four sides slope
downwards to the walls (e.g., the roof in Fig. 1), are an
example of these cases. In other cases, the absence of MW-
compliant meshes at a given height results in no rays
approximating the non-MW regions. Hip roofs, where all
four sides slope downwards to the walls (e.g., the roof in
Fig. 11), constitute an example of these cases.

6.5 Visual Comparison

Fig. 13 contains a table that succinctly compares our
approach to several related previous works. The table lists
several representative methods for building modeling (top
box) and facade modeling (bottom box), together with
images of their input data and resulting reconstructions.
While some of the other works produce less restrictive
building geometry including facades of buildings with
arbitrary polygonal (non-MW) footprints and piecewise
planar roofs, the main difference of our approach is the
ability to create complete buildings using only ground-level

scans (i.e., no roof sample points provided). Nonetheless,
the geometry produced by our approach is MW compliant
(i.e., MW footprint and flat roofs). Automatically recon-
structing the complete geometry of a building with
arbitrary facade and roof orientations is clearly a more
difficult problem that is yet to be solved robustly.

The methods in [22], [16] and [33] attempt to fit polygons
to the sample points and then compute the vertical
extrusion of each polygon up to an estimated height. A
2.5D reconstruction is obtained as a result. While these
approaches can automatically reconstruct entire cities, they
completely rely on the assumption that the points were
sampled on the roofs of the buildings, in order to produce
complete models. This effectively implies the use of air-
borne acquisition for reconstructing any building. While the
method by Toshev et al. [34] does not explicitly require
aerial range data, its focus is on extracting individual planar
surfaces from the points and structuring them into parse
trees that represent a semantic decomposition of the
building. Furthermore, their paper does not present any
results showing complete building reconstructions or
reconstructions where only facade points were used. In
contrast, our method can automatically generate reconstruc-
tions of complete buildings even when only data from
ground-level scans are available (e.g., points sampled on
facades as in Fig. 1a), and can provide a coarse approxima-
tion of the roof geometry based on facade data (e.g., Fig. 1e).

The methods for facade reconstruction [13], [2] focus on
creating very detailed models of facades from ground-level
range scans. While these methods exploit symmetry,
repetition, regularity, and interactive user guidance to
compensate for unsampled regions of the facade, the
resulting reconstruction is often incomplete and only
represents the facade of the building that was sampled. In
contrast, our method processes all facades simultaneously
and combines their information in order to make inferences
about the geometry of the unsampled parts of the building,
including occluded, and hidden regions of the facades, and
the building roof (e.g., Fig. 10e).

Nevertheless, our method does not focus on creating
detailed facade models from ground-level data, but rather
on creating complete building models from incomplete
ground-level samples, with no user intervention. It also
does not make any assumption about the density of the
point sample and it can produce reconstructions of coarsely
sampled buildings (e.g., Fig. 11e). However, if a dense
sampling of a facade is available, the facade reconstruction
methods can be used in conjunction with our approach
during a postprocessing step.

7 CONCLUSIONS AND FUTURE WORK

We have described a novel approach for the reconstruction
of urban structures from 3D laser range scans exploiting an
assumption of MW building geometry. First, the input
points are robustly classified according to the MW
assumption into one of four fundamental local shape types.
In the second step, the classified points are organized into a
connected set of clusters from which a volume description
is extracted. The MW assumption allows us to describe the
volumes within the bounding box, and to reconstruct

VANEGAS ET AL.: AUTOMATIC EXTRACTION OF MANHATTAN-WORLD BUILDING MASSES FROM 3D LASER RANGE SCANS 1635

Fig. 13. Comparison to other methods for facade and building modeling
from unorganized 3D points. The results in rows 2 to 7 of this figure were
originally published in [34], [16], [22], [33], [13] and [2], and are used in
this paper with permission from their authors.
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occluded (or not captured) parts of the input data. Our
method is automatic and operates at interactive computing
speeds on a standard desktop PC for real-world 3D point
data sets of millions of points.

Our method has several limitations. The first one
comes from the MW assumption. Our algorithm recon-
structs efficiently the MW parts of building exteriors, but
many buildings are not pure MW buildings and have
parts that are not axis-aligned. Second, our algorithm
depends on the classification of the local points. Even
though we have attempted for a robust solution, a large
amount of noise or data incompleteness can yield to
undesirable results (see Fig. 9). Third, our method is not
suitable for data sets with highly varying local geometry
such as complex baroque facades.

There are many possible avenues for the future work. An
automated roof reconstruction could be achieved by
expanding the shape types to allow for some non-MW
geometries. By considering the local surface curvature, the
classified points could be theoretically generalized into a
class that would allow for C0 or C1 connections. By
extending the range of the connecting angles and of the
local context for each point, a general class of connections is
possible allowing for cylindrical or pyramidal building
structures as well, for example.
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