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Fig. 1. Topological structure of the Poincaré section of the magnetic field on the poloidal plane of a Tokamak fusion reactor. From left
to right, the structure is depicted using a puncture plot, orbit averaging, map-FTLE, and direct topology extraction.

Abstract—Area-preserving maps are found across a wide range of scientific and engineering problems. Their study is made chal-
lenging by the significant computational effort typically required for their inspection but more fundamentally by the fractal complexity of
salient structures. The visual inspection of these maps reveals a remarkable topological picture consisting of fixed (or periodic) points
embedded in so-called island chains, invariant manifolds, and regions of ergodic behavior. This paper is concerned with the effec-
tive visualization and precise topological analysis of area-preserving maps with two degrees of freedom from numerical or analytical
data. Specifically, a method is presented for the automatic extraction and characterization of fixed points and the computation of their
invariant manifolds, also known as separatrices, to yield a complete picture of the structures present within the scale and complexity
bounds selected by the user. This general approach offers a significant improvement over the visual representations that are so far
available for area-preserving maps. The technique is demonstrated on a numerical simulation of magnetic confinement in a fusion
reactor.

Index Terms—Poincaré map, dynamical systems, topology, chaos, area-preserving maps, invariant manifolds.

1 INTRODUCTION

Many natural phenomena can be elegantly described in terms of the
Hamiltonian formalism. In areas as different as orbital mechanics,
quantum mechanics, and fluid dynamics but also molecular dynamics,
chemical dynamics, or ecology the same basic principle of stationary
action applies. In its simplest form this principle states that the evolu-
tion of a system is entirely dictated by the variations of a single scalar
function – the Hamiltonian. The resulting equations form a dynamical
system whose structural properties can be investigated geometrically
through maps. Maps can be thought of as describing the successive
discrete states of an evolving system. Hamiltonian systems in partic-
ular give rise to area-preserving maps, which exhibit a rich structural
picture. From a visual perspective, these maps are quite fascinating
since they intertwine fractal topology and regions of chaotic behavior.

Beyond their theoretical appeal, area-preserving maps play a key
role in various engineering disciplines. In spatial mission planning
or fusion research for instance, the understanding and interpretation of

• Xavier Tricoche is with Purdue University, E-mail: xmt@purdue.edu.
• Christoph Garth is with University of California, Davis, and the

University of Kaiserslautern, Germany, E-mail: garth@cs.uni-kl.de.
• Allen Sanderson is with the SCI Institute, University of Utah, E-mail:

allen@sci.utah.edu.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

these maps is required to gain ever deeper insight into the fundamental
properties of the considered phenomena. Yet, their intrinsic complex-
ity makes this analysis challenging. While so-called puncture plots of-
fer a straightforward means to obtain a rough picture of the topological
features, they are very limited in their ability to offer a reliable picture
of the main structures. They yield discrete representations where the
main manifolds of the topology can be difficult to identify and some
significant patterns can be missed altogether. Despite the introduction
in recent years of several techniques to address the shortcomings of
these plots, the effective analysis of maps remains a difficult task.

We propose in this paper a new method for the automatic extraction
and visualization of the main topological structures present in area pre-
serving maps. Note that in the following we restrict our considerations
to maps with two degrees of freedom, though this case covers a wide
range of scenarios of practical relevance. In contrast to existing ap-
proaches, our algorithm explicitly identifies the location of the fixed
points and constructs the manifolds that connect them. Our method
offers a precise picture of the island chains, which are the signature of
these maps, and thus permits an accurate measure of their quantitative
properties, which have an important physical interpretation. More-
over, the reliable extraction of this structural backbone allows us to
create compelling visualizations that can be used to quickly identify
and interpret the major trends in the data in a transient evolution. To
augment the obtained visualizations, we further investigate the visual-
ization of the topological context using orbit averaging an adaptation
of convolution-based methods such as e.g. Line Integral Convolution
to the setting of maps.



(a) Poincaré map (b) Integrable system (c) Near-integrable system

Fig. 2. (a) illustrates two iterations of a Poincaré map. (b) and (c) illustrate islands of resonance in the topology of the Poincaré section. In the
integrable case (b), separatrices connect saddle points in the Poincaré map, forming the boundary of an island containing a center point. In the
chaotic case (c), the connections are replaced by the intersection of stable and unstable manifolds at an infinite number of points, forming the
tangles that characterize chaos. Quasi-periodic orbits exist both inside and outside of the island, where they densely populate KAM manifolds.

We have applied our method in a practical scenario corresponding
to a numerical simulation of magnetic confinement in a Tokamak fu-
sion reactor. In this context of magneto-hydrodynamics (MHD) sim-
ulations, the ability to characterize topological transformations in the
early stages of the simulation is key since it provides a crucial insight
into the long term evolution of the system (loss of stability, loss of
confinement, etc.). It is important to note that we restrict our consid-
erations to near-integrable systems. In other words our method is not
meant to process fully stochastic systems. Indeed, the basic premise
of our method is that the most significant features of the map can be
captured through relatively simple geometry, an assumption that is no
longer valid if the system is dominated by chaos.

The contents of this paper are organized as follows. Basic defini-
tions and theoretical results relevant to the presentation of our method
are first introduced in Section 2. We then briefly review previous
work on map visualization and analysis in Section 3 before describ-
ing the algorithmic details of our new method (Section 4) and numer-
ical considerations (Section 5). Visualization aspects of our solution
are addressed in Section 6, where we introduce the orbit averaging
approach, and followed by results in Section 7. Specifically, we con-
sider the important special case of the Standard Map (Section 7.1)
before commenting on our experience with Tokamak simulation data
in Section 7.2. Finally conclusion and future research directions are
discussed in Section 8.

2 THEORETICAL AND NUMERICAL FOUNDATIONS

In the following, we provide an overview over the mathematical and
numerical concepts that form the basis for the present work. Hamil-
tonian systems have received considerable theoretical and numerical
attention in mathematics, physics, and computational science. Our
modest goal in this section is to summarize the key mathematical con-
cepts and results that are needed in the description of the proposed
numerical and algorithmic strategies. The interested reader is further
referred to excellent classical references [23, 29].

2.1 Hamiltonian Systems and Area-Preserving Maps

Many systems of mechanics (and optics) can be described by a simple
set of ordinary differential equations, known as Hamilton’s equations:

dqi

dt
=

∂H
∂ pi

d pi

dt
=−∂H

∂qi
. (1)

The state of the system at time t is therefore entirely described by a
point, z=(p1, . . . , pN ,q1, . . . ,qN), in the 2N-dimensional phase space.
The pi and qi are called momenta and positions, respectively, and the
(scalar) function H(p,q, t) is called the Hamiltonian. In physical sys-
tems, the latter typically describes the total energy of the system.

Expressing the evolution of a system in terms of a general ordinary
differential equation (ODE) initial value problem:

dz
dt

= f(z), z(0) = z0 (2)

whose solution we denote z(t,z0), we can define its associated flow
map {φt}t∈IR

φt(z0) := z(t,z0), φ0(z0)≡ z0. (3)

The flow map therefore describes the mapping induced by the dynam-
ical system. Equivalent to Equation 1, the variational principle, or
principle of least action, states that the flow map is constrained to
curves, C in phase space along which the action integral:∫

C
p ·dq−Hdt

is maximized. If the Hamiltonian H itself is an invariant of the motion,
the system is said to be conservative.

2.2 Poincaré Map
The Poincaré map is a fundamental tool in the study of dynamical sys-
tems exhibiting periodicity. Restricting our considerations to a Hamil-
tonian system with two degrees of freedom (i.e. z = (p1, p2,q1,q2),
a case that covers the application scenarios considered in this work)
we first observe that for a given value of the Hamiltonian H = E,
we can express one of the variables in terms of the others, say
p2 = p2(p1,q1,q2,E), and study the system in a 3D coordinate sys-
tem (p1,q1,q2), where the motion is confined to a doughnut-shaped
invariant torus also known as energy surface. We then construct
the Poincaré map by first selecting a Poincaré section Π, in other
words a plane that is transverse (i.e. nowhere tangent) to the flow,
say Π = {q2 = 0}. A point on the plane is therefore described by its
coordinates x(x,y) := (p1,q1). By following the trajectory from this
point, we define the Poincaré or return map, P , via x̃ = P(x), where
x̃ is the first intersection of the trajectory emanating from x and the
plane Π, see Figure 2(a). Observe that the fact that the trajectories
return to a vicinity of the starting point (quasi-periodic behavior) is a
consequence of the fact that the energy surface is bounded.

An essential property of Hamiltonian systems compared to other
dynamical systems is that the volume of a transported region of the
phase space is preserved by the flow map. As a consequence, the
Poincaré map itself is area-preserving and P is divergence-free:
∇ ·P = 0. It is important to note that the Poincaré map induces a
discrete dynamical system in the Poincaré section in which the motion
is described in terms of recurrence relations of the form

xn+1 = P(xn).

In particular, P is not a vector field.1

2.3 Integrable, Ergodic and Chaotic Motion
The simplest picture exhibited by Hamiltonian systems correspond to
the so-called integrable case, in which the motion is completely or-
dered: the orbits z(·,z0) are either closed (and therefore periodic) or
they are confined to tori that are invariant under the flow map. In the
Poincaré section these tori appear as nested closed curves.

1Note for instance the orientation discontinuity at the intersection point of
stable and unstable manifolds in chaotic tangles.
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Fig. 3. Evolution of the Standard Map (described in Section 7.1), illustrated using orbital averaging. Fixed points and quasi-periodic KAM orbits are
identified by identical color averages. Growing ergodic regions appear as uniformly grey areas.

In the opposite limit of ergodic behavior the motion is essentially
random. In contrast, chaotic systems are neither completely integrable
nor completely ergodic. Chaotic systems are typical in practice and
the primary challenge posed by their analysis is to understand how the
structure of phase space progressively “breaks” as the system deviates
from integrability. In particular, so-called islands progressively form
in the phase portrait in which a locally linear motion develops. Further,
irregular trajectories emerge that wander across circumscribed regions
of phase space called ergodic sea. Their motion is such that they come
arbitrarily close to any position within those regions and thus a single
trajectory suffices to densely populate the corresponding portion of
the Poincaré map. Figures 3 and 4 illustrate this for the Standard Map,
which we describe in Section 7.1.

2.4 Periodic Orbits and Linearized Motion
Periodic orbits of the system are fixed points of the Poincaré map for
a given period. A periodic orbit of period p is invariant under p itera-
tions of the Poincaré map:

P p(x0) := P(P p−1(x0)) = x0,

where p is the smallest positive integer that satisfies this relation. We
refer to x0 as a fixed point of period p. The nature of a fixed point
can be determine by a local linear analysis of the Poincaré map in its
vicinity. More precisely, a linear approximation of the local motion
about x0 is based on the Jacobian Jp := ∇xP p:

P p(x0 +dx) = P p(x0)+Jp(x0)dx+ ...= x0 +Jp(x0)dx+ ...

and the eigenvalues λi, i = {1,2} of Jp determine the nature of the
fixed point. If they are complex conjugates then the Poincaré map will
display elliptical motion under the mapping near the fixed point. This
“O-point” configuration is often called center in the visualization lit-
erature [20]. A local “island” of dominantly regular motion will exist
(Figure 2(b)). If the eigenvalues are real and of opposite sign, x0 forms
a saddle (or “X-point”) and the eigenvector of Jp associated with the
negative (resp. positive) eigenvalue aligns with the so-called stable
(resp. unstable) manifolds of x0. These invariant manifolds form the
boundary of the islands and are often referred to as separatrices of the
topology. Saddle points (and the associated unstable orbit) lie at the
heart of chaos. In general, stable and unstable manifolds intersect in
patterns called chaotic tangles, and their structure dominates the dy-
namics in the chaotic sea, see Figure 2(c), bottom left.

Periodic orbits, and in particular their stability, provide crucial in-
formation about the local phase space topology. The periodic orbits
of most interest are the so-called well-ordered periodic orbits that are
continuously connected (in perturbation parameter) to the periodic or-
bits existing in the integrable limit (i.e. not those periodic orbits which
bifurcate out during the chaos).

2.5 Quasi-periodic orbits and KAM theory
In addition to fixed points, islands, and ergodic seas, the Poincaré map
reveals the presence of manifolds that are densely covered by quasi-
periodic orbits, forming curves on the Poincaré section. The period of

these orbits is measured as their irrational winding number, which is
defined by following equation.

q = lim
n→∞

2πn
θ(n)

, (4)

where n corresponds to the number of revolutions completed around
the major axis of the torus and θ(n) denotes the cumulated angle of the
corresponding rotation around the minor axis of the torus. The funda-
mental Kolmogoroff-Arnold-Moser (KAM) theorem [21, 2, 30] states
that those manifolds (so-called KAM surfaces) that have “sufficiently
irrational” winding numbers will survive the onset of chaos through
nonlinear perturbations of the integrable configuration.2 Here, the de-
gree of irrationality of an irrational number q corresponds to the length
of the continued fractions [31]

q = a0 +1/(a1 +1/(a2 +1/(a3 + ...

that is required to approximate q with a given ε precision. The KAM
surfaces form perfect barriers to transport in the phase portrait, hence
their crucial importance in confinement problems. As the degree of
chaos increases these surfaces are progressively destroyed. The study
of transport barriers in Hamiltonian systems, as visualized by the
topology of the Poincaré map, is a crucial aspect of the analysis of
magnetic fields in Tokamak fusion reactors since they influence and
determine plasma movement. We investigate this application in Sec-
tion 7.2.

3 PREVIOUS WORK

While discrete dynamical systems and area-preserving maps are not
a common topic in visualization publications, a number of previous
contributions made in various research fields provide the foundations
of our method. We briefly summarize them next.

Topological approaches were introduced in visualization by Hel-
man and Hesselink [19] who first demonstrated the ability of the topo-
logical skeleton to offer a schematic and insightful picture of a (con-
tinuous) flow. Numerous contributions have since been made to that
general methodology and it remains an active research area [17, 18]. In
particular, this methodology has been applied to 3D vector fields [41],
parameter-dependent vector fields in 2D and 3D [45, 40, 10, 42, 48],
and nonlinear singularities [38, 44, 47]. It has also been extended to
symmetric tensor fields in 2D [8] and 3D [52], and asymmetric tensor
fields [51, 50]. Finally, a closely related topological formalism rooted
on Morse theory and combinatorial principles has been investigated
for the analysis of complex scalar fields [5, 12, 13, 46, 14].

Most of corresponding papers are concerned with scalar, vector, or
tensor fields, and are therefore focused on continuous systems. A no-
table exception is the work by Löffelmann et al. who created several
methods for the intuitive visualization of discrete dynamical systems

2Note that KAM surfaces, like stable and unstable manifolds of saddle
points, constitute invariant manifolds, in other words, low-dimensional man-
ifolds from which the map cannot escape.



defined analytically [26, 24, 25]. In particular, they devised represen-
tations that aim at revealing the continuous structures underlying the
map. Later, Peikert and Sadlo applied a Poincaré map approach to the
visualization of vortex rings in a flow recirculation bubble [33, 34].
While the resulting map is not strictly area-preserving, they showed
that the topological structures that are visible in this context share
many similarities with them. Following this basic observation, they
proposed an image-based method to construct the separatrices that
originate from the saddle points located at each extremity of the re-
circulation bubble; this allowed them to reveal the convoluted pat-
terns formed by their successive intersections as well as the associated
island chains and stochastic behavior. Additionally, they described
an iterative scheme to compute the O-points located in each of the
main islands by successive approximation of the location rotation pat-
tern of the map. Most recently, we applied the concept of finite-time
Lyapunov exponent [16] to the image-based visualization of invari-
ant manifolds in area-preserving maps [43]. In contrast to the present
work however, the proposed technique did not support the geometric
extraction or explicit characterization of the map topology. Instead the
manifolds were shown as soft edges in the computed picture.

Hamiltonian maps have also been studied in artificial intelligence
and data mining. In his Ph.D. thesis, Yip developed a computer sys-
tem (named KAM after the theorem, see Section 2.5) able to navigate
autonomously maps defined by analytical expressions [49]. The basic
idea behind his approach is to combine geometric and graph theory
criteria commonly used in artificial intelligence to permit the auto-
matic recognition of the three main types of orbits that are typically
present in a map: closed loop, island chain, and separatrix. Hence, his
algorithm explores the map by forming high-level hypotheses about
the topology responsible for the observed local patterns. By following
a similar approach, Bagherjeiran and Kamath applied a data mining
approach to identify patterns in Poincaré plots acquired experimen-
tally [3]. Because of the nature of this type of data, their method
assumes no a priori knowledge of the points ordering. Instead, a
minimum spanning tree followed by a clustering step is used to infer
their 1-dimensional structure. Both of these approaches are essentially
suited for the detection and classification of rather large structures of
the map. Additionally they do not provide the explicit boundaries of
the structures but rather aim at detecting the main features.

In the specific context of fusion reactor simulations, which we con-
sider in Section 7.2, Sanderson et al. described a method to visualize
the discrete points of a Poincaré plot by representing them through a

Fig. 4. Close-up in phase portrait of standard map at K = 1.5. The fractal
nature of the corresponding topology is visible.

curve that connects points lying on the same tori or islands [37, 36]. To
do so, the irrational period of the manifold is first approximated based
on the available iterates of the map and is used to determine the best
connection. The available curve geometry can then be leveraged to
approximate the location of the O-points, similar to the technique pro-
posed by Peikert and Sadlo [34]. The visualization is built by probing
the map at a discrete set of locations and takes advantage of inherent
symmetries in the Tokamak.

In addition, researchers in applied mathematics have also consid-
ered maps from an algorithmic perspective. In particular, England
et al. proposed a method to construct stable and unstable manifolds
in Poincaré maps from saddle points by successively extending the
piece of manifold that has already been computed. This algorithm
forms the basis of the solution we describe in Section 4. Finally, the
method describe hereafter makes heavy use of the fundamental no-
tion of Poincaré index [1] to determine the present of a singularity
in a given region. A germane idea was previously used by Mann and
Rockwood to identify critical points in nonlinear 3D vector fields [27].

4 TOPOLOGY EXTRACTION

We present in this section a novel algorithm for the extraction of the
topological structure of chaotic area-preserving maps that is applicable
to both analytically defined Hamiltonian flows and (nearly) divergence
free simulation datasets. Emphasis is put an robustness and computa-
tional efficiency.

4.1 Constraints
It follows from the discussion in Section 2.3 that the analysis of area
preserving maps depends heavily on an accurate and efficient integra-
tion of the flow map (φt)t∈IR. This computation is required to obtain
iterates of the Poincaré map P p, p = 1, . . . , pmax, where pmax is some
upper bound that depends on the goals of the analysis. An excep-
tion to this rule are discrete analytical maps where an explicit formula
f describes the recurrence xp+1 = f(xp). Such maps are of academic
interest and we consider one such map in Section 7.1. In general, how-
ever, the computation of the Poincaré map is made challenging by the
need to maintain long term accuracy in the numerical integration of
an ODE. In the context of Hamiltonian systems in particular, the prop-
erty of area-preservation is essentially impossible to guarantee through
conventional integration schemes such as Runge-Kutta methods [28].
So-called geometric (or symplectic) integrators do explicitly enforce
the invariance of these properties along the integration [15]. However,
their application requires a specific formulation of the dynamics (e.g.,
an explicit expression for the Hamiltonian of the problem), which is
not always available. Further, when processing numerical simulations
(such as the one considered in Section 7.2), the output data and its
continuous reconstruction through piecewise polynomial functions is
not exactly conservative. In this case, the area-preserving property
is a theoretical reference for the behavior of the studied phenomenon
rather than a numerical reality.

Finding fixed points in Poincaré sections in this setting is a compu-
tationally challenging and numerically ambiguous task. Map iteration
by numerical solution of ODEs at high precision is costly, and there is
little hope resolving all structures due to the fractal nature of the con-
sidered maps. Essentially, looking deep enough, there are structures
everywhere in the partially chaotic case that we are interested in here.
Furthermore, at fixed numerical resolution, an actual fixed point can
be impossible to distinguish from a rational surface. Here, as done in
previous work, it is typically necessary to introduce parameters in the
form of (arbitrary) thresholds that restrict the search spatially strongly
influence the analysis.

The basic idea of our approach consists in extracting the fixed points
of the map along with the associated island topology sequentially over
a prescribed range of periods of the map P . Restricting the range
of periods that should be considered is necessary for computational
reasons (the map becomes more and more costly to evaluate as the
number of iterations increases) as well as for accuracy concerns. As
discussed in the following, the numerics makes it impossible to mean-
ingfully characterize topological structures beyond a certain period



as numerical noise (both in the data and in our processing) starts to
dominate the picture. However, this restriction does not penalize the
analysis in any significant way since the corresponding topological
structures become negligible (in terms of their covering of the phase
portrait) as the period exceeds a certain threshold.

For these reasons, the algorithms we contribute in the following em-
phasize primarily combinatorial principles and consistency checks to
address the error and uncertainty that is inherently part of the analysis
of such mappings. Our analysis strategy is rooted on key topological
principles:

• A non-zero index of the Poincaré map, computed over the bound-
ary of a small region, guarantees that the enclosed region con-
tains at least a fixed point.

• Area-preserving maps exhibit quasi-periodicity, and the KAM
manifolds that densely populate the phase portrait in non-chaotic
regions have an (irrational) winding number that varies smoothly
between neighboring manifolds.

• Fixed points correspond to isolated orbits with rational winding
number. Here, winding number q and period p of the map are
related by q = p

n , where n is the number of rotations along the
periodic dimension completed before the map returns to its start
position after p iterations.

In the following, we discuss our topology analysis algorithm based
on these principles and comment on its properties and parameters.

4.2 Algorithm
Our method proceeds sequentially through six stages that we describe
in order of execution. First, we compute a regular sampling of the do-
main (Step 1), and winding numbers are approximated at every vertex
of the corresponding grid (Step 2) that indicate possible periods for
topological structures. Subsequently, grid cells that may contain fixed
points are identified by evaluating their Poincaré index (Step 3) for
the previously determined periods. Candidate cells are then passed to
Step 4, where fixed points are located exactly and classified according
to their first-order nature into saddles or centers. To ensure a consis-
tent visualization result, in Step 5 we account for fixed points whose
presence is required to ensure topological consistency but were been
missed by the direct search in Steps 2 through 4. Finally, in Step 6, we
compute the separatrices that connect fixed points of saddle type.

The topological structures identified using this algorithm are then
visualized as described in Section 6. In the following, we give a de-
tailed description of the individual steps of our method.

Step 1: Initial Sampling
We first perform an initial sampling of the map P p for a given range
of periods 1 . . .2pmaxover the domain of interest using a regular grid
of size N1 ×N2. This bounds the computational effort by limiting
analysis to structures that can be reliably resolved at the resulting res-
olution, and precludes distracting investigation of fractal structures.
Practically, the resolution of this initial sampling directly controls the
spatial scale of the structures that can be characterized. A coarse sam-
pling will be sufficient to resolve large island chains while a finer sam-
pling will be needed to properly detect skinny islands. In practice, we
choose N1 and N2 as small multiples (e.g. ×1, ×2, ×4) of the res-
olution of the computational mesh that represents the system whose
Poincaré map we analyze (cf. Section 7.2). This is an intuitive choice
for the scientists who are generally wary of analyzing structures be-
yond the spatial resolution of the computational mesh. In the case of
an analytic map representation (such as discussed in Section 7.1), the
resolution should be chosen to resolve the smallest features of interest
adequately.

The value pmax determines the maximum period of structures to be
analyzed. In terms of the scientific application of our method we con-
sider in Section 7.2, higher periods typically correspond to skinnier
island structures that are of limited visual and scientific significance,

and analysis in that context is typically focused on lower rational peri-
ods. While in principle we could have sampled exactly pmax iterations
of the map, we find that doubling this number allows a better assess-
ment of winding number and orbit period, to be determined in the next
stage of our algorithm.

Step 2: Period Identification
For every vertex of the discretization, we approximate the (irrational)
winding number of P from the available iterates computed in the pre-
vious step. We approximate Equation 4 using the finite sum

q(x) = 2π

pmax

∑
p=1

p
θp

1
||P p(x)− x||

where p designates a number of iterations of the map and θp denotes
the corresponding rotation angle. In other words, the winding number
is obtained as a weighted average of its approximation at each itera-
tion, whereby the weight is chosen inverse proportional to the distance
to the seed point. The winding number is generally smooth, and thus
this approximation gives good results even for low values of pmax.

To determine possible periods locally, we consider for each cell of
the discretization the (irrational) interval [qmin,qmax] spanned by the
winding numbers computed at the vertices. Possible map periods p
are then identified using the constraint

(gcd(p, pmax) = 1) AND (qmin <
p

pmax
< qmax), for p = 1, . . . , pmax.

We note all such periods for each cell for further investigation.

Step 3: Poincaré Index Computation
The main strategy we apply to find fixed points is based on the concept
of Poincaré index. In planar vector fields, this index measure along a
closed curve the number of signed rotations of the field [11]. Isolated
linear critical points (where the field is zero) are known to have an
index value of ±1: saddle points have index −1, while all other linear
critical points have index +1. In the case of map, the vector field
approximation is valid in the vicinity of a fixed point, by virtue of the
linear analysis approach described in Section 2.4. Hence we use the
Poincaré index to identify cells that contain a fixed point and compute
their exact location using a numerical search.

For each cell C in the discretization of the domain, and for each pos-
sible period identified in the previous step, we compute the Poincaré
index of the cell by considering the angle integral

1
2π

∫
∂C

dθ(P p− Id) (5)

along the bounding edges of the cell. We approximate this integral us-
ing a piecewise linear representation of the angle along the boundary.
However, to accommodate the nonlinearity of P p, we adaptively sub-
divide the edges until the angle between vectors at the vertices of each
linear segment falls below an upper bound. To accurately compute the
Poincaré index, an upper bound of π

2 is sufficient and is used in our im-
plementation. If the angle cannot be resolved with a reasonable level
of subdivisions, we mark the edge as “ambiguous” and reserve the cell
for special treatment later. If Equation 5 yields a non-zero result, the
cell is certain to contain a fixed point of period p, and we proceed with
locating its exact position in the next phase of the algorithm.

In the case of cells with ambiguous edges, index computation is
attempted over an enlarged 3× 3 neighborhood of cells. Again, if
the index is determined as non-zero, the larger region contains a fixed
point and is subject to fixed point location, described next.

Step 4: Fixed Point Location and Linear Characterization
For each of the cells with non-zero index at period p, we employ New-
ton’s method with linear relaxation [6] to determine the exact location
of the contained fixed point. To determine a good starting location
within the cell, we sub-sample

‖P p− Id‖ (6)



inside the cell and employ the point that minimizes this expression as
the starting location. The Jacobian matrix

∇xP
p− I

is computed using central differences. Here, we choose the stencil size
h as a fraction of the cell edge lengths in the corresponding directions
(10% in our implementation). This choice is commensurate with the
size of the cell and implicitly assumes that locally linear structures are
expected to arise within each cell at the prescribed sampling resolu-
tion. The Newton iteration is terminated if the algorithm determines
that Equation 6 cannot be further minimized, thereby achieving robust-
ness with respect to small scale noise inherent in the map evaluation.

After the fixed point location x0 is determined, two cases are distin-
guished. If the index of the cell was +1, a center was found and the
linear characterization is complete. If the index was −1 however we
compute the map Jacobian at x0 from which we derive the eigenvectors
needed in the separatrix computation.

Step 5: Topological Consistency
If a fixed point x0 of period p was identified in the previous step, its
map iterates

P p′(x0) for p′ = 1, . . . , p−1

are also fixed points of period p of the same type (saddle or center)
and form a chain. If not already identified previously, we note these
additional fixed points, and, in the case of saddle nature, compute their
eigenvectors. This captures the relevant cases in which the computa-
tion of the Poincaré index failed.

Step 6: Computation of Separatrices
After all fixed points have been extracted, the separatrices connecting
the saddle points of the same chain must be computed. As discussed in
Section 2.3 these curves form the boundaries of islands. In the generic
chaotic case, these connections are numerically unstable. They cor-
respond to the one-dimensional intersection of the two separatrices
that emanate from neighboring saddle points along the chain. Observe
that this configuration is not one addressed by the saddle-connector
method [41] used in flow visualization, through which streamlines
connecting a pair of 3D saddle points are extracted as the intersec-
tion of their stable and unstable 2D manifold (i.e. separating stream
surface), respectively. In that configuration the connection is stable,
which is in contrast with the present case.

In contrast, these separatrices intersect at an infinite number of dis-
crete locations (cf. Figure 2(c)) creating in between oscillations of
growing amplitude the closer one moves towards either hyperbolic
fixed point [22]. Hence the goal of our separatrix computation is not
to precisely account for these oscillations (which is fundamentally im-
possible) but to provide a schematic representation of that connection
that visually conveys the overall geometry of the island and facilitate
an assessment of its width. This latter measure is a typical significance
criterion in numerical simulations.

Practically, the method we use to compute separatrices is based on
the technique proposed by England et al. [9]. The basic idea of their
method consists in constructing the separatrix through the solution of
successive shooting problems that iteratively advance its end point.
The construction is initialized by selecting a point x0 in the immediate
vicinity of the saddle point along a considered eigenvector and defin-
ing x1 = P p(x0), where p is the period of the saddle. This creates an
interval [x0,x1] in which a point x2 is determined such that P p(x2)
lies within some prescribed distance of x1. This procedure is repeated
iteratively by selected at step i a point xi+1 such that P(xi+1) remains
close to xi. Note that the parameters of this computation follow the
recommendation of [9].

To tackle the challenge posed by the chaotic tangles (not explicitly
considered in [9]) we restrict the range of each separatrix to end at
99% of the distance separating two consecutive saddle points along a
chain. This computation is carried out both forward along the unstable
direction of one saddle and backward along the matching stable direc-
tion of the next saddle. By combining these two curves one obtains a

high quality visualization of the saddle-saddle connection (similar to
what is shown in Figure 2(c)), even over long distances, while con-
trolling the impact of chaos on the resulting geometry. Note that each
p-chain of saddles leads to the computation of 4p separatrices.

5 NUMERICAL ASPECTS

Before we describe the extraction algorithm for the topology of area
preserving maps, we will briefly discuss numerical aspects of working
with such maps.

Poincaré Map Evaluation In our algorithm, we rely on the assump-
tion that the Poincaré map can be computed with high accuracy. While
there are ODE solvers that provide an assessment of their global error
(in contrast to the local error control that typical ODE solvers with
adaptive step size apply at each step) we adopted in this work the
Runge-Kutta Dormand-Prince DP6(5) method [35] whose dense out-
put provides an excellent balance of accuracy and speed in the compu-
tation of the Poincaré map in a computational mesh. Practically, a rela-
tive error tolerance of 10−8 was found to give good results throughout
our experimentation.

Jacobian Approximation A second important computational prim-
itive in our analysis is the measure of the Jacobian Jp = ∇x P p, as
required by the linear analysis of the fixed points of P and their nu-
merical extraction. A straightforward solution to this problem is to use
a central differences approach based on a 4-point stencil

∂P p

∂xi
(x)≈ 1

2h
(P p(x+hiei)−P p(x−hiei))

on the Poincaré section.
However, the determination of appropriate spacings hi, i = {1,2}

can be challenging due the wide range of scales represented in the
structure of P p. As the considered period increases, P p can signifi-
cantly distort the phase space by virtue of area preservation: a stretch
in one direction is automatically compensated by a similar compres-
sion in the other and islands become extremely “thin”. This problem
is compounded by the fact that while excessively large values of hi
yield de facto inaccurate results, too small values lead the derivative
computation to fit numerical noise.

While we require the Jacobian for both the Newton iteration as
well as for the determination of the linear nature of fixed points, the
former is robust under approximation errors. To make the computa-
tion of Jp more robust for the latter case, we introduce the following
scheme based on the finite difference approach. We introduce two
spatial scales hfine and hcoarse and corresponding Jacobians Jfine

p and
Jcoarse

p . We proceed to determine the linear nature (saddle or center)
of the fixed point on both scales; if the result is the same, we employ
Jfine

p for further analysis. If the results differ, we compute Jmid
p using

hmid =
1
2 (hcoarse+hfine). Then, we select the finer of the two scales for

which the Jacobian approximations agree as the relevant scale for fur-
ther computation. We have found this “voting” scheme to give much
superior results with respect to fixed-scale approximation, particularly
in the presents of thin islands and near chaotic regions.

For our purposes, the initial selection of scales is tied directly to
the resolution of the discrete sampling of the Poincaré map described
above in Section 4. Essentially, the choice of scales reflects an ex-
pectation on the size of the region over which a fixed point induces
nearly linear motion. Thus, limiting this quantity from below avoids
spurious results from sub-scale noise that is otherwise excluded from
the analysis. Specifically, we select hcoarse and hfine as 5% and 0.5%
of the cell diagonal. Similarly, we employ hcoarse to obtain Jacobian
approximations used in the Newton iteration above.

We wish to point out that other schemes exist in the literature to
estimate derivatives using varying approximation scales, such as e.g.,
Richardson extrapolation [6]. However, our experiments with these
techniques indicate that they are susceptible to the noise fitting prob-
lem by ultimately fitting at too small scales, resulting in frequent
misidentification of the linear nature of fixed points in our algorithm.



6 VISUALIZATION

The topological skeleton extracted by our method offers a valuable
schematic representation of the subtle structures present in the map.
In particular, it offers a continuous and precise contour of the island
chains that are key features in the analysis of numerical datasets. Our
experimentation with simulation dataset shows that a representation in
parameter space can offer a more intuitive means to assess the geo-
metric properties of the islands chains, which can become difficult to
track when they are strongly curved and their aspect ratio is heavily
distorted in physical space.

While topology provides a crisp and objective image of the struc-
tural properties, we have found that the addition of scalar maps pro-
vides context to the topological visualization. We essentially consider
two variants of scalar context. First, we make use of the adaptation of
the Finite-Time Luyapunov Exponent [16] to maps that we introduced
recently [43]. The basic idea underlying this approach is based on
measuring the hyperbolicity of particle trajectories is measured with
respect to their intersection with the Poincaré section rather than for a
given integration length. A direct visualization of the resulting scalar
field offers a very intuitive and expressive context to the stable and
unstable manifolds and complements them visually. Here, we use the
maximum of both forward-time and backward-time FTLE, as obtained
from the iterates of P , to color-code both stable and unstable mani-
folds in a single scalar field.

As a second scalar field, we consider a technique similar to Line
Integral Convolution [7] applied in vector field visualization. By over-
laying the domain of interest with a noise texture noise(x), we compute

a(x) :=
1

pmax

pmax

∑
p=0

noise(P p(x)) (7)

for every pixel x in an image, thus essentially averaging the noise tex-
ture over a number of iterations of the Poincaré map. This orbit aver-
aging procedure results in an image that identifies pixels on the same
orbit with identical values of a. In essence, we replace the convolution
along streamlines used in LIC by convolution along orbits using a box
filter. While it is immediately apparent that this approach assigns the
same color to all fixed points on a chain, quasi-periodic orbits become
visually apparent by virtue of their dense nature: if Pmax is chosen suf-
ficiently large, all pixels on a quasi-periodic orbit are assigned similar
values of a. Furthermore, if noise is chosen as uniformly distributed,
the value of a converges to chaotic orbits converges to the expectation
value of a, e.g. to 0.5 if noise is uniform over [0,1].

In practice, choosing large values of pmax can be computationally
prohibitive due to the large number and overhead of orbit compu-
tation. However, several factors enable an efficient computation of
this approach. First, as already described in Section 4, a single orbit
touches many pixels of a, and thus the computation can be acceler-
ated by reusing the convolution result over a fixed range of iterations
in similar manner as FastLIC [4]. Second, we can reduce the number
of map evaluations by storing the orbit generated by every pixel for a
smaller maximal period Pmax, and then convolving the image multiple
times, each time reusing the output of the previous pass as the input
of the current pass. Naturally, high-pass filtering is employed after ev-
ery pass to preserve image contrast [32]. In practice, we find that by
choosing pmax as a small multiple (2× or 4×) of the highest period
of interest and then performing several convolution passes results in
smooth images that reliably identify interesting structures.

Figure 3 illustrates our approach on the Standard Map (cf. Sec-
tion 7.1) using uniformly distributed color noise to provide an
overview of the map. Here, the averaging results in well-defined
(quasi-)periodic structures; chaotic regions appear uniformly grey and
are thus easily distinguished. Figures 6 and 8 show our method ap-
plied to a Tokamak simulation (cf. Section refsec:tokamak), using
uniformly gray noise to provide an illustration of the KAM curves as
context to the (primary) topological visualization.

Fig. 5. A simplified schematic of a Tokamak fusion reactor showing its
basic components.

7 RESULTS

7.1 Standard Map
The Standard Map (also known as Chirikov-Taylor Map) is an area-
preserving 2D map of the 2π square onto itself defined as follows:

pn+1 = pn +K sin(θn) (8)
θn+1 = θn + pn+1, (9)

where pn and θn are taken modulo 2π . K is a parameter that controls
the nonlinearity of the map. The Standard Map describes the dynamics
of several mechanical systems (e.g., a kicked rotor) and has attracted
the attention of theoretical and computational research alike since it is
a simple yet powerful tool to study Hamiltonian chaos. In the context
of this work, the Standard Map offers a compelling means to test our
proposed method across a range of configurations. Clearly, the fixed
points of this map can be obtained analytically. Straightforward cal-
culus shows for instance that the fixed points under a single iteration
of the map are given by (p,θ) = (0,0)[π]. However our goal here is
to investigate the structural properties of this map from a purely algo-
rithmic standpoint, as a proof of concept. In particular, all computa-
tions (including the map Jacobian) are performed numerically without
resorting to the available analytic expressions. As such this offers a
truly interesting test case where a variety of topological configurations
are encountered.

Figure 7(a) illustrates the topology of the standard map as extracted
by our method in the period range 1 to 20. A close-up view, provided
in Figure 7(b), reveals how subtle structure are properly captured by
our method despite their challenging distortion. In both figures, con-
text is provided by the FTLE scalar field described in Section 6. Gen-
erally, our algorithm is able to extract all structures in the considered
period range.

7.2 MHD Simulation of Plasma Confinement in a Tokamak
Fusion Reactor

Magnetic fusion reactors, such as the International Thermonuclear Ex-
perimental Reactor (ITER), a Tokamak reactor which is scheduled for
completion in 2018, are being investigated intensively as a source for
future low cost power. In their basic operation, magnetic confinement
fusion uses the electrical conduction of the burning plasma to contain
it within magnetic fields, see Figure 5. The plasma containment is es-
sential for the efficient functioning of such reactors, since contact of
the plasma with the walls of the Tokamak is strongly detrimental to its
material integrity.

A critical characteristic of a typical fusion reactor is the growth of
instabilities in the plasma due to the large gradients of density and
temperature, the field geometry, and the inherent self-consistent inter-
actions between charged particles and electromagnetic waves. Plasma
instabilities occur on very different spatial and temporal scales and can
represent highly unique phenomena. One such instability, magnetic re-
connection, prevents the magnetic field from confining the plasma and



(a) Initial state (b) Before magnetic reconnection (c) After magnetic reconnection

Fig. 6. Topological structure of the Poincaré map of the MHD Tokamak simulation visualized in parameter space. The islands that were detected
in the course of the analysis are depicted directly, and context is provided by KAM structures made visible using orbit averaging. The dramatic
topological changes during the magnetic reconnection are readily apparent from our combination of techniques. Specifically, the phenomenon of
magnetic reconnection can be seen taking place progressively, leading to a configuration where the separatrices of the period-1 saddle point now
enclose the period-1 center point. Color coding: red: saddles, green: centers

leads to its transport. Locating and understanding this phenomena can
best be done through visualizing the topology of the magnetic field
and identifying features within it. The data we study here is a simu-
lation of magnetic reconnection performed using the NIMROD [39]
code. The magnetic field is represented on a structured mesh of size
121×81×51 and available on a small number of time steps extracted
from a longer simulation run. Along the first two axes, representing
poloidal slices of the Tokamak, bi-quadratic Lagrangian interpolation
is employed, while the third axis represents coefficients in a Fourier
series that approximate the field along the periodic toroidal direction.
As such, reconstructing the vector field and integrating magnetic field
lines with high precision is laborious.

In the normal operation of a tokamak reactor, the magnetic field
lines are topologically distinct from each other and form a series of
concentric flux surfaces that confine the plasma. Because the magnetic
field lines are periodic, the topology can clearly be seen by creating a
puncture plot, see Figure 1, left. Here, the Poincaré section Π coin-
cides with a poloidal cross section of the torus-shaped tokamak. In
the presence of instabilities, the magnetic field can become distorted
and form magnetic islands, and it is this formation of islands that is
magnetic reconnection. Surrounding these islands are two separatrices
that divide the magnetic field in to four domains. At the intersection
of these two separatrices lies a single saddle point (aka a separator)
that represents a magnetic field line that is truly periodic. It is at this
location where plasma transport can occur.

Locating these features; islands, separatrices, and X points, is an
important component in understanding plasma transport in magnetic
fusion research. However, generating Poincaré plots with sufficient
detail is computationally expensive; moreover, unless seed points for
the plot are selected in a robust fashion, features within the magnetic
field may be missed. As such developing a robust technique that al-
lows for the rapid visualization and facilitates the analysis of topo-
logical structures of magnetic field lines in an automatic fashion will
aid in the future design and control of Tokamak reactors. In Figure 1,

right, we show the application of our method to time step of a transient
numerical simulation of magnetic confinement on a poloidal slice. In
contrast, for the sake of visual clarity, and as is common in this context,
we consider hereafter the Poincaré map in an (φ ,r) parameter space
mapping to the poloidal slice. Thus, the resulting image is periodic
on the horizontal axis which corresponds to the angle in the poloidal
plane.

The transient evolution of the topological structures is shown in Fig-
ure 6, in which different time steps of the simulation are shown.

One of the more interesting phenomena within magnetic confined
fusion is the formation of “islands within islands”. During the lat-
ter stages of island growth during the onset of magnetic reconnection
two island chains may grow sufficiently large that they overlap and in-
teract with each other leading to the surfaces breaking up into smaller
islands. At this point in time the magnetic field is entering into the non-
linear stage of magnetic reconnection, and this represents one of the
last steps before the magnetic field becomes chaotic. The breakdown
of the surface into islands within islands is believed to further increase
plasma transport. Figure 8 illustrates a single island within a chain of
islands that has broken into a series islands-within-islands. The ability
to detect such phenomena using our technique demonstrates its ability
to to resolve fine scale features that might otherwise be missed easily.

7.3 Performance

The performance of our algorithm is difficult to quantify, since the
runtime depends to a significant extent on the quantity and quality of
structures identified. All stages of our implementation leverage the
embarrassingly parallel nature of the computation (initial regular map
sampling, cell index computation, per-cell fixed point extraction, per-
chain separatrices construction). We have therefore implemented our
method using openmp and observed a linear speedup with respect to
the number of available cores, up to 32 cores (8 Xeon Quadcore pro-
cessors). The entire processing of any given Tokamak time step took
under 5 minutes on 32 cores. Note that a mapping of this computation



(a) Overview (b) Zoom on chaotic region

Fig. 7. Topology of the standard map for K=1.1. At that stage the map exhibits sizable chaotic regions. However our algorithm is able to capture the
most significant structures in the individual islands of the map. A very large numbers of fixed points are identified within the forming chaotic sea,
which cannot be reliably linked to separatrices since the amplitude of chaotic motion is maximized along those separatrices. While these points
appear random, note the many degrees of symmetry which they exhibit.

to the GPU, while conceptually straightforward and promising from a
performance standpoint remains problematic due to possible inaccu-
racies in the computation (single float precision, limited precision of
texture coordinates).

8 CONCLUSION

We have presented an algorithmic and computational framework to
permit the automatic topological analysis of area-preserving maps as-
sociated with Hamiltonian systems. While these maps are of great the-
oretical interest they are also very important in practice since they offer
a geometric interpretation of the qualitative behavior of complex phys-
ical systems. Our approach significantly improves on previous work
by allowing for the explicit geometric characterization of very subtle
structures that would typically be missed through Poincaré plot investi-
gation of the map. Our algorithm was carefully designed to be numeri-
cally robust in a context where chaos and fractal complexity make any
numerical processing fundamentally challenging. By restricting our
computation to a small number of iterations of the period from any
given point (commensurate with the period range relevant to the anal-
ysis) we are able to obtain reliable results that are further enhanced by
various correction mechanisms driven by topological considerations.
From a visualization perspective we have proposed to combine this
schematic topological information with the dense and effective visual
representation afforded by the concept of orbit averaging, which we
introduced in this paper.

We have tested our methods on a standard analytical map and on a
transient numerical simulation of magnetic confinement. Our results
underscore the potential of our method to effectively support the of-
fline analysis of large simulation datasets, a context in which they can
offer a valuable diagnostic tool. In that regard there are many promis-
ing avenues for future work. In particular, the transient nature of the
considered phenomena is so far handled in a discrete manner, which
gives only indirect insight into the topological transformations that
control the development of the structures observed in individual plots.
In addition the ergodic behavior of field lines close to the boundary
of interesting structures constitutes a significant challenge that further
research should investigate to ensure well defined island boundaries.
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