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Abstract—We introduce a versatile framework for characterizing and extracting salient structures in three-dimensional symmetric
second-order tensor fields. The key insight is that degenerate lines in tensor fields, as defined by the standard topological approach,
are exactly crease (ridge and valley) lines of a particular tensor invariant called mode. This reformulation allows us to apply well-
studied approaches from scientific visualization or computer vision to the extraction of topological lines in tensor fields. More generally,
this main result suggests that other tensor invariants, such as anisotropy measures like fractional anisotropy (FA), can be used in the
same framework in lieu of mode to identify important structural properties in tensor fields. Our implementation addresses the specific
challenge posed by the non-linearity of the considered scalar measures and by the smoothness requirement of the crease manifold
computation. We use a combination of smooth reconstruction kernels and adaptive refinement strategy that automatically adjust the
resolution of the analysis to the spatial variation of the considered quantities. Together, these improvements allow for the robust
application of existing ridge line extraction algorithms in the tensor context of our problem. Results are proposed for a diffusion tensor
MRI dataset, and for a benchmark stress tensor field used in engineering research.

Index Terms—Tensor fields, tensor invariants, ridge lines, crease extraction, structural analysis, topology.

1 INTRODUCTION

Despite the fundamental importance of tensor fields in the description
of a variety of phenomena in science, engineering, and medicine, the
analysis of the corresponding data remains a challenging problem. In
particular, the ability to effectively represent the information encoded
in tensor datasets remains the elusive goal of a significant body of
research in the scientific visualization community.

In the variety of tensor visualization techniques proposed in the lit-
erature, those that allow for an automatic characterization of impor-
tant structural properties are especially useful because they lend them-
selves to an offline post-processing of the datasets routinely acquired
through measurements or numerical simulations. In applications rang-
ing from solid mechanics and fluid dynamics to medical imaging, the
ability to convey the salient contents of tensor fields to the user without
a time-consuming search is crucial to the task of domain experts.

In recent years, several publications by Zheng and Pang have con-
tributed a theoretical and algorithmic topological framework to the
analysis and visual representation of tensor fields [42, 43]. Specifi-
cally, their work has clarified the dimensionality of so-called degen-
erate tensors, showing that the singularities of the topology typically
constitute lines in the tensor setting. Additionally, these authors have
proposed a method that automatically computes the corresponding
skeleton, yielding a synthetic and compact representation of the tensor
data. While this approach achieves very compelling results in the case
of smooth datasets exhibiting a high degree of symmetry, some authors
recently showed that the topology is a fragile structure and as such not
directly relevant to the structural analysis of noisy measurement data
like Diffusion Tensor MRI (DTI) [38].

These observations provide the general context and the motiva-
tion of the work presented in this paper. We describe a methodology
grounded on objective principles that inherits the virtue of automatic
structural extraction and abstract representation of the topological ap-
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proach while addressing its practical shortcomings in applications con-
fronted to noisy data. In particular, we show that the singularities of
tensor topology constitute a special case of a general formalism based
on the notion of crease lines of tensor invariants. An important benefit
of this reformulation is that previous work on the extraction of crease
manifolds in image processing and computer vision can be leveraged
to facilitate the computation of the corresponding features.

More precisely, we explain in the following how a quantity present
in the continuum mechanics literature called mode exactly character-
izes the singular behavior of tensor fields. Hence, if topology is the fo-
cus of the data analysis problem, the ridge and valley lines of mode can
be extracted from tensor fields using crease line extraction schemes to
yield the desired degenerate lines. More importantly, considering ten-
sor topology from this perspective suggests that the crease lines of
other tensor invariants can be substituted to mode in the same versa-
tile framework to yield an insightful picture of the important structural
properties present in the data. One significant example that we con-
sider in the following concerns the fractional anisotropy (FA) com-
monly used in the analysis of DTI data. Our results show that the
ridge lines of FA capture certain important white matter tracts. An-
other important contribution of this paper, which provides the algo-
rithmic foundation of our crease-based approach, is a robust and ac-
curate method for the extraction of these feature lines from nonlinear
quantities. Indeed, measures like mode and FA are nonlinear invari-
ants whose computation from the tensor coefficients requires caution.
Since the definition of ridge and valley lines involves the first and
second-order derivatives of the considered scalar measure, our im-
plementation uses smooth reconstruction kernels in the computation
of tensor invariants. Additionally, we combine these kernels with an
adaptive scheme that automatically adjusts the resolution of the crease
line extraction to the spatial variations of the invariant. As a result
our method permits the application of existing crease line extraction
schemes to the structural analysis of tensor fields. Our new frame-
work is algorithmically simpler and also theoretically more general,
since it allows for the definition of structural saliency in terms of sev-
eral invariants that can be naturally adapted to the focus of a particular
application.

The remainder of this paper is organized as follows. Related work,
with emphasis on topological methods for tensor fields and crease
manifolds in image data is discussed in Section 2. Our presentation
proceeds by reviewing fundamental theoretical notions relevant to this
work in Section 3. Implementation considerations, centered around
the specific challenges posed by the nonlinearity of tensor invariants
and by their smooth reconstruction, are detailed in Section 4. Results



are proposed in Section 5 for a synthetic dataset of a stress tensor field
on one hand and for a DTI dataset of the brain white matter on the
other hand. We conclude by discussing our findings and mentioning
interesting avenues to extend this work in Section 6.

2 RELATED WORK

The research presented in this paper is closely related to previous work
on tensor field topology visualization and crease detection in image
data.

2.1 Topological Methods

The topological framework was first applied to the visualization of
second-order tensor field by Delmarcelle and Hesselink [6]. Lever-
aging ideas introduced previously for the topology-based visualiza-
tion of vector fields [16, 13], these authors proposed to display a pla-
nar tensor field through the topological structure of its two orthogonal
eigenvector fields. As discussed in their work, the lack of orientation
of eigenvector fields leads to singularities that are not seen in regular
vector fields. Those degenerate points correspond namely to locations
where the tensor field becomes isotropic, i.e. where both eigenvalues
are equal and the eigenvectors are undefined. Yet, this seminal work
shows that a similar synthetic representation is obtained in the tensor
setting through topological analysis: degenerate points are connected
in graph structure through curves called separatrices that are every-
where tangent to an eigenvector field.

The three-dimensional case was first considered in a subsequent pa-
per by Hesselink et al. [17]. Interestingly, their discussion was pri-
marily focused on the types of degenerate points that can occur in this
setting. As such it did not explicitly mention that the most typical
singularities in 3D are lines and not isolated points. In fact, this ba-
sic property was first pointed out in the work of Zheng and Pang [42]
who also proposed the first algorithm for the extraction of these line
features. In a nutshell, their method consists in computing the inter-
section of these lines with the faces of a voxel grid, by solving a set
of 7 cubic equations. This method was later improved by allowing
for the continuous tracking of intersection points across the voxel in-
terior [43]. Additionally, a geometric formulation was proposed as an
alternative to the system of equations [43]. Most recently, Schultz et
al. discussed three-dimensional tensor field topology in the context
of DT-MRI data [38]. Following a systematic approach, their work
demonstrates the shortcomings of this mathematical framework in the
structural analysis of the typically noisy images acquired in practice.
As an alternative, they proposed an approach where structure is de-
fined with respect to a stochastic assessment of the connectivity along
integral curves.

2.2 Crease Features in Image Data

The detection of creases, in other words ridges and valleys, in scalar
images is a topic of traditional interest in a variety of disciplines, most
prominently in image processing and computer vision [22]. Among
the multiple definitions proposed in the literature over the last cen-
tury [5, 15, 25], the one introduced by Eberly et al. is widely used in
practice [7]. In essence, this definition generalizes the intuitive height-
based definition of ridges and valleys [5] to d-dimensional manifolds
embedded in n-dimensional image space [9].

From an algorithmic standpoint, several methods have been pro-
posed that permit the extraction of these manifolds from numerical
data. Many of them apply a principle similar to Marching Cubes [23],
effectively interpreting creases as 0-level sets of the dot product be-
tween the gradient of the considered scalar image and one or several
eigenvectors of its hessian matrix. The lack of intrinsic orientation of
those eigenvectors requires the use of heuristics to provide them with
an arbitrary but locally consistent orientation. Some authors match
sets of eigenvectors across the faces of a voxel [28, 12] while others
determine a local reference by computing the average orientation of
the eigenvector field over a face [39, 11]. A scale-space approach is
discussed in [12]. Peikert and Roth introduced the notion of Parallel
Vector Operator [32] as a computation primitive in flow visualization
and they showed that it could be used to find the intersection of ridge

and valley lines with the faces of a computational mesh [34]. Compu-
tationally, the method can be implemented in a variety of ways, includ-
ing isocontour intersection, iterative numerical search, and through the
solution of an eigensystem.

It is interesting to observe that several applications of this general
methodology to Scientific Visualization problems have been presented
in recent years. Sahner et al. extract a skeleton of vortices in three-
dimensional flows as valley lines of a galilean invariant called λ2 [36].
Their algorithm combines ideas developed by Eberly with a Feature
Flow Field approach [40]. In a work most closely related to ours,
Kindlmann et al. extract ridge and valley surfaces of the Fractional
Anisotropy (FA) in DTI volumes using a modified version of Marching
Cubes. In particular, their scheme uses smooth reconstruction kernels
and an orientation tracking scheme along edges to assign a coherent
orientation to an eigenvector field on a voxel face. Most recently, Sadlo
and Peikert applied the scheme proposed by Furst and Pizer [11] to
extract Lagrangian Coherent Structures from transient flows as ridge
and valley surfaces of a scalar measure of particle coherence [35].

3 THEORETICAL BACKGROUND

We start our presentation of the theory by summarizing basic defini-
tions of tensor topology, which we use to put our work in the perspec-
tive of existing techniques. We proceed by discussing the notion of
tensor invariants and finally describe how a geometric structure can be
derived from those invariants in a practical setting.

3.1 Tensor Field Topology

It is well known that any three-dimensional second-order symmetric
tensor (simply called tensor in the following) is equivalently repre-
sented by three real eigenvalues and an associated set of three mutu-
ally orthogonal eigenvectors. For a tensor field, the ordering of the
three eigenvalues λ1 ≥ λ2 ≥ λ3 therefore defines three (so-called ma-
jor, medium, and minor) eigenvector fields. In each eigenvector field,
curves can be constructed that are everywhere tangent to the field.
These curves are generally referred to as hyperstreamlines in the vi-
sualization literature [6].

This basic setting allows us to define the topology of a tensor field
in terms of the connectivity established along hyperstreamlines. In
other words, topology segments the domain into regions where hyper-
streamlines share the same end locations. This formalism is directly
related to the topological framework used to study vector fields, where
it characterizes regions of similar asymptotic behavior of the corre-
sponding flow [37]. In the tensor setting, singularities of the topol-
ogy corresponds to locations where the directional information of an
eigenvector field is degenerate, which occurs when two or more eigen-
values are equal. It follows that three degenerate configurations are
possible in the three-dimensional case, namely λ1 = λ2 > λ3 (some-
times called planar anisotropy), λ1 > λ2 = λ3 (referred to as cylindri-
cal anisotropy), and λ1 = λ2 = λ3 (spherical isotropy). While the latter
case is in fact numerically instable and typically absent from practical
datasets, the first two degeneracies are stable features of the tensor
topology. In their recent work Zheng and Pang have shown that these
features are in general lines [42, 43], clarifying the picture first offered
by Hesselink et al. in their seminal work on 3D tensor topology [17].

From a visualization standpoint, the method proposed by Zheng
and Pang characterizes this one-dimensional skeleton as 0-isolines of
the tensor discriminant, which is a polynomial invariant defined as
D3 = (λ1 −λ2)

2(λ2 −λ3)
2(λ3 −λ1)

2. It is straightforward to see that
this non-negative quantity is 0 if and only if two or more eigenvalues
are equal. While this property implies that the degenerate lines are
in fact valley lines of the discriminant D3 (see discussion below), the
algorithm introduced in [42] extracts these lines through a different
approach that is quite involved. Specifically, it requires to simultane-
ously find the roots of 7 constraint functions [42]. These functions
correspond to a reformulation of a polynomial minimization problem
of degree 6 into a 7D cubic root finding problem that can be solved it-
eratively on the faces of the 3D grid using a least squares formulation
of the Newton-Raphson method [33]. Despite the apparent complexity
of this formulation, the authors reported the fast convergence of their



method on the voxel faces of synthetic and simulation datasets [42].
In a subsequent paper, Zheng et al. introduced an alternative solu-
tion based on the representation of a tensor as the sum of an isotropic
(spherical) component and a so-called linear component [43]. In this
case, the extraction of degenerate points on voxel faces is based on
an iterative numerical search that requires the inversion of 5x5 ma-
trix at each iteration. Additionally, the efficiency of the initial method
was improved by tracking intersections points along a degenerate line,
based on the computation of its local tangent [43].

Beside its relative computational complexity, another drawback of
the topological approach lies in its lack of robustness. Indeed, the
structures identified by a topological analysis were shown to be very
sensitive to noise and therefore essentially meaningless in the context
of Diffusion Tensor Imaging (DTI), where a low signal-to-noise ratio
is typical in clinical practice [38]. This result echoes our observation
that alternative structure definitions are needed to address the visual
analysis needs of a variety of problems. We illustrate this point with
our results on FA in DTI in Section 5.

3.2 Tensor Invariants

Invariants of second-order three-dimensional tensors can be intuitively
understood as measurements of tensor shape, which is independent of
tensor orientation. Invariants can be functionally defined in terms of
the tensor eigenvalues, or as functions of the coefficients of the matrix
representation of a tensor (in, for example, an orthonormal frame). Our
implementations use the latter approach to avoid the computational
expense of eigenvalue determination, and to facilitate the computation
of the spatial derivatives (gradient and Hessian) of invariants, although
some observations about the properties of invariants can be made more
directly in terms of eigenvalues.

For tensor field topology, the invariant most connected to lines of
degeneracy (where two eigenvalues are equal) is mode, which was de-
scribed in continuum mechanics by Criscione et al. [4] and in diffusion
tensor imaging by Ennis and Kindlmann [10]. The mode of tensor D
is essentially the skewness of the set of three eigenvalues λ1 ≥ λ2 ≥ λ3
of D

mode(D) =
√

2 skewness(λ1,λ2,λ3) =
√

2
µ3

√
µ2

3
(1)

µ1 = ∑
i

λi/3 (2)

µ2 = ∑
i

(λi −µ1)
2/3 (3)

µ3 = ∑
i

(λi −µ1)
3/3. (4)

As can be easily verified, mode is +1 when λ1 > λ2 = λ3 and mode
is −1 when λ1 = λ2 > λ3. Also, the skewness of any three numbers is

bounded to [−1/
√

2,1/
√

2]. Thus, equality of any two tensor eigen-
values implies that mode is at an extremum (+1 or −1). Our imple-
mentation uses an equivalent definition of mode [10] in terms of the

determinant det(·), norm | · |, and trace tr(·) of the deviatoric [3] D̃ of
tensor D

mode(D) = 3
√

6det

(
D̃

|D̃|

)

(5)

D̃ = D− tr(D)I/3 (6)

|D̃| =
√

tr(D̃D̃T ). (7)

where I is the identity tensor. We find this direct connection between
topological degeneracy and a well understood tensor invariant like
mode to be intuitive and as such very appealing.

One way to appreciate the natural relationship between the extrema
of tensor mode, and the equality of two eigenvalues, is to inspect the
formulae for the solution of the sorted eigenvalues λi in terms of their

µ1 λ1λ2λ3

√
2µ2

Θ

Θ = π
3 Θ = π

4 Θ = π
6 Θ = π

12 Θ = 0

m = −1 m = − 1√
2

m = 0 m = 1√
2

m = 1

Fig. 1. The eigenvalue wheel provides geometric intuition for why two
tensor eigenvalues λi are equal when tensor mode = m is at extremal
values ±1, as governed by mode = m = cos(3Θ). The glyphs illustrate
tensors with eigenvalues determined by the wheel.

central moments µi:

λ1 = µ1 +
√

2µ2 cos(Θ)
λ2 = µ1 +

√
2µ2 cos(Θ−2π/3)

λ3 = µ1 +
√

2µ2 cos(Θ+2π/3)
(8)

where Θ = 1
3 cos−1

(√
2µ3√
µ2

3

)
. This can be derived from the solution

of the cubic characteristic equation of the tensor, and from solutions
for µi in terms of the principal invariants Ji, as described in [21]. We
illustrate the structure of Eq. 8 with the eigenvalue wheel in Fig. 1,
previously presented by Nickalls [29]. The key insight is that while the
mean (µ1) and variance (µ2) determine the position and radius of the

wheel, respectively, the mode
√

2
µ3√
µ2

3 determines its angular position,

which in turn determines the distribution of λi. Two eigenvalues can
be equal only at the extreme angles of the wheel, mode = ±1. In
that regard, it is interesting to note that the discriminant used in the
method by Zheng and Pang [42] is related to mode through following
expression:

D3 =
27

2
µ3

2 (1−mode(D)2), (9)

which can be derived from Equations 8 and from the definition of the
discriminant. It can easily be seen that both extremal values of mode
correspond to a 0 value of the discriminant, which provides an explicit
link between the two methods.

Despite the theoretical interest of mode, the tensor invariant most
commonly used in applications of diffusion tensor imaging is frac-
tional anisotropy or FA. FA quantifies the extent to which diffusivity
is directionally dependent [2]:

FA =

√
3

2

|D̃|
|D|

. (10)

3.3 Ridge and Valley Manifolds

The ridges and valleys (collectively, creases) of a scalar field f were
defined by Eberly et al. [9] in terms of the gradient g = ∇ f and Hessian
H of the field. Creases are essentially points where the f is at a local



extremum, when constrained to the line or plane defined by one or
two eigenvectors of the Hessian. A function is at extrema where its
gradient is orthogonal to the constraint surface [24], thus ridges and
valleys are where the gradient g is orthogonal to one or two of the
unit-length eigenvectors {e1,e2,e3} (with corresponding eigenvalues
λ1 ≥ λ2 ≥ λ3) of the Hessian H [20]:

Ridge Line
g · e2 = g · e3 = 0

λ3,λ2 < 0

Valley Line
g · e1 = g · e2 = 0

λ1,λ2 > 0

To filter out insignificant features, the crease strength is assessed by
the magnitude of the eigenvalues that are required to be negative or
positive for ridges and valleys, respectively [9]. Crease line strength is
measured by −λ2 (for ridges) and λ2 (for valleys).

The extraction of crease features of scalar-valued invariants in ten-
sor fields is complicated by the non-linearity of the invariants (e.g.,
FA(A + B) $= FA(A) + FA(B)). Because differentiation (which is a
linear operation) and invariant computation do not commute, one can-
not pre-compute the invariants on the regular grid of discrete tensor
samples, and then extract crease features. Our experience has been
that this has been especially true for mode, which can vary quickly
within a single voxel. Thus, an important aspect of our approach is
analytically computing the spatial derivatives of invariants. We do this
by evaluating the chain rule for the gradient of invariant J in tensor
field D(x):

∇J =
dJ

dx
=

dJ

dD

dD

dx
. (11)

The spatial gradient dD
dx of D is a third-order tensor, which is numer-

ically formed by replacing each coefficient Di j (in the matrix repre-
sentation of D) by its gradient ∇Di j . The gradient of J with respect
to D is a second-order tensor (like D itself) can be built up formu-

laically with the rules of tensor analysis [18]. For example,
d tr(D)

dD = I,
d |D|
dD = D/|D|, and

d det(D)
dD = det(D)D−1, which are sufficient to de-

rive tensor-valued gradients of FA and mode [10]:

d FA(D)

dD
=

√
3

2

(
θ(D)

|D|
−

|D̃|D
|D|3

)

(12)

d mode(D)

dD
=

3
√

6θ(D)2 −3mode(D)θ(D)−
√

6I

|D̃|
(13)

θ(D) = D̃/|D̃|. (14)

The product dJ
dD

dD
dx in (11) is then computed with tensor contrac-

tion [18].

3.4 Smooth Tensor Field Reconstruction

Following previous work in crease extraction in tensor field [20], we
apply a convolution-based method of reconstructing a smooth tensor
field described, similar to previous work [1, 31]. However, as a con-
sequence of our algorithmic reliance on the locally-linear property of
not just the gradient, but also the Hessian eigenvectors, we have found
it useful to have C3-smooth reconstructions, as opposed to the merely
C2 smoothness of cubic B-spline reconstructions. Piecewise polyno-
mial reconstruction kernels of tunable smoothness and accuracy have
been studied extensively by Möller et al., and we have selected the ap-
proximating C3 2nd-order accurate filter, which is piece-wise quintic
kernel with 4-sample support [26]. From this kernel q(x) we define a
separable three-dimensional reconstruction kernel Q(x,y,z)

Q(x,y,z) = q(x)q(y)q(z) (15)

q(x) =






0 |x|>2

0.1x5 −0.75x4 +2x3 −2x2 +0.8 1< |x|<2

−0.3x5 +0.75x4 − x2 +0.7 0< |x|<1.
(16)

The filtering and convolution is computed for each coefficient of the
matrix representation of D. We found that extracting the smooth shape

of crease features is improved by additionally smoothing the tensor
field as a pre-process, as described in Section 5. Spatial derivatives of
the convolution-based reconstructions are measured by convolving the
data with derivatives of the reconstruction kernel [14].

3.5 Crease Lines and Tensor Structure

The contents of this section can be summarized by noting that the ro-
bust and accurate numerical computations enabled by smooth recon-
struction kernels permit the application of the well established concep-
tual framework of crease line extraction to tensor invariants. Further-
more the key observation that topological singularities themselves are
ridge and valley lines of tensor mode underscores the generality of this
framework and its capacity to identify important structures in tensor
fields in different contexts. Further evidence is provided in Section 5
where we successfully extend this idea to FA in DTI data, an appli-
cation domain where topology is not suitable. The following Section
describes the algorithmic solution that allows us to turn this concept
into a practical tensor analysis tool.

4 IMPLEMENTATION

In this section we describe the algorithmic aspects involved in the ex-
traction of ridge and valley lines of a tensor invariant on a voxel grid, in
which piecewise polynomial kernels provide a smooth reconstruction
of the tensor invariant and of its spatial derivatives of first and second-
order. Our implementation builds upon a significant body of previous
work in the field of scientific visualization, image analysis, and com-
puter vision. Yet, the shortcomings of existing schemes in the specific
and challenging case of nonlinear tensor invariants led us to design a
new method. For the clarity of the discussion we present in the fol-
lowing the basic ideas underlying our method, which we contrast with
alternative techniques.

4.1 Isocontour Approach and Limitations

Following the definitions given in Section 3.3 ridge and valley
lines can be defined as the one-dimensional intersection of two 0-
isosurfaces of the scalar product between the gradient g and one eigen-
vector of the Hessian ei. With this approach, each isocontour can be
computed with commonly used isosurface schemes, e.g. Marching
Cubes [23]. Yet, this solution requires to assign a consistent orienta-
tion to the eigenvector field, which is the basic principle of the method
proposed by Furst and Pizer [11]. In particular, these authors resolve
the orientation ambiguity of eigenvector fields along edges of the voxel
by matching their value at both vertices with respect to their average
orientation,which is determined by a Principal Component Analysis
first proposed by Stetten and Pizer [39].

Unfortunately, we found this approach numerically unstable in our
experiments, a fact consistent with previous observations [34]. A sim-
ple explanation for the rather poor results that we obtained is that the
two eigenvectorfields involved in that method are quite often ambigu-
ous. This situation corresponds to the presence of semi-umbilics –
where two eigenvalues of the Hessian are equal – and indicates a local
cylindrical symmetry of the scalar measure. Eberly provides a thor-
ough analysis of this issue [8]. However the method that he proposes
to alleviate this problem requires the computation of the third-order
derivative of the field (the derivative of the Hessian) to define a ridge
flow. This vector field is then used in an iterative search to converge
towards a crease point on a voxel face starting from a nearby location.
In contrast, we have chosen to avoid the complexity of a third-order
derivation of our reconstruction kernel in our implementation. A ma-
jor motivation for doing so was the significant difficulty involved in
deriving analytical expression of the third-order derivative of FA or
mode in terms of the coefficients of the tensor and their spatial deriva-
tives. We describe in the following our method, in which an efficient
and robust adaptive strategy removes the need for third-order deriva-
tion.

4.2 Parallel Vector Operator Method

As mentioned in Section 2, the Parallel Vector Operator (PVO) [32]
offers an alternative to the intersection of two 0-isosurfaces to com-



pute crease points on triangular faces. Namely, the operator can be
applied to the gradient and the major (resp. minor) eigenvector of the
Hessian to yield the locations where they are aligned. In its general
form, the PVO takes two vector fields v0 and v1 as input and it deter-
mines the locations where v0 and v1 are parallel. Note that this latter
condition is equivalent to v0 × v1 = 0 or, alternatively, ∃λ ∈ IR, v0 =
λv1 or v1 = λv0. From this definition it follows that the PVO also
identifies the locations where either vector field is zero. Moreover, if
v0 and v1 are 3D vector fields whose restriction to a triangle is lin-
ear, the solution of the PVO on that triangle is obtained through an
eigensystem [34]. Indeed, by expressing both vector fields in a local
parameterization (u,v) of the triangle as vi(u,v) = Vi(u,v,1)T , where
i ∈ {0,1} and Vi is a 3×3 matrix, the PVO solution is obtained by

solving V0(u,v,1)T = λV1(u,v,1)T . If V1 is invertible, this is equiv-

alent to V−1
1 V0(u,v,1)T = λ (u,v,1)T , which is an eigensystem. If

V1 is not invertible but V0 is, the roles of both vector fields can be
swapped. If neither matrix is invertible, the system is singular and an
infinite number of solutions exist to the PVO problem [34]. Note that
an alternative computation of the PVO solution which does not assume
the linearity of the vector fields involves an iterative numerical search.
Yet, it requires the computation of the Jacobian of the vector fields,
which again in our case would necessitate the third-order derivative of
the considered tensor invariant.

In its linear formulation, the PVO can be applied to the gradient
and the major (resp. minor) eigenvector of the Hessian matrix. To do
so, the considered eigenvector field must first be oriented consistently.
Both vector fields are then linearly interpolated over a triangle, which
yields the eigensystem mentioned previously. It would therefore seem
natural to split the quadrilateral faces of a voxel grid into pairs of tri-
angles and to apply this simple method to each of them. The major
drawback of this approach, however, is its assumption of local linear-
ity of the vector fields at play. In our case, this assumption is clearly
invalid at the native resolution of the data [19].

4.3 An Adaptive Method

The solution that we propose follows naturally from the remarks made
previously. It uses the PVO method in its eigensystem formulation
but it addresses its requirement of local linearity by applying a local
refinement strategy that adjusts the resolution of the analysis to the
spatial variations of gradient and eigenvectors of the Hessian. The
different steps of our algorithm are described in the following.

4.3.1 Initial filtering

Our method first applies a simple filtering to the data, which dis-
cards the voxel faces in which either the considered invariant has non-
interesting values (values under a threshold for ridges, values over a
threshold for valleys) or its local crease strength (quantified as λ2, re-
fer to Section 3.3) has an invalid sign (positive for ridges, negative for
valleys).

4.3.2 Adaptive refinement

For each remaining voxel face, we assign a coherent orientation to
the eigenvectors defined at the four vertices using the PCA method of
Stetten [39]. Then we assess the approximation quality of a bilinear
interpolation of the gradient and oriented eigenvector fields. This is
done by comparing interpolated values with the ground truth provided
by direct smooth reconstruction from the tensor field, see Figure 3.4,
left.

This comparison is done by measuring the angle between the
smooth reconstructed vector and the bilinearly interpolated vector.
Note that the vectors are normalized before comparison. A threshold
controls the maximal admissible angular discrepancy. This threshold
can be adjusted to meet the needs of the extraction. In practice, we ini-
tially request a maximal angle of π

8 . If interpolation and reconstruction
disagree, the quadrilateral is recursively split in 4 subfaces. Observe
that the values at the resulting vertices have already been computed as
part of the approximation quality test. The subdivision stops when the
approximation quality criterion is met or a maximal depth has been
reached. In both cases, we will process the resulting sub-face without

Fig. 2. Left: Need for refinement determined by comparing bilinear
interpolant based on current resolution (gray vertices) with smooth re-
construction from tensor data at higher resolution (blue vertices). Right:
PVO is applied to both triangular halves by allowing solutions contained
in an ε-neighborhood around each triangle.

further subdivision. We used a maximum depth of 4 in all our exper-
iments, starting from the native resolution of the grid, while in most
cases only 1 or 2 subdivisions were necessary.

4.3.3 PVO method

Once both gradient and eigenvector fields have been found to be prop-
erly approximated by low-order interpolation on a given quadrilateral
face (or subface), the PVO method can be applied to the correspond-
ing pair of triangles. We note that the arbitrary and asymmetric nature
of the subdivision in triangles is not problematic in practice since we
apply an ε-tolerance to include positions lying in the direct vicinity
of their common edge (refer to Figure 2, right) and we subsequently
”uniquify” potentially redundant crease points.

4.3.4 Verification

The discrepancy between the local piecewise linear interpolation as-
sumed by the PVO and the smooth but nonlinear underlying measure
compels us to verify both the validity and the accuracy of the PVO
solutions. To do so we use the smooth reconstruction to obtain both
gradient and eigenvector at the found location. Then, we check that ei-
ther the angle between both vectors is small (as measured by 1− | g·e

||g|| |)
or that the magnitude of the gradient is converging towards zero. The
former is checked by imposing a tight error bound (0.005 in our ex-
periments). The latter point is controlled by comparing the magnitude
of the gradient at the PVO solution to the average magnitude at the
vertices of the processed triangle. If the gradient magnitude is only a
tiny fraction of the average gradient magnitude in the face, we inter-
pret it as a zero value. In practice, a threshold of 5% worked well in all
our experiments. Observe that it is important to be able to identify zero
gradient values among the solutions of the PVO in cases where the ten-
sor invariant reaches its extremum values (e.g. −1/+ 1 for mode). If
neither criteria are met by the PVO solution, an additional subdivision
is applied around the location of the PVO solution to further refine the
approximation quality of our local linearization. If the refined solution
fails both tests again, the face is discarded.

4.3.5 Connected components

The output of the procedure described above is a point cloud that is
further organized with respect to the voxels each point belongs to. We
reconstruct connected components from these points by linking pair-
wise the points found in the faces of a voxel containing exactly two
vertices. If the voxel is associated with more than two crease vertices,
we simply select the pair associated with the two highest (resp. low-
est) values for a ridge (resp. valley). Note that a more sophisticated
heuristic could be used, in which multiple crease line segments can be
identified by their pairwise signature on the voxel faces and in which
the ambiguity of the connectivity can be resolved through internal 3D
subdivision of the voxel. If only one point was found on the side faces
of a voxel, two situations are possible. Either the crease line stops
in this voxel (e.g. because the corresponding value of the invariant
becomes non-interesting) or the algorithm described above failed to



converge toward a valid crease point. We rule out false negatives by
applying our adaptive method on the 5 remaining faces of the voxel
at a finer resolution, while doubling the approximation accuracy (i.e.
dividing the allowed angle discrepancy by 2). The main benefit of
this search a posteriori is that its higher computational cost is strictly
limited to the relatively few locations where crease lines are already
known to be present. In turn, this feature allows us to work with a
rather low resolution of the grid and to apply fairly restrictive filtering
criteria in the first stage of the algorithm. Indeed, the only requirement
for a crease line to be completely identified by our algorithm is that at
least one intersected voxel face fulfills the imposed filtering criteria.
The remaining points can then be recovered iteratively.

4.3.6 Tracking

Visualization and image processing methods extracting line features
through their pointwise intersection with the faces of a mesh typically
try to use a tracking strategy to recover a full curve from a single point.
When possible, this one-dimensional marching significantly reduces
the computational complexity of the algorithm. Moreover, it permits to
disambiguate the connectivity of isolated points on voxel faces. Eberly
proposed such a method [7] that was applied recently by Sahner et
al. to extract vortex core lines [36]. This method in fact shares deep
similarities with the Feature Flow Field [40]. Translated to our setting,
however, these methods would require the computation of third-order
derivatives. In contrast, Zheng et al. proposed a method that computes
the tangent of degenerate lines in tensor fields based on the Hessian of
the tensor discriminant [43]. Therefore it necessitates only the second-
order derivatives of the tensor coefficients.

Using mode we can show a very similar result. Indeed, since the
degenerate lines of tensor field topology are ridge and valley lines of
mode associated with global extrema (+1 and −1), the gradient of
mode is uniformly zero along those lines. Moreover, since the minor
and medium (resp. medium and major) eigenvalues of the Hessian
are by definition both negative (resp. positive) along those lines, it
follows from a simple linear analysis that the tangent of the degenerate
line is provided by the major (resp. minor) eigenvector of the Hessian
of mode. Furthermore, the associated eigenvalue is zero. Practically,
we use this basic result to integrate along ridge and valley lines of
mode corresponding to degenerate lines. Starting from a voxel face,
we obtain the next intersection point by integrating along the major
(resp. minor) eigenvector of the Hessian. To prevent inaccuracies from
building up as we iteratively move across multiple voxels, we use the
points provided by integration as an approximate location of the crease
point and apply a PVO computation to a small neighborhood around
it.

5 RESULTS

5.1 Topology of Stress Tensor Fields

As a first application example of our method, we show how it can
be used to extract the degenerate lines of the tensor field topology.
Specifically, we applied our crease line extraction technique to a syn-
thetic stress tensor field corresponding to a double point load simu-
lation configuration. This tensor field is in fact very similar to the
one used by Zheng and Pang in their seminal work on the visualiza-
tion of degenerate lines [42, 43]. To generate the data, we sample
the analytic function of two single point loads [41] on a 256 x 256 x
128 regular mesh spanning a [−1,1]2x[−1,0] volume. The two single
loads are symmetrically positioned with respect to the center of the
top mesh boundary, located at (−0.5,0,0) and (0.5,0,0) respectively.
Subsequently, we extract the ridge lines of mode associated with value
+1 (corresponding to linear anisotropy, i.e. λ1 > λ2 = λ3) as well as
the valley lines of mode associated with value -1 (planar anisotropy,
λ1 = λ2 > λ3). The results are shown in Figure 3.

The structures obtained by our method are remarkably similar to
those previously reported in [42, 43]. Note that to compute the degen-
erate lines of a tensor field we only extract a subset of the crease lines
of mode, namely those corresponding to its extremal values of +1 and -
1. While other crease lines of mode will typically be present, they will
not correspond to degenerate lines and are therefore rejected by our

Fig. 3. Lines of planar and linear anisotropy of the topology extracted as
ridge (red) and valley (blue) lines of mode with value +1 and -1 respec-
tively from a synthetic shear stress tensor field induced by a symmetric
double point load configuration. The top two images show a gray scale
colormapping of mode on two orthogonal cross sections.

method. Practically, a threshold close to the desired value (+1 or -1)
can be applied to determine a small number of voxels that will be in-
vestigated. Applying our algorithm to the faces of those voxels yields
a number of crease points. In voxels where two crease points were
found, their connection provides a local approximation of a degener-
ate line. In voxels where only one point was found we simply integrate
along the major (resp. minor) eigenvector of the Hessian until we in-
tersect the next voxel face. We then iteratively inspect the neighboring
voxel that was reached. This tracking continues until either entering
a voxel that already contained a single crease point, or the integration
along the eigenvector of the Hessian of mode stops within the voxel,
indicating the presence of a spherical degenerate point.

5.2 Analysis of Brain White Matter in DT-MRI

As mentioned previously, an alternative to the topological definition
of tensor structure can be provided by the ridge and valley lines of
anisotropy measures in DT-MRI datasets. In fact, Schultz et al. re-
cently showed that topology was unable to reliably characterize struc-
tures in DTI data under the presence of noise [38]. On the other hand,
previous work on anisotropy crease extraction in DTI suggested the
value of FA ridges lines, but never demonstrated their geometric ex-
traction [20]. We demonstrate here the extraction of FA crease lines
to model certain significant white matter tracts. The rationale is that



Fig. 4. Axial view of 425 FA ridge lines (length at least 15mm) with
RGB-colored cutting plane (both semi-transparent). Thresholding fur-
ther based on average ridge line strength can reduce the set to the
strongest 62 lines (opaque) with more anatomic significance.

Fig. 5. Axial view of main FA ridge lines, with tractography (semi-
transparent). CBL, CNR: left and right cingulum bundles; FOR: fornix.

the interior points of regions that remain anisotropic even after some
smoothing must have orientational coherence, and are thus likely to
be fiber bundles. Ridge lines of FA may therefore provide a means of
capturing the skeleton of certain white matter bundles.

We extracted ridges lines of FA in a human brain DTI scan with res-
olution 1.6mm3. Fig. 4 shows the 425 extracted lines with length of at
least 15mm, which includes a number of lines of unclear significance.
Further thresholding the lines to select only those with the highest av-
erage ridge strength (as defined in Sect 3.3), reveals a smaller subset
of 62 lines that is explored in the following figures.

Figure 5 shows a similar axial view of the main FA ridge lines,
including whole-brain tractography seeded at voxels with FA above
0.72. The FA ridge lines are shown as thick white tubes amidst the
semi-transparent thin tractography paths. The left (CBL) and right
(CBR) cingulum bundles and part of the fornix (FOR) are annotated.
These are the main fiber paths that are more tube-like than sheet-like in
the brain white matter [27], so it is fitting that they can be extracted as
ridge lines of anisotropy. These paths have previously been extracted
via a more involved combination of tractography, clustering, and geo-

Fig. 6. Sagittal view of main FA ridge lines, with sagittal cutting plane
and semi-transparent tractography. Inset shows a more coronal and
superior view of the four ascending paths extracted in the midbrain.

metric processing in recent work by O’Donnell et al. [30]. The CBL
and CBR ridge lines, for example, follow the general path of the indi-
vidual tractography traces, but the ridge lines succeed in extracting the
fiber bundles as single paths through the core of the structure, rather
than as a cluster of tractography paths. Note also that the fornix, as
represented by the FA ridge lines, correctly branches into posterior
left and right tracts. All of these paths complement other white mat-
ter structures (such as the corpus callosum) that have been previously
extracted as ridge surfaces of FA [20].

Figure 6 shows a roughly sagittal view of the same ridge lines
shown in Fig. 5, along with a sagittal cutting plane through the left
cingulum bundle (CBL) and semi-transparent tractography. The ex-
tracted fornix (FOR) correctly curves inferiorly (towards the bottom of
the image) closer to the front of the brain (right side of image). Also,
both CBL and CBR extend fully inferiorly, showing the full loop of
the cingulum bundles, which is difficult to capture with conventional
tractography. Also annotated Figure 6 is the right inferior longitudi-
nal fasciculus (ILF), which unfortunately was not as cleanly captured
on the left side. The inferior cerebellar peduncles (ICP) were well
captured (right ICP shown). In the midbrain four additional pathways
were captured by FA ridge lines. These are shown in the inset of Fig. 6
with a more coronal and superior viewpoint. The extracted FA ridges
lines are mostly centered within the large blue (ascending/descending
direction) areas of the axial slice, helping identify the paths as the left
and right sides of the medial lemniscus (ML) and cortical spinal tract
(CST). While these paths can also be traced with tractography and rep-
resented in aggregate by tractograph clustering, our results suggest that
some major paths may be extracted more directly as a purely structural
property of a smooth FA signal, which we feel is simpler from both a
theoretical and algorithmic standpoint.

6 CONCLUSION

We have introduced a new versatile framework for the structural analy-
sis and the visualization of second-order symmetric tensor fields. Fol-
lowing the key observation that the degenerate lines of tensor topol-
ogy are equivalently characterized as crease and valley lines of a ten-
sor invariant called mode, we have presented an algorithmic solution
that allows for the robust and accurate extraction of crease lines of
other nonlinear invariants from practical datasets. Our implementation
leverages smooth reconstruction kernels and an adaptive refinement



strategy to address the challenge posed by this extraction computation
in noisy datasets. Our results show that degenerate lines can be identi-
fied by our method in a standard engineering benchmark dataset. They
also demonstrate that the ridge lines of FA capture important structural
properties of the white matter tracts. We find this last point especially
remarkable and we wish to further study the anatomical relevance of
this crease-based analysis in future work. Future work will also inves-
tigate the stability of the crease lines, subject to noise, to optimize the
choice of invariants and reconstruction kernels used for crease extrac-
tion.
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