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Abstract Topology was introduced in the visualization literature some 15 years ago
as a mathematical language to describe and capture the salient structures of symmet-
ric second-order tensor fields. Yet, despite significant theoretical and algorithmic
advances, this approach has failed to gain wide acceptance in visualization practice
over the last decade. In fact, the very idea of a versatile visualization methodology
for tensor fields that could transcend application domains has been virtually aban-
doned in favor of problem-specific feature definitions and visual representations. We
propose to revisit the basic idea underlying topology from a different perspective. To
do so, we introduce a Lagrangian metaphor that transposes to the structural analysis
of eigenvector fields a perspective that is commonly used in the study of fluid flows.
Indeed, one can view eigenvector fields as the local superimposition of two vector
fields, from which a bidirectional flow field can be defined. This allows us to analyze
the structure of a tensor field through the behavior of fictitious particles advected by
this flow. Specifically, we show that the separatrices of 3D tensor field topology can
in fact be captured in a fuzzy and numerically more robust setting as ridges of a
trajectory coherence measure. As a result, we propose an alternative structure char-
acterization strategy for the visual analysis of practical 3D tensor fields, which we
demonstrate on several synthetic and computational datasets.

1 Introduction and Motivation

Tensor fields are ubiquitous in the theory of continuum mechanics. They offer an
elegant mathematical language to describe the forces acting upon solids and fluids.
Their analysis is therefore needed in application disciplines ranging from structural
mechanics and fluid dynamics to geophysics, earthquake research, materials engi-
neering, and aeronautics. The theoretical and practical importance of tensor fields
has led to a dedicated research effort in the scientific visualization community aimed
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at devising analysis tools that allow scientists and engineers to make sense of the
corresponding datasets. Yet, the task is challenging owing to the size, dimensional-
ity, and many degrees of freedom of the data.

To address this difficulty, a general approach in the visualization literature con-
sists in extracting salient structures from the data in a pre-processing stage. The
information obtained through this computation is then used to facilitate the visual
inspection of large and complex datasets. Specifically, it allows subsequent data de-
pictions to focus on remarkable geometric descriptors, thus avoiding visual clutter
while improving the interactivity of the visualization. Topology in particular pro-
vides a theoretical framework within which the notions of structure and saliency
can be articulated in a principled way. Following the introduction of this formalism
in vector field visualization, topology was extended to tensor fields over 15 years
ago and a complete algorithmic framework is now available for the extraction of the
so-called topological skeleton in three-dimensional datasets [18].

One could therefore assume that a general solution has been found to the visual
analysis of 3D tensor fields. Unfortunately, a rapid glance at the recent literature
reveals unambiguously that topology has fallen short of offering a globally valid ap-
proach for this problem and it has not been adopted by visualization practitioners in
the investigation of their tensor data. The shortcomings of the topological approach
in 3D concern its significant algorithmic complexity and its lack of numerical ro-
bustness. The latter aspect is particularly problematic since it essentially disqualifies
this method from being applied to any measured or simulated numerical dataset. In-
stead, the characterization of important structures in application datasets has been
mainly driven by domain-specific feature of interest that lack generality and are typ-
ically defined in an ad-hoc manner. A prime example of this trend concerns the large
body of work dedicated to diffusion tensor imaging (DTI) data, where anatomical
structures such as fiber bundles are the natural focus of both analysis and visual
representation.

We propose in this paper to revisit the basic idea underlying topology from a dif-
ferent perspective. Specifically, we introduce a Lagrangian metaphor that transposes
to the structural analysis of eigenvector fields a mathematical theory that has re-
cently gained popularity in the fluid dynamics community. Building upon the strong
theoretical connections that exist between vector and eigenvector fields, we show
that the topology of 3D tensor fields can be characterized through extremal mani-
folds of a trajectory coherence measure obtained by processing eigenvector fields.
This approach significantly improves upon the topological method however in that
it yields a fuzzy and numerically more robust characterization that is well suited for
practical datasets. We demonstrate our technique and compare the extracted struc-
tures to topology in a benchmark analytical datasets and in a computational fluid
dynamics simulation. Our results document the potential of this general strategy for
the visual analysis of symmetric 3D tensor fields across engineering and scientific
applications.

The remainder of this paper is organized as follows. We review previous work
in tensor field visualization with an emphasis on the topological framework in Sec-
tion 2. The theoretical foundations of our approach, which span dynamical systems,



A Lagrangian Metaphor for Tensor Fields 3

differential geometry, and computer vision, are summarized in Section 3. The pro-
posed model of structure is described in Section 4 along with some algorithmic
considerations. Finally, results are shown in Section 5 and we point out promising
avenues for future research in Section 6.

2 Related Work

2.1 Topological methods

The topological framework was first applied to the visualization of second-order ten-
sor field by Delmarcelle and Hesselink [4]. Leveraging ideas introduced previously
for the topology-based visualization of vector fields [12, 9], these authors proposed
to display a planar tensor field through the topological structure of its two orthogonal
eigenvector fields. As discussed in their work, the lack of orientation of eigenvector
fields leads to singularities that are not seen in regular vector fields. Indeed, those
degenerate points correspond to locations where the tensor field becomes isotropic,
i.e. where both eigenvalues are equal and the eigenvectors are undefined. Yet, this
seminal work shows that a similar synthetic representation is obtained in the ten-
sor setting through topological analysis: degenerate points are connected in graph
structure through curves called separatrices that are everywhere tangent to an eigen-
vector field. Refer to Figure 1.

Fig. 1 Topological graph. Singularities correspond to the nodes of the graph, while separatrices
form the edges. Left: vector field topology of a turbulent flow. Right: topology of a rate of strain
symmetric tensor field.

The three-dimensional case was first considered in a subsequent paper by Hes-
selink et al. [13]. Interestingly, their discussion was primarily focused on the types
of degenerate points that can occur in this setting. As such it did not explicitly men-
tion that the most typical singularities in 3D are lines and not isolated points. In fact,
this basic property was first pointed out in the work of Zheng and Pang [34] who also
proposed the first algorithm for the extraction of these line features. In a nutshell,
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their method consists in computing the intersection of these lines with the faces of
a voxel grid, by solving a set of 7 cubic equations. This method was later improved
by allowing for the continuous tracking of intersection points across the voxel inte-
rior [35]. Additionally, a geometric formulation was proposed as an alternative to the
system of equations [35]. Most recently, Schultz et al. discussed three-dimensional
tensor field topology in the context of DT-MRI data [27]. Following a systematic ap-
proach, their work demonstrates the shortcomings of this mathematical framework
in the structural analysis of the typically noisy images acquired in practice. As an
alternative, they proposed an approach where structure is defined with respect to a
stochastic assessment of the connectivity along integral curves.

2.2 Ridges and valleys

The detection of creases, in other words ridges and valleys, in scalar images is a
topic of traditional interest in a variety of disciplines, most prominently in image
processing and computer vision [17]. Among the multiple definitions proposed in
the literature, the one introduced by Eberly et al. is widely used in practice [5]. In
essence, this definition generalizes the intuitive height-based definition of ridges and
valleys [3] to d-dimensional manifolds embedded in n-dimensional image space [6].

From an algorithmic standpoint, several methods have been proposed that per-
mit the extraction of these manifolds from numerical data. Many of them apply a
principle similar to Marching Cubes [19], effectively interpreting creases as 0-level
sets of the dot product between the gradient of the considered scalar image and
one or several eigenvectors of its hessian matrix. The lack of intrinsic orientation of
those eigenvectors requires the use of heuristics to provide them with an arbitrary
but locally consistent orientation. Some authors match sets of eigenvectors across
the faces of a voxel [21] while others determine a local reference by computing the
average orientation of the eigenvector field over a face [30]. A scale-space approach
is discussed in [8]. Peikert and Roth introduced the notion of Parallel Vector Op-
erator [22] as a computation primitive in flow visualization and they showed that
it could be used to find the intersection of ridge and valley lines with the faces of
a computational mesh [23]. Computationally, the method can be implemented in a
variety of ways, including isocontour intersection, iterative numerical search, and
through the solution of an eigensystem.

It is interesting to observe that several applications of this general methodol-
ogy to Scientific Visualization problems have been presented in recent years. Sah-
ner et al. extract a skeleton of vortices in three-dimensional flows as valley lines
of a Galilean invariant (invariant under changes of inertial reference frame) called
λ2 [25]. Their algorithm combines ideas developed by Eberly with a Feature Flow
Field approach [31]. In a work most closely related to ours, Kindlmann et al. extract
ridge and valley surfaces of the Fractional Anisotropy (FA) in DTI volumes us-
ing a modified version of Marching Cubes. In particular, their scheme uses smooth
reconstruction kernels and an orientation tracking scheme along edges to assign a
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coherent orientation to an eigenvector field on a voxel face. In addition, Sadlo and
Peikert applied the scheme proposed by Furst and Pizer [7] to extract Lagrangian
Coherent Structures from transient flows as ridge and valley surfaces of a scalar
measure of particle coherence [24].

3 Theory

We review in this section the two major models proposed to date in the visualization
literature to identify salient structures in tensor fields, namely topology and creases,
and underscore their connections. In doing so, we explicitly restrict our considera-
tions to techniques applicable to a broad range of applications and as such do not
assume a specific physical interpretation for the tensor field. We then briefly in-
troduce the notion of Lagrangian coherent structures, which has recently attracted
significant attention in the fluid dynamics community and stems from the theory of
dynamical systems. Finally, we describe how this conceptual framework can be ex-
tended to apply to tensor field, a generalization that we justify by the mathematical
link that exists between vector and line fields.

Tensor Field Topology

A three-dimensional second-order symmetric tensor (simply called tensor hereafter)
is fully represented by its three real eigenvalues (tensor shape) and an associated set
of mutually orthogonal eigenvectors (tensor orientation). For a tensor field, the or-
dering of the three eigenvalues λ1 ≥ λ2 ≥ λ3 thus defines major, medium, and minor
eigenvector fields. Because such fields carry neither norm nor intrinsic orientation,
they form line fields. In each eigenvector field, one can define curves that are every-
where tangent to the field. These curves are generally referred to as hyperstreamlines
in the visualization literature [4].

One can characterize the topology of an eigenvector field in terms of the con-
nectivity established by its hyperstreamlines. In other words, topology segments the
domain into regions where hyperstreamlines share the same end points. This for-
malism is directly related to the topological framework used to study vector fields,
where it characterizes regions of similar asymptotic behavior of the corresponding
flow [26]. Note that the three eigenvector fields associated with a tensor field are
mutually orthogonal and their topologies are closely related.

In the tensor setting, singularities of the topology corresponds to locations where
the directional information of an eigenvector field is degenerate, which occurs
when two or more eigenvalues are equal. Three degenerate configurations are pos-
sible in 3D, namely λ1 = λ2 > λ3 (planar anisotropy), λ1 > λ2 = λ3 (cylindrical
anisotropy), and λ1 = λ2 = λ3 (spherical isotropy). While the latter case is in fact
numerically instable and typically absent from practical datasets, the first two de-
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generacies are stable features of the tensor topology. In their recent work Zheng and
Pang have shown that these features are in general lines [34, 35].

A major drawback of the topological approach lies in its lack of robustness. In-
deed, the structures identified by a topological analysis are very sensitive to noise
and therefore essentially meaningless in the context of measured data such as Dif-
fusion Tensor Imaging (DTI), where low signal-to-noise are typical in clinical prac-
tice [27]. This result echoes our observation that alternative structure definitions are
needed to address the visual analysis needs of a variety of problems. We illustrate
this point with our results on FA in DTI in section 5.

Crease Manifolds in Tensor Fields

The ridges and valleys (collectively, creases) of a scalar field f can be defined in
terms of the gradient g = ∇ f and Hessian H of the field [6]. In other words, creases
are the manifolds along which f is at a local extremum, when constrained to the line
or plane defined by one or two eigenvectors of the Hessian. A function is at extrema
where its gradient is orthogonal to the constraint surface [20], thus ridges and valleys
are where the gradient g is orthogonal to one or two of the unit-length eigenvectors
{e1,e2,e3} (with corresponding eigenvalues λ1 ≥ λ2 ≥ λ3) of the Hessian H:

Surface Line

Ridge
g · e3 = 0
λ3 < 0

g · e2 = g · e3 = 0
λ3,λ2 < 0

Valley
g · e1 = 0
λ1 > 0

g · e1 = g · e2 = 0
λ1,λ2 > 0

Observe that the sign and the magnitude of the eigenvalue(s) determine the crease
strength. In particular, |λ1| (resp. |λ2|) measure the feature strength of a valley line
(resp. surface), while |λ3| (resp. |λ2|) measure the feature strength of a ridge line
(resp. surface) [6].

A link between creases and tensor fields can be established through the study of
scalar invariants. Invariants of second-order three-dimensional tensors can be intu-
itively understood as measurements of tensor shape, which is independent of tensor
orientation. As such, they are defined in terms of the tensor’s eigenvalues. In par-
ticular, an invariant called mode [2] provides a conceptual link between creases and
tensor field topology [32] while the ridge manifolds of FA have been shown to delin-
eate the one- and two-dimensional core structures of major fiber bundles in the brain
white matter, and valley surfaces of FA constitute boundaries between adjacent fiber
bundles with distinct orientations [16, 32, 28, 15].

We show in the following that creases can be applied to the direction information
of a tensor field to reveal salient manifolds that relate to the topological skeleton.
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Lagrangian Coherent Structures

As a preamble to the Lagrangian definition of structure for tensor fields that we
discuss in the next section, we briefly introduce in the following the notion of La-
grangian coherent structures in vector fields. The conceptual link between these two
structure types is established in Section 4.1 through the interpretation of an eigen-
vector field as a bidirectional flow.

A vector field v can be associated with a dynamical system through following
equations. {

ẋ(t, t0, x0) = v(t, x(t, t0, x0))
x(t0, t0, x0) = x0,

where the dot designates derivation with respect to the time variable t, x0 is the ini-
tial condition. The trajectory x(·, t0, x0) : t 7→ x(t, t0, x0) is obtained by integrating
the system. The map xt := x(t, t0, ·) is called flow map: xt(x0) corresponds to the
position reached at time t by a particle released at x0 at time t0.

The coherence of particle trajectories can be quantified through the finite-time
Lyapunov exponent (FTLE) [11]. Specifically, stable and unstable Lagrangian co-
herent structures (LCS) are characterized as ridge manifolds of the FTLE field.
With previous notation, one considers the flow map xT which maps a position x0
occupied by a particle at initial time t0 to the position reached by this particle at
time T = t0 + τ , where τ is finite. The spatial variations of this flow map around a
given position x0 are locally determined by its spatial gradient, the Jacobian matrix
Jx(t, t0,x0) := ∇x0x(t, t0,x0) at x0. This gradient can be used to determine the maxi-
mal dispersion after time τ of particles in a neighborhood of x0 at time t0 as a func-
tion of the direction dt0 along which we move away from x0: dt = Jx(t, t0,x0) dt0 .
Maximizing the norm |dt| over all possible unit directions dt0 corresponds to com-
puting the spectral norm of Jx(t, t0,x0) (i.e., the square root of the maximum eigen-
value of JT J). Therefore, maximizing the dispersion of particles around x0 at t0 over
the space of possible directions around x0 is equivalent to evaluating

στ(t0,x0) :=
√

λmax(Jx(t, t0,x0)
T Jx(t, t0,x0)). (1)

Linearization and normalization by advection time τ yields following expression for
the finite-time Lyapunov exponent:

λ (t, t0,x0) =
1
|τ| log

√
λmax( Jx(t, t0,x0)T Jx(t, t0,x0) ). (2)

This rate can be evaluated for both forward and backward advection (positive or
negative τ). Large values of λ for forward (resp. backward) advection correspond
to unstable (resp. stable) manifolds with repelling (resp. attracting) impact on nearby
particles.

It is key to note that the separatrices of the topology belong to the hyperbolic
manifolds that are characterized as LCS. Therefore the structures that are identi-
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fied in numerical datasets using the standard topological method can typically be
characterized in the LCS framework. The LCS method is also more robust to noise
and uncertainty since it defines structures as the ridge surfaces of a continuously
varying measure. Hence, the LCS approach provides a conceptual framework that
elegantly generalizes the topological method while overcoming some of its most
basic limitations in visual data analysis.

4 A Lagrangian Model of Structure in Tensor Fields

4.1 An Extension of LCS to Tensor Fields

As previously defined, LCS and FTLE are notions that pertain only to vector fields.
Yet, visualization research has successfully exploited the connections between vec-
tor and eigenvector fields. A profound mathematical link exists between vector fields
and so-called line fields (in other words a field associated each point with a line di-
rection [29]), of which eigenvector fields are a particular example. This connection
can be intuitively understood by considering the projection that associates a vector
field defined over a 2-fold covering space and a line field. Branching points in the
covering result in (topological) singularities. Refer to Figure 2.

2 Tricoche, Zheng, Pang

Definition 2. A tensor field line computed in a smooth continuous eigen-
vector field, is a curve that is everywhere tangent to the direction of the field.
By analogy with vector fields, we associate the set of all tensor field lines in
a particular eigenvector field with a mathematical flow.

Because of the very nature of eigenvectors, the tangency is expressed at each
position in the domain in terms of lines. For this reason, an eigenvector field is
essentially a line field. This implies that classical theorems ensuring existence
and uniqueness of streamlines cannot be directly applied here.

However there exists a fundamental relationship between vector and eigen-
vector fields that can be formally characterized in terms of covering space. A
rigorous introduction to this notion of algebraic topology is beyond the scope
of this presentation and we restrict ourselves to an illustration of the basic
idea. More details can be found e.g. in [6]. Consider the configuration illus-
trated in Fig. 1(a). An eigenvector field is defined over the bottom layer. This
layer is covered by two similar layers over which two normalized vector fields
are defined that point in opposite directions. A projection operator associates
every pair of opposite vectors with a single eigenvector (line) direction in the
bottom layer. Using this construct, an eigenvector field can be interpreted as
the projection of two opposite vector fields. Moreover the path lifting prop-
erty ensures that streamlines integrated over the vector fields defined in the
covering space project onto tensor field lines in the eigenvector field. This
eventually provides the theoretical framework for tensor field line integra-
tion. We mentioned previously that eigenvector fields become degenerate at

y
1

y
2

x

!

(a) 2-fold covering (b) Branched covering

Fig. 1. Covering spaces

positions where the tensor field is isotropic, that is has two equal eigenvalues.
This degeneracy corresponds to a so-called branch of the covering space. In
the case of a 2-fold covering of a two-dimensional space, this configuration
is equivalent to the complex map z !→ z2 defined over the unit ball around
zero, as shown in Fig. 1(b). In other words, a degenerate point is associated
with a single critical point at the branch point in the covering space through
the projection operator.

(a) 2-fold covering (b) Branched covering

Fig. 2 Covering spaces provide a theoretical connection in the form of a projection between a
vector field defined over a self intersecting 2-manifold embedded in a 3D ambient space and a 2D
eigenvector field.

It was shown in previous work [26, 33] that it provides a high-level theoretical
justification for the transposition of the topological (and other vector field visualiza-
tion approaches) to the study of eigenvector fields. In the light of the parallel drawn
in Section 3 between LCS and vector field topology, this fundamental connection
permits an extension of the notion of LCS to tensor fields.

To provide a more formal motivation for this generalization, it is necessary to
consider the definition of the separatrices in the topological skeleton of a tensor
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field. In the 3D case, these separatrices are two-dimensional manifolds that originate
along the 1D singularities. More specifically, these manifolds form in the vicinity
of the singularity the boundary of so-called hyperbolic sectors [33, 37]. Refer to
Figure 3 for an illustration of the possible sector types. It is the dispersion of the

Parabolic Hyperbolic EllipticalFig. 3 Sector types in the vicinity of a singularity correspond to different patterns form by integral
curves. Left: parabolic type. Center: hyperbolic type. Right: elliptic type. These patterns are the
only possible ones.

hyperstreamlines in the vicinity of separating manifolds that enables their charac-
terization as ridges of a measure similar to FTLE.

Eigenvector fields do not possess an orientation and the presence of singularities
in the topology clearly makes a globally consistent orientation of hyperstreamlines
impossible in general. However, such an orientation can be assigned locally to yield
a partial vector field and associated flow. The magnitude of this vector field is mean-
ingless and can be considered normalized. Observe that the construction we just de-
scribed is in fact the one that is implicitly taking place when hyperstreamlines are
being constructed through numerical integration: a vector field is locally fitted to
the underlying line field to advance the integration. With that setup in place, we can
now define a finite-time Lyapunov exponent computed in this locally valid vector
field. Refer to Figure 4 for an illustration of this procedure.

Separatrix Local orientation FTLE !eld

hyperbolic
sectors

Fig. 4 FTLE computed in a locally defined and normalized vector field that is everywhere tangent
with the underlying eigenvector field.

Like the standard FTLE definition, this construction yields two values σ1 and
σ2 at any domain location, corresponding to a measure of dispersion rate of the
local flow in either direction. In contrast to a real flow however, the lack of globally
consistent orientation of this piecewise defined vector fields makes it impossible to
globally distinguish between these two directions. A simple solution to this problem
however consists in selecting the maximum of both measures σmax = max(σ1,σ2),
thus effectively revealing the underlying salient hyperbolic manifolds.
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The second fundamental difference between a vector and an eigenvector field
from the point of view of this structure characterization concerns the eigenvectors’
lack of intrinsic norm. The local vector field mentioned previously can be assumed
to be normalized. This, in turn, means that the integration time τ present in the
definition of FTLE (Equation 1) amounts to a spatial length in this context. This
new meaning suggests that this parameter should in fact be considered as a scale
parameter. We discuss the practical implications of this observation in further detail
in the following sections.

4.2 Computation

The computation of LCS requires the integration of tangent curves in the considered
field from a dense set of locations distributed over the domain of definition. In the
context of tensor fields, the integration must be carried out along each eigenvector
field in both directions to allow for the determination of σmax. Practically we fol-
low the approach described by Hlawitschka et al. [14] that we summarize here for
completeness.

Bidirectional integration associates each initial location x0 with two end positions
x1 and x2. As previously pointed out, the lack of globally valid orientation of the
eigenvector field implies that the respective order of these positions is arbitrary.
Hence to compute the Jacobian of the flow map in each direction Jx(t, t0,x1,2), we
record at each point the vector chosen locally to play the role of forward direction.
This vector is then used in a subsequent step to determine what indices should be
used to compute the two Jacobian values through central differences.

The integration length (denoted t by analogy with the vector case) is a spatial
scale parameter that must be selected carefully to reveal interesting structures. Ex-
cessive values not only lead increase the complexity of the characterized structures
(by compounding the impact on multiple manifolds on individual trajectories), they
also lead to issues associated with the boundaries of the domain. Indeed, trajectories
whose requested length cannot be reached within the domain cause normalization
issues in the computation of σ1,2. Our solution to this problem consists in computing
σmax across a range of integration lengths in order to identify a posteriori the most
relevant length. These discrete length samples can also be used to form a scale space
in which a continuous analysis could be performed. Though we did not explore this
avenue depth in the present work, we illustrate in the following section the incidence
of this parameter on the resulting structures.

Once the FTLE fields have been computed, the next stage consists in extracting
the ridges that form the salient manifolds of the tensor field’s structure. We are using
to that effect the method recently proposed by Barakat and Tricoche [1], in which
the ridge extraction is formulated as a ray casting problem in a view-dependent
setting. This method offers indeed the significant benefit of running interactively
on the GPU, thus allowing us to test the implications of various parameters used to
filter the ridges.
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5 Results

To show the relationship between the separatrices of tensor field topology and the
LCS computed in eigenvector fields we first consider the double point load dataset
that has been studied in previous work [34, 35, 36, 37] since it provides a basis for
comparison. Specifically, we applied the method described by Zheng et al. [36] to
extract separating surfaces along the degenerate lines of the topology. These degen-
erate lines are shown as red curves in the images below. Unfortunately, this method
turned out to be numerically challenging in the context of this particular dataset, as
shown next.

We start by looking at the structures associated with the major eigenvector field,
see Figure 5. It can be seen that the separatrices of the topology were only incom-
pletely characterized, owing to the near degeneracy of the tensor field in the entire
region surrounding the upper part of the P-type degenerate lines. As expected, the
ridges of the FTLE field in contrast prove much more robust and properly cap-
ture the symmetric geometry of the separatrices. A close-up (Figure 5, bottom row)

Fig. 5 Comparison between the separating surfaces associated with planar type (blue) degenerate
lines and LCS computed in the major eigenvector field of the double point load dataset. Left:
Ridges of FTLE. Right: separating surfaces and their corresponding degenerate lines.

sheds some additional light on the issues associated with the topology. It can indeed
be observed that the separating surfaces are starting along inconsistent directions.
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Again, the LCS do not suffer from this shortcoming. The topology associated with
the minor eigenvector field (linear type degenerate lines) is shown in Figure 6.

Fig. 6 Separatrices of the planar-type degenerate lines of the double point load dataset extracted
as ridges of the minor eigenvector field

.

As mentioned previously, the integration length used in the construction of the
FTLE field is a degree of freedom of the analysis that can be tuned to control the ge-
ometric complexity of the structures. We document the impact of this parameter on
the resulting visualization in Figure 7 where the topology of the minor eigenvector
field can be seen increase monotonically with the integration length.

While topology has been shown in previous work [27] to yield fragile and there-
fore unreliable structures in the context of noisy numerical datasets, our proposed
approach is fundamentally more robust and enables the analysis of challenging en-
gineering datasets. To document the performance of our method in such demanding
scenarios, we considered two CFD simulations exhibiting turbulent flows in canoni-
cal configurations. The first dataset correspond to a single time step out of a transient
simulation of a flow past a protruding cone, leading to the formation of downstream
vortices. In the second dataset fast and slow fluid flow layers mix after passing a
thin plate. The shear induced by the differing velocities causes strong turbulence. In
these flow phenomena, the considered symmetric tensor field is the rate of strain,
which is known to be closely related to major features of interest such as vortices
and flow separation in fluid dynamics problems [10].

The surfaces characterized in those datasets form boundaries between regions of
different strain behaviors, whereby each region is associated with a locally uniform
pattern of a principal strain direction. The interpretation of the role of these regions
and associated boundaries in the behavior of the flow in turn depends on additional
parameters such as the relative magnitude of the eigenvalues, i.e. the tensor field
anisotropy. Note that while these quantitative considerations are basically orthogo-
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Fig. 7 Evolution of the extracted manifolds under increasing integration length in the minor eigen-
vector field of the double point load dataset.

nal to the structure of the eigenvector fields, they offer a complementary perspective
that is key to a physical analysis of the considered phenomenon.

We start by considering the simpler of the two datasets, in which a protuberant
cone causes vortex shedding. An illustration of the resulting vortices is presented in
Figure 8.

Fig. 8 Vortex shedding through a cone obstacle.
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To reveal the relationship between the salient manifolds in the tensor FTLE field
and the patterns of coherent orientation of the strain principal direction, we show in
Figure 9 color coding of the eigenvector orientation (using the standard symmetric
RGB encoding) combined with the geometry of those manifolds. It can be seen

Fig. 9 Major eigenvector of the strain tensor in shedder dataset combined with salient surfaces of
tensor FTLE.

that these surfaces (shown in a 2D slice) properly delineate regions of different
behaviors, corresponding to different colors. A 3D view of the surfaces is shown in
Figure 10.

Fig. 10 Salient structures in major eigenvector field of shedder dataset.

The plate dataset considered hereafter exhibits significantly more complicated
structures due to higher turbulence. This leads to convoluted patterns of the major
eigenvector field of the strain tensor that are visible in Figure 11. Here again the
salient surfaces obtained through Lagrangian processing successfully highlight the
boundaries of significantly different regions and their impact on the flow.

A detailed 3D view of this dataset is proposed in Figure 12. The patterns of the
flow itself (top left), as characterized through the standard LCS approach computed
in the velocity vector field at fixed time, shows the typical turbulent patterns that are
expected in this case. The major eigenvalue of the strain tensor (lower left) takes on
high values that are directly correlated with the location of these structures. Hence
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Fig. 11 Major eigenvector of the strain tensor in plate dataset and associated salient surfaces.

we use this field as a mask to spatially confine the Lagrangian computation of salient
structures. The result is shown on the right hand side in Figure 12. It can be seen
that very complicated geometric structures emerge from this analysis. Further inves-
tigation would be necessary to determine their role in the organization of the flow.
As stated previously, such a study requires to take into account the influence of the
eigenvalues and their interplay with the geometry of the eigenvector field.

major eigenvalue 
of strain tensor

instantaneous 
!ow structures

eigenvector "eld 
of strain tensor

Fig. 12 Plate dataset. The top left image shows a overview of the instantaneous flow structures
formed by the interaction of a shearing flow with a plate obstacle. The resulting turbulence induces
the effective mixing of slow and fast moving layers. The bottom left image corresponds to the
major eigenvalue of the strain tensor field. The right image shows the ridge surfaces extracted from
the FTLE field computed in the strain tensor field.

6 Conclusion and Future Work

We have presented a generalization to tensor fields of Lagrangian coherent struc-
tures, a dynamical systems’ concept applied so far to the analysis of vector fields.
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Our proposed approach is built upon a Lagrangian metaphor for eigenvector fields
that finds its theoretical justification in the connection that exists between vector
fields and line fields. After reviewing the state of the art of structure-based ten-
sor field visualization techniques, we have shown that LCS improve upon the re-
sults achieved by the topological method in a standard benchmark synthetic dataset.
More importantly, our results document the ability of a LCS-based analysis to reveal
salient structures in highly complex 3D tensor fields, such as those associated with
large-scale CFD simulations of turbulent flows. This latter aspect opens promising
avenues for future research as this new structure model appears to overcome the lim-
itations that have so far strongly restricted the relevance of the topological method
in demanding application scenarios.
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