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Fig. 1: Building Contour Completion. (i) Our approach supports pluralistic completions. (ii) User is able

to complete highly incomplete building contours in just a few iterations. (iii) We demonstrate on real-world

archaeological sites.

Abstract Image/sketch completion is a core task that

addresses the problem of completing the missing re-

gions of an image/sketch with realistic and semantically

consistent content. We address one type of completion

which is producing a tentative completion of an aerial

view of the remnants of a building structure. The infer-

ence process may start with as little as 10% of the struc-

ture and thus is fundamentally pluralistic (e.g., multiple

completions are possible). We present a novel pluralis-

tic building contour completion framework. A feature

suggestion component uses an entropy-based model to

request information from the user for the next most in-

formative location in the image. Then, an image com-

pletion component trained using self-supervision and

procedurally-generated content produces a partial or

full completion. In our synthetic and real-world exper-

iments for archaeological sites in Turkey, with up to

only 4 iterations, we complete building footprints hav-

ing only 10-15% of the ancient structure initially visible.

We also compare to various state-of-the-art methods
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and show our superior quantitative/qualitative perfor-

mance. While we show results for archaeology, we an-

ticipate our method can be used for restoring highly

incomplete historical sketches and for modern day ur-

ban reconstruction despite occlusions.

Keywords Digital Cultural Heritage · Image Process-

ing and Analysis · Machine Learning for Graphics

1 Introduction

Computer graphics is an integral part of modern-day

computational archaeology. One important task is find-

ing and modeling formerly existing building structures

from satellite, aerial, or drone imagery of historical sites.

In many cases, a major portion of a former building

has completely vanished, some parts might be covered

by sediments/vegetation, and only remnants of build-

ing walls might be nearby. Typically, archaeologists go

through a costly process, both in terms of time and ex-

pense, of uncovering or deeply analyzing a site in order

to gradually model the former structure. To ameliorate

this process, computer graphics and machine learning
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Fig. 2: Pipeline. Iterates over a Feature Suggestion Component and a Completion Component.

holds the potential to contribute to existing archaeo-

logical datasets and to enable faster modeling at the

settlement scale.

There has been some prior work that at least par-

tially addresses this goal. Within computational archae-

ology, the predominant approach is that of manual and

vision-based edge detection and then a human-assisted

inference process based on intuition. While this infer-

ence can include significant domain knowledge, it is

challenging to be able to quantitatively absorb knowl-

edge from all other similar sites in the region and use

that collective knowledge to more precisely predict where

to uncover a current site and what potential structure

the site could have been. Reducing the amount of un-

covering and deep analysis would greatly facilitate new

discoveries. In computer graphics/vision, the areas of

image completion/in-painting and sketch/contour com-

pletion are relevant. The former fills-in missing holes

with color and texture information based on the sur-

roundings or a learned pattern generator (e.g., tradi-

tional approaches [1,3,10,7], or deep learning-based meth-

ods [40,28,12,41,45,38]). Sketch/contour completion (e.g.,

[31,18,11,39]) helps complete lines in a drawing. Re-

cently sketch completion exploits deep learning to make

sketching easier (e.g., SketchGAN [21], SketchHealer

[35]). Both image completion and sketch completion

can assume a single deterministic completion or address

pluralistic completion (i.e., there is more than one way

to complete the missing data). However, our experi-

ments show that current sketch and image completion

works cannot help infer former building footprints us-

ing only the typically sparse remnants (e.g., 10% of the

building contour) nor guide the user to which part of an

image is it most beneficial to provide additional data.

Our completion task is also fundamentally pluralistic

because the scarce leftovers permit many possible com-

pleted structures. Thus, enabling a guided completion is

fundamentally necessary in order to arrive at the most

likely correct version of the former building.

Our work stems from two key observations. First,

using knowledge from images of other sites, we can

develop a self-supervised deep learning approach that

can suggest likely pluralistic completions. Second, us-

ing an entropy-based model, we can iteratively propose

suggestions of where additional features would most

benefit the image completion process. The additional

features can be obtained by an ”uncover” task in the

field or by user-input of whether a suggested feature is

present near an indicated location. Collectively, these

two observations enable a novel guided approach to pro-

duce near-perfect building contour completions start-

ing with as little as 10% ∼ 15% of the original build-

ing in only a few iterations and enable user-input to

help select/determine from the plurality of potential

completions. The ability to perform building-contour

completion for very incomplete structures in just a few

steps has the potential to reduce user/archaeological-

mapping work.

Our approach consists of three main components.

In a first component, we use a recent deep-learning

based edge detector [29] to extract the current observ-

able building contour remnants from aerial imagery.

In a second component, we use an entropy-based fea-

ture suggestion model to indicate where in the image it

would be most beneficial to perform an ”uncover op-

eration”. The uncover operation implies the user ei-

ther i) agrees that there is a remnant of the build-

ing near said location, or ii) goes to the field and un-

covers/unearths said location to determine whether a

building fragment is present or not. Our solution aims

to reduce as much as possible the number of uncover op-

erations and thus reduce user/archaeologist effort – re-

sults show that usually 0-4 such pinpointed uncover op-

erations are needed, which is significantly less than un-

covering the entire area surrounding the former build-

ing. The third component is an image completion net-

work that takes as input the initial building footprint

and any partial/fragmented uncover suggestions from
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the second component. Since the training data of real

archaeology sites is fundamentally limited, we intro-

duce a generative approach using procedural modeling

to produce synthetic data and train the completions

with self-supervision. Our approach then might iterate

a few times between the second and third components

until convergence. We compare our approach to sev-

eral recent image/sketch completion works and show

both quantitatively and qualitatively the notably supe-

rior performance of our method (e.g., our method yields

contours that are on average 15.1, 2.7, 4.1, and 3.8 times

more complete than Pix2Pix [13], GLCIC [12], PIC [45],

and SketchBERT[20]). Compared to previous work, our

proposed method not only overcomes the high spar-

sity, but also handles the large missing parts of input

structures. We have applied our system to an archaeo-

logical site (Bogsak Island in southern coastal Turkey)

and show its superior performance. We anticipate our

methodology generalizes well to other pluralistic sketch

and contour based completion goals, and hence will lead

to significant follow-on research.

Our main contributions are summarized as follows:

– we propose a novel guided pluralistic building con-

tour completion framework starting with very in-

complete building structures,

– we create a feature suggestion component which in-

corporates versatile building footprint types to sug-

gest the most beneficial pinpointed locations to per-

form uncover operations,

– we present a procedural model to generate different

incompletion levels of footprints in order to train

our self-supervised completion model and,

– we illustrate usage of our approach for both syn-

thetic and real archaeological sites.

2 Related Work

2.1 Image Completion

Filling-in missing pixels of an image is an important

computer vision task. Traditional image completion/in-

painting, such as diffusion-based methods [1,3,19] and

patch-based methods [10,7,17], assumes missing regions

share similar content to visible regions; they directly

match, copy and realign background patches to com-

plete holes. However, these approaches can only repair

small corrupted areas, and cannot generate new objects

which do not exist in the original corrupted images.

With the explosion of deep learning, Convolutional

Neural Networks (CNNs) have achieved promising re-

sults in this task. A significant advantage of these mod-

els is the ability to learn adaptive image features for dif-

ferent semantics. Initial efforts [16,30] train CNNs for

denoising and inpainting of small regions. Yang et al.

[40] also proposed a CNN based joint optimization ap-

proach of image content and texture constraints for im-

age inpainting. More recently, GAN-based approaches

(e.g., [28,12,41,45,24,42,44,38]) have emerged as a promis-

ing paradigm for image inpainting. Context Encoder

[28] extends CNN-based inpainting methods to large

holes and proposes a context encoder to learn features

by inpainting with both L2 pixel-wise reconstruction

loss and generative adversarial loss as the objective

function. Later, Iizuka et al. [12] extends the work of

[28] to handle arbitrary resolutions by using a fully con-

volutional network, and significantly improve the vi-

sual quality by employing both a global and local dis-

criminator. DeepFill [41] takes a two-step approach to

the problem of image inpainting. First, it produces a

coarse estimate of the missing region. Second, a refine-

ment network sharpens the result using an attention

mechanism by searching for the highest similarity to

the coarse estimate. Later, the same authors present

DeepFill v2 [42] to further improve performance. How-

ever, these prior works are limited to generate only one

“optimal” result, and do not have the capacity to gen-

erate a variety of meaningful results.

A different subset of works address pluralistic im-

age completion (i.e., when the incomplete image per-

mits various valid completions). To obtain a diverse set

of results for each masked input, [45,38] model the dis-

tribution of missing regions given visible partial images

either using a VAE [15] or using transformers. In both

cases, the solutions provide the ”top N” potential com-

pletions from which a user can choose one. However, no

explicit control is given on how to complete the image,

nor have the methods been applied to sketch-like im-

ages. Furthermore, almost all image completion work

requires masks (e.g., rectangular or free-form) to be

provided either in training or inferring. In our results

section, we compare to these methods and show their

limitations towards our proposed goal.

2.2 Sketch completion

Sketch and contour completion works attempt to com-

plete images containing lines/contours (e.g., black ink

on a white background). The presence of structured

content lacking color and texture introduces additional

challenges. Sasaki et al. [34] proposes a CNN-based ap-

proach to allow automatic detection and completion of

the gaps in line drawings without any mask input [34].

Later, SketchGAN [21] uses a cascade Encode-Decoder

network to complete the input sketch iteratively, and

employs an auxiliary sketch recognition task to recog-

nize the completed sketch. However, the incomplete in-
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put sketch of both works is already 60% ∼ 90% com-

plete – there are no large missing parts, and the sketch

is most likely targeted to only one complete result.

Ghosh et al. [9] propose interactive GAN-based sketch-

to-image translation to generate full images given only

sparse user strokes. However, it requires the user to

choose the target object type. More recently, Sketch-

BERT [20] and SketchHealer [35] perform the task by

considering that a sketch is stored as a sequence of

data points (e.g., vector format), rather than a photo-

realistic image of pixels. ShadowDraw [18] is an earlier

work that does not perform sketch completion per-se

but rather simultaneously shows various potential more

complete drawings to assist in drawing. The system is

trained with many sketch-line drawings from a given

set of categories. In general, these methods do not con-

trol pluralistic completions nor start with only a 10%

complete sketch. Nonetheless, in our results section we

do compare to sketch completion works.

3 Guided Pluralistic Completion

We describe the main components of our approach (Fig-

ure 2). First, we describe our initial dataset (and moti-

vating archaeological region). Second, we describe our

procedural generation method to generate data for our

self-supervised network training. Third, we describe our

entropy-based feature suggestion component. Fourth,

we describe our image completion component.

Edge Detection with U-Net

1

(a)

(b)

Fig. 3: Edge Detection. We extract visible footprints

by using the DexiNed [29] edge detection network.

3.1 Dataset

Our initial dataset is based on Bogsak Island in south-

ern coastal Turkey which is an area of heavy archae-

ological investigation containing stone structures from

the fourth to ninth century AD. It provides a prime

location for us to explore building contour completion.

Numerous similar other sites exist in the general region

of Cilicia as well as other locations across the globe.

Our investigator team includes archaeologists who have

studied the site during the last decade [REF-omitted-

for-anonymous-submission]. They are extremely excited

about being able to ”complete” the many partially pre-

served buildings in this site and then expand to other

sites in order to better understand the past settlements.

This dataset consists of aerial imagery spanning ap-

proximately 70,000 square meters at 5 cm per pixel.

In these images, we detect the building walls using the

state-of-the-art edge detection network DexiNed [29].

We crop the aerial image into a smaller size using a

256 × 256 slide window and get about 2000 images in

total. Then we manually annotated the edges of these

images and trained the model from scratch with data

augmentation techniques including random flipping, ro-

tation, and color jitter. The results are shown in Fig-

ure 3.

3.2 Procedural Generation Model

To enable our guided pluralistic building contour com-

pletion approach, we generate a large synthetic dataset

of building contours spanning the observed style of the

building structures in the general region. After inspect-

ing the subset of buildings already studied in Bogsak

(approximately 70 buildings), we classify them into three

types of buildings: single, split, and T-shape. In our

current system, we focus on building walls and leave

the treatment of windows and door details for future

work (see Section 5). The already studied buildings in-

clude archaeologist-inferred completions. As in urban

procedural modeling (e.g.,[26,23,36,37,2,32,8,25,43]),

we define each style procedurally yielding random build-

ing variations (see Figure 4). Particularly, we start with

one random corner point, and progressively add adja-

cent corners while checking the corner angles and edge

lengths during the process. We list the corresponding

procedural parameter values or ranges in Table 1.

Table 1: Procedural Parameters.

parameter value

image height 256 pixels
image width 256 pixels
padding 10 pixels
minimum edge length 100 pixels
corner angle 80 ∼ 100 degrees
wall width 8 ∼ 20 pixels

Beginning with the complete and synthetic building

contour images, we then progressively mask-out (ran-

domly picking either corners or wall edges) portions of

each building producing 7 levels/layers of incomplete-

ness, with level 7 being the most incomplete (e.g., only

6% ∼ 13% of the structure remains) (Figure 5).
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Synthetic dataset

(a)

(b)

(c)

Fig. 4: Synthetic Dataset. We show (a) single room,

(b) split room, and (c) T room footprints used for train-

ing.

Layers v3

(a)

(b)

(c)

Complete Level 1 
(84%~89%)

Level 3 
(57%~63%)

Level 5 
(29%~38%)

Level 7 
(6%~13%)

Fig. 5: Incompleteness Levels. We show different

levels of incompleteness for (a) single rooms, (b) split

rooms, and (c) T rooms. Note: Percentage represents

completion level.

3.3 Feature Suggestion Component

Given an incomplete building footprint (Figure 6a), our

feature suggestion component iteratively provides the

next best location where it would be most beneficial to

have additional data. The additional data is an user-

provided indication of the existence, or agreement, of

there being more underlying structure: the user can

”uncover” near said location ”in the field” or sketch

a small fragment of the believed building structure at,

or near, the provided location.

To determine the location (x0, y0) that maximizes

the information gain towards completion, we use a weighted

information entropy model. Let the incomplete build-

ing footprint image be I0 and the ground-truth com-

plete image be IC . For any (x, y) in the 2D image grid,

I0(x, y) = 1 if there is a building structure at (x, y);

otherwise, I0(x, y) = 0 – this is directly the output of

edge detection. Next, consider the space of all complete

buildings B. Given a complete footprint Ii ∈ B, Ii is

said to be consistent with I0 if Ii(x, y) = 1 for all (x, y)

such that I0(x, y) = 1. However, there are an infinite

number of Ii ∈ B that are consistent with I0, such as

different building types, poses, and scales, and any of

them can be a reasonable completion of I0, thus IC is

not unique and instead there are a plurality of possible

completions. Therefore, we propose to represent the un-

certainty in a probabilistic approach. Let B′ ⊆ B be the

set of possible complete buildings from I0. We represent

the uncertainty of the completion with the information

entropy given by

H(I0) =
∑
x,y

p(x, y) log p(x, y) (1)

p(x, y) =
1

|B′|
∑
Ii∈B′

Ii(x, y) (2)

which is visualized in Figure 6 (c). During each itera-

tion of the feature suggestion component, we provide

information at a position (bx, by) and the information

gain G of such input is the difference between the origi-

nal entropy and the conditional entropy after revealing

such information

G = H(I0)−H(I0 | (bx, by)) (3)

H(X | (x, y)) = p(x, y) ·H(Ii | I(x, y) = 1)

+ (1− p(x, y)) ·H(Ii | I(x, y) = 0) (4)

We compute H(X | (x, y)) for each pixel location which

yields the heatmap shown in Figure 6 (c).

Intuitively, the goal of the feature suggestion com-

ponent is to identify the next 2D location (bx, by) that

maximizes the information gain so as to more quickly

arrive at a complete footprint. The plurality of comple-

tions is addressed by the progressive identification of

each (bx, by) which gradually steers the completion pro-

cess until only a single completion is possible, at which

point the iterative suggestions are no longer needed.

A practical computational approach to the above is

to use a large sample NS of the possible complete foot-

prints of different building types, poses, and scales, as

described in Section 3.2. Given an incomplete footprint

I0, we measure the likelihood of a complete footprint Ii
being a possible completion of I0 using a masked L2

distance measure given by

d(I0, Ii) =
∑
(x,y)

∥I0(x, y)− Ii(x, y)∥22 · I0(x, y) (5)

Hence, complete footprints with a smaller masked

L2 distance are more likely to be a possible comple-

tion of I0. By averaging the top NF footprints we ob-

tain P0 (see Figure 6 (b)), where P0(x, y) approximates

the probability of IC(x, y) = 1. Therefore, at each it-

eration we search the 2D image and suggest the loca-

tion (bx, by) that maximizes the information gain for the
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subsequent completion component. Experimentally, we

found that using NS = 3000 random footprint samples

and NF = 50 top footprints yields a good trade-off be-

tween performance and accuracy, and is what we use

for our reported results. Practically, we find that the

feature suggestion component may propose feature lo-

cation close to the known structures. This is due to the

variances of the structures due to small perturbation

(rotation and translation). Therefore, we introduce a

distance field (Figure 6 (d)) to encourage the network

to explore regions with large ambiguity yet far from

known structures. The distance d at each pixel loca-

tion is given by the smallest distance between the pixel

location to any known structure.

Fig. 6: Feature Suggestion Component. (a) In-

complete footprint. (b) Average of the matched foot-

prints. (c) Heatmap showing the uncertainty. (d) Dis-

tance field. (e) Proposed feature. (f) (Partially) com-

pleted footprint after one iteration.

3.4 Completion Component

Our completion component progressively produces an

improved or completed building contour using the in-

complete building image I0 and a feature image F0

having feature information at/near the location (bx, by)

provided by the feature suggestion component. How-

ever unlike typical completion tasks, the needed com-

pletion level of our footprint images ranges from a small

missing portion to missing most of the footprint (e.g.,

94% missing in layer 7). To accommodate this level of

missing data, the design of our completion component

considered the following three aspects.

Single vs. Multiple Features. There are two fun-

damental methods for providing features (also see Sec-

tion 4.8). A single-feature method accepts an incom-

plete building footprint image (e.g., Figure 7 (b)) and

only one feature in the feature image (e.g., Figure 7 (c)).

This method is simpler in terms of training cases (the

feature image only includes one feature). But, comple-

tion error is accumulated throughout the feature sug-

gestion iterations. A multiple-feature method can avoid

error accumulation by always using the original incom-

plete image I0 and adding up all previously proposed

features Fi =
∑i−1

j=0 Fj (e.g., Figure 7 (d)). However, it

Priors

i)

ii)

(a) (b) (c) (d)
(b)(a) (c) (d)

i)

ii)

Fig. 7: Feature Suggestions. We show (a) complete

footprints, (b) incomplete footprints, (c) single feature

images, and (d) multiple-feature images. For each, i)

dot-style features and ii) line-style features are shown.

is much more difficult to train because of the exponen-

tial increase in number of training cases.

Feature Styles. We experimented with the perfor-

mance of several feature styles and converged to two

styles: dot-style and line-style (as shown in Figure 7

i) and ii)). Dot-style features represent corners in the

footprint, and the presence of a dot in the feature image

implies a missing building corner in the incomplete im-

age at the given location (bx, by). Line-style features are

more informative because they illustrate both corner

features and wall-edge features. The presence of small

line segments in the feature image implies the presence

of missing walls or corners (e.g., small L shape is for a

corner, and short straight line segments are for missing

walls.). We also experimented, for example, with using

”thick lines” to represent walls (where the thickness of

the line corresponds to observed thickness of the wall).

We found this style to under-perform line-style so we

did not pursue it any further.

Completion Level. Another design aspect is how

much to complete, during training, a footprint given a

feature image. Recall that an incomplete building frag-

ment might support a plurality of completions. The goal

is to find the balance between too aggressive comple-

tion causing ambiguity/noise/deterministic completion

and too conservative completion resulting in many it-

erations. We performed several experiments using 25%,

50% and 100% completion to determine the best level

(see Figure 8 for demonstrations and Section 4.8 for

comparisons).

After experimenting with the aforementioned de-

sign considerations, we found multiple feature, line-type

style, 50% completion to yield the best performance.

Further, combining line-type features with multiple-features

is actually equivalent to a single-feature style but at

a higher-level of completion – in other words, we are

seemingly doing multiple feature completion by think-

ing of it as a single feature completion using slightly
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Completeness

(a) (b) (c) (d)

i)

ii)

(a) (b) (c) (d) (e)

Fig. 8: Completion Levels. We show (a) incomplete

footprint, (b) feature image, (c) 25% completion level,

and (d) 50% completion level, (e) 100% completion

level.

more complete building footprints. Thus, the training

time is very tractable. This configuration is extremely

practical for our archaeology-setup because archaeolo-

gists can readily complete building footprints with only

a few iterations of additional work. In general, we found

by using our test data that 50% completion generates

the best balance between number of suggestion itera-

tions and image completion. In the results section, we

showcase the effect of the aforementioned design as-

pects.

Training:We performed self-supervised training us-

ing synthetic data for our completion network imple-

mented in PyTorch [27]. The network architecture is

mainly based on Encoder-decoder frameworks (i.e., U-

Net [33]). Theoretically, many state-of-the-art deep seg-

mentation networks (FCNs [22], DeepLab [5,4,6], etc.)

can be adapted to our task. We train the network with

175,000 images collected from 7 completion layers and

different building footprint variations (Section 3.2). Specif-

ically, we generate 5,000, 10,000, and 10,000 complete

images for single room, split room and T room accord-

ingly, and we further procedurally generate seven com-

pletion layers for each shape. We formulate the comple-
tion as a self-supervised learning problem with the in-

complete images and corresponding (improved or) com-

pleted images as training pairs and compute its loss as

the the squared L2 losses of the generated image and

its corresponding level of completed image. The weights

are trained by the Adam [14] optimizer where initial

learning rate is set to 1e-3. Our typical input image

sizes are (H,W,C) = (256, 256, 1). It is trained with

NVIDIA RTX 2080 8GB cards.

4 Experiments

4.1 Metrics

To measure the completion of a building structure, we

adopt an error metric that is robust to small rotations

and translations. As was also highlighted by Sketch-

GAN [21], the pipeline consists of multiple modules, in-

cluding the edge detection network and the completion

network, thus small rotation and translation mistakes

could aggregate and propagate to later stages despite

high footprint similarity. Hence, given a predicted com-

pletion IP and the ground-truth footprint IC , we first

apply a small Gaussian kernel to mildly blur the two

footprints. Then we optimize an affine transformation

parameterized by 2D translation and 1D rotation to

minimize the masked L1 distance. This distance metric

helps us to model footprint completion in a pixel-wise

manner but robust to small perturbations.

Fig. 9: Quantitative Analysis. We show quantitative

results on our synthetic dataset for our GPBC approach

at two different threshold values (16 and 32), GPBC

with random groundtruth corners gradually uncovered,

and naive image completion. The x-axis corresponds to

the number of steps for the iteration completion and

the y-axis shows the error (Eq. 5) between the ground

truth completion and the predicted completion. Com-

pared to the baseline shown in red, our proposed model

reduces the error faster (after step 1) and yields a final

prediction with a smaller error.

4.2 Evaluation

As a first set of experiments, we evaluate the perfor-

mance of our Guided Pluralistic Building Contour (GPBC)

completion approach for several different levels of build-

ing footprint incompleteness and for several variants of

our method. Figure 9 shows the performance of our ap-

proach using two different pixel threshold values and,

as baselines, the performance of naive iterative image

completion using a similar U-Net based deep network

trained with our image dataset and the behavior of our

method when an ”oracle” adds one randomly-selected

perfect-corner-feature during each iteration (GPBC-GT).
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We show the performance of our multiple feature,

line-type style, 50% completion approach whereby pix-

els of values less than 16 or 32 (out of 255), respectively,

are ignored (the visual results shown are white-black

inverted images for easier viewing on a white back-

ground). The main visual difference is the amount of

noise present – at a threshold of 32, very little noise

is present but some valid edge pixels are removed; a

threshold of 16 yields more complete but noisy images.

The graphs show that after 1 to 3 additional iterations,

our approach has converged to its solution. The graphs

also show that our method performs consistently bet-

ter than naive image completion and, especially for the

more incomplete layers (e.g., 5 and 7), more quickly re-

duces error as compared to the ”oracle” ground truth

line. This is because the feature-suggestion model does

a job better than random to identify beneficial feature

regions.

Fig. 10: Qualitative Analysis. We show the visual

results of our approach for different levels of initial in-

completeness and for different building types.

4.3 Robustness to Input Noises

In real-world applications, the incomplete footprints are

subject to input noises due to the noises introduced by

the edge detection model (noisy gaps) or variance of

footprint shapes (curly edges) in real archaeology sites.

We experimented on noisy inputs with curly edges and

noisy gaps and show that our model is robust to such

input noises (see Figure 12).

Fig. 11: Iterative Completion. Step-by-step results

of our proposed model and naive image completion on

a split-room building.

Fig. 12: Robustness to input noises. We show that

our model is robust to input noises, e.g., curly edges

and noisy gaps.

4.4 Iterative Completion

In order to demonstrate the progression of completion,

Figure 11 expands upon one of the footprints shown

in Figure 10 (e.g., the middle footprint at layer 5).

We show the footprint’s completion behavior in incom-

pleteness layer 1, 3, 5, and 7. As can be seen, as the

incompleteness layer increases so does the number of

iterations, requiring up to 3 iterations for convergence.

The figure also shows, for comparison, the result of it-

erative naive image completion of the same footprint

(e.g., call image completion recursively several times).
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Our approach produces the most complete footprints

especially in the upper layers.

One drawback of the iterative completion approach

is that our model cannot “correct” wrong completions.

If the network mistakenly completes some structures

that are not present in the groundtruth footprint, it

blocks the feature suggestion component from propos-

ing new features (see Figure 13). One possible solution

is to introduce a differentiable discriminator as used in

a generative adversarial network (GAN).

Fig. 13: Some failed cases. If the network mistakenly

completes some structures that are not present in the

groundtruth footprint, it blocks the feature suggestion

component from proposing new features.

Fig. 14:Real-world Sites.We use our method to com-

plete images from actual archaeological sites on Bogsak

Island.

4.5 Pluralistic Completion

One of the advantages of our proposed GPBC model is

the ability of pluralistic completion. Given one incom-

plete image, our feature suggestion component consid-

ers various possible locations for completion. As shown

in Figure 15, our model can yield a diverse range of

completions based on different feature suggestions.

Fig. 15: Pluralistic Completion. Based on different

feature suggestions, our proposed GPBC model can

yield a diverse range of completions.

4.6 Archaeological Site

In Figure 14 we use our approach to complete sev-

eral real-world sites. We show the aerial images, initial

edges, our completion result, and the ground truth com-

pletion published by expert archaeologists. Also, Fig-

ure 16 shows how a user/archaeologist can sketch a few

small features within our pipeline to create tentative

reconstructions as well.

Fig. 16: Completion With Human-drawn

Sketches. Our GPBC also accepts human-drawn

sketches as input to generate plausible complete

building footprints.
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4.7 Comparisons

Furthermore, we choose examples from Figure 10 and

compare our method (GPBC) to four recent methods

Pix2Pix [13], GLCIC [12], PIC [45], and SketchBERT

[20] (we retrain all four models using our dataset for

fairness). The implementation of SketchBERT provided

by the authors does not allow us to explicitly provide

the incomplete input, but we can make the level of in-

completion consistent with ours. As shown in Figure 17,

our method consistently achieves better performance

both qualitatively and quantitatively. Specifically, our

results are more complete and clean than others (es-

pecially in L5 and L7). We improve the L2 pixel-wise

errors significantly. The shown Layer 5 output from

our method is improved by 4.8x (i.e., 4.8 times lower

error), 1.8x, 2.8x, and 3.8x respectively as compared

to Pix2Pix, GLCIC, PIC, and SketchBERT. Further,

our layer 7 output is better by 2.1x, 1.7x, 2.2x, and

2.5x as compared to the same set of methods. For in-

stance, SketchBERT performs reasonably with single

room cases, but is much worse for split or T-room cases.

Fig. 17: Comparisons. Our model GPBC outperforms

previous state-of-the-art methods both visually and

numerically (measured by the generalized MSE intro-

duced in Section 4.1).

As mentioned previously, the incomplete inputs to

image completion models (Pix2Pix, GLCIC, PIC and

Ours) are not identical to the sketch completion mod-

els (SketchBERT), but the incomplete inputs have the

same level of incompletion. This is mainly due to the

difference between building layouts in the image format

and the vector-based sketch format. Figure 18 shows the

two different types of incomplete inputs and provides as

a more detailed comparison between SketchBERT our

proposed model.

Fig. 18: Detailed comparison between Sketch-

BERT and GPBC (ours).

4.8 Design Analysis

Our approach is the result of a variety of early experi-

ments which ultimately led to the proposed design.

– We explored the single feature vs multiple feature

methods (see Figure 19). Repetitive applications of

single feature based completion tended to propagate

errors to the final answer and thus multiple features

seems to work best.

– We experimented training with different levels of

completion (see Figure 20). Having a 25% comple-

tion provided little new content and having 100%

completion lead to improper contours, thus leaving

50% as a good compromise.

– We also investigated training with different amounts

of positional perturbations of the features (e.g., dur-

ing training, perturb the feature locations but keep

the same output). Generally, we found training with

such perturbations benefited lower-levels of incom-

pleteness but had little, or worse, effect on high-

levels of incompleteness, so we did not train with

perturbations.

– For the dot-style features, we tested several dot sizes

and Gaussian falloff rates, but the performance of

these options was similar.
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(a) (b) (c)

Fig. 19: Single vs. Multiple Features. We show

(a) incomplete footprints, (b) completion results by SF

method, (c) completion results by MF method.

(a) (b) (c) (d)

Fig. 20: Different Completion Levels. We show (a)

incomplete footprints, (b-d) completion results gener-

ated by the completion model trained under 25%, 50%

and 100% completion levels, respectively.

5 Conclusion and Future Work

We have proposed a novel guided pluralistic building

contour completion framework, which starts with as

little as 10% of a building structure and completes the

footprint within 4 or less user-guided iterations. Through

comprehensive experiments, we qualitatively/quantitatively

evaluate our method, inclusively on archaeological sites.

Also, we show our approach significantly improves the

performance as compared to various state-of-the-art meth-

ods.

However, our approach has some limitations. Cur-

rently for styles outside of our assumptions, our ap-

proach gives only its best guess. Theoretically, we could

easily extend our synthetic dataset to more shapes. Ad-

ditionally, if our feature suggestion component fails to

propose a new location, our approach stops and might

generate incomplete footprints.

As future work, we would like a learning-based fea-

ture suggestions component in order to accelerate its

performance. Second, we would like to add more details

to building footprints (e.g., doors, arches, etc.). Third,

we would like to extend to a full 3D inference. Fourth,

we would also like to apply our approach to other ar-

chaeological sites and to other domains (e.g, roads, floor

plans, etc.).
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