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Abstract
We present a step toward interactive physics-based modeling of terrains. A terrain, composed of layers of materi-
als, is edited with interactive modeling tools built upon different physics-based erosion and deposition algorithms.
First, two hydraulic erosion algorithms for running water are coupled. Areas where the motion is slow become
more eroded by the dissolution erosion, whereas in the areas with faster motion, the force-based erosion prevails.
Second, when the water under-erodes certain areas, slippage takes effect and the river banks fall into the water.
A variety of local and global editing operation is provided. The user has a great level of control over the process
and receives immediate feedback since the GPU-based erosion simulation runs at least at 20 fps on off-the-shelf
computers for scenes with grid resolution of 2048× 1024 and four layers of material. We also present a divide
and conquer approach to handle large terrain erosion, where the terrain is tiled, and each tile calculated inde-
pendently on the GPU. We show a wide variety of erosion-based modeling features such as forming rivers, drying
flooded areas, rain, interactive manipulation with rivers, spring, adding obstacles into the water, etc.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation;

1. Introduction

Even though realistic terrain modeling has been on the radar
of computer graphics for more than twenty years, it still
presents a challenge. Real terrains are formed by innumer-
able influences and modeling of all these phenomena is vir-
tually impossible. Terrains can vary broadly in their shape
and can change abruptly from place to place due to exter-
nal factors such as wind, water, temperature, and chemical
activities, all changing in time. The most important geomor-
phologic factor is certainly water, which interacts with soils
in the form of hydraulic erosion.

In this work we embrace the thesis that an efficient way of
modeling plausible terrains is by allowing the user to interac-
tively apply physically-based tools emulating the aforemen-
tioned natural phenomena, particularly the hydraulic ero-
sion. Unfortunately, interactivity of most existing physics-
based methods for erosion simulation is limited and the high
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complexity of these algorithms only allows for the simula-
tion of small-scale phenomena.

To address this problem, we have integrated, extended,
and developed physics-based erosion algorithms that are ap-
plied in an interactive way to model terrains. The user em-
ploys our erosion algorithms to change the terrain’s shape in
an intuitive way with a great control over the modeling pro-
cess. Since our implementation runs on the GPU at interac-
tive frame-rates, our work is an interactive physically-based
terrain modeling using erosion.

To support terrain modeling through erosion technologi-
cally, we combine two hydraulic erosion algorithms: one ex-
ploits forces and pressure fields for rapidly moving water in
the manner similar to [MDH07], the other builds upon the
fact that slowly moving water erodes the underlying soil by
its dissolution [Ben07]. For water and soil transportation we
use the pipe model described in [HW04,OH95] and recently
implemented on the GPU in [MFC06]. Our algorithm sim-
ulates erosion of multiple material layers and allows for the
simulation of secondary features of erosion, such as break-
ing the banks, or slippage, of material due to gravity. The
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Figure 1: Two frames from real-time simulation of erosion exposing a fossil skeleton. Falling rain erodes the upper layer and
takes out particles of sand that are deposited elsewhere.

solution is implemented fully on the GPU. To address the
limited GPU memory, we divide the terrain into tiles that
can be processed independently. In this way we can, for ex-
ample, select a river from a large terrain and apply erosion
only to the selected areas.

The results show that our interactive erosion algorithm
can be used to create plausible terrains in a controlled man-
ner, thus demonstrating the feasibility of interactive physics-
based terrain modeling with immediate feedback. Figure 1
shows an example of our results.

The technical contributions of our work are: (1) integra-
tion of three erosion algorithms, (2) their extension to a lay-
ered terrain representation, (3) adaptation of the existing al-
gorithm [Ben07] to use the pipe-model for water transporta-
tion [MDH07], (4) implementation of the algorithms on the
GPU, (4) selective erosion of sub-tiles on the GPU.

2. Related Work

Terrain modeling has been a topic of computer graph-
ics since the very beginning. First purely procedural
models were based on fractals [Lew87, Man83], multi-
fractals [EMP∗03], and hypertexture [PH89]. The main
drawback of these techniques—limited user control—has
been addressed by erosion simulation or by changing lo-
cal properties of fractal surfaces. Kelley et al. [KMN88] use
fractal interpolation to connect predefined ridges and val-
leys of a terrain. Prusinkiewicz and Hammel [PH93] use
L-systems [PL90] for adaptive subdivision that results in
a fractal mountain with a river. A method for deforming
and clipping fractal terrain to a desired shape is described
in [SS05]. A step toward interactivity of procedural models
is example-based modeling [BSS06, ZSTR07], where a ter-
rain is generated from constraints, such as a 2D sketch.

On the opposite side from the procedural methods are
interactive techniques, typically integrated into modeling
software packages or provided as stand-alone applica-
tions [DP07, Ter07].

Solutions exist for modifying terrains by physics-based
techniques. One of them was introduced in [MKM89]. Here
the soil transportation occurs by gravitational water diffu-
sion and thermal weathering. An approach for force-based
erosion of running water was described in [CMF98] and re-
cently improved in [NWD05] to work at interactive frame-
rates for small scenes. Eroded valleys were simulated by
an ad-hoc solution in [Nag97]. Hydraulic erosion is decom-
posed into a sequence of independent steps (rain, erode, de-
posit, evaporate) in [BF02]. A full 3D erosion simulation us-
ing Navier-Stokes equations [BTHB06] can simulate a wide
variety of phenomena, such as concavities or receding water-
falls, but the time complexity is very high. Landscape syn-
thesis by erosion and deposition was presented in [RPP93].
Mei et al. [MDH07] and Anh et al. [ASA07] implement real-
time hydraulic erosion on the GPU. Weathering algorithms
for general 3D shapes, rather than terrains, also exist. Dorsey
et al. [DEJP99] simulate erosion of weathered stones; Chen
et al. [CXW∗05] use γ-ton tracing to simulate rust and dust.
Recently Wojtan et al. [WCMT07] simulate corrosion and
erosion using a chemical approach.

Our solution uses shallow water simulation [MDH07] de-
scribed in more detail in Section 4. For an overview of fluid
simulation in computer graphics, we refer to [BFMF06].

3. Scene Description

Terrains can be described as regular height fields [MKM89],
a data structure resulting from remote sensing used in GIS
as Digital Elevation Models. Although efficient for erosion
simulation and rendering, height fields do not support dif-
ferent kinds of materials. Instead, our system uses layered
representation introduced in [BF01], where each layer rep-
resents a different material and the layers are summed up for
the final elevation. Such data structure can be easily created
or modified by any image editing software, and furthermore,
is suitable for GPU implementation. Figure 2 shows the in-
put images used for the scene in Figure 1. Figure 3 shows a
terrain exposing its defining layers and the effect of erosion
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Figure 2: Images of layers that form the scene in Figure 1.

that adds material only to the topmost (sediment) level. Each
layer is composed of a material with different erosion capa-
bilities, such as dissolution traits or resistance to the water
movement. Thanks to that, we can simulate a wide range of
natural phenomena like eroding stone into sand or moving
mud over a harder subsoil.

The layers can be exported as images during the simula-
tion and imported as height fields into a third-party 3D pack-
age for further modeling and rendering. Figures 6 and 9 were
rendered in Mental Ray using this approach. (Other images
were rendered on the GPU as described in Section 6.)

The erosion and deposition are simulated as material ex-
change between the topmost layers (see Figure 3).

Another part of the scene description is the water
source(s), water outlet(s), and environmental properties such

Figure 3: A scene composed of multiple layers of material
with different properties (left) is eroded. The eroded material
is always deposited as the topmost layer.

as the amount of rain and the evaporation intensity. All these
parameters can be controlled locally or globally by the user
during the simulation. The user can also add and take out ma-
terial as well as water. These interactive features are demon-
strated in the accompanying video.

4. Water Simulation

The fundamental part of our system is a simulation of mov-
ing water. Virtually any of the existing 3D fluid dynam-
ics methods [BFMF06] could be used, however, they typ-
ically provide non-interactive results [BTHB06]. Since our
focus is on large-scale erosion, a good candidate are shallow-
water models [KM90]. These were recently significantly im-
proved and used for simulation of fluids running over ter-
rains [HW04, MFC06], splashing fluids [OH95], and even
for real-time hydraulic erosion simulation [MDH07].

For the fluid simulation and erosion, we adopt the hy-
drostatic pipe-model (also called the column-based model)
[HW04, MFC06, MDH07, OH95] that discretizes the water
volume into vertical columns with constant physical proper-
ties (see Figure 4). Columns have constant area and com-
municate with their four neighbors by virtual pipes. Us-
ing the pipes they attempt to stabilize hydrostatic pressure
caused by either different levels of water in each column or
by external forces. This involves water volume exchanges
that, in effect, present themselves as a change in water level.
This approach is inherently parallelizable and, as such, well
suited for a GPU implementation [MDH07]. In the fol-
lowing text we briefly describe the pipe model; we refer
to [HW04, MFC06, MDH07, OH95] for a more detailed de-
scription.

Let us denote the offset of the coordinates between two
neighboring columns by the lower index i, j ∈ {−1,1} . The
difference of the static pressure ΔPi, j between a column
at (x,y) and its neighboring column at (x+ i,y+ j) is then

ΔPi, j(x,y) = ρg Δhi, j(x,y),

where ρ is the fluid density, g is the gravitation acceleration,
and Δhi, j(x,y) is the difference of heights between the two

Figure 4: Scene discretization for the pipe model. (Visible)
cells (x+1,y) and (x,y−1) are composed of two layers (d1
and d2) and the cell (x− 1,y) only of d1.
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neighboring columns. The height of a column is

h(x,y) = w(x,y)+∑
k

dk(x,y),

where dk are the heights of individual terrain layers and w is
the height of water in the given column.

A virtual pipe tries to stabilize pressures at both ends,
which results in an acceleration of a fluid flowing through
this pipe. The acceleration ai, j(x,y) from a column at (x,y)
to a column at (x+ i,y+ j) is then given by:

ai, j(x,y) =
ΔPi, j(x,y)

ρl
,

where l is the pipe length, which corresponds to the distance
between two columns. We set l = 1 [m] in our simulations.

The simulation of the water movement is performed
in discrete time steps Δt. Assuming constant acceleration
over Δt, we can describe the flow in a pipe as

f t+Δt
i, j (x,y) = f t

i, j(x,y)+Δt C ai, j(x,y), (1)

where C is the cross-sectional area of the pipe. In our simula-
tion this area is always constant with profile C = l2. Finally,
the new water height in each cell is:

wt+Δt(x,y) = wt(x,y)+
Δt
l2 ∑

i, j
[ f t

i, j(x− i,y− j)− f t
i, j(x,y)].

During the simulation a column can eventually end
up with a negative water volume. A GPU-oriented solu-
tion [MDH07] for this problem is to compute only flows
with the positive velocity (output flows) in every cell. Then,
we describe the total output volume of water in a given cell
for a time-step Δt as:

Vout(x,y) = Δt ∑
i, j

fi, j(x,y),

and solve the problem by scaling down the output flows of
the given cell if the total output volume is larger than the
amount of water in the column:

fi, j(x,y) =

⎧⎨
⎩

fi, j(x,y) Vout(x,y)≤ l2w(x,y)
l2w(x,y)
Vout(x,y)

fi, j(x,y) Vout(x,y) > l2w(x,y)

Boundaries are treated as free-slip which means that the
water velocity vector v is always set to zero in the direction
of the normal vector n of the boundary so that v ·n = 0. This
can be achieved by cloning values of water and terrain height
to boundary cells from their neighboring cells.

5. Erosion algorithms

The system builds on three different erosion algorithms:
force-based and dissolution-based hydraulic erosion, and di-
rect material transportation through sediment slippage.

The force-based hydraulic erosion algorithm is based on
the forces that are caused by the running water on the terrain

surface. This algorithm was first introduced by [CMF98],
then revised by [NWD05], and recently implemented on
the GPU in [MDH07]. We extend this algorithm by an un-
conditionally stable solution with the second-order accuracy
called semi-Lagrangian MacCormack method [SFK∗07].
This erosion algorithm is well-suited for the simulation of
moving water such as fast rivers or rain.

The dissolution-based hydraulic erosion algorithm is in-
spired by [Ben07]. The key observation is that when water
dissolves the bottom of a pool or a river, the motion of the
regolith in the water can be approximated as the motion of
a highly viscous fluid. This kind of hydraulic erosion simu-
lates slowly moving water volumes, has mostly smoothing
effects on the bottom of the pools, and also causes bank
erosion. We present two extensions of the previous work.
First, [Ben07] uses a different algorithm for water simula-
tion [KM90], whereas we integrate erosion with the pipe
model. Second, we introduce a GPU implementation of this
algorithm.

Thermal weathering [MKM89] is caused by thermal
shocks where some part of material is crumbled by changes
of temperature and deposited. When considering only reg-
ular height fields, this motion efficiently simulates sand set-
tling [SOH99,ON00,ON03]. We have adapted this erosion to
simulate the effect of soil slippage that smoothes the edges
of eroded parts of the terrain. The banks can collapse by a
sudden break or by a slow erosion. However, once a block
of the bank falls into the water it will be dissolved in a slow
manner and the effect of smoothing will prevail.

One of the main contributions of this paper is an integra-
tion of several erosion algorithms in a unified way on a mul-
tilayered data-structure. In the following text we describe the
individual erosion algorithms in detail.

5.1. Force-based erosion

The force-based erosion algorithm uses the forces caused
by the running water and their effect on the terrain
(see Figure 5). We have enhanced the technique de-
scribed in [MDH07] by a more accurate sediment transport
of [SFK∗07] and the support for multi-layer setting.

The key observation is that the moving mass of water
causes loosening of terrain particles into the water in the
form of sediment. Mei et al. [MDH07] define the sediment
transport capacity of the flow, Sm

k (x,y), as:

Sm
k (x,y) = ‖v(x,y)‖ Ck sinα(x,y), (2)

where Ck is the sediment capacity constant defined for each
layer k individually, α(x,y) is the tilt angle of the terrain
and v(x,y) is the water velocity. Usual values of Ck used
in our simulations are between 0.0001 for rock and 0.1 for
sand.

To obtain the velocity v(x,y), we compute the amount of
water passing through a column per unit time in a specific
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Figure 5: Force-based erosion is suitable for erosion by running water. A meander break is shown in the image sequence.

direction. For the x direction the amount of water is

Wx(x,y) =
1
2
[ f1,0(x− 1,y)− f−1,0(x,y)+

f1,0(x,y)− f−1,0(x+1,y)].

The x-component of the velocity is:

vx(x,y) = Wx(x,y) / lw̄(x,y),

where

w̄(x,y) =
1
2
[wt(x,y)+wt−Δt(x,y)]

is the average water height in the column during the last two
steps. The y-component is computed in similar way.

Once Sm
k (x,y) is established for all columns, we compare

an actual level of sediment Sa(x,y) with Sm
k (x,y). If the ac-

tual level is larger, some sediment is deposited onto the ter-
rain, otherwise some sediment is dissolved into water. The
speed of these transformations is affected by deposition and
dissolving constants [MDH07].

After the final amount of sediment in each column is cal-
culated, the sediment is transported by the water as described
by the advection equation:

∂Sa

∂t
=−(v ·∇)Sa. (3)

Unlike [MDH07], we solve this equation with a second-
order accuracy using the semi-Lagrangian MacCormack
method [SFK∗07], yielding reduced numerical diffusion of
sediment transport.

Our extension to multi-layer setup assumes that the sedi-
ment consists only of the material in the topmost layer and
that it is always deposited into the topmost layer. Therefore,
we can only check if Sa(x,y) > Sm

top(x,y) to determine de-
position or dissolution. Deposition only affects the topmost
layer, but each layer can participate in the dissolution step
since there may not be enough material in any one layer k to
fully saturate the water when Sa(x,y) < Sm

k (x,y). We solve
this problem by processing all layers in top-to-bottom or-
der and subtracting the total height of layers above layer k

from the maximum sediment transport capacity of that layer,
yielding:

Ŝm
k (x,y) = Sm

k (x,y)−
top

∑
i=k+1

di.

The dissolution is performed only when Ŝm
k (x,y) >

Sa(x,y). The whole multi-layer process for force-based ero-
sion can be summarized by the following pseudocode:

if Sa(x,y) > Sm
top(x,y) then

PerformDeposition();
else

dtop+1← 0;
for k← top to 0 do

Ŝm
k (x,y) = Sm

k (x,y)−∑top
i=k+1 di;

if Ŝm
k (x,y) > Sa(x,y) then
PerformDissolution();

else
break;

end
end

end

5.2. Dissolution-based erosion

The dissolution-based algorithm is based on an observation
that a slowly moving water penetrates the underlying soil
and creates a layer of slowly moving regolith that accumu-
lates on the bottom until it reaches an equilibrium. As long
as the layer is fed by water it remains liquid. When the water
evaporates or its level decreases, deposition occurs—the soft
layer hardens and changes back to soil.

The original algorithm of [Ben07] uses a CPU imple-
mentation of the shallow-water simulation as described
in [KM90]. We have implemented the algorithm using the
pipe-model described in Section 4 on the GPU.

Let us recall (see Figure 4) that the bottom of the column
is denoted by d(x,y), the depth of water by w(x,y) and total
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column height by h(x,y). A regolith layer on the bottom of
the water is introduced, with the thickness denoted by r(x,y).

Water penetrates the bottom and changes its upper part
into the regolith. The maximum penetration depth for a
layer k is a material constant ck. We found useful values
of 0.0001 ≤ ck ≤ 0.01 in our simulations. The smaller the
constant, the softer the erosion and the slower its progress.
We assume that the maximum level of penetration scales lin-
early with the amount of water w(x,y) up to ck. The maxi-
mum regolith thickness is then computed as:

rm
k (x,y) =

{
w(x,y) w(x,y) < ck
ck w(x,y)≥ ck

(4)

If the current regolith thickness r(x,y) exceeds the maximum
rm
k (x,y) (typically on steep slopes or because of evaporation)

the excess material is deposited into the topmost soil layer,
otherwise some material is dissolved. At any rate, current
regolith thickness is set to the maximum r(x,y)← rm

k (x,y)
and its height is updated using the shallow-water model to
establish the regolith thickness for the next time-step of the
simulation.

Multiple layers are handled in a similar manner to
the force-based erosion. We only substitute Sm

k (x,y)
with rm

k (x,y) and Sa(x,y) with r(x,y).

Figure 6 shows the effect of dissolution erosion: the
rugged terrain was smoothed out by slowly moving water
and the river bank got steeper.

5.3. Material Slippage

Once exposed by erosion or otherwise deposited, sand and
soil do not stay in the same position and eventually slip down
by gravity. However, there is an internal tension of the ma-
terial that prevents a continuous falling. This can be roughly
characterized by the so called talus angle [MKM89]. This
material property can be set as a parameter; for dry sand we
take the talus angle of 30◦.

Simulation of this kind of erosion involves comparing the
gradient at every location to the material’s talus angles. If
the talus angle is exceeded, certain amount of material is
removed to the locations below. We compute this amount
by the following formula:

Δd =
{

Δt(Δh− l tanα) Δh > l tanα
0 Δh≤ l tanα (5)

where Δh is the difference of height between two neighbor-
ing cells and α is the talus angle.

This technique has been used for sand manipula-
tion [LM93, GCD∗98, SOH99, ON00, ON03] but we are not
aware of any GPU implementation.

In a multi-layer setup, we need to consider that when the
slippage of a layer is calculated, all layers above the pro-
cessed layer are also affected. Therefore, we perform slip-
page on the layers sequentially in the bottom-to-top order.

Figure 6: Dissolution-based erosion softens the river bed
and erodes the banks (Rendered using Mental Ray.)

5.4. Material Changes

As described in Section 3, the scene is composed of multiple
layers of different materials with different erosion properties
(see in Figure 3). Erosion runs only on the exposed layer,
which can be virtually anyone, as long as there are layers
with holes above it. The topmost layer consists of light soil
or sediment.

The deposition process has two steps. The sediment de-
position into the highest layer and the sediment change into
harder material to the layer just below. When the sediment is
located without changes for a long time, it accumulates onto
the lower layer and becomes eventually part of it. As the
underlying layer can be virtually made of any material, we
define the aging coefficient as proportional to the layer hard-
ness. The implementation simply involves keeping a time
stamp for each column of the sediment that is incremented
with every simulation step. When the column is touched by
water or slippage erosion, its counter is reset. This intuitive
approach, although not geologically justified, results in visu-
ally plausible results.
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Figure 7: Terrain eroded by the three erosions algorithms and rendered on the GPU.

5.5. Integration

The above described algorithms are applied in the follow-
ing order. First the water inputs add water into the system.
It can be because of rain, user interaction, or user defined
water sources. The water simulation using the pipe model
is calculated and then the force-based and the dissolution-
based erosion steps are evaluated. Both processes involve
erosion/deposition, so as a result a terrain can exceed the
talus angle. So the last step is the sediment slippage calcula-
tion and then the results are rendered.

6. Rendering

Two methods for terrain visualization were used: real-time
rendering on the GPU for interactive feedback (Figures 1, 3,
5, 7, and 8) and off-line rendering in Mental Ray for high-
quality results (Figures 6 and 9). In the latter case, lighting
was provided by one area light source as well as using global
illumination, ambient occlusion, and caustics.

For the GPU-based rendering, we displace a predefined
vertex grid by the terrain and water height in the vertex
shader. Normals for each grid are calculated in the fragment
shader for every frame. Rendering of multiple material lay-
ers is handled by defining a thickness threshold for each ma-
terial after which a layer of that material is considered fully
opaque. If the actual layer thickness is less than the thresh-
old, a proportional fraction of the material color is added
to the final color at the given location. This process is per-
formed for all layers in the top-to-bottom order. A typical
example of the result is in Figure 7.

Water transparency is determined by the difference of
depth values of a terrain fragment and the associated water
fragment. The surface of the water reflects an environment
map with the amount of reflection determined by the Fresnel
term. To limit z-fighting between water and terrain levels,
we discard all water fragments whose distance from the ter-
rain surface is below a threshold value. We use the value
of 0.1[m]; ideally the threshold should be determined by the
terrain size and the camera settings.

7. Implementation and Results

The design of the algorithms and the simplifications made
were purposely done to facilitate a GPU implementation. All
simulation methods presented are executed entirely on the
GPU without any data transfer from GPU to CPU during the
simulation.

We use C++, OpenGL, and the NVIDIA Cg shading lan-
guage. Our examples were simulated on an AMD Athlon X2
6000+ PC with an NVIDIA GeForce 8800 GTX GPU. The
visualization was computed either on the same system with
our own rendering engine or we exported out simulation data
and rendered the images in Autodesk Maya 8.5 Mental Ray.
No geometry was further edited in order to show the exact
results of the modeling process.

In this section, we sketch our GPU implementation; an in-
depth description can be found in [ŠBK08]. The GPU imple-
mentation first defines the computational domain by render-
ing a quad with screen-space dimensions equal to the reso-
lution of the computational grid. The rasterization unit then
generates fragments, each corresponding to one column in
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Figure 8: Terrain is divided into tiles that are calculated independently and synchronized at borders.

the virtual-pipe model, and launches the fragment shaders
that perform one time-step of the simulation. Individual data
arrays, like velocity field or water height, are represented by
32-bit floating point textures. Experiments have shown that
16-bit precision may results in serious issues with water flow
computation.

Multiple material layers are handled by packing each
layer into one component of a related texture. Although more
layers can be stored in different textures, the maximum of
four layers allows for a simulation of a wide variety of phe-
nomena and was not a limitation in the production of our
examples. The layers are processed by iterating in the top-
to-bottom order. Since some results of multi-layer computa-
tions are stored in dynamically indexed arrays, the simula-
tion is currently limited to GPUs with Shader Model 4 capa-
bilities as earlier generations do not support this feature.

Boundary conditions are implemented using so called
ghost cells [Fed03] that contain a copy of their neighbors
and act as a free-slip boundary where no water can run out
of the simulation domain. However, water movement along
the border is not restricted.

Our implementation supports simulation of multiple ter-
rain grids (tiles) individually. This feature enables us to sim-
ulate non-rectangular terrains efficiently (see Figure 8 and
the accompanying video) and has the potential to be used
in multi-GPU systems. The synchronization of neighboring
tiles at their borders is performed by copying of border val-

ues before each simulation step. Tile dimensions and compu-
tational domain are extended to handle these copied values.

Figure 7 shows a fractal terrain affected by rain, where
only global user control is used. The mesh resolution was
2048 × 1024 and four layers of material were used. All
three erosion algorithms work together as they erode and
smooth out the terrain features. The user is free to control
the process, can manipulate the rain, zoom to see details,
stop/resume the erosion, and eventually save the scene for
later work. The fossil skeleton scene in Figure 1 is another
example of a rain-eroded terrain.

Figure 9 shows the effect of a local editing. A flooding
wave is manually created and the water runs down the terrain
and erodes small hills. The scene was rendered using Mental
Ray.

More results can be seen in the accompanying video that
presents interactive editing of the scene, water sources and
sinks manipulation, interactive terrain layer editing, and in-
dividual effects of all three erosion algorithms as well as the
algorithms working together. The purpose of this paper is
to show the feasibility of this modeling approach. However,
user studies are required to assess its actual usefulness.

Simulation times summarized in Table 1 shows a linear
growth of the processing time as the function of the grid res-
olution. There is a penalty for using multi-layer terrain setup
due to the use of four-component textures for all multi-layer
terrains. It is worth noting that the real-time rendering usu-
ally takes more time than the simulation of the erosion itself.

c© The Eurographics Association 2008.



O. Št’ava et al. / Interactive Terrain Modeling Using Hydraulic Erosion

Grid size ⇓ Fluid sim. [ms] Vel.-based ero. [ms] Diss.-based ero. [ms] Slippage [ms] Total [ms]

Layers ⇒ 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4
256x256 0.19 0.3 0.31 0.67 0.74 0.75 0.2 0.34 0.34 0.14 0.39 0.75 1.22 1.78 2.1
512x512 0.57 1.0 1.05 2.0 2.35 2.38 0.64 1.16 1.16 0.46 1.35 2.73 3.72 4.9 7.3

1024x1024 2.18 4.13 4.15 7.84 9.09 9.15 2.4 4.48 4.49 1.8 5.45 10.8 14.26 23.20 28.7
2048x1024 4.03 7.74 7.75 14.53 17.22 17.24 4.54 8.62 8.67 3.38 10.0 20.1 26.54 43.92 54.4

Table 1: Performance of the algorithm as a function of the number of layers and the simulation grid resolution.

Figure 9: A flooded valley. Images rendered in Mental Ray
clearly show the erosion/deposition effects.

The most limiting factor of the implementation is the
memory consumption of the GPU solver. The use of 32-bit
floating point textures limits maximum dimensions of the
simulation grid to 2048× 1024 for a four-layer scene on to-
day’s GPUs.

8. Conclusion and Future Work

We have presented a set of physically-based erosion tools
for real-time interactive terrain modeling. A terrain is repre-
sented as a layered height-field with set of intuitive erosion
related parameters that can be changed interactively. Variety
of local and global control over the modeling is provided by
editing operations, such as add spring, dry, evaporate, rain,

add obstacle of easy-to-erode material, etc. Two hydraulic
erosion algorithms for running water are coupled. Areas
where the motion is slow are eroded by the dissolution ero-
sion, whereas in the areas where water motion is faster the
force-based erosion prevails. When the water under-erodes
certain areas sediment slippage takes effect and the river
banks are eroded out. The user has a great level of control
over the terrain formation process and the GPU-based ero-
sion algorithm runs at 20 fps on off-the-shelf computers for
scenes with simulation grid resolution 2048× 1024 pixels
and four layers of material. We also present a tile-based so-
lution for large terrain erosion, where the terrain is tiled and
each tile is calculated independently on the GPU. We show a
wide variety of erosion-based modeling effect such as form-
ing rivers, drying flooded areas, rain, interactive manipula-
tion with rivers, spring, adding obstacles into the water.

Future work could address the limited grid resolution ei-
ther by running simulation for individual tiles on separate
GPUs or by using an adaptive grid such as [LKS∗05]. Fur-
thermore, a full 3D erosion simulation would greatly en-
hance terrain modeling possibilities. To that end, we are con-
sidering to couple erosion with smoothed particle hydrody-
namics. Our goal is erosion simulation that runs in real-time
and results in visually plausible terrain shapes. To this end,
the underlying models as well as the computational methods
used, although physically-based, are just approximate, and
therefore cannot be predictive of real-world situations.
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