
A Survey on Procedural Modeling for Virtual Worlds

Ruben M. Smelik1, Tim Tutenel2, Rafael Bidarra2 and Bedrich Benes3

1Modelling, Simulation & Gaming Department, TNO, The Netherlands
2Computer Graphics and Visualization Group, Delft University of Technology, The Netherlands

3Department of Computer Graphics Technology, Purdue University, USA

Abstract
Procedural modeling deals with (semi-)automatic content generation by means of a program or procedure. Among
other advantages, its data compression and the potential to generate a large variety of detailed content with reduced
human intervention, have made procedural modeling attractive for creating virtual environments increasingly used
in movies, games, and simulations.
We survey procedural methods that are useful to generate features of virtual worlds, including terrains, vegetation,
rivers, roads, buildings, and entire cities. In this survey, we focus particularly on the degree of intuitive control
and of interactivity offered by each procedural method, because these properties are instrumental for their typical
users: designers and artists. We identify the most promising research results that have been recently achieved, but
we also realize that there is far from widespread acceptance of procedural methods among non-technical, creative
professionals. We conclude by discussing some of the most important challenges of procedural modeling.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I3.5]: Computational Geometry
and Object Modelling—Geometric algorithms, languages, and systems

1. Introduction

Procedural modeling (PM) has been an active research topic
for over thirty years and it is applied to a wide variety of
areas such as modeling of textures, plants, terrain, build-
ings, urban areas, road networks, rivers, or art creation.
There is not a single definition of procedural modeling; it
encompasses a wide variety of generative techniques that
can (semi−)automatically produce a specific type of content
based on a set of input parameters. A widely accepted generic
definition is that PM provides a content by means of a proce-
dure or a program [EWM∗03]. Procedural modeling relates
to many different areas, the closest one being computational
simulation. Many procedural models are essentially gener-
ative representations either of processes inspired by nature,
such as plant development, or of man-centered processes,
such as urban simulations. PM also relates to physics-based
simulations.

One of the main advantages of PM, and probably the main
reason for its large attractiveness, is its data amplification
capabilities [Smi84]. Shortly stated: a simple set of input
parameters or a few generation rules of the procedural model
yield a wide variety of models.

Another essential property of PM is data compression: a
rather complex geometric model can be represented by a
compact procedural model and a set of parameters, while the
actual geometry is generated only when needed. This advan-
tage of PM is becoming even more relevant because of the
evolution of computer hardware, by which more functional-
ity is being shifted to the GPU’s tessellation and geometry
shader units. Instead of storing the data, one can simply run
instructions to generate it.

PM has the potential to drastically reduce the amount of
modeling effort required to create digital content. Further-
more, because its methods are often stochastic, PM can create
a variety of results from one set of input parameters; e.g., a
large number of tree models, all of the same species and age,
but each with a unique structure and shape.

However, despite promising a high productivity gain, a
compact representation, and a seemingly endless variation
in content, most current PM methods still do not offer a suit-
able alternative to manual modeling. The main reason is the
poor controllability of most procedural models. They require
users to manipulate complicated PM rules and parameters
whose effects on the output can hardly be predicted. More-

Published in COMPUTER GRAPHICS Forum.
Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


2 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

over, procedural models are often complex and the generative
process follows quite complicated paths. As a result, systems
offering PM are usually deployed in a very conservative way,
where the designers mostly reuse provided models, or ran-
domly tweak their parameters until they achieve a more or
less acceptable output.

The benefits of PM make it particularly attractive for creat-
ing virtual environments. Virtual worlds are important for
many applications, including a wide variety of (serious)
games and simulations. However, current ways of manually
creating virtual worlds are too labor-intensive and costly, as
the amount and level of detail required of their 3D content
continually increases. There is a growing consensus that gen-
erative content creation techniques can help solve this issue.

In recent years, the field of PM has been receiving increased
attention in the research community. Many new papers are
being published yearly, and we felt that a comprehensive
overview was missing. We therefore survey PM methods for
generating both natural and man-made structures that can
be found in virtual worlds. In particular, this survey has the
following goals:

• introduce the main relevant PM methods,
• classify these methods according to their underlying tech-

nique,
• provide an overview of the most recent PM advancements,
• evaluate them with the most current, relevant criteria, and
• identify open issues and promising research directions.

We intentionally limit this survey to procedural methods
in the context of features of virtual worlds. We will therefore
not consider procedural generation techniques for other types
of content, such as textures, sound effects, music, or very
specific types of game levels (e.g., dungeons for role play-
ing games or map generators for real-time strategy games).
Although procedural noise generation is an important part
of procedural modeling, it will not be considered in this sur-
vey. For a reader, as a starting point we suggest the seminal
paper [Per85b]. The book [EWM∗03] presents an overview
of existing techniques, and the recent survey [LLC∗10] de-
scribes the latest advances in procedural noise generation.
An important recent paper [GLLD12] not included in the
survey [LLC∗10] discusses Gabor noise generation.

There are many conceivable perspectives from which to
analyze PM techniques, from expressive power to output qual-
ity, from application area to degree of popularity, from type
of user interaction to computational complexity. Consistent
with the main reasons listed above for the lack of widespread
application of PM methods, and in line with the most recent
trends in PM research, we chose the following three criteria
as the preferential and most adequate lenses through which
to look at the methods we are about to survey:

1. intuitiveness and ease of use,
2. degree of user control, and
3. classifications (stochastic, artificial intelligence, simula-

tions, grammars, data-driven, and computational geome-
try) and application areas (terrain, vegetation, roads, water,
buildings, and cities).

This survey has two parts. The first part provides an
overview of existing PM methods for the generation of spe-
cific virtual world features, such as terrain (Section 2), vegeta-
tion (Section 3), water bodies (Section 4), road networks (Sec-
tion 5), urban layout (Section 6), buildings (Section 7) and
building interiors (Section 8). For each feature, an overview
will be given of its most relevant methods, however the main
focus will be on recent developments related to the feature.
The part concludes with a short discussion on a selection of
remarkable (commercially or freely) available PM systems
(Section 9). Throughout the first part, whenever possible, we
will concentrate on evaluating each method or tool based
mainly on the three criteria introduced above. The second
part (Sections 10 and 11) analyzes and discusses the state of
the art. In this discussion, we will provide a thorough classifi-
cation of all methods presented in the first part, identifying
which underlying PM techniques have been used for which
features. This, in turn, will help us identify existing open
issues, possible missing pieces, and new directions.

2. Terrain

The most common data representation of terrains is a regular
height field (a 2D grid, where the vertex value represents the
elevation at that location). Height fields, also called height
maps, are easy to implement and process; in addition, they
can be efficiently compressed and stored on GPUs. Terrain el-
evation can be generated procedurally, since mountainous ele-
vation profiles resemble shapes produced by fractals [Man82],
a topic first explored at the inception of PM research in the
1980’s. An inherent limitation of height fields is their inability
to provide overhangs and caves, so alternative techniques for
storing terrains are layered data structures [BF01], voxel data,
or 3D meshes. Gamito and Musgrave propose a terrain model
warping system that results in regular overhangs [GM01].
More recently, Peytavie et al. developed a model with differ-
ent material layers that support loose rocks, arches, overhangs
and caves [PGGM09], see Figure 1.

Early height map generation algorithms were based on
subdivision methods, by which a coarse height map is itera-
tively refined, each iteration introducing a controlled amount
of randomness to generate elevation detail. The first subdi-
vision algorithm used for terrain generation is known as the
midpoint displacement method [FFC82, Mil86] in which ev-
ery time a new point is generated, its elevation is set to the
average of its neighbors in a triangle (or a diamond) shape
plus a random offset. The offset’s range decreases at each
iteration according to a parameter that controls the roughness
of the resulting height map. Terrain generated by this method
is a fractional Brownian motion surface [PJS92].

A common way of controlling the algorithm consists of ad-
justing the number of subdivision steps and the initial offset

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 3

Figure 1: A canyon with loose rocks created by the Arches
framework [PGGM09]. Courtesy of A. Peytavie, E. Galin, S.
Merillou, and J. Grosjean.

range; increasing either of them increases the overall rough-
ness of the terrain. However, these methods provide no way
to influence where features, such as mountains or valleys,
will occur.

There are many other stochastic methods for height map
generation, mostly based on noise generators, such as Per-
lin noise [Per85a]. Scaling and summing several octaves of
noise of increasing frequency into a height map results in
natural, mountain-like structures [MKM89]. There are many
flavors of this noise, also called fractional Brownian motion
(fBm), suitable for generating particular terrain features, such
as ridges or rolling hills. Higher dimensional noise functions
allow for generation of volumetric structures such as marble,
wood, or procedural clouds. If the higher dimension is inter-
preted as time, the structures can be animated. See Ebert et
al.’s book [EWM∗03] for a review of these methods.

Similar to the mid-point displacement method, control of
such stochastic height map generation is limited to choosing
initial generation parameters. The meaning of those param-
eters can be non-intuitive, and often only a limited range of
possible values yield plausible results. Moreover, expressing
a designer’s intent in this way is almost an impossible task.
The performance of fBm noise algorithms is excellent; it is
well suited for parallel processing, as each grid point can be
computed independently of the values of neighboring points.

Terrains provided by noise generators are usually homoge-
neous and do not provide local variation of features. They can
be further adjusted and edited using common signal process-
ing filters (e.g., localized smoothing adding features by manu-
ally adjusting height values). Bruneton and Neyret enhanced
Digital Elevation Models (DEM [LZG10]) with continuous
data of roads and rivers in [BN08].

A good way to further modify the terrains is by using
physics-based algorithms that simulate erosion or weathering.
Musgrave et al. introduced thermal weathering and simple
hydraulic erosion [MKM89]. Thermal weathering diminishes
sharp changes in elevation by iteratively distributing mate-

rial from higher to lower points until the talus angle (i.e.,
maximum angle of stability for the granular material), is
reached. Hydraulic erosion was simulated using cellular au-
tomata, where the amount of water and dissolved material
that flows out to other cells is calculated based on the local
slope of the elevation profile. Their work has been extended
in many directions including corrosion [WCMT07] and full
3D hydraulic erosion [BTHB06].

As erosion is typically implemented as a global operation,
its amount of control is again limited to the initial configura-
tion of the simulation. Furthermore, while erosion adds much
to the believability of mountainous terrain, early CPU-based
implementations of erosion simulations are notoriously slow
and require hundreds to thousands of iterations for plausible
results. However, the advent of the use of GPUs paved the
way for interactive terrain modeling [ASA07, VBHv11].

While most of the above-described approaches use grid-
based techniques, the method of Krištof et al. uses smoothed
particle hydrodynamics (SPH) efficiently implemented on
the GPU to generate full 3D erosion of large-scale ter-
rains [KBKv09]. Although SPH is by its nature adaptive
because particles are presented only where the fluid is lo-
cated, the number of particles needed to achieve realistic
effects is rather high.

Some of the proposed extensions provide a way to con-
strain the generation process in a non-interactive manner
by new forms of user input. Stachniak and Stürzlinger pro-
pose a method that integrates constraints expressed as mask
images [SS05]. It employs a search algorithm that finds an
acceptable set of deformation operations to apply to a pro-
cedurally generated terrain in order to have it conform to
those constraints. However, this method is computationally
expensive.

Zhou et al. [ZSTR07] described a technique that generates
a height map based on an example and a user line drawing
that defines the occurrence of large-scale curved line features,
such as mountain ridges. Features are extracted from the ex-
ample height map, matched to the curves and stitched into
the resulting height map. The input is intuitive and provides
more control over the placement and shape of large terrain
features. However, this method does not allow for small ter-
rain changes and, similar to every example-based method, it
is limited by the provided input set.

Doran and Parberry propose a simulation approach us-
ing agents, each creating a specific landform (e.g., coastline,
beach, mountain) [DP10]. Although the method allows one
to control the frequency of a specific landform, it does not
offer any direct control on where they occur; additionally, its
performance is not interactive.

Saunders proposes an AI-based method that synthesizes a
height map based on DEMs of real-world terrain [Sau06]. A
user draws a 2D map of polygonal regions, each of which is
marked to have a certain elevation profile that is rasterized. A

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


4 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

height map is instantiated using a genetic algorithm, which
selects DEM data that matches the requested elevation pro-
file in each region. However, the generated transitions at the
boundaries between regions can be abrupt. Similarly to the
constraint-based methods discussed above, the method offers
control in the scale of large terrain features. It is fairly intu-
itive for designers to draw the input map, but results cannot
be obtained interactively.

Kamal et al. present [KU07] a constrained mid-point dis-
placement algorithm that creates a single mountain according
to such properties as elevation and base spread, and Belhadj
introduces a more general system [Bel07], where a set of
known elevation values constrain the mid-point displacement
process. Possible applications include interpolation of coarse
or incomplete DEMs or user line sketches.

To provide users with more control over the exact appear-
ance of mountain ranges, Gain et al. introduce a sketch-based
height map generation method in which users sketch the sil-
houette and bounds of a mountain in a 3D interface, and
the generator creates a matching mountain using noise prop-
agation [GMS09]. Using diffusion equations, Hnaidi et al.
allow a designer to draw 3D curves that control the shape of
the generated terrain [HGA∗10]. Bernhardt et al. present an
efficient CPU/GPU setup to present real-time feedback to de-
signers using this method [BMV∗11]. Even more fine-grained
control over the terrain shape is provided by the interactive
procedural brushing system introduced by de Carpentier and
Bidarra [dB09]. These GPU-based procedural brushes allow
users to interactively sculpt a landscape in 3D using several
types of noise.

With the purpose of facilitating even more intuitive in-
teraction for terrain creation, Smelik et al. [STdB10b] pro-
posed procedural sketching, another GPU-based method by
which one paints a top view of the terrain by coloring a
grid with ecotopes (a small area of homogeneous terrain and
features), which encompass both elevation information (eleva-
tion ranges, terrain roughness) and soil material information
(sand, grass, rock, etc.).

3. Vegetation

The approaches to procedural vegetation generation can be
divided according to the level of detail they produce in a) in-
dividual plant organs, b) plants, and c) complete plant ecosys-
tems. The different approaches include varying levels of in-
teraction of the users, such as pure interactive modeling us-
ing Xfrog [LD99] or SpeedTree [Int13], plant reconstruction
methods from LiDAR scans [LYO∗10] or fully autonomous
procedural models; only the last approach will be the fo-
cus of this survey. In the field of plant modeling, procedural
models have been inspired by biological approaches. In the
following text, we will use the words procedural, growth, and
developmental to describe the same type of model.

One of the first approaches to plant simulation is the

Figure 2: A virtual topiary model created by Open L-
systems [MP96]. Courtesy of R. Mech and P. Prusinkiewicz.

work of Honda [Hon71], who attempted to create branch-
ing structures using a set of simple input parameters. Lin-
denmayer described a linear cellular subdivision mechanism
as a rewriting system of terminal and non-terminal symbols
of a grammar [Lin68]. This approach, later named in his
honor Lindenmayer’s systems, or L-systems, is extended by
Prusinkiewicz by syntactic sequence and graphics represen-
tation that allows for generation of branching structures and
3D interpretation of the string of generated modules [Pru86].
L-systems are a very powerful system, sometimes compared
to a programming language, that allows for simulation of
individual plants [PLH88], trees [Pru97, WP95], or entire
ecosystems [Pru00]. The two most important extensions of
L-systems are differential dL-systems that support continu-
ous simulation of plant development [PHM93], and Open
L-systems that extended the plant simulation to allow for
integration of exogenous flow and environmental sensitiv-
ity [MP96], as can be seen in Figure 2. L-systems can gener-
ate the entire scale of plant models from cellular subdivision,
individual plant organs, to entire ecosystems.

Pure PM usually does not allow for the communication
exchange between the plant and its environment (exogenous
control). However, exogenous control, namely self shadow-
ing and collision detection, are among the most important
factors defining the final shape of the plant. This has been
addressed by the environmental sensitive automata of Arvo
and Kirk [AK88], where plants are simulated as autonomous
particles that compete for resources. The traces of each parti-
cle define the individual branches. Particles can branch and
also produce leaves. A similar approach was proposed by
Greene [Gre89], where a voxel space is used as an additional
data structure for quick illumination evaluation and colli-
sion detection. This approach was later used for interactive
plant modeling by Benes et al. [BM02, BAv09]. Recently,
simulation for resources has been used for modeling leaf ve-
nation patterns [RFL∗05], and later extended for simulation
of plant competition to create individual plants and small
plant colonies [RLP07, PHL∗09], where plants compete by

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 5

Figure 3: Comparison of non-selective and selective growth
in a tree created with the TreeSketch framework [LRBP12b].
Courtesy of S. Longay, A. Runions, F. Boudon, and P.
Prusinkiewicz. c© 2012 EG, reprinted with permission.

growth for a predefined random set of local attractors in space.
Most recently, plastic trees allow for an interactive modeling
of arbitrary input trees that react to external conditions as if
they were grown in the given environment [PSK∗12].

Deussen et al. [DHL∗98] described a first ecosystem simu-
lation model to populate a height map with vegetation using
competition for resources on the level of individual plants.
The virtual plants grow and seed and over time their local
area of influence increases. If two or more plants collide,
their survival is evaluated and one plant is eliminated. This
approach has been extended in different directions, such as
adding virtual agents that affect the ecosystem [AD05], simu-
lating vegetation in urban areas with artificial management
of certain areas [BMJ∗11], or combining with real digital
elevation maps [Ham01].

PM can be combined with sketches, as shown in sev-
eral methods for sketch-based modeling of floral dia-
grams [IOI06a, IOI06b]. Recently, a tablet-oriented approach
for sketch-based procedural plant modeling, extending the
work of Palubicky et al. [PHL∗09], was presented by Longay
et al. [LRBP12b] (see Figure 3). Such sketch-based PM meth-
ods are sound examples of the power of PM, providing a good
control over the design process. However, extensive knowl-
edge of PM is still required in order to use such a system to
its full extent.

4. Water bodies

The topic of procedural generation of water bodies, such as
rivers, lakes, streams, oceans and waterfalls, is somewhat
under-addressed in PM literature. However, several authors
have proposed algorithms specifically for generating rivers.
Typical strategies for river generation can be divided into
two categories: generating a river network as part of a height
map generation algorithm, or as a post-processing step on an
existing height map. For the former, a generated river network
forms a basis from which a height map is inferred. For the
latter, a height map is analyzed to find potential stream routes
from mountains into valleys.

Kelley et al. were the first to generate a river network as

the basis for a height map [KMN88]. They start with a single
river path and recursively branch and subdivide it, resulting in
a stream network. This network then forms a skeleton for the
height map, which is filled using a scattered data interpolation
function. The climate type and the soil material influence the
shape of the stream network.

Prusinkiewicz and Hammel combine the generation of a
curved river with a height map subdivision scheme [PH93].
On the river’s starting triangle, one edge is marked as the
entry and one as the exit of the river. In a subdivision step, the
triangle is divided into smaller triangles, and the river’s course
from entry to exit can now take several alternative forms. The
elevation of the triangles containing the river is set to be the
sum of the negative displacements of the river on all recursion
levels, resulting in a river bed; other triangles are processed
using standard mid-point displacement. A downside of the
method is that the river is placed at a constant elevation
level, and thus carves deep through a mountainous landscape.
Moreover, this method is fully automatic and can only be
controlled by setting the input parameters.

An approach that does not suffer from these limitations,
described by Belhadj and Audibert, creates a height map with
mountain ridges combined with river networks [BA05]. Start-
ing with an empty map, they place pairs of ridge particles at
a particularily high elevation and move them in opposite di-
rections in several discrete steps. A Gaussian curve is drawn
on the height map along the particle positions of each iter-
ation. Next, they place river particles along the top of the
mountain ridge and let them flow downwards according to
simple physics, comparable to hydraulic erosion. The remain-
ing points between ridges and rivers are filled with an inverse
midpoint displacement technique. This is a fast and effective
method for a specific type of terrain, e.g., steep mountain
ridges with valleys featuring a dense river network, however
its application to other types of terrain is limited. Also, this
method does not provide rivers that are hydrologically valid.

The above-described methods provide little control on the
resulting river path. The interactive method presented by
Huijser et al. proposes a convenient way of defining and con-
trolling a river path [HDBB10]. A line defines the river path
and, together with the specification of typical cross section
profiles, meant to be imposed and interpolated along that path,
the method results in a detailed geometric representation of
the river and its banks. The price of this additional control,
however, is that the method does not always guarantee physi-
cal nor geographical plausibility of the resulting river path.
In this sense, a solution that better combines control and
plausibility of river paths is the procedural sketching method
presented by Smelik et al. [STdB11]: a designer can input a
sequence of control points on a terrain as an indication of the
desired path, and the algorithm will derive and embank in the
terrain a feasible and plausible path that approximates that
input sketch.

Recently, Genevaux et al. [GGG∗13] presented an ap-

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


6 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

Figure 4: A landscape shaped by a river network, created by
the hydrology-based method by Genevaux et al. [GGG∗13].
Courtesy of J.D. Génevaux, E. Galin, E. Guérin, A. Peytavie,
and B. Benes.

proach that follows the idea of Kelly et al. [KMN88] by
creating the river network first and then completing it by ter-
rain, closely following the rules from hydrology, as shown
in Figure 4. Procedural blocks are then used to create a 3D
model of the terrain that is stored as a CSG-like tree where
leaf nodes represent the features of the terrain and internal
nodes correspond to procedural operations. This approach
also suffers from a limited user control.

5. Roads

Procedural road generation has primarily been addressed in
the context of procedural cities, so the generation of interstate
and country roads still requires further attention. Important
requirements for interstate or country road generation are that
the trajectories fit well with the local terrain and the curvature
of the roads is constrained, in order to allow vehicles to
travel at constant speeds. Procedural road generation methods
in this category are either a) user-assisted, where road 3D
splines that minimize local elevation changes are fitted in
between sketch strokes or control points, or b) based on path
finding techniques from AI research, such as A*, where cost-
functions can encode the desire to maintain constant elevation
and curvature.

McCrae and Singh present a method for converting
sketched strokes to 3D spline-base roads that are automat-
ically fit to the terrain [MS09]. Their system also creates
junctions and viaducts for crossing roads. Kelly and McCabe
plan the precise path of their main roads between the user
set nodes to have an even change in elevation as much as
possible [KM07]. The influence of the underlying elevation
profile is taken into account with varying degrees of precision
as both methods take only basic measures to avoid too steep
roads and roads through water bodies.

It is not enough to simply place a road on the terrain: the
landscape needs to be properly modified to accommodate
for the road. Early work by Amburn et al. already addressed

Figure 5: A hierarchical road network produced by the
method of Galin et al. [GPGB11]. Courtesy of E. Galin,
A. Peytavie, E. Guérin, and B. Benes.

the problem of fitting roads with terrain: on a coarse level,
the road follows the elevation profile of the terrain, and on
a fine level, the terrain must be modified to match locally
with the road embankment profile [AGW86]. This specific
integration problem was also addressed by Bruneton and
Neyret, who propose a shader-based system for real-time
integration of Geographic Information System vector features,
such as road and rivers, into a DEM [BN08]. They create a
road profile displacement texture based on footprint geometry,
and integrate the profile by blending this texture with a height
map texture. Galin et al. first extend this by also removing any
vegetation along the road [GPMG10]. Subsequently, Galin et
al. [GPGB11] proposed an A*-based road generation method
that uses a cost function to encode the influence of slope,
water bodies, and vegetation on the trajectory of the road; an
example of the result is shown in Figure 5.

6. City layout

A procedural city is a complex and often hierarchically struc-
tured model. Its generation procedure typically operates in
a top-down fashion, possibly starting at a very high level by
generating a broad division of the available land into city
zones, such as city center and outskirts, and ending with
placing individual building parcels. The topic of procedural
cities has received much attention in the last decade, starting
with the seminal work of Parish and Müller [PM01]. Many
of the earlier procedural city generation methods take a road
network, often generated by combining typical road patterns,
as the basic city structure. In recent years, more advanced
methods considers aspects as urban land use, traffic mod-
els or even agent simulations. Kelly and McCabe present a
survey of several approaches for generating urban environ-
ments [KM06]. A practical overview of the state of the art in
procedural modeling of cities can be found in [WMV∗08].

Road networks for cities can be generated using a variety
of methods, including pattern-based approaches [GPSL03,
SYBG02], L-systems [PM01], agent simulations [LWW03,

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 7

LRW∗06], and tensor fields [CEW∗08]. The simplest pattern-
based technique is to generate a dense square grid, as seen
in the work of Greuter et al. [GPSL03] with random noise
to create a less repetitive network. However, the realism and
expressiveness of this technique is inherently limited.

A more elaborate method to create roads is by means
of templates, as proposed by Sun et al. [SYBG02]. They
observe several frequent patterns in real road networks and
use them as basic building blocks. For each pattern, there
is a corresponding template: a population-based template
(implemented as the Voronoi diagram [Vor08] of population
centers), a raster and radial template, or a mixed template. To
create the skeleton of the road network, highways are first
generated using the pattern templates. Next, highways are
curved to avoid large elevation gradients and the regions they
encompass are filled with a grid of streets.

Similar to plant models, a road network can be viewed
as a growing structure, and can be simulated by a rewriting
system. Parish and Müller use an extended Open L-system to
grow a road network [PM01]. The L-system is goal-driven;
its goals are population density (roads try to connect pop-
ulation centers) and specific road patterns, for example the
raster or the radial pattern. This L-system is extended with
rules that have a tendency to connect new proposed roads
to existing intersections and rules that check road validity
with respect to impassable terrain and elevation constraints.
Smaller streets are inserted into the remaining areas using
a grid. This method is fully automatic and provides limited
control only by defining density maps of population.

Vanegas et al. [VABW09] use a simulation-based approach
to allow for high-level user control over the design of the
generated city. They steer the city design by ‘painting’ jobs,
city population, and main roads. A simulation engine in-
teractively creates the corresponding city geometry. This
method provides better control than the methods above. How-
ever, the control is limited to a high level of abstraction
and, therefore, small features cannot be manipulated. Similar
to this approach is the work of Weber et al. who also use
simulation to address the problem of expanding cities over
time [WMWG09]. Their cities grow their road network into
nearby available land. Both approaches are fast and interac-
tive so that the user can guide the simulation by changing
roads or painting land use values on the terrain.

An example-based system for city modeling was presented
by Aliaga et al. [AVB08]. The examples from existing cities
are first analyzed and a stochastic procedural model is in-
ferred. The procedural model generates 2D models that have
statistically identical road and intersection distribution and
road geometry. Once the street patterns are generated, parcels
are generated and filled by warped images from the input
examples. This approach allows for city layout overlay, exten-
sion, and interpolation. Small features can be added manually.

Lechner et al. introduce an agent-based approach, in which
they divide the city into areas including not only residential,

Figure 6: A procedural city model created with the agent-
based technique of Lechner et al. [LRW∗06], showing resi-
dential (yellow), commercial (red), industrial (blue) and park
(light green) development. Courtesy of T. Lechner, B. Watson,
and U. Wilensky. c© 2006 ACM, reprinted with permission.

commercial and industrial areas, but also special areas like
government buildings, squares, and monuments [LWW03].
They place two agents, named the extender and the connector,
at a seed position in the virtual world. The extender searches
for unconnected areas in the city and the connector tries to
connect them. In their follow-up work, the authors extend this
method with agents that are responsible for constructing main
roads for fast connections through the city, and agents that
develop small streets [LRW∗06]. This method gives plausible
results, but a disadvantage is its very long running time. A
vectorized output can be found in Figure 6. This method gives
some direct control over the trajectory of a generated road.
As districts, blocks and parcels are defined by the city’s road
network, a typical method for a designer to influence the city
structure is by interactively manipulating the road network.

Kelly and McCabe introduce the interactive city editor
CityGen, in which a user defines the main roads by plac-
ing nodes on the 3D landscape [KM07]. Regions enclosed by
these roads can be filled with one of three patterns: Manhattan-
style grids, industrial grown roads with dead-ends, and or-
ganic roads as in e.g., North-American suburbs.

A similar system by de Villiers and Naicker [dVN06] al-
lows users to create a road network and city blocks using
sketch strokes, and interprets a set of sketch gestures that
modify the properties of the city blocks (e.g., population size,
function). Lipp et al. present two graph merging operations
for city road networks [LSWW11]. The first technique is

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


8 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

Figure 7: A street graph traced from a complex tensor
field [CEW∗08]. Courtesy of G. Chen, G. Esch, P. Wonka, P.
Müller, and E. Zhang.

specialized for locally repairing the road network, after a de-
signer has made a small change to a single road. The second
approach merges two road network layers using the graph-cut
algorithm. The first layer contains the part of the network
that was changed by the designer, and the second contains a
procedurally generated network. By using proper merge pri-
orities for roads in the cut, they are able to merge both layers
into one network with plausible transitions. This graph-cut
merging technique can also be used to lock a subset of the
road network.

Chen et al. propose an interactive modeling method for
road networks by the use of tensor fields [CEW∗08]. Com-
mon road patterns (grid, radial, along a boundary) are gener-
ated from a tensor field by tracing the streamlines from seed
points in the major eigenvector and perpendicular direction
until a stopping condition is met. Users can place new basis
tensor fields, such as a radial pattern, smooth the field, or use
a brush to locally constrain the field in a specific direction.
Noise can be applied to make the road network less regular
and thereby more plausible. An example of a generated road
network is shown in Figure 7.

Most of the above-described algorithms generate the city
layout by first creating the road network and then by gen-
erating lots and parcels, which can subsequently be popu-
lated by procedural buildings as described in Section 7. Lots
and parcels are defined by polygonal regions enclosed by
the streets and roads. Subdivision of these regions results in
building lots, for which different subdivision methods exist,
see e.g., [PM01] or [KM07]. A recent work by Vanegas et al.

introduces two new parcel subdivision methods [VKW∗12]:
a splitting technique based on 2D oriented bounding boxes,
and a subdivision method that starts from the straight skeleton
of the parcel polygonal shape.

Groenewegen et al. present a method that generates a dis-
tribution of different types of districts according to land
use models of cities in Western Europe and North Amer-
ica [GSdB09]. The method takes into account a large number
of relevant factors, including the historic core of the city and
the attraction/repulsion that certain types of features (e.g. hill-
sides, coastlines, rivers) can have on certain types of districts
(e.g. industrial or high-class residential districts).

The above methods are designed for generating large and
structured urban environments, and, as such, are not suit-
able for generating small villages, farm lands and informal
settlements. Glass et al. describe several experiments of repli-
cating the road structure found in South African informal
settlements using a Voronoi diagram for the major roads, in
combination with either L-systems or regular subdivision for
the minor roads [GMB06]. They were able to recreate the
observed patterns. For small villages and agricultural settle-
ments, Emilien et al. propose an iterative process [EBP∗12]
that grows a specific type of village, considering the local ter-
rain constraints. Starting from an initial road network skeleton
and depending on the desired type of village, in each itera-
tion, a number of building seeds are placed at locations that
score well on a number of weighted criteria: terrain height,
slope, road accessibility, distance to neighbors, and special
buildings (churches, forts). These seeds are connected to the
existing road network, reusing existing roads and introduc-
ing cycles where possible. Finally, a building parcel shape is
constructed from each seed point.

7. Buildings

Procedural generation of buildings is one of the best-
developed PM areas. Most methods in this category use some
form of formal rewriting system, such as an L-system, a split
grammar or a shape grammar, as the basis for generating a
3D building model out of a 2D parcel shape. These methods
can be employed to create detailed and convincing buildings,
but require much authoring effort. Some alternative meth-
ods attempt to automatically reconstruct grammars from real
world datasets, such as photographs of building facades.

A special sub-area of building generation is procedural
facade generation [MZWG07]. Facades are usually modeled
by using 2D split grammars and various forward [XFT∗08]
and inverse approaches [BSW13, ZXJ∗13] exist.

Parish and Müller start with a rectangular floor plan and
apply an L-system to refine the building [PM01], and Greuter
et al. generate office buildings by combining several primi-
tive shapes into a floor plan and extruding these to different
heights [GPSL03]. Both approaches are useful for relatively

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 9

Figure 8: A typical street in the procedural Pompeii
model [MWH∗06]. Courtesy of P. Müller, P. Wonka, S. Hae-
gler, A. Ulmer and L. van Gool. c© 2006 ACM, reprinted with
permission.

simple office building models. Coelho et al. [CdSF05] pro-
pose an urban modeling process that is based on L-systems
and generates a tree-like description of the overall scene
structure from external data. L-systems are used to generate
detailed building models that emerge from the abstract set of
data.

Wonka et al. introduced the parametric context-free split
grammar designed to produce building models [WWSR03].
Split grammars explicitly associate a geometric shape to
each symbol and their parameters can control the rewrit-
ing or the style of the generated building. Within one build-
ing model, the style can differ per floor (e.g., an apart-
ment building with shops on the ground floor). The method
focuses mostly on generating coherent and believable fa-
cades for relatively simple shaped buildings. Müller et al.
extended the split grammars to Computer Generated Archi-
tecture (CGA) [MWH∗06], (see Figure 8). CGAs are shape
grammars [SG71] specifically designed for building facades.
Shape grammars have been used and described before, es-
pecially in the architectural domain [KE81, Cag96, Kwo03].
Architects have used shape grammars as languages of design,
supported by a vocabulary of shape rules. Shape rules are
specified as spatial relations, where one or more shapes on
the right-hand side of the rule is produced and replaces the
symbol on the left-hand side (which conditions when the rule
can be applied). The CGA shape grammar is specialized for
modeling 3D buildings and its operations include the possi-
bility of creating roofs and rotated shapes. It typically starts
with extruding a building lot polygon into a volumetric shape,
which is divided into floors. The resulting facades are fur-
ther subdivided, through shape rules, into walls, windows and
doors. Variation can be created using conditional or stochastic
rule application, shape parameters and random number gen-
eration. Shape grammars are presently the most developed,
used and compact method for building representation.

Although CGA shape grammars can generate visually con-

vincing building models, Finkenzeller and Bender note that
they miss semantic information regarding the role of each
shape within the complete building [FB08]. They propose to
capture this semantic information in a typed graph. In related
work, Finkerzeller presents in more detail the generation of
facades and roofs in this system [Fin08].

Yong et al. describe a method to create vernacular-style
Southeast Chinese houses using an extended shape grammar
[YCZY04]. The grammar is hierarchical and starts at the
city level, whereas in other methods a shape grammar is
applied to an individual building footprint. The grammar
then produces streets, housing blocks, roads, and in further
productions houses with components such as gates, windows,
walls, and roofs. Through a number of control rules (defining,
for instance, component ratio constraints), the validity of the
buildings can be asserted. By applying this grammar system,
a typical ancient Southeast Chinese town can be generated
with plausible results, since the building style of these towns
is very rigidly structured.

Müller et al. present an approach for reconstructing build-
ing facades from photographs [MZWG07]. Their method
takes a single image of a facade of a real building as input,
and reconstructs a detailed 3D facade model using a combi-
nation of imaging and shape grammar generation.

Shape grammars are a versatile and often successfully em-
ployed method for automatic creation of building facades.
Still, defining a suitable shape grammar is complex and re-
quires experience and in-depth knowledge of its geometry
derivation technique. Addressing this, Lipp et al. propose a
shape grammar editing system in which the effects of new
rules are interactively visualized [LWW08]. Their approach,
however, still requires the awareness of a grammar structure.
This drawback is addressed by dataflow graph representa-
tions [Pat12, SMBC13].

8. Building interiors

To create a complete 3D building, both its exterior facade
and its interior must be generated. Procedural methods to
generate building interiors are very different in nature to
the often grammar-based approaches for generating facades,
and therefore are treated separately here. Within this topic,
one can discern floor plan generation and furniture layout
solving. The procedural generation of building floor plans has
been the focus of several researchers, which has resulted in
grammar, subdivision, graph layout, constraint-solving, and
even machine learning approaches. Furniture layouts have
been generated using either data-driven or constraint-based
methods.

Rau-Chaplin et al. used shape grammars to generate floor
plans in [RCMLS96]. Shape grammars are used to create a
plan schema containing basic room units that are grouped into
functional zones like public, private, or semi-private spaces.
Individual functions are then assigned to each room, which

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


10 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

are filled with furniture by fitting predefined layout tiles from
a library of individual room layouts. Variation of this method
is limited by the available predefined tiles.

Hahn et al. present a subdivision method for real-time
generation of office buildings [HBW06]. The initial building
structure is split into a number of floors and further subdivi-
sions create a hallway zone and individual rooms. All areas
are only generated when necessary, i.e., when in view. Fur-
thermore, changes made in such a building are persistent: they
are stored and executed again when an area is regenerated.

Marson and Musse introduce a different room subdivision
method, based on squarified treemaps [MM10]. Starting with
a 2D building outline and a set of rooms with desired area
and functionality (which are chosen by the user), they recur-
sively subdivide the outline into smaller areas, e.g., building
shape, functional zones, and rooms. In a post-processing step,
corridors are automatically created to connect unreachable
rooms.

Instead of starting with a building outline and rewriting or
subdividing this space into rooms, Martin first composes a
graph of the connectivity of individual rooms in a building
before transforming the graph into the spatial layout [Mar06].
Nodes of the graph represent the rooms and edges correspond
to connections between rooms (e.g., doors and walls). The
graph is transformed to a spatial layout, and for each node,
a specific amount of ‘pressure’ is applied to make the room
expand to the desired size. This method allows users to decide
on types of rooms, size and connectivity necessary in the final
layout.

Charman gives an overview of constraint solving tech-
niques that can be applied to room layout generation, re-
garded as a space planning problem [Cha93]. The proposed
planner works on the basis of axis-aligned 2D rectangles
with variable position, orientation and dimension parameters,
for which users can express geometric constraints, possibly
combined with logical and numerical operators. Although
feasible, the use of constraint solving techniques is quite
complex for novice users and is not intuitive.

More recently, Merrel et al. proposed a method for gen-
erating residential building layouts [MSK10]. They use a
Bayesian network, trained with real-world data, to expand a
set of high-level requirements (e.g., number of rooms) into a
complete architectural program (e.g., room adjacency, area,
and aspect ratio). These architectural programs are then real-
ized into the 2D shapes of the floor plans, through stochastic
optimization over the space of possible building layouts.

Tutenel et al. applied a generic semantic layout solving
approach to expansion-based floor plan generation [TBSd09],
where every type of room is mapped to a class in a semantic
library and for each of these classes, relationships can be
defined. In this context, relationships define room-to-room
adjacency. In addition, other constraints can be defined as
well, e.g. place the kitchen next to the garden, or the garage

Figure 9: An office scene furnished based on semantic scene
descriptions [TBSd10]. Courtesy of T. Tutenel, R. Bidarra,
R.M. Smelik, and K.J. de Kraker.

next to the street. For each room to be placed, a rectangle of
minimum size is positioned at a location where all defined
relation constraints hold, and all these rooms expand until
they touch each other. As in previous methods, the user can
decide on rooms, size and constraints, however the use of
semantics allows for a more intuitive way to express this
information. The number of rooms and necessary room types
do not need to be fixed, but can be defined based on the
family size, characteristics and needs of the household, the
size of the building lot and house area, number of floors, etc.
Using the same approach and based on a semantic description,
furniture can be added to the rooms, as shown in Figure 9.

Merrell et al. created an interactive furniture layout sys-
tem that assists users by suggesting arrangements based on
interior design guidelines [MSL∗11]. The system incorpo-
rates the layout guidelines as terms in a density function and
generates layout suggestions by rapidly sampling the density
function. An example of a dining/living area is in Figure 10.

Yu et al. automatically synthesizes furniture layouts based
on sensibly furnished example scenes [YYT∗11]. They ex-
tract hierarchical and spatial relationships for various furni-
ture objects from these examples, encoding them into vari-
ables associated with ergonomic factors, such as visibility
and accessibility. These are assembled into a cost function
that is optimized.

9. Some available systems

In the previous sections, we reviewed both seminal and recent
research on PM of features for virtual worlds. To complement
this review, in this section we discuss a selection of PM tools,
either commercial or freely available, which we feel are rep-
resentative of the state of the art. With this, we aim at giving
some insight into how PM research results are already being
applied in the industry, and what the focus, capabilities and
limitations of the current procedural tools are. The tools we
will discuss are mostly aimed at the generation of terrain
heightmaps, plants or ecosystems and urban environments.

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 11

Figure 10: A basic generated layout, which users can build
on to create their desired scene [MSL∗11]. Courtesy of P.
Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun.
c© 2011 ACM, reprinted with permission.

Numerous procedural tools exist for generating height
maps. From this large selection, we review three tools that
have been around for several years: TerraGen [Pla13], Geo-
Control [Ros13], and L3DT [Bun13]. We selected these tools
because they have a wide user base and advanced editing
capabilities.

A scene in TerraGen is stored as a network of nodes, where
each node maps to an operation, such as noise generation, a fil-
ter, or a mathematical function [Pla13]. A designer composes
and configures the network in such a way that it generates the
desired elevation profile. The expressive power of this system
is significant. However, in order to use this tool effectively,
in-depth knowledge of mathematics and noise generation is
needed. Therefore, it is most suitable for designers with ex-
tensive technical expertise, focusing on creating aesthetically
pleasing landscapes.

GeoControl [Ros13] is a height map editor that iteratively
generates elevation data using a subdivision algorithm. De-
signers define the noise characteristics in each subdivision
step. Additionally, filters, such as erosion or smoothing, can
be applied on top of this basic noise algorithm. Users can con-
trol the generation by defining an isoline, setting its elevation,
and the noise characteristics of the transition zone around it.
A mountain ridge with these properties is generated along this
line that blends in with the existing height map. GeoControl’s
isolines can, with practice, be used to draw height profiles
that adequately match designer’s intent. Still, the modeling
process can be quite complex and the quality of the results
depends on knowledge of the effect of parameters and the
dependencies between generation steps.

L3DT [Bun13] allows a user to design a height map by
drawing on a grid map using a brush. The brush consists of a
set of generation parameters such as the elevation, the amount
of erosion, the roughness of the terrain, whether it is a source
of water, and a climate profile. Each grid cell is expanded to

64×64 height map points in the resulting height map by ap-
plying noise, erosion and water flooding algorithms. Climate
profiles are used for generating a large texture that is mapped
on the height map, by specifying the types of soil material
(e.g., grass, rock) and the conditions under which they occur
(e.g., elevation range, slope range, water level). After the
height map is generated, a scoring mechanism determines the
placement of materials based on the climate profile. L3DT
provides a very high level of interaction making it a versatile
tool.

Another feature for which some successful tools have been
developed is vegetation. XFrog is a procedural plant mod-
eler [Gre13], which is based on the modeling method by
Linterman et al. [LD99]. XFrog combines procedural model
definition with a strong user interaction. The basic modeling
structure is a mathematical tree with nodes that represent pro-
cedural or geometrical features. The user can edit topological
and geometrical properties and can preview all aspects of the
model. The set of modeling parameters can be located per
instance or can be inherited, allowing for local or global op-
erations. XFrog also supports level of detail and ecosystems
modeling.

SpeedTree [Int13] is a middleware system for modeling
and rendering of large amounts of detailed procedural vege-
tation. The modeling application can procedurally generate
trees in various levels of detail, based on a number of in-
put parameters, such as branch length and angles, or based
on a pre-defined species template from a library. Further-
more, designers can edit generated trees using hand drawn
features. The generated vegetation is efficiently rendered by
the SpeedTree engine plugin, which animates and manages
the level of detail of the vegetation. The SpeedTree package
has widespread application in the entertainment gaming and
movie industries.

Plant Factory, by e-on software [eos13b], is a tool to model,
animate and render 3D vegetation. Using a graph-based editor,
plant or tree species can be created that can generate instances
of any age and at any season. The user can manually tweak
these instances, e.g. by changing the general shape, adding or
prunning branches, or adding some vines on the surface of the
tree. By parametrizing wind speed and direction, animation
can be automatically added to the plant models.

Another product by e-on software, called VUE [eos13c], is
a more integral tool to easily create full 3D landscapes includ-
ing terrain, soil, vegetation and water surfaces. This product
integrates several procedural generation techniques that help
modelers create the landscape they need. Some of the features
of this product are: Eco Painter, which allows users to paint
trees, plants, bushes or moss on top of a terrain (or other struc-
tures like houses); EcoSystem, which populates entire areas
with matching vegetation and terrain textures; and Zephyr,
which adds animation to the scene based on wind parame-
ters. Finally, e-on also developed Carbon Scatter [eos13a],
a software tool to randomly scatter around objects picked

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


12 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

from a given set, based on both user-defined and random
parameters. This is mostly useful for placing plants and trees
on landscapes, but could also be used to spread other objects
in a scene.

CityEngine [Pro13] is a commercially available city gener-
ator based on the CGA grammar [MWH∗06]. On one hand,
CityEngine allows for interactive modeling by providing var-
ious features, such as intelligent resizing of a part of a city or
a building, automatic content generation, copy and paste, etc.
On the other hand, the system allows for user assisted writing
of CGA rules and their interpretation.

A generic approach to PM is provided by the Houdini
modeling tools [Sid13]. With Houdini, designers create pro-
cedural generators out of small procedural building blocks.
These building blocks are often basic mathematical or ge-
ometric operations. A visual editor is used to compose the
individual building blocks and to connect them as nodes of a
network. A graph of primitive operations can be encapsulated
into a single operation node, which allows designers to create
reusable, high-level operations. Houdini is a versatile tool for
creating new procedural methods in a visual way; however,
to be used effectively, one must have advanced knowledge on
how to design such a procedure.

10. Discussion

PM has a long history that has delivered many high-quality
results and is an increasingly active research field. We have
also seen that PM tools are available in both the public and
commercial domains, and that they are successful for specific
areas and purposes. However, contrary to what one might
expect, current application of PM in practice is still very
limited for, at least, the following two main reasons:

1. Procedural methods are often defined by a set of non-
intuitive rules and input parameters, which can be hard
to grasp and require in-depth knowledge of the technique
internals. Their effect on the output is not always clear and
predictable. A small modification in a rule or parameter
value can cause a chain reaction of changes that propa-
gates through the entire model. As a result, PM methods
typically provide rather limited user control. To some ex-
tent, using procedural methods often comes down to trial
and error, which becomes even more cumbersome when
their performance hinders interactive use.

2. Heterogeneous procedural methods typically do not work
together at all, as they yield specialized output, i.e., re-
stricted to generate models of one specific class of features.
Therefore, integrating these models still involves an in-
creasingly large amount of manual effort.

In this section, we discuss how current research is address-
ing these challenges, identifying the main open issues and
the most promising research directions (Subsections 10.2
and 10.3). To facilitate this, we start by summarizing and

analyzing what has been done using which PM techniques for
which features (Subsection 10.1).

10.1. Categorization of procedural methods

Table 1 gives a categorization of the PM methods discussed
in this survey, classified according to their main feature of
application and their underlying technique family or category.
We opted for identifying six such categories, represented
by the columns of Table 1, although not all PM methods
fit perfectly into this scheme, as they can, in some cases,
combine techniques from several families.

Some procedural approaches are based on purely stochas-
tic methods; most of them use noise generators to create
patterns or fractal structures. A typical representative of these
techniques is the work of Musgrave et al. [MKM89], us-
ing fractional Brownian motion to create terrains or textures.
Pure stochastic methods find their application mostly in ter-
rain generations and, recently, also in optimization of interior
designs.

Artificial intelligence techniques, such as path finding or
planning algorithms, complement various procedural algo-
rithms. As can be seen in Table 1, these techniques have
been applied in terrain generation, vegetation, road and city
layouts, and buildings.

Simulations are on the edge of purely procedural methods
and some other areas such as physics, urban modeling, or
biology. Simplified simulations, frequently reduced to purely
procedural models, have been successfully applied in terrain
modeling using erosion, vegetation simulation by competition
for resources, and city layout design by simulation of city
growth and resource allocations.

Grammar-based methods can be considered pure procedu-
ral approaches and their applications can be found in nearly
every application area. The two most important approaches
are L-systems, used for vegetation modeling and simulation,
and shape grammars, used for building modeling.

In some cases, PM techniques are driven by examples or
patterns found in existing content or real-world data.

Various other PM methods employ (a combination of) com-
putational geometry algorithms, directly using some program-
ming language. Often these involve subdivision algorithms,
space filling methods, or techniques inspired by image pro-
cessing. Except for buildings, such spatial layout techniques
are used for every feature. These methods can be further clas-
sified into subdivision, expansion (growth) and optimization-
based.

One can also compare procedural models from the perspec-
tive of the data they process. For example: noise generators
can work with virtually arbitrary data sets; terrain generators
are usually restricted to DEM, meshes or volumetric repre-
sentations; and more specialized algorithms, e.g. for building
structures, may also require specialized data to work with.

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 13

Stochastic Artificial In-
telligence

Simulations Grammars Data-driven Computational
Geometry

Terrain
FFC82, Per85a,
Mil86, MKM89,
EWM∗03,
SS05, KU07,
dB09, STdB10b

Sau06,DP10 MKM89, Mus93,
BTHB06, WCMT07,
ASA07, ŠBBK08,
KBKv09, PGGM09,
VBHv11, GGG∗13

PH93 Sau06,
ZSTR07

SS05, KU07,
Bel07, GMS09,
HGA∗10,
BMV∗11

Vegetation
AD05 Hon71, AK88,

Gre89, DHL∗98,
BM02, RFL∗05,
RLP07, BAv09,
PHL∗09, PSK∗12,
BMJ∗11

Lin68, PHM93,
Pru86, PLH88,
MP96,Pru97,LD99,
Pru00, IOI06b,
IOI06a, LRBP12b

LYO∗10 Ham01

Water bodies
PH93, BA05 KMN88 PH93, BA05,

HDBB10
Road networks

GPMG10,
GPGB11

PM01 AGW86,
KM07, MS09

City layout
LWW03,
LRW∗06

WMWG09,
VABW09, EBP∗12,
VGDA∗12

PM01 SYBG02,
CEW∗08,
AVB08

GPSL03,
GMB06,
dVN06, KM07,
GSdB09,
LSWW11,
VKW∗12

Buildings
YK12 KE81, Cag96,

Kwo03, WWSR03,
YCZY04, CdSF05,
LG06, MWH∗06,
FB08, Fin08,
LWW08, Pat12,
YK12

MZWG07

Interiors
MSK10,
MSL∗11,
YYT∗11,Cho12

RCMLS96 Cha93,
HBW06,
Mar06, MM10,
TBSd09,
TBSd10

Table 1: Classification of the discussed PM methods by virtual world feature and underlying technique family.

Following the rows of Table 1, it is noticeable that a lot of
attention has already been paid to terrains, vegetation, and city
layout. More recently, buildings have received more attention
and many new approaches are appearing every year. Except
for rivers, procedural water bodies, such as oceans, lakes
and their connections, stream networks, deltas and waterfalls,
have received little attention to date.

10.2. Intuitive control

One of the most important unsolved problems of PM is the
level of control the designer has over the input, generation
of the model, and its final editing. In the worst case, the user
control is limited to the definition of the procedural model
and its parameters. The algorithm is executed and the results
are generated. Enforcing, in this way, a particular intent is

very tedious if not impossible. Several directions have been
taken to improve these input challenges, including the use of
sketch-based techniques, visual editors, and inverse PM.

Sketch-based techniques. Some PM methods are integrat-
ing increasingly more intuitive input techniques, bringing
their use closer to the way of work for many creative pro-
fessionals. Among them, notions like brushing and sketch-
ing, based on gestures or strokes, have a very strong appeal.
So far, they have been deployed for interactive terrain edit-
ing with procedural brushes [dB09], road editing by means
of sketch strokes [MS09], sketch-based input of mountain
silhouettes [GMS09], procedural sketching of terrain fea-
tures [STdB10b], and mixed-initiative multi-touch control
of tree growth [IOI06a, IOI06b, LRBP12a]. These systems
are among the most promising approaches to interactive PM.

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


14 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

Figure 11: Interactive terrain editing with procedural brushes [dB09]. Courtesy of G.J.P. de Carpentier and R. Bidarra c© 2009
ACM, reprinted with permission.

However, knowledge of procedural systems is still required
in order to use them to their full extent.

Visual editors have been proposed to automate the gener-
ation of grammar production rules. An example is the work
of Lipp et al. [LWW08]. Recently, Krecklau et al. [KK12a]
introduced an editing mode to combine high-level architec-
tural primitives, where editable parameters are manipulated
through 3D handles. However, a limitation is that the creation
of such primitives requires manual editing of grammar rules.

Visual node-based editors, providing a spatial insight on
the flow of data being processed, have become standard for
a variety of purposes and (commercial) systems, including
material editors (e.g. Autodesk Maya), texture editors (e.g.
Allegorithmic Substance Designer), script editors (e.g. Au-
todesk Softimage), and model creation and animation editors
(e.g. Side Effects Houdini). The widespread use of such ed-
itors by non-technical professionals has recently prompted
some researchers into exploring their suitability for the speci-
fication of grammar production rules. Examples of this are
the work of Patow [Pat12], proposing a dataflow adaptation
for shape grammars that bridges the dissociation among rules,
and the work of Silva et al. [SMBC13], focusing on the en-
capsulation of such graphs into reusable, semantically-rich
component nodes that can be more easily assembled through
dataflow filters and constraints.

In recent years, considerable progress has been made in
improving user control for specific features and methods.
Often, more control can be offered by providing designers
with better interactive modeling facilities. For height-map
generation, for instance, there are several novel methods with
improved user control, especially procedural brushes [dB09]
(see Figure 11), terrain sketching [GMS09], and parameter-
ized curves [HGA∗10]. The work of Benes et al. makes the
definition and the execution of L-systems more controllable
and accessible [ŠBM∗10, BvMM11]. For urban road net-
works, the intuitive modeling method of Chen et al. helps one
to quickly define the desired road patterns [CEW∗08], and
the merging operations of Lipp et al. allow for fine-grained
edit operations on such road networks [LSWW11]. Guided
PM [BvMM11] enables designers to draw constraining out-
lines, called guides, for a growing L-system, and uses token
passing to affect connections between these guides.

Inverse procedural modeling attempts to find a procedu-
ral representation of a given input model. Depending on the
problem definition, the task can be a) to find the model rules
and the parameters, or b) the procedural model is given and
its parameters are learned. The most important advantage of
the inverse approach is that it leaves the designer entirely out
of the process: the PM is opaque, the designer does not need
to know about it at all. At the same time, once found, the pro-
cedural representation has all advantages (and disadvantages)
of PM.

One of the first approaches to inverse PM was the work
of Aliaga et al. [ARB07] who attempt a building reconstruc-
tion by means of L-systems. More recently, full parametric
L-systems have been generated for 2D vector art [ŠBM∗10],
and this work has been extended by Bokeloh et al. [BWS10].
Various approaches that attempt to estimate parameters
of an existing procedural model have recently been pre-
sented [TLL∗11, VGDA∗12].

Regarding the control of PM editing operations by design-
ers, one of the main challenges is their lack of integration
with the kind of manual editing operations that they are very
much used to. The dilemma is clear: if you automate too
much, designers will feel too constrained and uncomfortable
using the tool; if you allow plenty of manual interventions,
how does one keep track of them throughout each model
regeneration? Smelik et al. [STdB10a] presented a first sys-
tematic description of this tension, based on distinguishing
levels of granularity of manual operations.

A different but related user control issue is the reversibility
of operations. Designers very often tend to (ab)use do-undo
combinations, in order to assess the net effect of a particular
operation: if it does not yield the desired result, they just back-
track. However, many PM methods are not always reversible,
and it is therefore not always possible to exactly restore the
previous model situation.

Finally, the performance of PM methods is sometimes also
a challenging obstacle for designers. Despite significant im-
provements in recent years, procedural methods are often not
fast enough to provide feedback at interactive rates. This, in
turn, may strongly hinder the above mentioned use of trial
and error operations, thus making the modeling process more
cumbersome.

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 15

Figure 12: SketchaWorld’s interface, conceived for declara-
tive modeling of virtual worlds [STdB11]. Courtesy of R.M.
Smelik, T. Tutenel, K.J. de Kraker, and R. Bidarra.

10.3. Method Integration

The vast majority of PM methods are specialized in generat-
ing one specific type of content or feature. To be really useful
in the design of complete virtual worlds, all the heteroge-
neous content generated will have to be fit, assembled and
maintained together within some framework or engine. Unfor-
tunately, there is no present generic automation mechanism
for any of these crucial tasks. Very little research attention
has been given to the cooperation between distinct procedu-
ral methods nor, for that matter, to the integration of their
output within the same modeling framework. Solving these
challenges will likely be instrumental for the integration of
PM methods in mainstream content production pipelines.

It is not enough to successfully ‘engineer’ the coexistence
of heterogeneous content within a data framework. In fact,
dissimilar features often influence each other; think, for ex-
ample, of the interactions between river and hill, road and
forest, road and river, etc. As a result, the execution of each
PM method might have to take into account the location, type
and properties of other features. So far, there has been no
alternative proposed to handle such interactions other than
describing ad hoc solutions to individual pairs of features. For
example, specifically for roads, methods have been proposed
for generating road embankments [BN08], and the construc-
tion of bridges or tunnels to cross bodies of water [GPMG10].
A more comprehensive approach to feature interaction han-
dling proposed to have any two interacting features negotiate
a solution based on the notion of feature extent [STdB11].

One step further than just keeping diverse features inte-
grated in a virtual world model is the challenge of having
different PM methods actively cooperate in the generation of a
complex model. This would take advantage of using the most

suited technique while preserving its individual qualities, in
order to generate each model element in a coherent and con-
structive way. Again, a generic approach for this is still largely
unexplored, and the problem has not been properly defined.
One of the most challenging issues is the apparent mismatch
in the way different PM methods describe the respective con-
tent, particularly regarding its local or global character. A
recent proposal to approach this problem uses a central ’ne-
gotiator’ module to broker among various cooperating PM

methods [TSL∗11]. Its application to the integral generation
of consistent buildings combines shape grammars (for the fa-
cade), layout solving (for the floor plan) and semantic solving
(for furniture placing).

Finally, once integrated, consistency of all generated fea-
tures of the virtual world has to be maintained during subse-
quent modeling operations [BdST10, LSWW11]. This is an
even further and higher-level objective, but one that is crucial
for PM methods to become effective and useful for designers,
whose intent should preferably be captured once and kept
throughout their creative work. In fact, this challenge directly
flows from the iterative nature of design: if it takes many re-
finement steps to incrementally generate all desired features
in a virtual world, how can one guarantee that the result of a
modeling step is not subsequently overruled? In other words,
how easy will it be to get meaningless or corrupted output?

Integrating various procedural models and maintaining the
consistency of all generated content while a virtual world is
being designed is not only a very challenging and complex
task, but it also goes far beyond the internals of individual
procedural methods. Among other things, this requires that
the modeling vocabulary provided to virtual world designers
is able to map their explicit intent onto the particular proce-
dures needed to achieve it. So far, there has been no truly
generic proposal to solve this. Incremental but promising
approaches in this direction include the work of Krecklau et
al. [KK11,KK12b], as well as declarative modeling of virtual
worlds [STdB11], a modeling approach that allows designers
of virtual worlds to concentrate on stating what they want to
create instead of on describing how they should model it (see
Figure 12).

11. Conclusions

We have surveyed PM methods aimed at generating a large
variety of features for 3D virtual worlds. We have observed
that PM is an increasingly active research field that has deliv-
ered many high-quality results, including various successful
tools for specific areas and purposes, which are available in
both the public and the commercial domains. However, the
acceptance and use of PM methods for virtual worlds has
been persistently hindered by their considerable lack of intu-
itive control and by the disparity of isolated techniques that
generate only specialized features.

Many research efforts have been put into increasing the

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


16 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

ease of use of PM, particularly in improving the quality and
degree of user control, due to its crucial enabling role for
non-technical, creative professionals. Significant results have
been achieved so far in this direction, leading to explore paths
that combine proven concepts from such areas as human-
computer interaction with novel and challenging techniques
like inverse PM.

We believe that, among the requirements for a widespread
acceptance of PM methods, the following will play a key role:

1. a procedural regeneration scheme that allows for local and
global manual editing operations on procedurally gener-
ated models,

2. unification of procedural methods,
3. the ability to flexibly combine manually created content

with procedurally generated models, and
4. the seamless integration of PM tools in current content

development pipelines.

Driven by increasing consumer demands and expectations,
and supported by rapid advances in computer hardware and
display devices, the push for better, more detailed, extensive
and visually convincing virtual worlds will likely continue
in the coming years, putting additional pressure on their de-
signers and artists. In this process, the role of PM methods
is clear, but their potential is far from being exploited to its
fullest. We can, therefore, expect that considerable research
effort and novel results will continue to advance its frontiers,
facilitating its deployment in increasingly more applications
and domains.

References

[AD05] ALSWEIS M., DEUSSEN O.: Modeling and visualization
of symmetric and asymmetric plant competition. In Eurograph-
ics Workshop on Natural Phenomena (Dublin, Ireland, 2005),
Eurographics Association, pp. 83–88. 5

[AGW86] AMBURN P., GRANT E., WHITTED T.: Managing
geometric complexity with enhanced procedural models. In SIG-
GRAPH ’86: Proceedings of the 13th Annual Conference on Com-
puter Graphics and Interactive Techniques (New York, NY, USA,
1986), ACM, pp. 189–195. 6, 13

[AK88] ARVO J., KIRK D.: Modeling plants with environment-
sensitive automata. In Proceedings of Ausgraph’88 (Melbourne,
Australia, 1988), pp. 27–33. 4, 13

[ARB07] ALIAGA D. G., ROSEN P. A., BEKINS D. R.: Style
grammars for interactive visualization of architecture. IEEE Trans-
actions on Visualization and Computer Graphics 13, 4 (July 2007),
786–797. 14

[ASA07] ANH N. H., SOURIN A., ASWANI P.: Physically based
hydraulic erosion simulation on graphics processing unit. In
GRAPHITE ’07: Proceedings of the 5th International Conference
on Computer Graphics and Interactive Techniques in Australia
and Southeast Asia (New York, NY, USA, 2007), ACM, pp. 257–
264. 3, 13

[AVB08] ALIAGA D. G., VANEGAS C. A., BENES B.: Interac-
tive example-based urban layout synthesis. ACM Transactions
on Graphics: Proceedings of ACM SIGGRAPH Asia 2008 27
(December 2008), 1–10. 7

[BA05] BELHADJ F., AUDIBERT P.: Modeling landscapes with
ridges and rivers: Bottom up approach. In GRAPHITE ’05: Pro-
ceedings of the 3rd International Conference on Computer Graph-
ics and Interactive Techniques in Australasia and South East Asia
(New York, NY, USA, 2005), ACM, pp. 447–450. 5, 13

[BAv09] BENES B., ANDRYSCO N., ŠŤAVA O.: Interactive mod-
eling of virtual ecosystems. In Eurographics Workshop on Natural
Phenomena (Munich, Germany, 2009), Eurographics Association,
pp. 9–16. 4, 13

[BdST10] BIDARRA R., DE KRAKER K., SMELIK R. M.,
TUTENEL T.: Integrating Semantics and Procedural Generation:
Key Enabling Factors for Declarative Modeling of Virtual Worlds.
In Proceedings of the FOCUS K3D Conference on Semantic 3D
Media and Content (Sophia Antipolis - Méditerranée, France,
February 2010). 15

[Bel07] BELHADJ F.: Terrain modeling: a constrained fractal
model. In AFRIGRAPH ’07: Proceedings of the 5th International
Conference on Computer Graphics, Virtual Reality, Visualisation
and Interaction in Africa (New York, NY, USA, 2007), ACM,
pp. 197–204. 4, 13

[BF01] BENES B., FORSBACH R.: Layered data representation for
visual simulation of terrain erosion. In SCCG ’01: Proceedings of
the 17th Spring Conference on Computer Graphics (Washington,
DC, USA, April 2001), IEEE Computer Society, pp. 80–86. 2

[BM02] BENES B., MILLÁN E.: Virtual climbing plants compet-
ing for space. In IEEE Proceedings of the Computer Animation
2002 (2002), Magnenat-Thalmann N., (Ed.), IEEE Computer So-
ciety, pp. 33–42. 4, 13

[BMJ∗11] BENES B., MASSIH M. A., JARVIS P., ALIAGA D. G.,
VANEGAS C. A.: Urban ecosystem design. In Symposium on
Interactive 3D Graphics and Games (New York, NY, USA, 2011),
ACM, pp. 167–174. 5

[BMV∗11] BERNHARDT A., MAXIMO A., VELHO L., HNAIDI
H., CANI M.-P.: Real-time terrain modeling using cpu-gpu cou-
pled computation. In SIBGRAPI ’11: Proceedings of the 24th

Conference on Graphics, Patterns and Images (Alagoas, Brazil,
2011), pp. 64–71. 4

[BN08] BRUNETON E., NEYRET F.: Real-time rendering and
editing of vector-based terrains. In Computer Graphics Forum:
Proceedings of Eurographics 2008 (Crete, Greece, 2008), Euro-
graphics Association, pp. 311–320. 3, 6, 15

[BSW13] BAO F., SCHWARZ M., WONKA P.: Procedural facade
variations from a single layout. ACM Transactions on Graphics
32 (2013), 8:1–8:13. 8

[BTHB06] BENES B., TĚŠÍNSKÝ V., HORNYŠ J., BHATIA S. K.:
Hydraulic erosion. Computer Animation and Virtual Worlds 17, 2
(2006), 99–108. 3, 13

[Bun13] BUNDYSOFT: L3DT. Available from http://www.
bundysoft.com/L3DT/, 2013. 11

[BvMM11] BENES B., ŠT́AVA O., MĚCH R., MILLER G.:
Guided procedural modeling. In Computer Graphics Forum:
Proceedings of Eurographics 2011 (Llandudno, UK, 2011), Euro-
graphics Association, pp. 325–334. 14

[BWS10] BOKELOH M., WAND M., SEIDEL H.-P.: A connection
between partial symmetry and inverse procedural modeling. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29,
4 (2010), 104:1–104:10. 14

[Cag96] CAGDAS G.: A shape grammar model for designing
row-houses. Design Studies 17, 1 (1996), 35–51. 9, 13

[CdSF05] COELHO A. F., DE SOUSA A. A., FERREIRA F. N.:
Modelling urban scenes for lbms. In Web3D ’05: Proceedings of

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://www.bundysoft.com/L3DT/
http://www.bundysoft.com/L3DT/
http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 17

the 10th International Conference on 3D Web Technology (New
York, NY, USA, 2005), ACM, pp. 37–46. 9, 13

[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P., ZHANG
E.: Interactive procedural street modeling. In SIGGRAPH ’08:
Proceedings of the 35th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 2008), vol. 27,
ACM, pp. 1–10. 7, 8, 13, 14

[Cha93] CHARMAN P.: Solving space planning problems using
constraint technology. In NATO ASI Constraint Programming:
Students’ Presentations, TR CS 57/93, Institute of Cybernetics,
Estonian Academy of Sciences (Tallinn, Estonia, 1993), pp. 80–96.
10, 13

[Cho12] CHOJNACKI S.: Scoring functions for automatic arrange-
ment of business interiors. In SIGGRAPH Asia 2012 Technical
Briefs (2012), ACM, p. 27. 13

[dB09] DE CARPENTIER G. J., BIDARRA R.: Interactive gpu-
based procedural heightfield brushes. In FDG ’09: Proceedings
of the 4th International Conference on the Foundations of Digital
Games (Florida, USA, April 2009). 4, 13, 14

[DHL∗98] DEUSSEN O., HANRAHAN P., LINTERMANN B.,
MĚCH R., PHARR M., PRUSINKIEWICZ P.: Realistic model-
ing and rendering of plant ecosystems. In SIGGRAPH ’98: Pro-
ceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 1998), ACM,
pp. 275–286. 5, 13

[DP10] DORAN J., PARBERRY I.: Controlled procedural terrain
generation using software agents. IEEE Transactions on Compu-
tational Intelligence and AI in Games 2, 2 (June 2010), 111–119.
3

[dVN06] DE VILLIERS M., NAICKER N.: A Sketching Interface
for Procedural City Generation. Tech. rep., Department of Com-
puter Science, University of Cape Town, November 2006. 7,
13

[EBP∗12] EMILIEN A., BERNHARDT A., PEYTAVIE A., CANI
M.-P., GALIN E.: Procedural generation of villages on arbitrary
terrains. The Visual Computer 28 (2012), 809–818. 8, 13

[eos13a] E-ON SOFTWARE: Carbon scatter 2. Available from
http://www.carbonscatter.com/, 2013. 11

[eos13b] E-ON SOFTWARE: Plant factory. Available from
http://www.e-onsoftware.com/products/plant_
factory/, 2013. 11

[eos13c] E-ON SOFTWARE: Vue 11. Available from http://
www.e-onsoftware.com/products/vue/, 2013. 11

[EWM∗03] EBERT D. S., WORLEY S., MUSGRAVE F. K.,
PEACHEY D., PERLIN K.: Texturing & Modeling, a Procedural
Approach, 3rd ed. Elsevier, 2003. 1, 2, 3, 13

[FB08] FINKENZELLER D., BENDER J.: Semantic representation
of complex building structures. In CGV ’08: Computer Graph-
ics and Visualization (Amsterdam, The Netherlands, July 2008),
pp. 259–264. 9, 13

[FFC82] FOURNIER A., FUSSELL D., CARPENTER L.: Computer
rendering of stochastic models. Communications of the ACM 25,
6 (1982), 371–384. 2, 13

[Fin08] FINKENZELLER D.: Detailed building façades. IEEE
Computer Graphics and Applications 28, 3 (2008), 58–66. 9, 13

[GGG∗13] GÉNEVAUX J.-D., GALIN E., GUÉRIN E., PEYTAVIE
A., BENES B.: Terrain generation using procedural models based
on hydrology. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2013) 4 (2013). 5, 6

[GLLD12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS
G.: Gabor noise by example. ACM Trans. Graph. 31, 4 (July
2012), 73:1–73:9. 2

[GM01] GAMITO M. N., MUSGRAVE F. K.: Procedural land-
scapes with overhangs. In 10th Portuguese Computer Graphics
Meeting (2001), pp. 33–42. 2

[GMB06] GLASS K. R., MORKEL C., BANGAY S. D.: Dupli-
cating road patterns in south african informal settlements using
procedural techniques. In AFRIGRAPH ’06: Proceedings of the
4th International Conference on Computer Graphics, Virtual Real-
ity, Visualisation and Interaction in Africa (New York, NY, USA,
2006), ACM, pp. 161–169. 8, 13

[GMS09] GAIN J., MARAIS P., STRASSER W.: Terrain sketching.
In I3D ’09: Proceedings of the Symposium on Interactive 3D
Graphics and Games (New York, NY, USA, 2009), ACM, pp. 31–
38. 4, 13, 14

[GPGB11] GALIN E., PEYTAVIE A., GUÉRIN E., BENES B.:
Authoring hierarchical road networks. Computer Graphics Forum
(Proceedings of Pacific Graphics) 30 (2011), 2021–2030. 6, 13

[GPMG10] GALIN E., PEYTAVIE A., MARCHAL N., GUÉRIN E.:
Procedural generation of roads. In Computer Graphics Forum:
Proceedings of Eurographics 2010 (Norrköping, Sweden, May
2010), vol. 29, Eurographics Association, pp. 429–438. 6, 13, 15

[GPSL03] GREUTER S., PARKER J., STEWART N., LEACH G.:
Real-time procedural generation of ‘pseudo infinite’ cities. In
GRAPHITE ’03: Proceedings of the 1st International Conference
on Computer Graphics and Interactive Techniques in Australasia
and Southeast Asia (New York, NY, USA, 2003), ACM, pp. 87–94.
6, 7, 8, 13

[Gre89] GREENE N.: Voxel space automata: modeling with
stochastic growth processes in voxel space. In SIGGRAPH ’89:
Proceedings of the 16th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1989), vol. 23,
ACM, pp. 175–184. 4, 13

[Gre13] GREENWORKS: XFrog. Available from http://www.
xfrog.com, 2013. 11

[GSdB09] GROENEWEGEN S. A., SMELIK R. M., DE KRAKER
K. J., BIDARRA R.: Procedural city layout generation based
on urban land use models. In Eurographics 2009: Short Papers
(Munich, Germany, 2009), Eurographics Association, pp. 45–48.
8, 13

[Ham01] HAMMES J.: Modeling of ecosystems as a data source
for real-time terrain rendering. In DEM ’01: Proceedings of the
First International Symposium on Digital Earth Moving (London,
UK, 2001), Springer-Verlag, pp. 98–111. 5, 13

[HBW06] HAHN E., BOSE P., WHITEHEAD A.: Persistent real-
time building interior generation. In Sandbox 2006: Proceedings
of the ACM SIGGRAPH Symposium on Videogames (New York,
NY, USA, 2006), ACM, pp. 179–186. 10, 13

[HDBB10] HUIJSER R., DOBBE J., BRONSVOORT W. F.,
BIDARRA R.: Procedural natural systems for game level de-
sign. In Proceedings of SBGames 2010 (Florianopolis, SC, Brazil,
2010), pp. 177–186. 5

[HGA∗10] HNAIDI H., GUÉRIN E., AKKOUCHE S., PEYTAVIE
A., GALIN E.: Feature based terrain generation using diffusion
equation. In Computer Graphics Forum: Proceedings of Pacific
Graphics 2010 (2010), vol. 29, pp. 2179–2186. 4, 13, 14

[Hon71] HONDA H.: Description of the form of trees by the
parameters of the tree-like body: Effects of the branching angle
and the branch length on the shape of the tree-like body. Journal
of Theoretical Biology 31 (1971), 331–338. 4, 13

[Int13] INTERACTIVE DATA VISUALIZATION, INC.: SpeedTree.
http://www.speedtree.com/, Visited on July 2013. 4,
11

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://www.carbonscatter.com/
http://www.e-onsoftware.com/products/plant_factory/
http://www.e-onsoftware.com/products/plant_factory/
http://www.e-onsoftware.com/products/vue/
http://www.e-onsoftware.com/products/vue/
http://www.xfrog.com
http://www.xfrog.com
http://www.speedtree.com/
http://doi.org/10.1111/cgf.12276


18 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

[IOI06a] IJIRI T., OWADA S., IGARASHI T.: Seamless integra-
tion of initial sketching and subsequent detail editing in flower
modeling. Computer Graphics Forum 25, 3 (2006), 617–624. 5,
13

[IOI06b] IJIRI T., OWADA S., IGARASHI T.: The sketch L-System:
Global control of tree modeling using free-form strokes. In Smart
Graphics (2006), pp. 138–146. 5, 13

[KBKv09] KRIŠTOF P., BENES B., KŘIVANEK J., ŠŤAVA O.:
Hydraulic erosion using smoothed particle hydrodynamics. Com-
puter Graphics Forum (Proceedings of Eurographics 2009) 28, 2
(mar 2009). 3, 13

[KE81] KONING H., EIZENBERG J.: The language of the prairie:
Frank lloyd wright’s prairie houses. Environment and Planning B:
Planning and Design 8, 3 (1981), 295–323. 9, 13

[KK11] KRECKLAU L., KOBBELT L.: Procedural modeling of
interconnected structures. Comput. Graph. Forum 30, 2 (2011),
335–344. 15

[KK12a] KRECKLAU L., KOBBELT L.: Interactive Modeling by
Procedural High-Level Primitives. Computers and Graphics 36,
5 (2012), 376–386. 14

[KK12b] KRECKLAU L., KOBBELT L.: Smi 2012: Full interactive
modeling by procedural high-level primitives. Comput. Graph.
36, 5 (Aug. 2012), 376–386. 15

[KM06] KELLY G., MCCABE H.: A survey of procedural tech-
niques for city generation. Institute of Technology Blanchardstown
Journal 14 (2006), 87–130. 6

[KM07] KELLY G., MCCABE H.: Citygen: An interactive system
for procedural city generation. In Proceedings of GDTW 2007:
The 5th Annual International Conference in Computer Game De-
sign and Technology (Liverpool, UK, November 2007), pp. 8–16.
6, 7, 8, 13

[KMN88] KELLEY A. D., MALIN M. C., NIELSON G. M.: Ter-
rain simulation using a model of stream erosion. In SIGGRAPH

’88: Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1988),
ACM, pp. 263–268. 5, 6, 13

[KU07] KAMAL K. R., UDDIN Y. S.: Parametrically controlled
terrain generation. In GRAPHITE ’07: Proceedings of the 5th

International Conference on Computer Graphics and Interactive
Techniques in Australia and Southeast Asia (New York, NY, USA,
2007), ACM, pp. 17–23. 4, 13

[Kwo03] KWON D. Y.: ArchiDNA: A Generative System for Shape
Configuratons. Master’s thesis, University of Washington, 2003.
9, 13

[LD99] LINTERMANN B., DEUSSEN O.: Interactive Modeling of
Plants. IEEE Computer Graphics and Applications 19, 1 (1999),
56–65. 4, 11, 13

[LG06] LARIVE M., GAILDRAT V.: Wall grammar for building
generation. In GRAPHITE ’06: Proceedings of the 4th Interna-
tional Conference on Computer Graphics and Interactive Tech-
niques in Australasia and Southeast Asia (New York, NY, USA,
2006), ACM, pp. 429–437. 13

[Lin68] LINDENMAYER A.: Mathematical models for cellular
interaction in development. Journal of Theoretical Biology Parts
I and II, 18 (1968), 280–315. 4, 13

[LLC∗10] LAGAE A., LEFEBVRE S., COOK R., DEROSE T.,
DRETTAKIS G., EBERT D., LEWIS J., PERLIN K., ZWICKER
M.: State of the art in procedural noise functions. In EG 2010
- State of the Art Reports (May 2010), Hauser H., Reinhard E.,
(Eds.), Eurographics, Eurographics Association. 2

[LRBP12a] LONGAY S., RUNIONS A., BOUDON F.,

PRUSINKIEWICZ P.: Treesketch: Interactive modeling of
trees on a tablet. In Proceedings of the Eurographics Symposium
on Sketch-Based Interfaces and Modeling (2012), Eurographics,
pp. 107–120. 13

[LRBP12b] LONGAY S., RUNIONS A., BOUDON F.,
PRUSINKIEWICZ P.: Treesketch: Interactive procedural
modeling of trees on a tablet. In Proceedings of the International
Symposium on Sketch-Based Interfaces and Modeling (Aire-la-
Ville, Switzerland, 2012), Eurographics Association, pp. 107–120.
5

[LRW∗06] LECHNER T., REN P., WATSON B., BROZEFSKI C.,
WILENSKI U.: Procedural modeling of urban land use. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Research posters (New York,
NY, USA, 2006), ACM, p. 135. 6, 7, 13

[LSWW11] LIPP M., SCHERZER D., WONKA P., WIMMER M.:
Interactive modeling of city layouts using layers of procedu-
ral content. In Computer Graphics Forum: Eurographics 2011
(Llandudno, UK, April 2011), vol. 30, Eurographics Association,
pp. 345 – 354. 7, 13, 14, 15

[LWW03] LECHNER T., WATSON B., WILENSKY U.: Procedural
city modeling. In 1st Midwestern Graphics Conference (St. Louis,
MO, USA, 2003). 6, 7, 13

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive visual
editing of grammars for procedural architecture. In SIGGRAPH

’08: Proceedings of the 35th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 2008),
ACM, pp. 1–10. 9, 13, 14

[LYO∗10] LIVNY Y., YAN F., OLSON M., CHEN B., ZHANG H.,
EL-SANA J.: Automatic reconstruction of tree skeletal structures
from point clouds. ACM Transactions on Graphics (Proceedings
of SIGGRAPH ASIA 2010) 29, 6 (December 2010), 151:1–151:8.
4, 13

[LZG10] LI Z., ZHU Q., GOLD C.: Digital terrain modeling:
principles and methodology. CRC press, 2010. 3

[Man82] MANDELBROT B. B.: The Fractal Geometry of Nature.
W. H. Freeman, 1982. 2

[Mar06] MARTIN J.: Procedural house generation: a method for
dynamically generating floor plans. I3D ’06: Poster Proceedings
of the 2006 SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 2006. 10, 13

[Mil86] MILLER G. S. P.: The definition and rendering of terrain
maps. In SIGGRAPH ’86: Proceedings of the 13th Annual Con-
ference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1986), vol. 20, ACM, pp. 39–48. 2, 13

[MKM89] MUSGRAVE F. K., KOLB C. E., MACE R. S.: The
synthesis and rendering of eroded fractal terrains. In SIGGRAPH

’89: Proceedings of the 16th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1989),
ACM, pp. 41–50. 3, 12, 13

[MM10] MARSON F., MUSSE S. R.: Automatic generation of
floor plans based on squarified treemaps algorithm. International
Journal of Computer Games Technology 2010 (January 2010),
1–10. 10, 13

[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models of plants in-
teracting with their environment. In SIGGRAPH ’96: Proceedings
of the 23rd annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 1996), ACM, pp. 397–410.
4, 13

[MS09] MCCRAE J., SINGH K.: Sketch-based path design. In GI
’09: Proceedings of Graphics Interface 2009 (Toronto, Ontario,
Canada, 2009), Canadian Information Processing Society, pp. 95–
102. 6, 13

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276


R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds 19

[MSK10] MERRELL P., SCHKUFZA E., KOLTUN V.: Computer-
generated residential building layouts. ACM Transactions on
Graphics 29, 5 (2010), 181:1–181:12. 10, 13

[MSL∗11] MERRELL P., SCHKUFZA E., LI Z., AGRAWALA M.,
KOLTUN V.: Interactive furniture layout using interior design
guidelines. In SIGGRAPH ’11: Proceedings of the 38th Annual
Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 2011), ACM, pp. 87:1–87:10. 10, 11, 13

[Mus93] MUSGRAVE F. K.: Methods for Realistic Landscape
Imaging. PhD thesis, Yale University, New Haven, CT, USA,
1993. 13

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings. In SIGGRAPH

’06: Proceedings of the 33rd Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 2006),
ACM, pp. 614–623. 9, 12, 13

[MZWG07] MÜLLER P., ZENG G., WONKA P., GOOL L. V.:
Image-based procedural modeling of facades. In SIGGRAPH ’07:
Proceedings of the 34th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 2007), vol. 26,
ACM, pp. 85:1–85:10. 8, 9

[Pat12] PATOW G.: User-friendly graph editing for procedural
modeling of buildings. IEEE Computer Graphics and Applica-
tions 32 (2012), 66–75. 9, 13, 14

[Per85a] PERLIN K.: An Image Synthesizer. In SIGGRAPH ’85:
Proceedings of the 12th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 1985), vol. 19,
ACM, pp. 287–296. 3, 13

[Per85b] PERLIN K.: An image synthesizer. SIGGRAPH Comput.
Graph. 19, 3 (July 1985), 287–296. 2

[PGGM09] PEYTAVIE A., GALIN E., GROSJEAN J., MERILLOU
S.: Arches: a framework for modeling complex terrains. In
Computer Graphics Forum: Proceedings of Eurographics 2009
(2009), Eurographics Association, pp. 457–467. 2, 3, 13

[PH93] PRUSINKIEWICZ P., HAMMEL M.: A fractal model of
mountains with rivers. In Proceedings of Graphics Interface ’93
(May 1993), pp. 174–180. 5, 13

[PHL∗09] PALUBICKI W., HOREL K., LONGAY S., RUNIONS
A., LANE B., MĚCH R., PRUSINKIEWICZ P.: Self-organizing
tree models for image synthesis. ACM Trans. Graph. 28, 3 (2009),
1–10. 4, 5, 13

[PHM93] PRUSINKIEWICZ P., HAMMEL M. S., MJOLSNESS E.:
Animation of plant development. In SIGGRAPH ’93: Proceed-
ings of the 20th annual conference on Computer graphics and
interactive techniques (New York, NY, USA, 1993), ACM Press,
pp. 351–360. 4, 13

[PJS92] PEITGEN H., JÜRGENS H., SAUPE D.: Chaos and frac-
tals: new frontiers of science. Springer-Verlag, 1992. 2

[Pla13] PLANETSIDE: Terragen 2. Available from http://www.
planetside.co.uk, 2013. 11

[PLH88] PRUSINKIEWICZ P., LINDENMAYER A., HANAN J.:
Development models of herbaceous plants for computer imagery
purposes. In SIGGRAPH ’88: Proceedings of the 15th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1988), ACM Press, pp. 141–150. 4, 13

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural Modeling
of Cities. In SIGGRAPH ’01: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 2001), ACM, pp. 301–308. 6, 7, 8, 13

[Pro13] PROCEDURAL: CityEngine. Available from http://
www.esri.com/software/cityengine/, 2013. 12

[Pru86] PRUSINKIEWICZ P.: Graphical applications of l-systems.
In Proceedings on Graphics Interface ’86/Vision Interface ’86
(1986), pp. 247–253. 4, 13

[Pru97] PRUSINKIEWICZ P.: A look to visual modeling of plants.
In German Conference on Bioinformatics (1997), Springer Com-
puter Science, Springer–Verlag Wien New York. 4, 13

[Pru00] PRUSINKIEWICZ P.: Simulation modeling of plants and
plant ecosystems. Commun. ACM 43, 7 (2000), 84–93. 4, 13

[PSK∗12] PIRK S., STAVA O., KRATT J., SAID M. A. M., NEU-
BERT B., MĚCH R., BENES B., DEUSSEN O.: Plastic trees:
interactive self-adapting botanical tree models. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2012) 31, 4 (July 2012),
50:1–50:10. 5, 13

[RCMLS96] RAU-CHAPLIN A., MACKAY-LYONS B., SPIEREN-
BURG P. F.: The lahave house project: Towards an automated
architectural design service. In CADEX ’96: Proceedings of the
International Conference on Computer-Aided Design (Hagenberg,
Austria, September 1996). 9, 13

[RFL∗05] RUNIONS A., FUHRER M., LANE B., FEDERL P.,
ROLLAND-LAGAN A.-G., PRUSINKIEWICZ P.: Modeling and
visualization of leaf venation patterns. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2005) 24, 3 (2005), 702–
711. 4, 13

[RLP07] RUNIONS A., LANE B., PRUSINKIEWICZ P.: Modeling
trees with a space colonization algorithm. Eurographics Workshop
on Natural Phenomena (2007), 63–70. 4, 13

[Ros13] ROSENBERG J.: Geocontrol 2. Available from http:
//www.geocontrol2.com, 2013. 11

[Sau06] SAUNDERS R. L.: Terrainosaurus: Realistic Terrain Syn-
thesis Using Genetic Algorithms. Master’s thesis, Texas A&M
University, December 2006. 3, 13

[ŠBBK08] ŠŤAVA O., BENES B., BRISBIN M., KŘIVÁNEK J.: In-
teractive terrain modeling using hydraulic erosion. In Eurograph-
ics / SIGGRAPH Symposium on Computer Animation (Dublin,
Ireland, 2008), Eurographics Association, pp. 201–210. 13

[ŠBM∗10] ŠŤAVA O., BENES B., MĚCH R., ALIAGA D. G.,
KRIŠTOF P.: Inverse Procedural Modeling by Automatic Gener-
ation of L-systems. In Computer Graphics Forum: Proceedings
of Eurographics 2010 (2010), vol. 29, Eurographics Association,
pp. 665–674. 14

[SG71] STINY G., GIPS J.: Shape grammars and the generative
specification of painting and sculpture. In Proceedings of the
Workshop on Generalisation and Multiple Representation (1971).
9

[Sid13] SIDE EFFECTS SOFTWARE: Houdini. Available from
http://www.sidefx.com/, 2013. 12

[SMBC13] SILVA P., MUELLER P., BIDARRA R., COELHO A.:
Node-based shape grammar representation and editing. In PCG

’13: Proceedings of the 2013 Workshop on Procedural Content
Generation in Games (Chania, Crete, Greece, 2013), ACM. 9, 14

[Smi84] SMITH A. R.: Plants, fractals, and formal languages. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1984), ACM Press, pp. 1–10. 1

[SS05] STACHNIAK S., STÜRZLINGER W.: An algorithm for
automated fractal terrain deformation. Computer Graphics and
Artificial Intelligence 1 (May 2005), 64–76. 3, 13

[STdB10a] SMELIK R. M., TUTENEL T., DE KRAKER K. J.,
BIDARRA R.: Integrating procedural generation and manual
editing of virtual worlds. In PCG ’10: Proceedings of the 2010
Workshop on Procedural Content Generation in Games (New
York, NY, USA, 2010), ACM, pp. 1–8. 14

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://www.planetside.co.uk
http://www.planetside.co.uk
http://www.esri.com/software/cityengine/
http://www.esri.com/software/cityengine/
http://www.geocontrol2.com
http://www.geocontrol2.com
http://www.sidefx.com/
http://doi.org/10.1111/cgf.12276


20 R.M. Smelik et al. / A Survey on Procedural Modeling for Virtual Worlds

[STdB10b] SMELIK R. M., TUTENEL T., DE KRAKER K. J.,
BIDARRA R.: Interactive creation of virtual worlds using pro-
cedural sketching. In Proceedings of Eurographics 2010: Short
Papers (May 2010), Eurographics Association. 4, 13

[STdB11] SMELIK R. M., TUTENEL T., DE KRAKER K. J.,
BIDARRA R.: A declarative approach to procedural modeling
of virtual worlds. Computers & Graphics 35, 2 (April 2011),
352–363. 5, 15

[SYBG02] SUN J., YU X., BACIU G., GREEN M.: Template-
based generation of road networks for virtual city modeling. In
VRST ’02: Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (New York, NY, USA, 2002), ACM,
pp. 33–40. 6, 7, 13

[TBSd09] TUTENEL T., BIDARRA R., SMELIK R. M., DE
KRAKER K. J.: Rule-based layout solving and its application to
procedural interior generation. In 3AMIGAS: Proceedings of the
CASA 2009 Workshop on 3D Advanced Media in Gaming and
Simulation (Amsterdam, The Netherlands, June 2009), pp. 15–24.
10, 13

[TBSd10] TUTENEL T., BIDARRA R., SMELIK R. M., DE
KRAKER K. J.: A semantic scene description language for proce-
dural layout solving problems. In AIIDE ’10: Proceedings of the
6th Conference on Artificial Intelligence and Interactive Digital
Entertainment (Stanford, CA, USA, October 2010). 10

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH
R., KOLTUN V.: Metropolis procedural modeling. ACM Trans.
Graph. 30 (April 2011), 11:1–11:14. 14

[TSL∗11] TUTENEL T., SMELIK R. M., LOPES R., DE KRAKER
K. J., BIDARRA R.: Generating consistent buildings: A semantic
approach for integrating procedural techniques. IEEE Transac-
tions on Computational Intelligence and AI in Games 3, 3 (2011),
274–288. 15

[VABW09] VANEGAS C. A., ALIAGA D. G., BENES B., WAD-
DELL P. A.: Interactive design of urban spaces using geometrical
and behavioral modeling. ACM Transactions on Graphics: Pro-
ceedings of ACM SIGGRAPH Asia 2009 28, 5 (December 2009),
1–10. 7, 13

[VBHv11] VANEK J., BENES B., HEROUT A., ŠŤAVA O.: Large-
scale physics-based terrain editing using adaptive tiles on the gpu.
IEEE Computer Graphics and Applications (2011). 3, 13

[VGDA∗12] VANEGAS C. A., GARCIA-DORADO I., ALIAGA
D. G., BENES B., WADDELL P.: Inverse design of urban proce-
dural models. ACM Transactions on Graphics 31 (2012), 168:1–
168:11. 13, 14

[VKW∗12] VANEGAS C. A., KELLY T., WEBER B., HALATSCH
J., ALIAGA D., MÜLLER P.: Procedural generation of parcels in
urban modeling. In Computer Graphics Forum: Proceedings of
Eurographics 2012 (2012), Eurographics Association. 8

[Vor08] VORONOI G. F.: Nouvelles applications des paramètres
continus à la théorie des formes quadratiques. Journal für die
Reine und Angewandte Mathematik 134 (1908), 198–287. 7

[WCMT07] WOJTAN C., CARLSON M., MUCHA P. J., TURK G.:
Animating corrosion and erosion. In Eurographics Workshop on
Natural Phenomena (2007). 3, 13

[WMV∗08] WATSON B., MÜLLER P., VERYOVKA O., FULLER
A., WONKA P., SEXTON C.: Procedural urban modeling in
practice. IEEE Computer Graphics and Applications 28 (2008),
18–26. 6

[WMWG09] WEBER B., MÜLLER P., WONKA P., GROSS M.:
Interactive Geometric Simulation of 4D Cities. Computer Graph-
ics Forum: Proceedings of Eurographics 2009 28 (April 2009),
481–492. 7, 13

[WP95] WEBER J., PENN J.: Creation and rendering of realistic
trees. In Proceedings of SIGGRAPH ’95 (1995), pp. 119–128. 4

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant architecture. In SIGGRAPH ’03: Proceedings of the
30th Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 2003), ACM, pp. 669–677. 9,
13

[XFT∗08] XIAO J., FANG T., TAN P., ZHAO P., OFEK E., QUAN
L.: Image-based facade modeling. ACM Trans. Graph. 27, 5 (Dec.
2008), 161:1–161:10. 8

[YCZY04] YONG L., CONGFU X., ZHIGENG P., YUNHE P.: Se-
mantic modeling project: Building vernacular house of southeast
china. In VRCAI ’04: Proceedings of the 2004 ACM SIGGRAPH
International Conference on Virtual Reality Continuum and its
Applications in Industry (New York, NY, USA, 2004), ACM,
pp. 412–418. 9, 13

[YK12] YOON D., KIM K.-J.: 3D game model and texture gener-
ation using interactive genetic algorithm. In Proceedings of the
Workshop at SIGGRAPH Asia (2012), ACM, pp. 53–58. 13

[YYT∗11] YU L.-F., YEUNG S. K., TANG C.-K., TERZOPOU-
LOS D., CHAN T. F., OSHER S.: Make it home: Automatic
optimization of furniture arrangement. In SIGGRAPH ’11: Pro-
ceedings of the 38th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 2011), ACM,
pp. 86:1–86:12. 10, 13

[ZSTR07] ZHOU H., SUN J., TURK G., REHG J. M.: Terrain
synthesis from digital elevation models. IEEE Transactions on
Visualization and Computer Graphics 13, 4 (July-Aug. 2007),
834–848. 3

[ZXJ∗13] ZHANG H., XU K., JIANG W., LIN J., COHEN-OR D.,
CHEN B.: Layered analysis of irregular facades via symmetry
maximization. ACM Trans. Graph. 32, 4 (July 2013), 121:1–
121:13. 8

Published in COMPUTER GRAPHICS Forum. Available at http://doi.org/10.1111/cgf.12276.

http://doi.org/10.1111/cgf.12276

