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“But why dwell upon these things as though human wit were satisfied with earthly regions

and had not dared advance beyond?”

–Galileo Galilei, Sidereus Nuncius, 1610

“. . .for all the difficulty of philosophy seems to consist in this—from the phænomena of

motions to investigate the forces of nature, and then from these forces to demonstrate the

other phænomena;”

–Isaac Newton, Principia (author’s preface), 1686

On a more personal note, thesis writing always falls in proximity to child birth. We were

expecting our first son while I was writing my undergraduate thesis at BYU, and while

that work was never officially dedicated to him, it really should have been, at least in part.

Now our second boy has arrived during the process of authoring this document (remember,

correlation doesn’t necessarily prove causation), and so I’d like to dedicate this to him.

However, I cannot let myself do so without recognition of the other two most important

people in my life, my sweet wife and our first son:

–for Grayson, Jackson and Lori
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3.3 Poincaré Maps................................................................................................ 46

3.4 Finite-Time Lyapunov Exponents.................................................................. 48

3.5 Invariant Manifolds ........................................................................................ 54

3.5.1 Stable and Unstable Manifolds Associated with L1 and L2 ............... 55

3.5.2 Manifolds Associated with a Periodic Orbit (Maps) .......................... 58

3.6 Lagrangian Coherent Structures .................................................................... 62

3.6.1 A Formal Defintion of Ridges ............................................................. 62

3.6.2 The Nature of Lagrangian Coherent Structures ................................. 63



vi

Page

4 COMPUTATIONAL METHODS........................................................................... 66

4.1 Numerical Considerations .............................................................................. 66

4.1.1 Integration.......................................................................................... 66

4.1.2 Interpolation....................................................................................... 67

4.1.3 Regularization .................................................................................... 68

4.2 Ridge Calculation........................................................................................... 69

4.3 Parallel Processing ......................................................................................... 73

4.3.1 CPU Implementation.......................................................................... 73

4.3.2 GPU Implementation ......................................................................... 75

4.4 Visualization .................................................................................................. 76

5 ANALYSIS AND RESULTS................................................................................... 80

5.1 Lagrangian Coherent Structures in the Earth-Moon System......................... 80

5.1.1 Structures Associated with a Lyapunov Orbit ................................... 81

5.1.2 Structures In the L4 Region with CL4 < C < CL2 ............................. 101

5.2 Selected Lagrangian Coherent Structures in the Sun-Saturn System ............ 105

5.2.1 Potential Sun-Saturn Transit Trajectories.......................................... 105

5.2.2 Long-Term Trajectory Analysis in the Sun-Saturn System................ 114

6 CONCLUSION ....................................................................................................... 124

6.1 Summary........................................................................................................ 124

6.2 Future Work................................................................................................... 125

6.3 Concluding Remarks ...................................................................................... 125

LIST OF REFERENCES ............................................................................................ 126



vii

LIST OF TABLES

Table Page

2.1 Earth-Moon Libration Points .............................................................................. 21

2.2 Jacobi Constant Values for Earth-Moon Libration Points .................................. 21

3.1 The Lyapunov Spectrum and Steady State Behavior.......................................... 45

3.2 LCS and Manifold Correspondence ..................................................................... 64

4.1 Speed Improvements with OpenMP Multi-Core Parallelization.......................... 74

5.1 Data Points Selected from Figure 5.15 for Closer Inspection Via Plotting ......... 95

5.2 Point Data Selected Manually from Figure 5.25 for Inspection........................... 109



viii

LIST OF FIGURES

Figure Page

2.1 Model for the circular restricted three-body problem ......................................... 10

2.2 Equilibrium points in the CR3BP....................................................................... 20

2.3 Earth-Moon ZVC for various C values................................................................ 23

2.4 More Earth-Moon ZVC(S) for various C values.................................................. 24

2.5 A linear ellipse about L1 ..................................................................................... 30

2.6 Perturbed and reference solutions ....................................................................... 31

2.7 Correcting a linear solution with the STM ......................................................... 33

2.8 Transition from a linear solution to nonlinear solutions...................................... 37

2.9 Families of planar orbits about each of the libration points separately............... 39

2.10 Families of planar orbits about each of the libration points................................ 40

3.1 Stretching of an ellipsoid represented by the Lyapunov exponents ..................... 45
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ABSTRACT

Short, Cody R. M.S., Purdue University, December 2010. Lagrangian Coherent Structures
in the Circular Restricted Three-Body Problem. Major Professor: Kathleen C. Howell.

The mathematical formulation that represents the motion of a particle under the simul-

taneous influence of two gravitational fields is identified as the Circular Restricted Three-

Body Problem (CR3BP). This model of an autonomous dynamical system displays both

ordered and chaotic behavior. For some behaviors, simple linear analysis relative to a nu-

merically determined point solution in the problem is sufficient to reveal interesting aspects

of the motion, while other scenarios require more extensive procedures to capture the unique

features comprising the dynamical behavior. This balance between predictability and com-

plexity that is exhibited in the CR3BP, along with the typical approaches for its analysis,

supplies excellent justification for the application of relatively straightforward techniques

typically applied in more complicated problems. Among these, a number of versatile anal-

ysis tools are based on the concepts of the Finite-Time Lyapunov Exponent (FTLE) and

Lagrangian Coherent Structures (LCS).

Lagrangian coherent structures appear as height ridges, or curves of constrained maxima,

in a field of FTLE values. Application of interactive visualization, numerical methods, and

parallel computation is employed to obtain FTLE data and the associated LCS. These

results are compared with known structures to further establish LCS as a useful tool for

application in the CR3BP and to demonstrate LCS as a seed for a variety of additional

research questions. Results associated with potential applications to mission design are

supplied, and comparisons between LCS methods and concurrent research efforts involving

other, more familiar, approaches are generated with particular focus on the advantages of

FTLE and LCS methods. Ultimately, this analysis serves to validate the concepts of FTLE

and LCS as an effective means to further understand the complex behavior in the CR3BP.



1

1. INTRODUCTION

Even the earliest of recorded history reflects humanity’s desire and effort to understand

its place and purpose. A major avenue for the progression of this understanding has been

critical thought and the resulting practical applications. Throughout the centuries, critical

thinkers of all statures have contributed piece-by-piece to the present body of knowledge.

This effort reflects an attempt to assimilate many facets of that knowledge and contribute.

In this introduction, the current problem is established, placed into context, and its analysis

briefly outlined.

1.1 Problem Scope and Definition

This analysis serves a dual purpose. First, the relatively recent emergence of Lagrangian

Coherent Structures (LCS) for the exploration of dynamical systems is applied to the Cir-

cular Restricted Three-Body Problem (CR3BP). This type of application is not an entirely

novel effort as previous researchers have applied LCS to similar problems. However, the ul-

timate results represent new applications that highlight and establish the applicability and

advantages of the concepts. No less important, the secondary purpose is the compilation

and organization of the extensive idealogical framework that is necessary to expand this

application to more detailed models of multi-body motion. While LCS continue to draw

significant attention as a new avenue of research in general, their application in the astro-

dynamics community has been relatively rare. Therefore, a comprehensive development of

the associated theory with respect to orbital mechanics and trajectory design is timely, and

the applications in this analysis serve as a foundation to expand their use.

1.2 This Work in Context

A consequence of melding concepts from different areas is a natural split in the ancestries

of those ideas. Such a separation is exhibited here and, as such, the major historical
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contributions to the framework for both concepts are provided. First, the astrodynamical

contributions that are key in the formulation of the circular restricted three-body problem

and in the investigation of the resulting behavior are summarized. The contributions that

ultimately lead to Lagrangian coherent structures are then elaborated.

1.2.1 History of the Three-Body Problem

The context for the three-body problem is expansive. Efforts to describe and explain the

motion of celestial bodies are evident in the earliest recorded history. However, despite the

combined efforts of generations of astronomers and philosophers, not until Johannes Kepler

empirically established his laws of planetary motion in 1609 [3], did a reasonably correct

description of planetary motion emerge. Kepler postulated that the motion of a planet is

elliptical, but he did not explain the cause. Galileo’s investigations occured concurrently and

resulted in the methodolgical paradigm [4] that would explain the general basis of Kepler’s

kinematical description in terms of forces and motion. Employing the scientific process

of Galileo, Newton deduced the law of gravitation [2], one of the chief results included in

his Principia published in 1687. However, to fully establish the theoretical foundations of

gravitation, the model should correctly solve for the combined motion of multiple bodies

and, thus, examination of the n-body problem was initiated. Given the force model for

gravity, Newton solved the two-body problem using geometry and calculus. Subsequently,

in 1710, Johann Bernoulli justified Kepler’s empirical ellipses by proving that conics solve

the two-body problem in general [5]. With the solution of the two-body problem, the next

logical effort toward solving the n-body problem is to consider three bodies. The addition

of a single mass to the problem seemingly represents only a minor increase in complexity

but, unfortunately, this is not the case. No closed-form solution to the three-body problem

is currently known.

Due to the inherent difficulties in analysis of the three-body problem and the lack of

a solution, alternative methods for approaching the problem were considered. Euler [6]

reformulated the problem into the “restricted” problem (as later termed by Poincaré) in

1772. A significant component in this formulation was the introduction of a rotating refer-

ence frame [5]. Additionally, Euler identified three particular solutions of the problem, the
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collinear libration points; Lagrange, concurrently, identified both the collinear and the two

triangular libration points for a total of five equilibrium solutions.

In 1843, Jacobi reduced the order of the problem from eighteen (three positions and

three velocities for three bodies) to six (postitions and velocities for the body of most

interest). At the same time, he introduced an integral of the motion, later named the Jacobi

integral [7]. With this constant, boundaries on the motion were distilled by Hill in 1878.

These boundaries appear as curves or surfaces in two- or three-dimensional configuration

space, respectively. An infinite number of periodic orbits in the restricted problem were

predicted by Poincaré, who originally introduced surfaces of section (later termed Poincaré

sections) to gain insight into the behavior in the CR3BP. Poincaré also demonstrated the

existence of deterministic chaos in the restricted problem. These significant contributions

by Poincaré are found in his major treatise, New Methods of Celestial Mechanics (1893) [8].

The close of the 19th century saw further development in periodic orbits with the efforts of

Darwin, who built on ideas of Lagrange and Hill [5], beginning in 1897.

In 1912, Sundman [9] first offered a solution in the general three-body problem by

means of a convergent power series. Several decades later, in 1991, Quidong Wang offered

a similar solution for the general n-body problem with n > 3 [10, 11]. Unfortunately, both

series solutions are characterized by slow convergence and are generally of little practical

use [10]. In 1920, Moulton published Periodic Orbits [12], offering the status of work

on periodic orbits to that time; the calculation of periodic orbits was included, thereby

confirming their existence. Moulton, unable to predict future computational tools, indicated

that the numerically intensive nature of identifying such orbits would prohibit periodic

orbits from serious future study [13]. In 1966, Hénon employed Poincaré sections in his

examination of the three-body problem, but it was a surprisingly rare application [14]. In

1967, Szebehely’s Theory of Orbits: The Restricted Problem of Three Bodies [7] proved

to be the comprehensive treatise on the three-body problem up to that point. Szebehely

offered an extensive and cohesive overview of the aspects of the restricted problem, as well

as numerous analytical and numerical results. His Theory of Orbits continues to be an

authoritative and widely cited text.

With one of the most famous speeches in recent history, President John F. Kennedy

effectively transitioned the three-body problem from a curiosity to a very practical concern,
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when, on September 12, 1962, he stated, “We choose to go to the Moon.” [15, 16] While

the early investigators of the three-body problem, including Newton, had considered the

Earth, Moon, and a third body as a suitable configuration for investigation, it wasn’t until

space exploration expanded into a multi-body regime, where a spacecraft would be under

the continuous influence of two significant gravitational fields, that the three-body problem

gained practical interest, typified by the Earth-Moon-spacecraft configuration. In the early

1970’s, toward the end of the Apollo program, and in support of options for the last few

planned Apollo flights, Breakwell et al. [17] and Farquhar [18] explored trajectories that

emerge within the context of the three-body problem. For a manned mission to the far side

of the Moon, communications support was to be supplied via a relay satellite in a “halo”

orbit about the trans-lunar collinear libration point. These analyses were largely theoretical

in nature and, while the Apollo program ended before such a relay option was realized, these

studies renewed interest in applications of the three-body problem to mission design. Halo

orbits were extensively explored in a number of investigations including a numerical study

accomplished by Howell and Breakwell (1984) [19, 20]. Since these early years of applied

three-body analyses, many successful missions have incorporated libration point orbits be-

ginning with ISEE-3 [21] and continuing through Genesis [22] and others [23]. Currently,

the ARTEMIS mission is underway which extensively exploits three-body analysis to re-

purpose two spacecraft with limited remaining fuel from a successfully completed previous

mission [24,25].

1.2.2 The Advent of Lagrangian Coherent Structures

While Lagragian Coherent Structures (LCS) are relatively nascent when compared with

the three-body problem, introduced just over a decade ago, the underlying concept of co-

herent structures is timeless. Peacock and Dabin [26] indicate that da Vinci was the first

to capture structures in a moving fluid by sketching different flow patterns in water flowing

over obstacles [27] some 500 years ago. Much more recently, in 2000, George Haller [28,29]

as well as Haller and Yuan [30] formalized the mathematics of LCS and gave the concept

its name. While there are different metrics that can be employed to identify LCS, the

Finite-Time Lyapunov Exponent (FTLE) is generally the most common, where relatively
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high values of the FTLE indicate LCS. The FTLE measures the stretching between adjacent

trajectories over a prescribed time interval. Building on his own work, Haller later identi-

fied and provided additional criteria to distinguish between actual stretching and shear [31].

Shadden et al. [32] have rigorously established the fundamental idea that LCS act as trans-

port barriers in the flow by proving the flux across LCS is negligible. Mathur et al. [33] have

improved on the criteria for extracting LCS, and Lekien et al. [34] established the relevance

of LCS methodology in n-dimensional motion.

Given the well-established theoretical foundation, the popularity of LCS has blossomed

recently such that active research is occuring in multiple disciplines. Simultaneous activities

in computer science and visualization seek to effectively compute and extract LCS. Specif-

ically, work by Garth et al. [35], featuring adaptive mesh refinement for the calculation of

FTLE near structures, has provided one means for improving the time efficiency of methods

for obtaining LCS. Additional applications of LCS have been presented regarding weather

data, transport in the oceans, aeronautical computational fluid dynamics, and even human

musculoskeletal biomechanics, circulation, and airway transport [26].

The application of LCS in an astrodynamical context is not entirely novel. Villac [36]

along with Villac and Broschart [37] apply fast Lyapunov indicators and chaoticity indi-

cators, both metrics similar in form to FTLE, to preliminary spacecraft trajectory design

in multi-body environments and for stability analysis near small bodies, respectively. Even

more directly, Gawlik et al. [38] offer an analysis of LCS in the planar elliptic restricted

three-body problem. Each of these contributions serves to indicate the timeliness and rele-

vance of this work.

1.3 Overview of the Present Work

With the extensive history of analysis in the three-body problem, a significant amount

of insight is already available. Fortunately, the nature of the problem is such that many

of its aspects can be examined in ever-finer levels of detail. At the same time, an already

well-established direction of investigation in the three-body problem is frequently amenable

to extensions or alternative perspectives. While Lagrangian concepts, in general, exhibit

an equally considerable pedigree, the concept of Lagrangian coherent structures is new.
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The ultimate goal of this analysis is an overarching description of how Lagrangian coherent

structures are applied to deliver new insight. Further, this analysis serves as an organized

compilation of theory to lay the groundwork for other discoveries.

A simple outline of the thesis follows:

� Chapter 2: General Formulations and the Restricted Problem

The circular restricted three-body problem is the primary working model for this

investigation. As such, the derivation is detailed beginning with the general n-body

problem and progressing through the subsequent focus, restriction, and simplification.

Linear analysis and a means for predicting changes introduced by small variations

are also discussed. Finally, an exposition of dynamical systems concepts, which are

effectively exhibited in the CR3BP, including equilibrium points and periodic orbits,

is presented.

� Chapter 3: Lagrangian Coherent Structures

The ideas of Lagrangian analysis are presented in this chapter. Additional dynamical

systems concepts, including an introduction to invariant manifolds, Lyapunov expo-

nents, and Poincaré sections are introduced as they relate to Lagrangian coherent

structures. A critical modification in the definition of Lyapunov exponents applicable

to LCS, that is, the definition of the finite-time Lyapunov exponent, is elaborated.

This chapter concludes with a discussion of the basic concept of LCS.

� Chapter 4: Computational Methods

To some degree, the expansion of computational capabilities has revitalized research

in the three-body problem. Poincaré maps and Lagrangian analysis, for example,

were considered infeasible only little more than a decade ago due to their numeri-

cally intensive nature. It is not suprising, then, that the methodology associated with

this analysis is largely computational. As such, an overview of the applicable com-

putational tools is introduced including numerical methods, parallel approaches, and

visualization.
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� Chapter 5: Analysis and Results

Results generated for several sample cases are presented. Initially, a comprehensive

example of the ideas presented in previous chapters is discussed. These ideas are pre-

sented as they apply to a specific orbit in the CR3BP, one that is characteristic of an

Earth-Moon-spacecraft configuration. Additional analysis in this same system illus-

trates the potential of LCS to support the design of trajectory transfers. Comparison

between FTLE/LCS results and other concurrent research efforts is also offered.

� Chapter 6: Conclusion

Finally, a summary of the entire investigation is presented. Additionally, comments

are included regarding potential future investigation associated with this analysis, and

concluding remarks are given.
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2. GENERAL FORMULATIONS AND THE RESTRICTED PROBLEM

The Restricted Three-Body Problem (R3BP) is an excellent example of a commonly occur-

ing natural configuration that is modeled well as a dynamical system. The formulation of

the R3BP as a dynamical system is explored in this chapter, as well as some of the com-

mon aspects of such systems as applied to the R3BP. Initially, the R3BP is defined and the

equations of motion are derived. Then, some of the significant mathematical and dynamical

concepts illustrated by the problem are introduced.

2.1 Critical Assumptions

Newton posed the n-body problem as a natural consequence of the observed motions of

bodies in the solar system. Simply put, the n-body problem models the motion of n bodies

under their mutual gravitational influences. Given that each body in an n-body system

affects the behavior of each other body, it is quickly apparent that a complete model for

such a system is very complex and only becomes more so as n increases. No closed-form

solution to the n-body problem is currently known; an infinite series solution exists, but

it is of limited practical value [10]. Given the lack of a useful analytical solution, only a

few viable options remain to investigate the n-body problem. Additional assumptions and

simplifications, as well as particular solutions and numerical simulations, are all reasonable

starting points. The introduction of additional assumptions to simplify the model is the

first step in this analysis.

The first simplification in exploring the n-body problem, is a narrowing of the scope.

Rather than investigating n mutually gravitating bodies, consideration of a smaller subset

offers effective insight. For example, a two-body formulation has been studied extensively

and applied to many important practical applications. However, the two-body problem

yields an analytical solution which does not capture some of the features of interest in

this analysis. On the other hand, formulating the problem in terms of three bodies pro-

duces a model sufficiently complex to reveal many important characteristics while remaining
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tractable. Three-body configurations are often representative of significant physical systems.

For example, a planet-moon-spacecraft or Sun-planet-moon system is frequently a focus of

interest in astronomy and astrodynamics.

In the restricted three-body problem, the next key assumption concerns the relative

masses. Of the three bodies in the general three-body problem, no restriction is imposed

on the value of their masses. However, as noted above, a common three-body system could

involve a Sun-planet-moon or a planet-moon-spacecraft configuration. In either case, an

obvious disparity in terms of mass is evident. Assuming the mass of the third body (m3)

to be much smaller than the mass of either larger body (m1 or m2) yields an advantage in

terms of the analysis, yet represents a number of systems very well. Szebehely [7] illustrates

that this assumption (m3 � m1,m2) is reasonable in some situations through an example

for a 6000 kg spacecraft in the Earth-Moon system; neglecting the spacecraft mass intro-

duces a relative error on the order of 10−16 in terms of the motion of the system. Under this

assumption, that is, neglecting the mass of the third body, the model is denoted the “re-

stricted” three-body problem. The significant effect of this assumption on the motion of the

two massive bodies is the reduction of their relative orbit to the well-known conic solutions

of the two-body problem, while maintaining the framework of the three-body problem.

One final simplification serves to bound the scope of the R3BP. Since the previous

assumption reduced the motion of the massive primaries to conics, and considering that

parabolic and hyperbolic orbits are not closed, the motion of the two massive bodies is

modeled as elliptical. However, elliptical orbits add complexities that are frequently un-

neccesary and a further assumption that the bodies move on circular orbits is common.

Modeling the motion of the massive bodies as circles or ellipses leads to two common forms

of the restricted three-body problem that are more generally termed the Circular Restricted

Three-Body Problem (CR3BP) and the Elliptic Restricted Three-Body Problem (ER3BP).

This analysis will focus on the CR3BP, but its applications are not limited to this regime.

The context for this work is thus established, given these assumptions and simplifications.
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2.2 Model Formulation

The circular restricted three-body problem has been briefly introduced but, to derive

an accurate mathematical model, a more careful definition is necessary. The model in the

CR3BP represents the motion of an essentially massless particle under the gravitational

influence of two bodies of relatively larger mass. The bodies of finite mass orbit their

common barycenter on circular paths, while no restriction on the motion of the third body,

other than that of the natural dynamics, is imposed. The “massless” third body can move

in all three spatial dimensions. To gain additional insight and exploit some useful dynamical

aspects, the system is observed in a rotating reference frame, a consideration first introduced

by Euler [5, 6]. A general depiction of the CR3BP, highlighting the rotating and inertial

reference frames, appears in Figure 2.1. In Figure 2.1, the three primaries are indicated as

   

Figure 2.1. Model for the circular restricted three-body problem

solid spheres. Specifically, P1 refers to the first primary (largest mass, m1) in the system,

P2, the second primary, is the smaller mass (m2), and P3 is the essentially massless particle

(m3 ≈ 0) of interest whose motion is described. The inertial frame I is indicated by the
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X and Y axes which are oriented consistent with the unit vectors X̂ and Ŷ (where carets

indicate vectors of unit magnitude). The inertial Z axis (unit vector Ẑ) is directed out of

the page, completing the right-hand triad. The barycenter, B, serves as the common origin

of both the inertial and rotating reference frames since it is conveniently fixed in both. The

rotating frame R is based on the instantaneous orientation of the larger bodies in their

orbits. Thus, the line formed by the two larger masses, through the barycenter, serves as

the x axis of the rotating system as indicated by the x̂ unit vector. The y axis is defined

orthogonal to the x axis and positive in the general direction of velocity. Thus, ŷ is oriented

90° from the positive x axis. Both x̂ and ŷ are specifically defined to be in the plane of

motion of the massive primaries. The positive z axis completes the right-handed triad and is

coincident with the Z axis of the inertial frame. The rotating frame is oriented with respect

to the inertial frame through the angle θ. Given the circular orbits, the angular velocity

is constant and the rotating frame moves with the angular rate θ̇ = N . This rotational

velocity is defined such that I ω̄R = θ̇ẑ and is positive when I ω̄R is directed consistent with

ẑ. Since the angular velocity of the rotating frame is selected to be coincident with the

rotational velocities of the primaries, the positions of P1 and P2 are fixed relative to the

rotating frame.

Several important position vectors also appear in the figure. The vectors R̄i represent

the positions of the primaries with respect to the barycenter, while R̄ij are relative vectors

denoting the position of the third primary with respect to each of the other primaries. All

of these position vectors are expressed in terms of components parallel to each of the x̂,

ŷ, and ẑ directions (i.e., rotating coordinates). The reference frames and vectors discussed

here create the framework for the development of the equations of motion.

2.3 Equations of Motion

Given the definition of the system, a natural next step is to mathematically formulate

the equations that govern the motion of the particle of interest, P3. For convenience and

to ultimately generalize the results, the significant parameters and variables are nondimen-

sionalized using a set of characteristic quantities. For a specific three-body configuration,

the distances involved and the relative masses of the primaries are generally disparate in
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magnitude. Nondimesionalization generalizes the problem and ultimately yields a more

convenient mathematical model that can be adapted to a wide range of physical systems.

Characteristic quantities, indicated by a superscript “*”, are defined for the fundamental

quantities of mass, length, and time, as follows:

m∗ = m1 +m2, (2.1)

l∗ = R1 +R2, (2.2)

t∗ =

√
(R1 +R2)3

G̃(m1 +m2)
=

√
l∗3

G̃m∗
. (2.3)

The constant G̃ is the Newtonian gravitational constant, where the tilde indicates a dimen-

sional quantity. The time parameter, t∗, is selected such that the resulting nondimensional

value of G is unity. The characteristic quantities, m∗, l∗, and t∗ represent yet another key

component in the development of the equations of motion.

Nondimensional parameters are defined using the characteristic quantities. The nondi-

mensional mass parameter, µ, represents the mass fraction of the system attributable to

the second primary,

µ =
m2

m∗
. (2.4)

The remaining system mass is attributable to the first primary and is also defined in terms

of µ, i.e.,

1− µ =
m1

m∗
. (2.5)

The vectors defined in Figure 2.1 are nondimensionalized with respect to characteristic

length,

r̄i =
R̄i
l∗

and r̄ij =
R̄ij
l∗
. (2.6)

Of particular note is the nondimensional position vector of the particle P3 written explicitly

in terms of rotating frame coordinates,

r̄3 =
R̄3

l∗
= xx̂+ yŷ + zẑ, (2.7)

where the symbol r̄ with any subscripts indicates a dimensionless distance vector. The

distance between the primaries, ã, is equal to the dimensional radius of the circular orbit
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of primary motion. This distance is nondimensionalized and, consequently, normalized by

the characteristic length,

a =
ã

l∗
=
R1 +R2

l∗
= 1. (2.8)

The nondimensional gravitational constant, G, and constant mean motion, n, of the pri-

maries also reduce to unity upon nondimesionalization, that is,

G =
G̃m∗t∗2

l∗3
= 1, (2.9)

N =

√
G̃(m1 +m2)

ã3
=

√
G̃m∗

al∗3
=

√
G̃m∗

l∗3

⇒n = Nt∗ =

√
G̃m∗

l∗3

√
l∗3

G̃m∗
= 1. (2.10)

The final characteristic quantity is time – the nondimensional time is defined such that,

τ =
t

t∗
. (2.11)

With these nondimensional parameters, derivation of the equations of motion is straight-

forward.

From Figure 2.1 and Newton’s Second Law, the equations of motion for P3 can be

written by inspection,

m3R̄
′′
3 = −G̃m3m1

R3
13

R̄13 −
G̃m3m2

R3
23

R̄23. (2.12)

The left side of the equation is comprised of the acceleration of the particle of interest

with respect to an inertial observer. Derivatives with respect to dimensional time are

denoted by primes. The right side is the sum of the gravitational forces acting on the

particle. Fortunately, the mass of P3 easily cancels. The derivatives can also be written

explicitly with superscript I or R indicating the frame of differentiation (inertial or rotating,

respectively),
Id2R̄3

dt2
= −G̃m1

R3
13

R̄13 −
G̃m2

R3
23

R̄23. (2.13)

Multiplying both sides by t∗2

l∗ and recalling t∗ =
√

l∗3

G̃m∗ ,

Id2 R̄3
l∗

d t
t∗

2 = −G̃m1

R3
13

R̄13

l∗
l∗3

G̃m∗
− G̃m2

R3
23

R̄23

l∗
l∗3

G̃m∗
. (2.14)
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Next, nondimensional quantities are substituted yielding,

Id2r̄3

dτ2
= −(1− µ)r̄13

r3
13

− µr̄23

r3
23

. (2.15)

The familiar “dot” notation is employed to represent differentiation with respect to nondi-

mensional time as indicated by,

¨̄r3 =
Id2r̄3

dτ2
= −(1− µ)r̄13

r3
13

− µr̄23

r3
23

. (2.16)

Recall, from Equation (2.7), that r3 is the nondimensional form of the position vector with

basepoint at the barycenter (fixed in both the inertial and rotating frames) and terminal

point at P3. This nondimensional position vector is expressed in terms of rotating frame

coordinates,

r̄3 = xx̂+ yŷ + zẑ.

The well known kinematic expansion (e.g., [39] p. 46) relating a vector derivative as observed

in different reference frames is,

Idr̄3

dτ
=

Rdr̄3

dτ
+I ω̄R × r̄3, (2.17)

where I ω̄R = nẑ is the nondimensional angular velocity between the frames. A first and

second application of Equation (2.17) yields the following expansions,

˙̄r3 = (ẋ− ny)x̂+ (ẏ + nx)ŷ + żẑ, (2.18)

¨̄r3 = (ẍ− 2nẏ − n2x)x̂+ (ÿ + 2nẋ− n2y)ŷ + z̈ẑ. (2.19)

Further inspection of Figure 2.1 allows the relative position vectors r̄13 and r̄23, as well as

their respective norms, to be written in rotating frame coordinates as applicable, i.e.,

r̄13 = (x+ µ)x̂+ yŷ + zẑ, (2.20)

r̄23 = (x− 1 + µ)x̂+ yŷ + zẑ, (2.21)

r13 =
√

(x+ µ)2 + y2 + z2, (2.22)

r23 =
√

(x− 1 + µ)2 + y2 + z2. (2.23)
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Combining the respective coordinates from Equations (2.16), (2.20), and (2.21) yields three

second-order, coupled nonlinear scalar differential equations of motion:

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

, (2.24a)

ÿ + 2nẋ− n2y = −(1− µ)y

r3
13

− µy

r3
23

, (2.24b)

z̈ = −(1− µ)z

r3
13

− µz

r3
23

. (2.24c)

Equations (2.24a)–(2.24c) fully describe the evolving path of P3 given any initial state.

The equations of motion can also be derived by incorporating the gradient of a potential

function. As with any set of differential equations, a potential function can be defined for

the CR3BP, that is,

U∗ =
1− µ
r13

+
µ

r23
+

1

2
n2(x2 + y2). (2.25)

Differentiation solely of the gravitational potential function does not fully recover the EOM.

Given the problem formulation relative to a rotating frame, additional terms are introduced

in Equation (2.25) to accommodate the Coriolis acceleration producing a potential function

with no direct physical significance. Thus, Equation (2.25) is more commonly designated a

“pseudo”-potential. The resulting differential equations are then also represented in terms

of the pseudo-potential, i.e.,

ẍ =
∂U∗

∂x
+ 2ẏ, (2.26a)

ÿ =
∂U∗

∂y
− 2ẋ, (2.26b)

z̈ =
∂U∗

∂z
. (2.26c)

These two forms of the equations of motion (Equations (2.24) and (2.26)) are equivalent

and offer a mathematical formulation for the CR3BP. The equations of motion represent a

mathematical model of significant importance, and serve as a basis for a numerical inves-

tigation in a problem of sufficient complexity to display both ordered motion and chaotic

behavior.
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2.4 The Jacobi Integral

The differential equations in the CR3BP possess an integral of the motion, commonly

termed the Jacobi integral. The Jacobi integral is derived from Equations (2.26a)–(2.26c)

as the scalar product of the vector EOM with the relative velocity vector associated with

P3. The relative velocity vector is defined and expressed,

v̄ = R˙̄r3 = ẋx̂+ ẏŷ + żẑ. (2.27)

The result from multiplication for the scalar product of Equation (2.27) with Equations (2.26a)–

(2.26c) is three scalar terms,

ẋẍ− 2ẋẏ =
∂U∗

∂x
ẋ, (2.28)

ẏÿ + 2ẏẋ =
∂U∗

∂y
ẏ, (2.29)

żz̈ =
∂U∗

∂z
ż, (2.30)

which, added together, produce,

ẋẍ+ ẏÿ + żz̈ =
∂U∗

∂x

dx

dτ
+
∂U∗

∂y

dy

dτ
+
∂U∗

∂z

dz

dτ
. (2.31)

Integrating Equation (2.31) and designating the integration constant as C̃ yields,

1

2
(ẋ2 + ẏ2 + ż2) = U∗ + C̃. (2.32)

From Equation (2.27), v2 = ẋ2 + ẏ2 + ż2, which allows Equation (2.32) to be written in the

recognizable form of the Jacobi integral, that is,

C = 2U∗ − v2, (2.33)

where C̃ = −C
2 . The existence of an integral of the motion in the CR3BP is exploited to

gain a better understanding of the system.

The Jacobi integral serves in a number of capacities. Fundamentally, the Jacobi integral

provides a check on the accuracy of the numerical integration process. The Jacobi constant

should remain constant throughout any numerical integration process. A consequence of

the existence of an integral is also a potential reduction of order in the phase space. A 6th

order system, like the CR3BP, can be reduced to a 5th order system, while the 4D phase
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space in the planar CR3BP can be reduced to three. In this way, the Jacobi constant can

also be employed to recover a full state given three of the four state variables (or five of six

in the full CR3BP). Additionally, the Jacobi integral can be used as a parameter to help

organize analysis in the CR3BP. These examples illustrate the value of such an integral.

2.5 Equilibrium Points

When observed in a rotating reference frame, the CR3BP is known to possess equilibrium

points [7]. The equilbrium points are identified as solutions to the differential equations

where the associated velocity and acceleration fields are zero. There are five such equilibrium

point solutions of the CR3BP EOM, designated L1 through L5. Euler first identified the

points designated as L1 through L3 while Lagrange identified all the equilibrium points,

including L4 and L5 [5]. The five points associated with the equilibrium solutions are

commonly termed the Lagrange points (after Lagrange) or libration points after the observed

behavior of bodies existing naturally near these locations.

The libration points are determined as the roots of equations that result when the

gradient of the pseudo-potential (Equation (2.25)) is equal to zero; thus, the equilibrium

equations become,

x =
(1− µ)(x+ µ)

r3
13

+
µ(x− 1 + µ)

r3
23

, (2.34a)

y =
(1− µ)y

r3
13

+
µy

r3
23

, (2.34b)

0 =
(1− µ)z

r3
13

+
µz

r3
23

. (2.34c)

Inspection of Equation (2.34c) implies that z = 0 for all equilibrium points, that is, all five

equilibrium points exist in the plane of motion of the primaries. Further, substituting z = 0

into Equations (2.34a) and (2.34b) results in a coupled linear system of two equations in

two unknowns. With y 6= 0, simplifying the system via substitution leads to r13 = r23 = 1.

Fixing r13 = r23 = 1, squaring Equations (2.22) and (2.23), and equating the two equations

reveals expressions for the x and y coordinates of the equilibrium points that appear off of

the x axis with y 6= 0, that is,

x =
1

2
− µ, (2.35)
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y = ±
√

3

2
. (2.36)

These x and y values (with y 6= 0) correspond to points L4 and L5 and represent locations at

the third vertex of equilateral triangles formed by P1, P2, and the respective point. The two

equilateral points are denoted by convention such that L4 corresponds to the equilibrium

point with a positive y coordinate and L5 corresponds to the equilibrium point with a

negative y value. Three more equilibrium points exist when y = 0, thus these additional

points lie along the rotating x axis and are termed the collinear points. When y = z = 0,

the equilibrium equations simplify to a single 3rd-order equation,

x =
(1− µ)(x+ µ)

|x+ µ|3
+
µ(x− 1 + µ)

|x− 1 + µ|3
. (2.37)

It is evident from Equation (2.37) that singularities exist for x = −µ and x = 1− µ. These

singularities bound three regions that each contain a root of the equation. These three roots

correspond to the remaining equilibrium points with the common convention designating L1

as the point interior to both primaries, L2 is the point exterior to P2 in the positive x̂ direc-

tion, and L3 is the point exterior to P1 in the negative x̂ direction. To simplify a numerical

root-finding scheme, it is common to substitute the distance between the primaries and the

respective equilibrium points as the variable of interest into Equation (2.37). Specifically,

the following substitutions are employed,

xL1 = 1− µ− γ1, (2.38a)

xL2 = 1− µ+ γ2, (2.38b)

xL3 = −µ− γ3. (2.38c)

Equation (2.37) can be further simplified by considering the three distinct regions near each

collinear point independently, that is,

L1 : −µ < x < 1− µ :

x− 1− µ
(x+ µ)2

+
µ

(x− 1 + µ)2
= 0, (2.39a)

L2 : x > 1− µ :

x− 1− µ
(x+ µ)2

− µ

(x− 1 + µ)2
= 0, (2.39b)

L3 : x < −µ :

x+
1− µ

(x+ µ)2
+

µ

(x− 1 + µ)2
= 0. (2.39c)
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Substituting from Equation (2.38a) into Equation (2.39a) and multiplying to obtain a com-

mon denominator results in the following equation,

(1− µ− γ1)(1− γ1)2(−γ1)2 − (1− µ)(−γ1)2 + µ(1− γ1)2 = 0. (2.40)

Expanding and collecting like terms yields a quintic polynomial that can be employed to

obtain the x coordinate of L1 to arbitrary precision. Similar steps produce relationships for

the x coordinates of L2 and L3. In summary,

L1 :

γ5
1 − (3− µ)γ4

1 + (3− 2µ)γ3
1 − µγ2

1 + 2µγ1 − µ = 0, (2.41a)

L2 :

γ5
2 + (3− µ)γ4

2 + (3− 2µ)γ3
2 − µγ2

2 − 2µγ2 − µ = 0, (2.41b)

L3 :

γ5
3 + (2 + µ)γ4

3 + (1 + 2µ)γ3
3 − (1− µ)γ2

3 − 2(1− µ)γ3 − (1− µ) = 0. (2.41c)

Solving these equations for γi and then back-substituting yields the physical x coordinate

corresponding to the respective libration point. The exact location of each point depends

upon the relative masses of the two primaries, but a general representation of the locations

appears in Figure 2.2 where the equilbirium points are depicted along with the two massive

primaries (P1 and P2) in the rotating frame. Equilateral triangles associated with L4 and

L5 are included to further illustrate the geometry.



20

   

Figure 2.2. Equilibrium points in the CR3BP
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Accurate knowledge of the locations of the equilibrium points in the CR3BP is critical

to most numerical schemes in the study of this problem. These points become the founda-

tion for both linear and topological analysis. This analysis, in turn, leads to a much fuller

understanding of the dynamical characteristics in the problem. The equilibrium point lo-

cations in the Earth-Moon CR3BP, (µ ≈ 0.012151), are listed in Table 2.1 while the Jacobi

constant values associated with these points are tabulated in Table 2.2.

Table 2.1
Earth-Moon Libration Points

xLi xLi yLi yLi

Libration Point (non-dim) (km) (non-dim) (km)

L1 0.836915 321700 0.0 0.0

L2 1.155682 444230 0.0 0.0

L3 -1.005062 -386334 0.0 0.0

L4 0.487849 187524 0.866025 332890

L5 0.487849 187524 -0.866025 -332890

Table 2.2
Jacobi Constant Values for Earth-Moon Libration Points

C

Libration Point (dimensionless)

L1 3.188340986998163

L2 3.172160349057863

L3 3.012147136509916

L4 2.987997064955494

L5 2.987997064955494
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2.6 Curves and Surfaces of Zero Relative Velocity

The Jacobi constant is an “energy-like” quantity and can be employed to bound the

motion of P3 given a particular C value. Recall the five equilibrium point solutions of the

equations of motion for the CR3BP where both velocity and acceleration are equal to zero.

If only velocity is fixed to be zero and acceleration is allowed to vary, additional observations

can be made by inspection of the integral of motion. The Jacobi constant is a function of

position and velocity as indicated by Equation (2.33), C = 2U∗ − v2, where the pseudo-

potential, U∗, is a function of position only. If Equation (2.33) is rearranged to express the

velocity term as a function of the pseudo-potential and the Jacobi constant, i.e.,

v2 = 2U∗ − C, (2.42)

it is immediately apparent that for some value of C > 2U∗, the square of the velocity

magnitude is negative, that is v2 < 0, implying an imaginary velocity. Since P3 exists in

a physical regime, an imaginary velocity indicates a spatial region that is barred to P3, a

forbidden region. If C < 2U∗, v2 > 0, and the resulting velocity is real allowing P3 to

move in the corresponding region of configuration space. The boundary that distinguishes

the region of permissible motion from the forbidden region corresponds to a zero value of

velocity. Fixing velocity at zero and expanding the pseudo-potential produces an equation

for a curve along which velocity is everywhere zero,

C = x2 + y2 +
2(1− µ)

r13
+

2µ

r23
. (2.43)

These Zero Velocity Curves (ZVC) are defined by selecting a fixed value of C and solving

for the positions that satisfy Equation (2.43) for a given value of C. For five distinct values

of C, the acceleration in the equations of motion is also zero; these values of C correspond

to the five equilibrium point positions. Finally, recall that r13 and r23 are also functions of

z and Equation (2.43) can be solved with z 6= 0 producing a three-dimensional surface for

a given value of C.

The existence of boundaries governing the motion of P3 provides mathematical insight

that helps define where P3 can move under the influence of the natural dynamics in the

system. The equilibrium points, the Jacobi constant, and zero velocity surfaces sculpt the

dynamical environment providing a structure for the solution space.
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A series of ZVC(S) for a range of values for Jacobi constant in the Earth-Moon system

appear in Figures 2.3 and 2.4. In Figure 2.3 (a–d) and Figure 2.4 (a–d), the shaded areas

represent the forbidden region for the given value of C. In Figure 2.4 (e), a 3D view

demonstrates the appearance of the ZVS for C = 2.9000. (Also note, the Earth and Moon

in these figures are not to scale.) As indicated in the figures, each of the libration points

lies on a ZVC for a specific value of the Jacobi constant.

  

(a) C = 3.4000

  

(b) C = 3.1883 ≈ CL1

  

(c) C = 3.1722 ≈ CL2

  

(d) C = 3.0722

Figure 2.3. Earth-Moon ZVC for various C values
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(a) C = 3.0121 ≈ CL3

  

(b) C = 3.0000

  

(c) C = 2.9910
  

(d) C = 2.9881 ≈ CL4/CL5

  

(e) C = 2.9000, 3D View

Figure 2.4. More Earth-Moon ZVC(S) for various C values
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2.7 Linear Variational Equations Relative to the Collinear Points

Given that the equilibrium points are already identified, characterizing motion in their

local neighborhood is useful. The behavior near Li is initially explored by linearizing relative

to a collinear equilibrium point. The linear system is frequently a good first approximation

to the actual nonlinear behavior in a sufficiently small vicinity near the reference solution.

This first approximation can then be used to generate an initial state for numerical inte-

gration using the nonlinear EOM. To linearize, first introduce small perturbations relative

to the libration points. For example, if an equilibrium point is defined in position space by

a specific set of cartesian coordinates, i.e., (x, y, z) = (a, b, c), perturbations are introduced

such that (x, y, z) = (a+ ξ, b+η, c+ ζ). The new variables of interest are now differentiated

with respect to nondimensional time, τ ,

ẋ = ξ̇, (2.44a)

ẏ = η̇, (2.44b)

ż = ζ̇, (2.44c)

ẍ = ξ̈, (2.44d)

ÿ = η̈, (2.44e)

z̈ = ζ̈. (2.44f)

Linearization is accomplished via a Taylor series expansion evaluated at one of the libra-

tion points. The Taylor series expansion of a function f(x) relative to a constant reference

solution a, has the following general form,

f(x) = f(a) +
df

dx

∣∣∣∣
a

(x− a) +
1

2!

d2f

dx2

∣∣∣∣
a

(x− a)2 +
1

3!

d3f

dx3

∣∣∣∣
a

(x− a)3 + · · · . (2.45)

Note that the partials are evaluated at the reference, a. For multiple variables, the Taylor

series expansion conveniently reduces to,

f(a+ ξ, b+ η, c+ ζ) = f(a, b, c) +

(
ξ
∂f

∂x
+ η

∂f

∂y
+ ζ

∂f

∂z

) ∣∣∣∣
(a,b,c)

+

1

2!

(
ξ2∂

2f

∂x2
+ η2 ∂f

∂x∂y
+ ζ2 ∂

2f

∂x∂z

) ∣∣∣∣
(a,b,c)

+ · · · . (2.46)

Now, the first partial of the pseudo potential (U∗) with respect to x, to first order, is written,

∂U∗

∂x
=
∂U∗

∂x

∣∣∣∣
Li

+
∂2U∗

∂x2

∣∣∣∣
Li

ξ +
∂2U∗

∂x∂y

∣∣∣∣
Li

η +
∂2U∗

∂x∂z

∣∣∣∣
Li

ζ + · · · . (2.47)
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The value of ∂U∗

∂x evaluated at any libration point is zero by definition, so the 2nd–4th terms

of Equation (2.47) represent the first-order expression for ∂U∗

∂x . Similarly, expansions for

∂U∗

∂y and ∂U∗

∂z lead to the following linear equations of motion, i.e.,

ξ̈ − 2η̇ =
∂2U∗

∂x2

∣∣∣∣
Li

ξ +
∂2U∗

∂x∂y

∣∣∣∣
Li

η +
∂2U∗

∂x∂z

∣∣∣∣
Li

ζ, (2.48a)

η̈ + 2ξ̇ =
∂2U∗

∂y∂x

∣∣∣∣
Li

ξ +
∂2U∗

∂y2

∣∣∣∣
Li

η +
∂2U∗

∂y∂z

∣∣∣∣
Li

ζ, (2.48b)

ζ̈ =
∂2U∗

∂z∂x

∣∣∣∣
Li

ξ +
∂2U∗

∂z∂y

∣∣∣∣
Li

η +
∂2U∗

∂z2

∣∣∣∣
Li

ζ. (2.48c)

Or, more succinctly,

ξ̈ − 2η̇ = U∗xx|Liξ + U∗xy|Liη + U∗xzLiζ, (2.49a)

η̈ + 2ξ̇ = U∗yx|Liξ + U∗yy|Liη + U∗yzLiζ, (2.49b)

ζ̈ = U∗zx|Liξ + U∗zy|Liη + U∗zzLiζ, (2.49c)

where U∗ij = ∂2U∗

∂i∂j . Equations (2.49a)–(2.49c) are first-order linear variational equations

with constant coefficients. The required partials in Equations (2.49a)–(2.49c) are evaluated

directly from the pseudo-potential. Recall Equation 2.25,

U∗ =
1− µ
r13

+
µ

r23
+

1

2
n2(x2 + y2),

where,

r13 =
√

(x+ µ)2 + y2 + z2,

r23 =
√

(x− 1 + µ)2 + y2 + z2.

The associated first and second partials are

U∗x = x− (1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

, (2.50a)

U∗y = y − (1− µ)y

r3
13

− µy

r3
23

, (2.50b)

U∗z = −(1− µ)z

r3
13

− µz

r3
23

, (2.50c)

U∗xx = 1− 1− µ
r3

13

− µ

r3
23

+
3(1− µ)(x+ µ)2

r5
13

+
3µ(x− 1 + µ)2

r5
23

, (2.50d)

U∗xy = U∗yx =
3(1− µ)(x+ µ)y

r5
13

+
3µ(x− 1 + µ)y

r5
23

, (2.50e)
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U∗xz = U∗zx =
3(1− µ)(x+ µ)z

r5
13

+
3µ(x− 1 + µ)z

r5
23

, (2.50f)

U∗yy = 1− 1− µ
r3

13

− µ

r3
23

+
3(1− µ)y2

r5
13

+
3µy2

r5
23

, (2.50g)

U∗yz = U∗zy =
3(1− µ)yz

r5
13

+
3µyz

r5
23

, (2.50h)

U∗zz = −1− µ
r3

13

− µ

r3
23

+
3(1− µ)z2

r5
13

+
3µz2

r5
23

. (2.50i)

The linear variational equations model behavior near the constant equilibrium points, Li,

and the associated partials are evaluated at the libration points. In evaluating the partials,

any term multiplied by z in the numerator vanishes, since zLi = 0, so the linear variational

equations are simplified, i.e.,

ξ̈ − 2η̇ = U∗xxξ + U∗xyη, (2.51a)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη, (2.51b)

ζ̈ = U∗zzζ. (2.51c)

By inspection, it is apparent that Equation (2.51c) is uncoupled from Equations (2.51a) and

(2.51b). Furthermore, the form of Equation (2.51c) reflects a simple harmonic oscillator

with purely imaginary characteristic roots. Thus, the linear out-of-plane motion near the

libration points is a stable harmonic oscillation with a period equal to P = 2π√
|U∗
zz |

. The

two second-order linear differential equations, Equations (2.51a) and (2.51b), are easily

represented as a system of four first-order linear equations and written in matrix form,

˙̄x = A4×4x̄, (2.52)

where,

x̄ =


ξ

η

ξ̇

η̇

 , (2.53)

and,

A4×4 =


0 0 1 0

0 0 0 1

U∗xx U∗xy 0 2

U∗yx U∗yy −2 0

 . (2.54)
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Or, A can be expressed more compactly in the form,

A =

 02×2 I2×2

U∗2×2 Ω2×2

 , (2.55)

where the 2× 2 sub-matrices are directly defined in the matrix in Equation (2.54). General

solutions for a first-order system of linear equations are of the form,

ξ =
4∑
i=1

Aie
λit, (2.56a)

η =
4∑
i=1

Bie
λit, (2.56b)

where Ai and Bi are coupled constants of integration and λi are the roots of the charac-

teristic equation of A4×4. Two of the characteristic roots (λ1 and λ2) are real, with one

root greater than zero and the other negative. These real roots represent attracting mo-

tion associated with the negative value and repelling motion corresponding to the positive

root. The other two roots (λ3 and λ4) are imaginary, indicating corresponding oscillatory

modes. Thus, the collinear points possess both oscillatory and hyperbolic modes. The re-

lationship between Ai and Bi is developed by differentiating and substituting the solutions

(Equations (2.56a) and (2.56b)) into the linear variational equations (Equations (2.51a) and

(2.51b)), ultimately producing the relationship,

Bi = αiAi, (2.57)

with,

αi =
λ2
i − U∗xx

2λi
. (2.58)

Notwithstanding the existence of hyperbolic behavior near the collinear points, initial con-

ditions can be selected to suppress the exponential decay and divergence associated with λ1

and λ2. For A1 = A2 = 0 the linear equations are further reduced, noting that λ4 = −λ3

and, by Equation (2.58), α4 = −α3,

ξ = A3e
λ3t +A4e

−λ3t, (2.59a)

η = α3A3e
λ3t + α4A4e

−λ3t. (2.59b)
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Given the following definitions,

β1 = 2−
U∗xx + U∗yy

2
, (2.60)

β2 =
√
−U∗xxU∗yy, (2.61)

s =

√
β1 +

√
β2

1 + β2
2 , (2.62)

β3 =
s2 + U∗xx

2s
. (2.63)

Equations (2.59a) and (2.59b) are conveniently expressed in terms of the initial parameters,

ξ0 and η0,

ξ = ξ0 cos (s(t− t0)) +
η0

β3
sin (s(t− t0)) , (2.64a)

η = η0 cos (s(t− t0))− β3ξ0 sin (s(t− t0)) . (2.64b)

Equations (2.64a) and (2.64b) describe an ellipse about any one of the collinear points

with the associated point at its center. The elliptical motion possesses a period of P = 2π
s

and an eccentricity such that e =
√

1− β−2
3 , and represents the analytical solution to the

linear variational equations with parameters A1 and A2 selected to suppress divergent and

damping behavior. Two of the four initial conditions are constrained by this selection, and

if ξ0 and η0 reflect the free parameters, then ξ̇0 and η̇0 are constrained by Equations (2.64a)

and (2.64b),

ξ̇0 =
η0s

β3
, (2.65a)

η̇0 = −β3ξ0s. (2.65b)

Such a linear elliptical solution near the L1 libration point in the Earth-Moon (µ ≈ 0.01215)

system is represented in Figure 2.5. The ellipse is generated from an initial state such that

ξ0 = 0.01 nondimensional units and η0 = 0 (x ≈ xL1 + 3843.88km); ξ̇0 and η̇0 result from

Equations (2.65a) and (2.65b). The period of the elliptical orbit is approximately 5.5 days.

The direction of motion along the ellipse is clockwise on the figure as indicated by the color

scale with time increasing from blue to red. This process of judiciously selecting initial

conditions extends to the unstable modes near the collinear points to elicit solutions that

diverge from the vicinity of the collinear points. Additionally, this type of analysis is applied

near the equilateral points where similar elliptical results are observed.
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Figure 2.5. A linear ellipse about L1

In the vicinity of the collinear points, the linear analysis supplies absolutely no guarantee

for the behavior in the nonlinear system. However, the analysis does produce a useful first

approximation for the nonlinear behavior given a sufficiently small region of interest. In

this case, using the linear solution to extract initial conditions close to an equilibrium point

yields an initial state suitable for numerical integration in the nonlinear system. Once this

state is propagated it can be corrected to yield a solution in the nonlinear system. In turn,

the initial nonlinear solutions can be employed to generate other nonlinear solutions. It

is evident that linear analysis is a critical step in the progression for obtaining nonlinear

solutions beyond the equilibrium points.
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2.8 The State Transition Matrix

Linear variational equations are not strictly confined to the neighborhood near a li-

bration point. In fact, variational equations can predict behavior relative to any reference

arc in the CR3BP, and the reference need not be constant. This concept is illustrated in

Figure 2.6 where an initial perturbation at time t0, δx̄0, is added to the reference resulting

in an eventual variation, δx̄f , at tf . The relationship between an initial variation and the

  

Reference Solution

Perturbed Solution

Figure 2.6. Perturbed and reference solutions

variation along a neighboring arc is determined by perturbing the reference solution, x̄0(t),

x̄(t) = x̄0(t) + δx̄(t). (2.66)

The equations of motion are of the form, ˙̄x = f̄(x̄, t), and the first derivative of Equa-

tion (2.66) is written,

˙̄x = ˙̄x0 + δ ˙̄x = f̄(x̄, t). (2.67)

It is convenient to expand Equation (2.67) as a Taylor series relative to the reference solution.

Truncating to first-order yields,

˙̄x0 + δ ˙̄x ≈ f̄(x̄0, t) +
∂f̄

∂x̄

∣∣∣∣
x̄0(t)

δx̄. (2.68)

Since ˙̄x0 = f̄(x̄0, t), Equation 2.68 simplifies,

δ ˙̄x =
∂f̄

∂x̄

∣∣∣∣
x̄0(t)

δx̄, (2.69)
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where ∂f̄
∂x̄

∣∣
x̄0(t)

= A6×6(t), consistent with Equation (2.52), but now all six dimensions are

represented and time is expressed as an explicit parameter. Thus, A6×6(t) is of the form,

A6×6(t) =

 03×3 I3×3

U∗3×3 Ω3×3

 , (2.70)

where U∗3×3 includes the partials that are evaluated on the reference arc. Thus, U∗3×3 and,

as a consequence A6×6, vary as a function of time. The matrix Ω3×3 is 3× 3 such that,

Ω3×3 =


0 2 0

−2 0 0

0 0 0

 . (2.71)

The submatrices, I3×3 and 03×3 are the three-dimensional identity and zero matrices, re-

spectively. The general solution to Equation (2.69) is,

δx̄(t) = Φ(t, t0)δx̄(t0), (2.72)

where Φ(t, t0) is the matrix formed from the basis of the fundamental set of solutions.

Within the context of the CR3BP, this is the State Transistion Matrix (STM). The six-

dimensional variational state vectors, δx̄(t) and δx̄(t0), are defined,

δx̄(t) =
[
δxf δyf δzf δẋf δẏf δżf

]T
, (2.73)

δx̄(t0) =
[
δx0 δy0 δz0 δẋ0 δẏ0 δż0

]T
, (2.74)

where the notation []T indicates the matrix transpose. The matrix Φ(t, t0) consists of the

first partials, φij = ∂xi
∂xj,0

,

Φ(t, t0) =



φ11 φ12 φ13 φ14 φ15 φ16

φ21 φ22 φ23 φ24 φ25 φ26

φ31 φ32 φ33 φ34 φ35 φ36

φ41 φ42 φ43 φ44 φ45 φ46

φ51 φ52 φ53 φ54 φ55 φ56

φ61 φ62 φ63 φ64 φ65 φ66


=



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


, (2.75)

or, more compactly,

Φ(t, t0) =

 φ̄rr φ̄rv

φ̄vr φ̄vv

 , (2.76)



33

where the 3×3 submatrices indicate partials representing the relationships between position

and velocity vectors at different times. Since Φ(t, t0) is also a solution of the differential

equations, its evolution is goverened by the same relationship,

Φ̇(t, t0) = A6×6(t)Φ(t, t0). (2.77)

This matrix equation is easily resolved into 36 scalar differential equations. These equations

are numerically integrated along with the state to produce first-order variational information

indicating the effect of a change in the initial state on the final state at a future time. To

integrate the variational equations, initial conditions are defined such that Φ(t0, t0) = I6×6,

the six-dimensional identity matrix.

With the information supplied by the STM, a differential corrections scheme is formu-

lated. Figure 2.7 illustrates one such corrections strategy. In Figure 2.7 (a), the linear

(a) Correcting the linear solution to produce a

periodic orbit in the nonlinear model

(b) Linear approximation (gray) and final

nonlinear periodic solution (red)

Figure 2.7. Correcting a linear solution with the STM
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initial conditions are propagated to the x axis in the nonlinear model and then numerically

corrected. The linear approximation is gray and subsequent corrections steps are colored

in order from black to blue to red. In Figure 2.7 (b), the corrected nonlinear orbit (red)

is overlain on the linear ellipse (gray). In both cases, the direction of motion along the

respective arcs is clockwise starting on the x axis to the right of L1. Because the STM is

a linear approximation, its accuracy decreases for large initial variations or over lengthy

time integration, and is, therefore, most effectively employed over appropriate integration

times or in an iterative algorithm to correct initial conditions. In the previous illustration,

Figure 2.7, the initial conditions obtained from the linear solution are updated based on

the correction required to obtain a perpendicular crossing of the x axis, as estimated by the

STM.

2.9 Periodic Orbits, a Shooting Example

Dynamical systems often possess solutions in the form of periodic orbits. Since the state

variables in the differential equations that model the CR3BP are position and velocity vec-

tors, the term periodic orbit does, in fact, represent a repeating trajectory in configuration

space. The complexity in the CR3BP yields an infinite number of periodic orbits as well as

families of such orbits, a consideration first examined by Poincaré [8] and futher established

later by Moulton and others [12]. In the general topological sense, the term manifold

indicates a structured subspace of a larger space, and periodic orbits in the CR3BP can

be envisioned as one-dimensional manifolds embedded in a three-dimensional configuration

space. For comparison, the equilibrium points are zero-dimensional manifolds embedded

in the same 3D space. Considering periodic orbits as manifolds conveys one aspect of the

value such orbits supply by further scoping the structure of the problem.

One family of periodic orbits that is of particular interest in the CR3BP is the planar

family of periodic Lyapunov orbits associated with the collinear libration points. This

family of periodic orbits are named in honor of Aleksandr Lyapunov whose work on stability

analysis in dynamical systems is well known [40]. Lyapunov families exist about each of the

collinear points and, therefore, are categorized by their respective point. For example, the
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L1 Lyapunov family is a family of planar periodic orbits that exist about L1. Additional,

related planar families of orbits exist in the vicinity of the equilateral libration points.

Given an initial orbit, for example, a linear approximation or nonlinear solution such

as those plotted in Figures 2.5 and 2.7 respectively, additional solutions are generated by

applying a targeting scheme. An entire family of solutions is produced through a continua-

tion process. The targeting strategy is an example of a single shooting approach where an

initial state is integrated for some prescribed duration (tf − t0), and then the error between

the final state and the targeted final state is employed to update the initial state iteratively

until some convergence criteria is met. Specifically, in the previous example, the STM ap-

pears in an update equation to modify the initial state based on the difference between an

integrated final state on the x axis and a perpendicular crossing indicated by a state with

ẋ = ż = 0. In this particular case, only certain parameters of the initial state are allowed

to vary. Specifically, ẏ0 is fixed while x0 is allowed to shift based on the update information

supplied by the STM. The full details of deriving such a targeter from the STM relationship

follow. Variations in time can be incorporated as appropriate, that is,

δx =
∂x

∂x0

∣∣∣∣
x0(t)

δx0 +
∂x

∂t

∣∣∣∣
x0(t)

δt, (2.78)

or,

δx = Φ(t, t0)δx0 + ẋ|t δt. (2.79)

A matrix expression is often more convenient,

δx =
[
Φ ẋ(t)

]δx0

δt

 . (2.80)

Many targeting schemes are available to correct a given parameter by varying one or several

initial parameters, but only a subset of the relationships represented by Equation (2.80)

apply to the current example. Specifically, the relationship that yields the correct ẋf by

varying x0 is required. Using δẋf from δx and the fourth row of the augmented matrix in

Equation (2.80), produces the necessary expression,

δẋf = φ(4,1)δx0 + φ(4,2)δy0 + φ(4,3)δz0 + φ(4,4)δẋ0 + φ(4,5)δẏ0 + φ(4,6)δż0 + ẍδt. (2.81)

For the planar Lyapunov families, the z and ż terms are always zero. Choosing to constrain

ẏ0 implies δẏ0 = 0, and the requirement, ẋ0 = 0, for a perpendicular departure indicates
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that δẋ0 = 0. Finally, considering that the departure is always from the x axis, δy0 = 0.

Incorporating these considerations simplifies Equation (2.81), that is,

δẋf = φ(4,1)δx0 + ẍδt. (2.82)

Next, enforcing yf = 0 allows for the elimination of δt from Equation (2.82). Following

steps similar to those above, with δyf = 0, and solving for δt,

δyf = φ(2,1)δx0 + ẏδt, (2.83)

δt = −φ(2,1)
δx0

ẏ
. (2.84)

Finally, substitution back into Equation (2.82) produces the targeting equation for this

example, that is,

δẋf =

(
φ(4,1) −

ẍ

ẏ
φ(2,1)

)
δx0. (2.85)

This targeting equation is employed in an iterative algorithm, and, in general, such an

algorithm is described by the following steps.

1. Obtain an initial guess, either from linear analysis or continuation.

2. Propagate the initial guess and the STM via numerical integration until reaching

some state near the desired final condition (in the current example, propagate to the

subsequent x-axis crossing).

3. Evaluate the difference between the actual final state and the desired final state. Use

this difference to generate a correction via the update equation.

4. Update the initial guess and iterate until a desired criteria for accuracy is met (e.g.,

a final error on the order of 10−12 or similar).

In Figure 2.8, the process is illustrated. The sequence of frames in Figures 2.8 (a–c) illus-

trates the computation of a periodic orbit near the L1 libration point in the Earth-Moon

(µ ≈ 0.01215) system. From a linear approximation, the corrections process produces a

numerical solution. The nonlinear result is then employed as an initial guess to generate

other nonlinear solutions. Recall that in Figure 2.8 (a), an analytical linear ellipse about L1

is plotted (ξ0 = 0.01, η0 = 0). In Figure 2.8 (b), the linear initial conditions are propagated

to the x axis in the nonlinear model and then numerically corrected. The linear ellipse is
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(a) A linear ellipse about L1 (b) Correcting the nonlinear solution

(c) Linear (gray) and nonlinear (red) solutions (d) Numerically determined periodic orbits

Figure 2.8. Transition from a linear solution to nonlinear solutions

gray and subsequent iterations are colored in order from black to blue to red. In Figure 2.8

(c), the corrected nonlinear Lyapunov orbit (red) is overlain on the linear approximation

(gray). Finally, in Figure 2.8 (d), the first nonlinear solution is plotted in red with a second,

related nonlinear orbit in blue.
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The success of the previously described algorithm, that is, generating periodic orbits that

are symmetric across the x axis, is due to the “mirror theorem”. The mirror theorem (Roy

and Ovenden [41]) is based in the fact that the symmetric form of the equations of motion

allow for mirroring across the x axis. After a single “half-orbit” is generated in the nonlinear

problem via single-shooting, it is reflected across the x axis to form a full periodic orbit.

The family of orbits is extended using continuation; the natural continuation parameter is

selected as appropriate (for example, ẏ0 or C are two of many available choices in the Earth-

Moon CR3BP). Families of planar orbits about each of the five libration points appear in

Figures (2.9) and (2.10). The collinear Lyapunov families of planar periodic orbits are

plotted near each collinear libration point. Planar families of periodic orbits in the vicinity

of the equilateral points also appear in Figure 2.9 (d). (Note that the corrections algorithm

is modified to produce periodic orbits near L4/L5 since these orbits are asymmetric.) The

direction of motion along all the orbits in Figure 2.9 is indicated by black arrows in each

frame. These families are comprised of an infinite set of orbits but are representated by a

finite number of orbits for clarity. The orbits in the figures are colored consistent with the

associated value of Jacobi constant. Other families of periodic orbits can be determined by

locating bifurcating orbits in the planar families and then growing those orbits out-of-plane

by continuation.
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  Jacobi Constant

(a) About L1

  Jacobi Constant

(b) About L2

  Jacobi Constant

(c) About L3

  Jacobi Constant

(d) About L4 and L5

Figure 2.9. Families of planar orbits about each of the libration points separately
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  Jacobi Constant

Figure 2.10. Families of planar orbits about each of the libration points
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3. LAGRANGIAN COHERENT STRUCTURES

The concept of Lagrangian Coherent Structures (LCS) represents a relatively new approach

for analyzing behavior in a nonlinear system. The foundations meld dynamical systems

theory with ideas commonly employed in the study of fluid flows. In this chapter, the La-

grangian description of motion is introduced as well as the fundamentals of LCS. Additional

notions are discussed to highlight the application of LCS to dynamical systems, particularly

the CR3BP.

3.1 Lagrangian Analysis

The main focus of dynamical analysis is describing behavior and predicting motion. It

is, therefore, not surprising that more than one approach can be successful in accomplish-

ing this dynamical imperative. Of particular interest to this investigation is the Lagrangian

description of motion as it relates to an Eulerian perspective. Bennett [42] indicates that

the Lagrangian formulation is embodied by the “concept of conservation of particle identity,

which is perhaps the intrinsically Lagrangian concept.”1 Essentially, in a Lagrangian per-

spective, the focus is a description of the properties of an infinitesimal volume of space, that

is, a parcel or material point, as these properties evolve with time. For example, the density

in a fluid parcel may change with time as the volume moves in a flow or as the surroundings

otherwise change. In an Eulerian viewpoint, the same intrinsic properties are described

in terms of a snapshot of the entire domain. For example, an Eulerian view reflects the

density at a specific point for a given time, regardless of the “material” currently present

in the immediate vicinity of that point. For the specific example of fluid density, different

mathematical representations exist for both perspectives. In the Lagrangian description,

the density ρ for parcel p is represented at time t as ρp(t), while an Eulerian description

models the density ρ for a particular position r̄ at time t and employs the notation ρ(r̄, t).

1A. Bennett, Lagrangian Fluid Dynamics, p. xiv
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Lagrangian analysis offers additional insight that is not readily available from an Eulerian

perspective.

A fundamental idea associated with the Lagrangian viewpoint of the behavior is a ca-

pability to incorporate the intermediate changes associated with a particle as it evolves

between two points, say points a and b, into a measurement. The Eulerian description

defines the velocity relative to a given frame at point a and the velocity with respect to

the same frame at point b independently. If the velocity at b is changing with respect to

the velocity at a, the associated difference is described as the acceleration of point b with

respect to point a as observed from the common frame. In contrast, the corresponding

Lagrangian view considers the parcel that originates at point a and moves toward point b,

continually tracking the difference in velocity of one point relative to the other. Thus, the

Lagrangian acceleration is a function of the instantaneous Eulerian acceleration as well as

the acceleration occurring in traversal. Burr [43] develops this idea with the substantial or

material derivative. If a vector field is represented as f̄(r̄, t), the Lagrangian time derivative

for parcel p is evaluated as,

Df̄

Dt
=
df̄

dt

∣∣∣∣
p

= lim
δt→0

f̄(r̄ + v̄δt, t+ δt)− f̄(r̄, t)

δt
, (3.1)

while p instantaneously moves with Eulerian velocity v̄ = dr̄
dt . Expanding to form the Taylor

series for f̄(r̄ + v̄δt, t+ δt), evaluated at (r̄, t), yields,

f̄(r̄+ v̄δt, t+δt) = f̄(r̄+δr̄, t+δt) ≈ f̄(r̄, t)+(r̄+δr̄− r̄)∂f̄
∂r̄

(r̄, t)+(t+δt− t)∂f̄
∂t

(r̄, t)+ · · · ,

(3.2)

or,

f̄(r̄ + v̄δt, t+ δt) ≈ f̄(r̄, t) + δr̄∇f̄(r̄, t) + δt
∂f̄

∂t
(r̄, t). (3.3)

Rearranging, dividing by δt, and evaluating in the limit yields the substantial derivative,

Df̄

Dt
=
∂f̄

∂t
+ v̄ · ∇f̄ . (3.4)

Equation (3.4) also serves as an expression relating derivatives of the same quantity with

respect to different observers, i.e., Lagrangian versus Eulerian. In this equation, the La-

grangian derivative, Df̄
Dt , of a function f̄(r̄, t) with respect to time is evaluated in terms of

the Eulerian derivative, ∂f̄
∂t , plus the inner product of the velocity at r̄ and the gradient of
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f̄ at r̄. For example, recall parcel p. The Lagrangian acceleration for position r̄ can be

written,
Dv̄

Dt
=
∂v̄

∂t
+ v̄ · ∇v̄. (3.5)

Alternatively, given the Lagrangian derivative of some quantity, the associated Eulerian

derivative is recovered from Equation (3.4), assuming that the velocity and the gradient

of the desired quantity are available at the respective position. While the mathematics in

this section are not directly employed in this analysis, the basic components that comprise

Lagrangian coherent structures represent a quantity embodying the ideas of Lagrangian

analysis – in this case, a quantity of particular interest to the investigation within the

context of the CR3BP.

3.2 Lyapunov Exponents

The Lyapunov exponents arise as the chief result of Aleksandr Lyapunov’s study of

stability in dynamical systems [40]. The most common approach for computation of the

Lyapunov exponents traces back to Olseledec [44], and the necessary mathematical back-

ground of the Lyapunov exponents, as presented here, is based on both Olseledec and

Anderson [45]. Olseledec defines a norm, ||M ||, as the largest eigenvalue (λ̃max) of
√
MTM

where M is an arbitrary matrix and MT is its transpose. When M is a square, nonsingular

matrix with elements that are a function of time, t, or M = M(t), the following relationship

is valid,

λ̃max

(√
M(t)TM(t)

)
=

√
λ̃max (M(t)TM(t)). (3.6)

Thus, given these conditions, Olseledec’s norm is equivalent to the matrix spectral norm.

Above, the non-standard functional notation indicated by λ̃max() represents the operation

of calcuating the largest eigenvalue associated with the given operand. Since M(t) is non-

singular, M(t)TM(t) is a symmetric positive definite matrix with real eigenvalues.

Lyapunov exponents represent a metric that, in the limit, describes the relative bal-

ance of order and chaos in a system. In a given dynamical system, there are as many

Lyapunov exponents as dimensions in the phase space, and collectively they comprise the

Lyapunov spectrum. However, one exponent typically dominates and is often the only one

of interest, that is, the characteristic or maximal Lyapunov exponent. On a local scale,
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the Lyapunov exponents supply a measure of the contraction or expansion relative to a

neighboring trajectory given an initial variation, δx̄. The effect of such initial variations

is typically approximated via the linear variational equations as discussed in Sections 2.7

and 2.8. Specifically, an initial variation, δx̄(t0), results in a final variation δx̄(t) consistent

with Equation (2.72), that is,

δx̄(t) = Φ(t, t0)δx̄(t0),

where Φ(t, t0) is the STM. Assuming that the variations grow exponentially, the overall

expansion or contraction indicated by the STM is dominated by the rate Λmax, and the

norms of the initial and final variations can be compared, i.e.,

|δx̄(t)| = |δx̄(t0)| eΛmaxt, (3.7)

where Λmax represents the characteristic Lyapunov exponent (note, λ̃ generally indicates

an eigenvalue). Solving for Λmax, normalizing by time, and evolving the system such that

time approaches infinity, yields the characteristic Lyapunov exponent, that is,

Λmax = lim
t→∞

1

t
ln
|δx̄(t)|
|δx̄(t0)|

. (3.8)

The argument of the natural logarithm in Equation (3.8) is, effectively, “the norm of the

STM”. Thus, the spectral norm also produces the characteristic Lyapunov exponent,

Λmax = lim
t→∞

1

t
ln ||Φ(t, t0)|| . (3.9)

Parker and Chua [46] define the entire Lyapunov spectrum similarly, that is,

Λi = lim
t→∞

1

t
ln
∣∣∣λ̃i(t)∣∣∣ i = 1, . . . , n, (3.10)

where
∣∣∣λ̃i(t)∣∣∣ are the n normalized eigenvalues of the STM, computed from the n eigenvalues

of
√

Φ(t, t0)TΦ(t, t0). In total, the Lyapunov exponents essentially represent a hyperellip-

soid, reflecting the stretch and contraction of the system as time increases. Assuming

a phase space of dimension four, including two positions (say, x and y) as well as two

velocities, such a hyperellipsoid viewed in position space appears as an evolving ellipse.

This concept is illustrated generally in Figure 3.1, where stretching in one dimension is

colored blue while the stretching in another dimension appears in red. In the limit, the

Lyapunov exponents define the chaoticity of the local neighborhood in the vicinity of x̄0.
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Figure 3.1. Stretching of an ellipsoid represented by the Lyapunov exponents

In Table 3.1, similar to the table appearing in Parker and Chua [46], the relative values of the

Lyapunov exponents are summarized in terms of the corresponding steady state behavior

in a local region. In Table 3.1, Λ1 = Λmax, is the characteristic Lyapunov exponent.

Table 3.1
The Lyapunov Spectrum and Steady State Behavior

Lyapunov Exponents Associated Steady State

0 > Λ1 ≥ · · · ≥ Λn Equilibrium Point

Λ1 = 0, Periodic

0 > Λ2 ≥ · · · ≥ Λn Orbit

Λ1 = Λ2 = 0, Two-periodic

0 > Λ3 ≥ · · · ≥ Λn Torus

Λ1 = · · · = ΛK = 0, K-periodic

0 > ΛK+1 ≥ · · · ≥ Λn Torus

Λ1 > 0,
n∑
i=2

Λi < 0 Chaotic
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The Lyapunov exponents characterize the future behavior in a particular region that is

part of a system or, in some cases, the local region may, in fact, comprise the entire system.

This characterization is inherently associated with some initial position and time, a common

notion associated with the Lagrangian description of motion (e.g., labeling a parcel with

its initial position and time and then following that parcel as it evolves). However, the

definition of the Lyapunov exponents implies knowledge of the system evolution as time

approaches infinity. In some systems, such a limit is not readily available, and computing

a metric such as a Lyapunov exponent requires modification of the definition for practical

application.

3.3 Poincaré Maps

Often, the complexity of a system like the three gravitational bodies whose evolution

is modeled in the CR3BP, can hinder analysis by obscuring its salient aspects. Poincaré

sections, also denoted Poincaré maps or surfaces of section, represent the evolution of a

system by reducing the complexity thereby revealing useful information. These maps were

first conceived by Henri Poincaré in his work on the three-body problem [5,8], and have since

been widely employed for various applications that exhibit repeating behavior. Poincaré

sections also provide a convenient format for communicating other information via mapping

techniques, for example, a map of a metric such as the characteristic Lyapunov exponent.

Poincaré sections reduce a n-dimensional phase space to a phase space of dimension

n− 1. This reduction is accomplished by introducing a hyperplane, Σ of dimension n− 1,

such that the flow possesses a component that is generally transverse to the plane. This

hyperplane serves as both the starting point for initiating motion, and the stage upon which

the behavior is observed. A hyperplane is defined in terms of any set of quantities that are

insightful to the problem. Certainly, a subset of the state variables are one option that

is frequently convenient, but other dynamical quantities are also easily employed to define

a hyperplane. For a 3D system of first-order equations, such a hyperplane is effectively

2D, because one of the three initial states is constrained by selection of the plane and the

remaining states are fully represented in two dimensions. Thus, an initial state originally

possessing three degrees of freedom is now restricted to two. Any constants, or integrals of



47

the motion, can also be employed to further reduce the phase space for ease in representation

on a Poincaré map. Initial states originating from the plane, Σ, are then observed at each

subsequent crossing of the hyperplane. Poincaré sections may include crossings of the plane

in one direction only (a one-sided map), in both directions (a two-sided map), or by using a

fixed-time sampling (generally termed a stroboscobic map), depending on the application.

Frequently, periodicity is a significant factor in a system and an associated Poincaré section

is therefore concerned with crossings in only one direction. In any case, crossings of a

Poincaré section reflect the iterations of the Poincaré map. Thus, a Poincaré map is a

discrete mapping since a state is mapped to its subsequent iterations. Letting x̄ represent

an initial state on the hyperplane, the N th iteration of the Poincaré map is defined,

PN (x̄) = φ(x̄)∆t
t0 , (3.11)

where ∆t represents the time required for the flow map, φ, to advance to the N th crossing of

the hyperplane. Given a single initial state, a one-sided Poincaré map, as it evolves over two

iterations, is illustrated in Figure 3.2. In practice, many initial states are simultaneously

allowed to populate the map, and inspection of the resulting patterns may reveal various

regions of the map with notable aspects of the system behavior. For example, a fixed point

on the map, PN (x̄∗) = x̄∗∀N , identifies a periodic orbit in the system (green in Figure 3.2).

  

Figure 3.2. An illustation of a one-sided Poincaré map
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Poincaré sections are very useful in the four-dimensional phase space associated with

planar motion in the CR3BP. A hyperplane is defined such that Σ corresponds to a fixed

value of one of the state variables; in every subsequent crossing of the hyperplane, the

number of free state variables is reduced to three. Two of the remaining three state vari-

ables are employed to produce a grid of initial states. The third state variable is typically

constrained by fixing the Jacobi constant to a specific value. Constraining the state as

described is a convenient approach to define a hyperplane; as a consequence the system

evolves to an acceptable stopping condition for a large number of trajectories. The effect

of the flow map, as applied to a number of initial states over a given time, may produce

widely varying path lengths. But, a Poincaré map can be employed to require each initial

state to continue evolving until N crossings of the maps are achieved, regardless of the time

interval required by each individual trajectory to traverse an equal number of crossings. Of

particular interest to this investigation is the correlation between the features of a Poincaré

map and LCS.

3.4 Finite-Time Lyapunov Exponents

The Finite-Time Lyapunov Exponents (FTLE) differ only slightly from the more for-

mally defined Lyapunov exponents. The entire FTLE spectrum is defined,

λi =
1

|T |
ln
∣∣∣λ̃i(t)∣∣∣ i = 1, . . . , n, (3.12)

where the unadorned symbol λ is used to represent the FTLE. The major difference between

Equation (3.12) and Equation (3.10) is the absence of the limit. Clearly, the calculation

of the FTLE is truncated at some prescribed final time, T . Further, the absolute value

of T is incorporated simply to reflect the fact that the calculation of the FTLE is accom-

plished in forward or backward time. Consistent with the Lyapunov exponents computed

in infinite time, there is a single FTLE in the entire spectrum that generally dominates,

and this dominant value is typically the FTLE value of most interest. The characteristic

or maximal FTLE is often denoted as “the” FTLE for a given evaluation. It is common

to discuss forward FTLE and backward FTLE, referring to the characteristic forward time
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and backward time FTLE, rather than the FTLE spectrum. The characteristic FTLE is

calculated in a process analogous to the characteristic Lyapunov exponent, that is,

λmax =
1

|T |
ln ||Φ(t, t0)|| , (3.13)

where the STM is normalized consistent with Equation (3.6). Again, the characteristic

FTLE differs from the characteristic Lyapunov exponent in terms of its evaluation at a

finite time.

The conclusions that result from an examination of the FTLE values are less precise

than those from values of the Lyapunov exponents, as summarized in Table 3.1, because

FTLE values are computed over a finite-time duration. Despite the truncated nature of the

FTLE, the associated value actually represents the relative behavior of neighoring trajec-

tories across practical time domains, which is more useful than the ultimate steady-state

information supplied by the limits required in the evaluation of the Lyapunov exponents.

Scheeres et al. [47] and Anderson et al. [48] both exploit time-truncated Lyapunov expo-

nents for stability analysis and maneuver design, respectively. Another important FTLE

application is the identification of material boundaries, or flow-separating structures, in a

system. The identification of material boundaries is accomplished by computing the FTLE

over a specified region and isolating the locally constrained maxima in this field; the con-

strained maxima are a direct representation of these structures (the material boundaries).

Abarbanel [49] introduces the concept of the local Lyapunov exponent (synonymous with

FTLE) and discusses the application to strange attractors. Anderson [45] even suggests

the use of the FTLE to determine a stationkeeping or trajectory corrections process. All of

these direct applications of the FTLE support the practical value of truncating Lyapunov

exponents to form FTLE values.

In preparation for discussion of the computation of the FTLE, one important term

requires a more complete definition. The concept of FTLE frequently focuses on the flow

map that is commonly designated φtt0(x̄). The flow map represents the state of the system

that has evolved to a final time t from an initial state x̄ at time t0. This terminology and

compact notation is a convenient expression for any particular solution in a system.

Given the flow map, the calculation of the FTLE is accomplished in one of two ways.

The first approach requires numerical integration of an initial state along with the STM.
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After a finite duration, the resulting STM is normalized and the value of the FTLE is

obtained from Equation (3.13). The more common alternative method for computing the

FTLE arises as a consequence of the lack of a set of variational equations. In such a

case, it is common practice to produce a numerical approximation to the STM via finite

differencing directly from the flow map, evaluated after a specified time duration. The

flow map is obtained through numerical integration or from empirical data. Obtaining

the FTLE from finite differencing yields the advantages of increased numerical stability

and fewer differential equations to integrate (thus avoiding any numerical issues associated

with integrating the STM equations). However, the finite-difference method can also be

inherently noisy depending on the specific application and the parameters involved in the

simulation. Shadden [50] effectively describes the process for calculating the FTLE via

finite differencing. Shadden uses the notation,
dφtt0

(x̄)

dx̄0
, to represent the derivative of the

flow map with respect to its initial state. The resulting matrix is an approximation to

the STM, Φ(t, t0). Rather than generating this STM from numerical integration, Shadden

demonstrates the calculation of the approximate STM from an existing flow map. This

finite-difference approach requires that the flow map be defined for several initial states

separated by known initial variations. It is convenient, but not required, that these initial

states are defined on a regular grid. If a 2D grid of (x, y) positions is defined with spacing

specified by some integer mapping, then the finite-difference STM, in terms of its elements,

is defined as,

dφtt0(x̄)

dx̄0

∣∣∣∣
(i,j)

=


xi+1,j(t)−xi−1,j(t)
xi+1,j(t0)−xi−1,j(t0)

xi,j+1(t)−xi,j−1(t)
yi,j+1(t0)−yi,j−1(t0)

yi+1,j(t)−yi−1,j(t)
xi+1,j(t0)−xi−1,j(t0)

yi,j+1(t)−yi,j−1(t)
yi,j+1(t0)−yi,j−1(t0)

 . (3.14)

The result is then used to calculate the FTLE via Equation (3.13). A drawback of the

finite-difference approach is the requirement for five evaluations of the flow map to generate

one FTLE value. However, for some applications, such as the identification of material

structures within the system, evaluation of the entire grid is usually required and this

overhead is quickly absorbed. While finite-differencing produces a less accurate result, this

concern is offset by the fact that this strategy directly employs the actual stretching induced

by the flow map rather than an indirect estimate of the system evolution from a propagated

linear system of equations.
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Examples that demonstrate the direct comparison of both the finite-difference FTLE

method and an integrated STM algorithm appear in Figures 3.3–3.5. A 512 × 512 grid

of intial (x, ẋ) values, defined in a specific CR3BP environment, is employed to generate

the resulting FTLE maps. In Figure 3.3, only the forward FTLE is depicted, with high

values indicated by white saturation. The result from a backward FTLE computation is

plotted in Figure 3.4 and, again, high FTLE values are indicated by a higher saturation

of white. In Figure 3.5, both forward and backward FTLE are plotted, and to distinguish

  

(a) Finite Difference

  

(b) Integrated STM

Figure 3.3. Backward FTLE for C ≈ CL2 in the Earth-Moon system

  

(a) Finite Difference

  

(b) Integrated STM

Figure 3.4. Forward FTLE for C ≈ CL2 in the Earth-Moon system



52

  

(a) Finite Difference

  

(b) Integrated STM

Figure 3.5. Forward (red) and backward (blue) FTLE for C ≈ CL2
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the two, forward FTLE are colored with red saturation corresponding to high relative values.

Backward FTLE are colored by a similar measure with high relative values represented

with a greater saturation of blue1. In all cases, dark regions of the field represent regions

of relatively small values of the FTLE and bright regions correspond to relatively high

FTLE values. The images use 8-bit quantization for visualization by mapping the smallest

FTLE values to black and the largest FTLE values to full saturation (white, red, or blue, as

appropriate) through 256 equally spaced gradations in saturation. These maps are defined

in the Earth-Moon system (µ ≈ 0.01215) with a value of Jacobi constant, C ≈ 3.17216,

where x and ẋ ranges are indicated in nondimensional units. The motion associated with

these maps is restricted to the x-y plane since z0 = ż0 = 0. Additionally, the initial state

is constrained to the x axis since all y0 = 0, and ẏ is determined from the Jacobi constant.

Thus, the figures represent a Poincaré map reflecting FTLE values on the hyperplane.

Some discussion of the computation involved in producing the maps in Figures 3.3–3.5

is necessary to further compare the two methods. In both cases, the 512 × 512 (262,144)

grid of initial states are integrated forward and backward in time until their resulting flow

reaches the fifth crossing of the map. The numerical integration process uses a Runge-

Kutta-Fehlberg (RKF) 4th-5th-order integration scheme with an integration tolerance of

10−12. In the finite-difference approach, integration involves the evolution of a system of

four differential equations (the planar CR3BP equations). The total computation time that

is required to numerically integrate and calculate the FTLE values using compiled C++

routines with a serial implementation is approximately 37 minutes (∼19 minutes for the

forward map and ∼18 minutes for the backward map). To produce the FTLE map from an

integrated STM strategy, a system of twenty equations (the planar CR3BP equations and

the 16 associated scalar STM differential equations) requires numerical integration. The

computational time using the same serial C++ implementation with a slight modification

to accommodate the STM requires about 29 hours (∼19 hours to produce the forward map

and ∼10 hours to produce the backward map). Aside from the obvious time advantage

associated with the finite-difference scheme, another positive aspect is immediately apparent

in the resulting FTLE maps. From an examination of Figures 3.3–3.5, it is observed that

the finite-difference method produces much more definitive outlines of various regions; this

1Red and blue colors, used here abitrarily, in no way imply instability/stability as in other sections/chapters.
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clarity is an important component in the identification of Lagrangian coherent structures.

Unless otherwise required for a specific situation, this analysis focuses on the computation

of FTLE values via the finite-differencing technique.

In any Lyapunov exponent calculation, truncation occurs and an important issue is the

appropriate simulation length to produce meaningful FTLE results. Since the FTLE is

based on the characteristic Lyapunov exponent, a limit-based metric, a longer simulation

implies a more representative FTLE value. However, in practical applications, calculation

of the FTLE for a length of time corresponding to a time frame of interest is a compelling

argument. But, the normalization, that is, division by the simulation time, represents a

numerical difficulty. For systems with periodic behavior, such as the CR3BP, an FTLE

map is sometimes defined to correspond to a specified number of map crossings. In any

case, the simulation length must yield an FTLE value that is adequate to reveal pertinent

information for the current application. The current investigation focuses exclusively on

the CR3BP.

3.5 Invariant Manifolds

In the broadest sense, a manifold is a structured subset of a space with a dimension

less than the space itself. Moreover, such a manifold locally resembles the Euclidean space

corresponding to its dimension [46]. For example, the equilibrium points that correspond

to the differential equations in the rotating frame formulation of the CR3BP are zero-

dimensional manifolds existing in a six-dimensional space. Similarly, periodic orbits are one-

dimensional manifolds in the same six-dimensional space. However, within the context of

CR3BP analysis, the term manifold often refers to higher-dimensional manifolds, which are

frequently respresented by plotting their projection onto physical space. These projections

typically appear as invariant surfaces taking the form of tubes that, in the planar CR3BP,

act as separatrices of the flow. The contour depicted in Figure 3.6 is an example of one

such manifold tube, represented discretely by 1024 trajectories crossing the hyperplane on

a Poincaré map. In general, invariant manifolds offer significant insight into the behavior in

the CR3BP. Moreover, the separatrix characteristics of the manifolds closely relate to the

ideas of material boundaries associated with the FTLE [32].
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Figure 3.6. Poincaré map of manifold crossings overlain on a forward FTLE field

3.5.1 Stable and Unstable Manifolds Associated with L1 and L2

Manifolds associated with a periodic orbit, and the process to generate these manifolds,

are of specific interest. However, the approach to produce manifolds of periodic orbits results

from a generalization of methods for computing the manifolds of critical points. Recall that

the stability of the equilibrium points is characterized by the Jacobian matrix evaluated

at the equilibrium points. Further, the collinear equilibrium points are characterized as

hyperbolic, possessing both a stable and an unstable mode indicated by one positive and one

negative eigenvalue. The process for identifying the manifolds of the critical points originates

with a perturbation of the 4D initial state along the position-normalized eigenvectors of the

Jacobian. Propagating the state resulting from this perturbation along the normalized

eigenvector corresponding to the positive eigenvalue results is an approximation to the

unstable manifold. If, on the contrary, an initial state is perturbed along the normalized

eigenvector associated with the negative eigenvalue and propagated backward in time, the

result is an approximation of the stable manifold. In both cases, the state must be perturbed

in two directions along the eigenvector, and subsequently evolved in time, as appropriate,

to obtain the entire globalized manifold.



56

Proper normalization of the eigenvectors corresponding to the Jacobian is critical to

ensure an effective perturbation of the state. Thus, normalization is accomplished to retain

the general velocity characteristics of the eigenvector but normalizing with the position

components allowing for a displacement that is representative in physical space. Given

such a position-normalized eigenvector, the required perturbation is accomplished by the

addition of a relatively small scalar multiple of the normalized eigenvector to the initial state

(in this case x̄Li). Specifically, the normalized “stable” or “unstable” eigenvector, v̄S or v̄U ,

respectively, is produced by dividing the original eigenvector, Ȳ S/U , by the magnitude of

the position, that is,

v̄S/U =
Ȳ S/U

r
, (3.15)

where r =
√
x2 + y2 + z2. Some judicious displacement step, d, yields the perturbed initial

state vector,

x̄0 = x̄Li ± d · v̄S/U . (3.16)

The perturbation displacement, d, is usually determined as some appropriate physical dis-

tance relative to the equilibrium point. In the Earth-Moon system, such a distance is typi-

cally a few dozen kilometers, while in the Sun-Earth system a more reasonable displacement

might be a few hundred kilometers. The accuracy of the approximation to the manifold is

inversely related to the magnitude of the displacement, d. However, since the manifolds ar-

rive and depart from the point of interest asymptotically, a very small displacement requires

extensive integration to move away from the point and increases the numerical error. The

selection of the displacement is, therefore, somewhat subjective, but must be sufficiently

small to produce a reasonably accurate approximation to the manifold but large enough to

avoid excessive integration time. Given an appropriate initial perturbation, propagation of

the new initial state generates an approximation to the actual manifold.

In Figure 3.7, the stable and unstable manifolds associated with the equilibrium points

are generated in the neighborhood of the Earth-Moon L1 and L2 points and projected

onto configuration space. The figure also includes other appropriate vectors and subspaces.

Specifically, the position-space projections of the stable and unstable eigenvectors, v̄S and

v̄U , respectively, are depicted with arrow heads indicating the direction of the flow asso-

ciated near these vectors. The stable and unstable eigenspaces, ES and EU , respectively,

are indicated by the dashed lines extending from the points. The local stable and unstable
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Figure 3.7. Local manifolds associated with L1 and L2 in the Earth-Moon CR3BP

manifolds are tangent to their respective eigenspaces and are indicated in red (WS
loc) and

blue (WU
loc), respectively. Further, + and − identify the half-manifolds and the notation

simply reflects the direction of the flow, consistent with +v̄S/U or −v̄S/U , respectively, along

the position-normalized eigenvector the perturbations are made. The localized manifolds in

Figure 3.7 are propagated for an arbitrary duration to globalize the manifolds with associ-

ated symbols WU and WS . All of the quantities and symbols in the figure are distinct for
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each libration point. Moreover, the approximations to the manifolds associated with each

libration point L1 and L2, possess Jacobi constant values that are close but not precisely

equal to CL1/CL2 given the initial offset relative to the points that is required for compu-

tation. The theoretical manifolds possess Jacobi constant values equal to their respective

point and act as separatrices for motion, consistant with CL1 and CL2 .

3.5.2 Manifolds Associated with a Periodic Orbit (Maps)

The process for identifying manifolds that correspond to equilibrium points is extended

to periodic libration point orbits by introducing maps. Stability information for a periodic

orbit is available through the STM, in particular, the monodromy matrix that is, in fact, a

first-return Poincaré map [40]. This matrix is the analog of the Jacobian matrix for an equi-

librium point. The eigenvalues of the monodromy matrix reveal stable and unstable modes,

if they exist, and the associated eigenvectors supply the necessary perturbation directions

to generate individual manifold trajectories associated with an orbit. The eigenvalues of

the monodromy matrix are independent of the starting point or fixed point. If a given orbit

is discretized into a number of representative fixed points along the orbit, and the eigenval-

ues and eigenvectors of the monodromy matrix are calculated at each, then the resulting

manifold trajectories produce a “wireframe” for the manifold surface. Properties of the

STM as described by Katsiaris and Goudas [51] are used to transform the eigenvectors of

the monodromy matrix for the first fixed point to each successive fixed point as described

by Marchand [52]. Given the eigenvectors for the first fixed point, the eigenvectors for the

remaining N − 1 points are computed from,

v̄S(n∆t) = Φ(n∆t, 0)v̄S(0), (3.17)

v̄U (n∆t) = Φ(n∆t, 0)v̄U (0), (3.18)

with n = 1 · · ·N − 1. The position-space projections of the eigenvectors for 20 fixed points

along an L1 Lyapunov orbit are illustrated in Figure 3.8, with stable vectors colored blue and

unstable vectors colored red. The Lyapunov orbit is sized in terms of its amplitudes. The

amplitude in x is Ax ≈ 7000 km and the corresponding amplitude in y is Ay ≈ 26, 000 km.

After perturbing the state at each fixed point by 50 km in the appropriate directions and



59

  

Figure 3.8. Position-space projections of eigenvectors along an L1 Lyapunov orbit

integrating forward and backward in time, the first crossing of the manifolds associated with

the periodic orbit are plotted on a Poincaré map in Figure 3.9. In this case, the discrete map

fully represents the manifolds (recall each point on the map is a projection of a full 4D state).

Additionally, the trajectories representing the manifolds are plotted in configuration space

in Figure 3.10. Again, red is used in both Figures 3.9 and 3.10 to indicate the unstable

manifold and blue is used to indicate the stable manifold. Arrows reflecting the general
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Figure 3.9. Poincaré map of manifolds associated with fixed point along a periodic orbit

direction of the flow are included in Figure 3.10 along with representations of the Earth and

Moon for perspective. The manifolds are terminated at the x values corresponding to the

Earth and Moon, however, this is only for purposes of illustration and does not represent

a physical termination of the manifold trajectories. Ultimately, the concept of invariant

manifolds represents a characteristic of the natural dynamics that is exploited for effective

mission design. The usefulness of manifolds, particularly stable and unstable manifolds,
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Figure 3.10. Lyapunov orbit stable/unstable manifolds represented by trajectories

supplies an impetus for identifying such structures. The methods described in this section

represent only one way of identifying manifolds, and require a prescribed process and a

priori knowledge of the existence of the manifold. The requirement for knowledge that

the stable and unstable manifolds exist, represents part of the motivation for this analysis.

Effectively identifying manifolds without prior knowledge of their existence is an overarching

goal, and Lagrangian coherent structures provide a means to accomplish this objective.
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3.6 Lagrangian Coherent Structures

Lagrangian Coherent Structures (LCS) appear as ridges, or curves of constrained max-

ima, on an FTLE map. The concept of LCS originates with Haller [28] and is well-illustrated

by Shadden et al. [32] and Shadden [50]. More important to this analysis is the general

interpretation that LCS are the Lagrangian analog of Poincaré map crossings as the invari-

ant manifolds evolve. This correlation is introduced in Figure 3.6. Poincaré map crossings

are Eulerian in nature, that is, a snapshot of the evolution of the trajectory at discrete

points in time. The observation that LCS and Poincaré map crossings expose the same

structure and yield the same fundamental information from different perspectives, supplies

a potential opportunity to exploit the advantages of both. Specifically, FTLE maps provide

an immediate view of manifold crossings in a given region and invariant manifold theory

allows the immediate interpretation of these FTLE structures.

3.6.1 A Formal Defintion of Ridges

The direct identification of Lagrangian coherent structures in a data field depends on

the underlying concept of ridges. In terms of visual analysis, various definitions for ridges

exist. The description that is typically employed to identify LCS is consistent with the

formulation of height ridges as discussed by Eberly et al. [53]. This discussion establishes

ridges, in general, as locally defined and preferably invariant, that is, “. . . ridges should be

invariant under the following transformations:

� translations in the spatial variables,

� rotations in the spatial variables,

� uniform magnification in the spatial variables, and

� monotonic transformations of the intensity function.”1

Eberly et al. indicate that height ridges only satisfy the first three invariances, but such

ridges remain suitable when obtained from data that does not experience monotonic trans-

formations of the intensity function. The first two invariance transformations indicate

1Eberly et al., “Ridges for Image Analysis”, p. 3
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that the ridges corresponding to a rotated or translated function are equivalent to ro-

tated/translated ridges from the original function. The third invariance is particularly im-

portant to this work, because it indicates that a uniform scaling (such as that imposed by

converting from nondimensional units to dimensional units) preserves ridge structure. The

formal definition of a height ridge further indicates that the identification of points along the

ridge is accomplished by evaluating constrained local maxima, that is, local maxima of prin-

cipal curvature where the associated differentiation occurs along principal directions [53].

These maxima are not true local maxima because the gradient does not completely vanish at

the corresponding points; the gradient vanishes in only a subset of the principal directions.

Given a curve of ridge points, the points can only be considered as maxima with respect

to the directions transverse to the ridge. Any of the points along the ridge may possess a

height value that is greater or less than one of its neighbors on the ridge.

3.6.2 The Nature of Lagrangian Coherent Structures

Lagrangian coherent structures and invariant manifolds are correlated, and to clarify

that relationship it is important to elaborate on the nature of LCS. Lagrangian coherent

structures are aptly named considering their appearance as tight ridges, or coherent struc-

tures, in the scalar field of a Lagrangian metric, the FTLE. The concept of a “ridge” in a

given scalar field, as discussed in Section 3.6.1, indicates a contour in the field that possesses

a relatively higher value than its transverse neighbors. This concept equates directly to the

topographical definition of ridges from which it draws its name. Relative heights, or ridges,

in a flow field are illustrated in Figure 3.11; FTLE data from a region in a flow passing

behind several obstacles is rendered. (The data from which this image is produced and the

associated FTLE calculations are from Christoph Garth at the University of California at

Davis [54].) The ridges in this image represent LCS.

The methodology for producing invariant manifolds corresponds inversely to the tech-

niques for generating LCS in a key aspect. Forward FTLE fields yield LCS that correspond

to stable manifolds while LCS from backward FTLE are associated with unstable manifolds.

Recall that stable manifolds are produced by integrating backwards in time. The simula-

tion originates from a state that is preturbed relative to a reference state on a particular
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Figure 3.11. “Ridges” of FTLE values represented as relative heights

solution. Forward FTLE are produced by integrating forward in time. This apparently op-

posing behavior is reconciled by considering the fact that the associated manifold represents,

to some degree, a boundary separating qualitatively different regions of motion. Specifi-

cally, two neighboring trajectories on either side of a manifold will ultimately evolve to

different regions of the solution space and, as a result, experience a relatively large amount

of stretching leading to a high FTLE value. A trajectory directly on the stable manifold

approaches its associated particular solution. Of course, the system is numerically sensitive

so the manifold is an infinitely thin surface. A slight perturbation to one side or the other

ultimately results in a shift towards vastly different regions. Detail of the correspondence

between manifolds and LCS is summarized in Table 3.2.

Table 3.2
LCS and Manifold Correspondence

Structure Generated via Analog

Forward LCS Forward time integration Stable manifold

Backward LCS Reverse time integration Unstable manifold

Stable manifold Reverese time integration Forward LCS

Unstable manifold Forward time integration Backward LCS
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The potential for applications of Lagrangian coherent structures within the astrodynam-

ics community is far-reaching as both an analysis tool and as a means to identify important

system structures, such as manifolds, without a priori knowledge. However, calculation of

the FTLE is still resource intensive and the numerical identification of LCS in an FTLE

field can be challenging. Despite these difficulties, the advantage of the predictive abilities

of LCS warrants careful investigation and consideration. This analysis is based upon all of

the previous concepts with a number of numerical and computational tools for application

in the CR3BP.
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4. COMPUTATIONAL METHODS

Considering the physical regime associated with astrodynamics applications, it is not sur-

prising that nearly all of the design and analysis occurs in a virtual setting. Thus, com-

putational modeling and simulation are common in trajectory and mission design. Some

of the computational aspects of the analysis are examined, including numerical integration

schemes, methods to expedite computation, and various tools employed for visualization of

the resulting data.

4.1 Numerical Considerations

Many aspects of analysis and design in astrodynamics require the application of nu-

merical methods. Prominent throughout this investigation is numerical integration. Addi-

tionally, interpolation also plays a key role in identifying crossings on a Poincaré map and

the ridge points in a scalar field. Finally, some consideration of the numerical difficulties

posed by the CR3BP vector field, due to the presence of the two massive primaries, is

assessed using regularization. Each of these numerical tools is employed in the analysis as

appropriate.

4.1.1 Integration

Several numerical integration schemes are employed in this analysis. Initially simple,

lower-accuracy integrators are used for exploratory efforts. A simple trapezoid method

is employed for implementation in settings that exploit simpler mathematical operations.

Lower-order Runge-Kutta integration algorithms are also employed. After the regions of

interest are identified and designated for a more careful inspection, an adaptive step-size

Runge-Kutta-Fehlberg (RKF) 4th/5th-order integrator, one included in the GNU Scientific

Library (GSL) [55], is generally applied. Additionally, a Runge-Kutta Prince-Dormand

8th/9th-order scheme is available, also from the GSL, and is employed to generate output
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for specific values of the integration parameter (e.g., time or a state variable). Alternatively,

when output is required for crossings of a Poincaré section, the RKF integrator, coupled

with linear interpolation at plane crossings, is sufficient if the required step size for a speci-

fied accuracy is incorporated. Despite the varied number of numerical integrators employed

for various steps in this analysis, all of the ultimate results are generated using the same in-

tegrator with consistent parameters, namely the RKF algorithm, and the accuracy required

of the integrator is always on the order of 10−12.

4.1.2 Interpolation

Often, it is necessary to determine a value between discrete data points defined on a line

or a grid. To accomplish this determination, an interpolation process is employed. Inter-

polation methods are applied specifically for locating crossings on a Poincaré map as well

as for ridge-finding algorithms in a scalar field. Two standard interpolation schemes [56]

are incorporated: (1) linear interpolation in a 1D parameter space; and (2) bilinear inter-

polation in a 2D parameter space. While the idea of linear interpolation is well-known,

its role in a more complicated bilinear interpolation scheme necessitates a specific notation

associated with the linear interpolator, that is,

f(x) = x(f1 − f0) + f0, (4.1)

where the value of the function, f , at some point, x, interior to the interval [x0, x1] is

a function of the value of f(x0) = f0 and f(x1) = f1. Bilinear interpolation arises as

a natural extension of linear interpolation, and essentially represents linear interpolation

repeated twice over two parameters. The key formula for bilinear interpolation produces

the value of a 2D function, f(u, v), where u and v are the coordinates of a point interior to

the four points on the corners of a grid,

f(u, v) = (1− v) ((1− u)f00 + uf10) + v ((1− u)f01 + uf11) . (4.2)

Consistent with linear interpolation, the values at the points on the corners of the grid

are represented by f(u0, v0) = f00, f(u0, v1) = f01, f(u1, v0) = f10 and f(u1, v1) = f11.

Together, these two interpolators are sufficient for this analysis.
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4.1.3 Regularization

Another numerical consideration is represented by the process of regularization of the

equations of motion. Regularization is employed, as necessary, in the present analysis

when the numerical integrator progresses slowly due to numerical difficulties. The EOM

associated with the CR3BP include singularities since the distance to each of the two massive

primaries appears in the denominator. Specifically, as a state evolves into close proximity

of a primary, smaller time steps are required; reducing the step-size imposes an increasing

effect on the evolution steps of the integrator. The smaller time steps lead to inaccuracies

and, eventually, even an adaptive integration algorithm stalls as it continually attempts

to reduce the step size to maintain accuracy. In a process of regularization available from

Sundman [9], the system EOM are transformed into a different, but related, system of

equations with decreased effects from the singularity. Olikara [57] offers a concise description

of the generalized Sundman transformation as used to regularize the equations of motion

in the CR3BP. This regularization is accomplished by the introduction of an alternate time

parameter, s, that is related to the usual time variable through the following,

ds

dt
= g(x̄), (4.3)

where g is a scalar function of the state vector, x̄. The new time variable, s, is calculated

by integrating, i.e.,

s(t) =

∫ t

0
g(x̄(u))du. (4.4)

The inverse, for recovering time t is,

t(s) =

∫ s

0

1

g(x̄(u))
du. (4.5)

The function, g(x̄), depends on the system EOM and, in the CR3BP, is selected as,

g(x̄) =
1− µ
r

3/2
13

+
µ

r
3/2
23

, (4.6)

with the distances from the first and second primaries indicated by r13 and r23 in the

denominators.

Each of these numerical tools is significant in producing meaningful FTLE and LCS

results and allows greater flexibility in the overall implementation of the required numerical

operations. Moreover, the availability of various numerical approaches increases efficiency

and produces interactive feedback to guide the process.
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4.2 Ridge Calculation

The general concept of ridges in a scalar field is defined in Section 3.6.1, but a more

careful mathematical defnition is required to generate ridge points. Consider a height map

that represents a 2D scalar field; the scalar value is used as an appropriately scaled z

component. This height mapping concept is illustrated in Figure 3.11. Recall that ridges

are essentially lines along the “tops” of the features in the height map. Bilinear interpolation

is incorporated in the steps to calculate the ridge points. Generation of the relative values

for the points along the ridge is accomplished by comparing the eigenvectors of the Hessian

associated with the scalar field to the gradient of the same field. In this case, the scalar

field is a FTLE field and the associated ridges are LCS.

Frequently, some pre-processing is necessary to smooth FTLE data before calculating

the Hessian and gradient fields. Recall that calculation of FTLE values is accomplished via

central difference derivatives to produce an STM, either as a numerical approximation or

simply an empirical value. The process of differentiation inherently amplifies any noise in

the data, a situation potentially exacerbated by numerical derivatives. However, this same

issue actually contributes to sharper features in the scalar field. Unfortunately, the adverse

effects of this noisy process are perpetuated by ridge-finding methodologies involving the

Hessian and the gradient of the FTLE scalar field since the calculation of these values also

requires further differentiation. To offset this noise and extract various ridge features, it is

common to apply a low-pass filter to the data either before or after computing the gradient

of the field. An optimal low-pass filter is embodied in Gaussian blurring [58]. For a 2D

scalar field, which can be interpreted as an image, the Guassian kernel is defined,

G(ū, σ) =
1

2πσ2
e−

m2+n2

2σ2 , (4.7)

where ū = [m n]T represents the relative horizontal and vertical coordinates of a given point

in the FTLE field and σ is the standard deviation of the Gaussian distribution. This kernel

is convolved with the image to produce a smoothed image, i.e.,

ĩ(ū) ∗G(ū, σ) =

∫ ∞
−∞

ĩ(ū− t̄)G(t̄, σ)dt̄, (4.8)
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where ĩ is the value of the scalar field, in this case ĩ = λ, the FTLE value, at the rela-

tive point, ū. A discrete convolution sum is available as a sample approximation to the

continuous convolution [59],

i(ū) =
∑
t̄

ĩ(ū− t̄)G(t̄, σ), (4.9)

where the domain of the summation in t̄ is the extent of the Gaussian distribution, and i

is the smoothed data. The effect of this low-pass filtering is a preservation of the strong

features in the image while blurring out the small features associated with the noise intro-

duced from differentiation. An example of a noisy FTLE field, along with its corresponding

smoothed image, appears in Figure 4.1. The smoothing employs an exaggerated Gaussian

blur for illustration. Given a smoothed image, the gradient field (a field of 2-vectors) is

calculated via central differencing. From the gradient field, subsequent central differencing

  

(a) Noisy FTLE

  

(b) Smoothed FTLE

Figure 4.1. An example of Gaussian blurring applied to a noisy FTLE field
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produces the Hessian field (a field of 2×2 matrices). The values from the smoothed field

that are associated with the difference derivatives employed to calculate the gradient and

Hessian are reflected in Figure 4.2. Specifically, the four values employed to perform the

  

Figure 4.2. Five point stencil for central differencing

central differencing associated with i(x, y) appear as points on the grid in the figure. Note

that the spacings hx and hy may differ. The gradient is calculated for a particular point in

the image such that,

ḡ(x, y) =

gx
gy

 =

∂i(x,y)
∂x

∂i(x,y)
∂y

 =

 i(x+hx,y)−i(x−hx,y)
2hx

i(x,y+hy)−i(x,y−hy)
2hy

 . (4.10)

The Hessian is then evaluated as,

H(x, y) =

∂gx∂x ∂gx
∂y

∂gy
∂x

∂gy
∂y

 =

gx(x+hx,y)−gx(x−hx,y)
2hx

gx(x,y+hy)−gx(x,y−hy)
2hy

gy(x+hx,y)−gy(x−hx,y)
2hx

gy(x,y+hy)−gy(x,y−hy)
2hy

 . (4.11)

With the Hessian and the gradient available for every point in the FTLE map, ridge points

are calculated as described by Eberly et al. [53] and Mathur et al. [33]. The eigenvectors

associated with the Hessian align with the extremal directions of the second directional
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derivative [60]. Further, these eigenvectors from the symmetric Hessian are orthogonal,

thus, the eigenvector (ē1) associated with eigenvalue of largest magnitude (λ̃1) aligns with

the direction of maximum curvature while the other eigenvector (ē2), the eigenvector corre-

sponding to the eigenvalue of smallest magnitude (λ̃2), aligns with the direction of minimum

curvature [61]. Recall that the gradient is aligned with the direction of steepest descent.

Therefore, for a point to be a ridge point its gradient should be orthogonal to ē2, that is,

ḡ ⊥ ē2. (4.12)

Unfortunately, the lack of a directional sense associated with eigenvectors gives rise to im-

plementation issues with the requisite interpolation. These implemenation issues arise from

the fact that a numerical algorithm must arbitrarily select a direction for the eigenvec-

tor. Then, the possibility exists that eigenvectors on adjacent grid corners may, in reality,

point in nearly opposite directions. Therefore, noting that the previous condition in Equa-

tion (4.12) is consistent with ḡ ‖ ē1, it follows that ḡ satisfies the eigenvalue-eigenvector

relationship,

Hḡ = λ̃1ḡ. (4.13)

Ridge points in a 2D scalar field are then deduced via a search for points where Hḡ× ḡ = 0;

in this 2D case, the cross product produces a scalar. The condition that the cross product

equals zero indicates an extremum but does not distinguish between ridge and valley points.

To ensure that ḡ ⊥ ē2, evaluate Equation 4.13 such that,

||Hḡ|| − ||λ̃1ḡ|| < ε, (4.14)

where ε is some tolerance indicating that the difference is essentially zero.

Recall that the FTLE image is dense up to the sampling size, thus, values are defined

for each pixel in the image. But it is unlikely that the conditions describing a ridge point

occur precisely on a specific pixel defined on the associated grid. The original FTLE field,

its smoothed counterpart, the gradient field, and the Hessian field are all defined on the

discrete grid consistent with the selected sampling. While this sampling can always be

increased, the associated spacing must be less than ε to expose a ridge point. However,

bilinear interpolation succeeds in producing an estimate for a ridge point from the Hḡ field.

Note, however, that Hḡ is a nonlinear quantity and bilinear interpolation is a linear pro-

cess. Nevertheless, given a sufficiently small grid spacing, bilinear interpolation produces
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adequate results. Finally, recall that the interpolation process necessitated an alternate

criterion for identifying ridge points, due to the lack of direction associated with eigenvec-

tors. Fortunately, such an alternate criterion is available in a 2D field. In 3D fields, the

eigenvector directions must be tracked from corner to corner on a given 3D cell.

4.3 Parallel Processing

The computations associated with an FTLE map often prove expensive in terms of

time and function evaluations. Various options exist to improve this computational cost

and deliver results quickly. Parallel computational approaches offer such advantages. Two

types of implementation for parallel computing are discussed in support of this investigation.

4.3.1 CPU Implementation

Computational architectures have undergone a drastic paradigm shift in the last several

years. The limitations that constrain the speed of the Central Processing Units (CPU) in

most off-the-shelf computers have served as the impetus for multi-core architectures previ-

ously unavailable to end users. These multi-core processing units allow access to parallel

implementations, originally serial in nature, through the use of widely available program-

ming Application Program Interfaces (API).

One specific API that offers a straightforward parallelization implementation on a multi-

core architecture is the OpenMP library that is available for some high-level programming

languages including C/C++ and Fortran [62]. This programming library utilizes a shared-

memory parallelization approach where each processing core uses the memory available

in a single system. Further, harnessing the power of the API is accomplished easily by

specifying processor directives in the software source code, linking to various associated

OpenMP libraries, and employing a supported compiler with OpenMP compilation flags

enabled. If the software is compiled on a system with only a single processing core, the

program simply executes in serial.

The algorithmic methodology associated with generating FTLE maps is well-suited to

a parallel implementation. Recall that the computation of a single FTLE value involves
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the evolution of five trajectories. Generally, large sets of initial conditions, defined on a

grid, are employed to produce an FTLE map. This en masse approach serves to alleviate

the overhead associated with integrating (5n)2 trajectories across an n × n grid, reducing

the numerical requirements to only n2 trajectories. However, the integration cost associ-

ated with even n2 simulations can be extensive. Fortunately, each individual initial state

evolves independently, allowing concurrent integration. In a system with multiple cores, the

OpenMP API is utilized to wrap the applicable looping structures involving integration and

an immediate speed advantage is realized. Each additional core is harnessed to improve the

processing speed. While the speed upgrade typically does not scale proportionately to the

number of cores, the improvement is always appreciable. For example, numerical simula-

Table 4.1
Speed Improvements with OpenMP Multi-Core Parallelization

Run No. of Cores Core Speed CPU Time Real Time Speedup

(itrs of n× n map) (GHz) (hr) (hr)

3× of 4096×4096 6 2.00 10.38 2.46 4.21×

3× of 4096×4096 10 2.67 7.45 1.18 6.33×

10× of 4096×4096 6 2.00 34.80 7.63 4.56×

10× of 4096×4096 10 2.67 23.85 3.45 6.91×

5× of 2048×2048 4 2.40 5.65 1.82 3.10×

5× of 2048×2048 4 2.40 6.20 1.99 3.12×

10× of 2048×2048 8 2.00 9.33 1.38 6.76×

tion to produce a 4096×4096 grid of FTLE values associated with 10 crossings of a specific

periapse Poincaré map is accomplished in ∼3.45 hours using 10 cores (2.67 GHz per core)

on a Linux workstation. The total associated CPU time for this example is ∼23.85 hours,

indicating a speed increase of ∼6.91×, not the 10× that might be expected. However,

producing such a map with double precision accuracy in a few hours, versus an entire day,

is indeed significant. In contrast, while CPU parallelization delivers a highly accurate and
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direct mode for increasing efficiency, it is typically limited to a relatively small number of

CPU cores. Additional examples of speed improvements due to multi-core parallelization

with OpenMP appear in Table 4.1.

4.3.2 GPU Implementation

Before investing a significant amount of real time in a computational effort, a targeted

purpose and range for the calculations is desirable. A quick, rough picture is invaluable

for guiding a computational approach. This quick, approximate view of some region in the

map is realized via an alternate parallel computational approach, that is, leveraging the

Graphics Processing Unit or GPU. The GPU allows for thousands of concurrent executions

to effectively generate an immediate view of a user-defined FTLE bounding area. Then,

based on the view in this particular area, the bounding box is resized or re-focused by

zooming in or out or even shifting the focus to an entirely different region. Finally, once

a suitable area is identified, a more extensive and accurate CPU map is generated. This

process supplies nearly immediate feedback and a much more effective approach.

The GPU is generally available under two different hardware configurations. The GPU

is (1) the primary component of a computer’s internal graphics card; or, (2) an entirely

separate internal computing module existing solely to support extensive parallel implemen-

tations. Originally intended for concurrently computing millions of graphical primitives

to render visual scenes, over the past decade GPU technology has been adapted for sci-

entific work. Multiple aspects of this adaptation are a focus for research in the computer

science and visualization fields. However, recently, graphics card manufacturers have be-

gun to recognize that these technical advances are a viable application of their hardware

and are now releasing programming tools to support these efforts. One such programming

interface is the NVIDIA® Compute Unified Device Architecture (CUDA�) [63]. A single

CUDA-capable computing card may possess several hundred processing cores, each capa-

ble of multi-threaded computation allowing for thousands of concurrent operations. The

essence of a CUDA GPU implementation is the decomposition of the algorithm into as

many parallel operations as possible. The calculation of the flow map associated with an

FTLE map is well-suited for parallelization with the GPU. Each of the trajectories on a
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grid are effectively integrated simultaneously yielding the entire result in approximately the

same time interval that is required to integrate a single trajectory on a single CUDA core

(with typical clock speeds around 500 MHz). While this single integration is slower than

a single CPU integration, the parallel advantage of concurrent integration is immediately

apparent.

The CUDA GPU is best-suited to algorithms involving small mathematical steps with

little or no associated branching logic. So, a fourth-order Runge-Kutta integrator with a

fixed step-size is more suitable to a CUDA implementation than any adaptive step-size

algorithm. Additionally, the CUDA hardware is typically restricted to single precision

operations, consistent with the fact that single precision operations are sufficient to deliver

visual information. This apparent trade of speed for accuracy is becoming less distinct as

NVIDIA continues to improve the general purpose computational abilities of their graphics

hardware. Recently, CUDA-capable cards to support double precision operations with

limited effectiveness, relative to single precision performance, have been introduced. A

GPU approach is employed in this investigation, along with an interactive visualization

application, to guide the generation of various FTLE maps and the identification of the

associated LCS.

4.4 Visualization

Simplification of the analysis is accomplished by judicious application of various meth-

ods to produce FTLE maps and investigate the associated LCS. To this end, an interactive

visualization process ensures that the regions of interest can be quickly identified. The visu-

alization interface integrates a wide array of numerical and computational tools, including:

1. Teem [64], “a coordinated group of libraries for representing, processing, and visual-

izing scientific raster data.”1: The Teem library principly interfaces directly with the

generated FTLE data. Tools from Teem’s Nearly Raw Raster Data (nrrd)2 library

subset, along with Teem’s Utah Nrrd Utilities (unu)2 command line tool, are applied

1“Teem: Tools to process and visualize scientific data and images”, p. 1
2Acronym capitalization taken directly from the author of the Teem library
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to map the data onto an appropriate scale, combine the data into red-green-blue

(RGB) three-vectors to color points, and to represent the data as an image.

2. The Visualization Toolkit (VTK) [65]: As the name suggests, VTK exists as a library

of visualization algorithms and tools. Each aspect of the toolkit is written in C++

and is extensively integrated into various other programming frameworks. The VTK

library is used to create an interactive “widget”, or window gadget element, as part

of a Graphical User Interface (GUI), with the images generated by Teem. This VTK

widget is embedded in a Qt GUI.

3. Qt [66], “a cross-platform application and [User Interface] UI framework.”1: This

toolset consists of C++ libraries, a graphical integrated development environment,

and an intermediate meta-object compiler (MOC). Qt serves as the overarching frame-

work for the visualization environment used in this analysis.

Various computational tools are embedded in the visualization interface. Including GSL,

OpenMP, and CUDA. Other user-defined functions are employed as required. One advan-

tage of this collection of visualization tools is that the algorithms are largely open-source

or otherwise “free” software.

Two views of the user interface, developed as part of this investigation, appear in Fig-

ures 4.3 and 4.4. In Figure 4.3, five regions of the interface are labeled. Region A includes

controls to set and modify CR3BP system parameters such as µ, C, and the bounding box

for the FTLE field. In region B, control options are available to manipulate the integration

parameters, including the choice to use the CPU or the GPU for integration. The FTLE

image is displayed in region C where ridge data is subsequently overlaid. Region D offers

options for Gaussian blurring and ridge detection tolerances. Finally, the blurred image

and ridge data, after each operation, appears in region E. In Figure 4.4, an example of the

GUI in operation appears. The top frame displays the FTLE data associated with a region

similar to that in Section 3.4. Overlain on the FTLE are ridge points, represented as red

dots, added after blurring and ridge identification. In the bottom frame, the blurred image

and the ridge is apparent with ridge points overlaid on the image. The various control boxes

display the parameters employed to produce the featured results. The imperfect correlation

1“Qt: A cross-platform application and UI framework”, document title
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C

E

A

B

D

Figure 4.3. Annotated user interface screenshot

of the calculated points with structures in the image serves to reinforce the utility of such

an interactive environment that allows for adjustment of parameters “on-the-fly” to achieve

better results. Figure 4.5 illustrates a better correspondence associated with the FTLE map

from Section 4.2, and represents sample results from a less complex FTLE field, produced

with a more extended interactive visualization effort.
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Figure 4.4. User interface screenshot with examples

  

(a) Ridges on smoothed FTLE

  

(b) On the original noisy FTLE

Figure 4.5. An example of results from an extended interactive session
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5. ANALYSIS AND RESULTS

The applicability of Lagrangian coherent structures to the CR3BP is demonstrated through

a series of examples. Examination of LCS that are associated with known invariant mani-

folds exemplifies the direct correlation of the two concepts. Specifically, a simple comparison

between LCS and the manifolds corresponding to a Lyapunov orbit in the Earth-Moon sys-

tem suggests additional features. Immediately apparent in the FTLE field, structure that

is not observed from the associated Poincaré map emerges. Additional applications of LCS

in the Earth-Moon system are also presented. Several examples of LCS in the Sun-Saturn

system correlate with parallel research efforts focused on the identification of transit tra-

jectories and the characterization of long-term trajectory behavior. Both FTLE maps and

LCS are useful in many systems to explore regions of qualitatively different behavior.

5.1 Lagrangian Coherent Structures in the Earth-Moon System

A system of continuing interest involves the Earth and the Moon and their gravitational

influence on the motion of a spacecraft. The Earth-Moon (EM) CR3BP is characterized, for

this analysis, by a system mass parameter of µ ≈ 0.01215, a relatively large value compared

with other naturally occurring planet-moon three-body configurations in the solar system.

Additionally, Sun-planet three-body mass parameters are generally much smaller as well.

Characteristics of dynamical behavior in the EM CR3BP, coupled with the general appeal

of this system, create a convenient test bed for various analysis strategies. Two particular

examples in the Earth-Moon system follow: (1) investigation of LCS and related concepts

corresponding to an L1 Lyapunov orbit and (2) exploration of FTLE associated with the

L4 region.
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5.1.1 Structures Associated with a Lyapunov Orbit

An initial investigation to examine FTLE and LCS associated with invariant manifolds

in the EM CR3BP supplies an overview of each concept. As discussed previously, certain

values of Jacobi constant yield zero velocity curves that restrict the regions of possible

motion. If the value of the Jacobi constant is selected such that motion is restricted to a

region encompassing the two massive primaries, for example, C = 3.17216 ≈ CL2 , a specific

Lyapunov orbit is known to exist near L1. This configuration is illustrated in Figure 5.1,

where the region forbidden by the ZVC is colored in lavender and the Lyapunov orbit near

L1 is colored consistent with its time evolution – the associated zoomed view in Figure 5.2

further quantifies this color scale.

  

Figure 5.1. Lyapunov orbit and zero velocity curves corresponding to C ≈ CL2
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To establish the Lyapunov orbit in Figure 5.2, several characteristics are notable. The

planar periodic orbit possesses a period of ∼11.95 days. Recalling the definition of the state,

x̄, such that,

x̄ =
[
r̄ v̄

]T
=
[
x y z ẋ ẏ ż

]T
,

the initial conditions that generate the Lyapunov orbit are,

x̄0 =
[
r̄0 [km] v̄0 [km

s ]
]T

=
[
329180.457017 0.0 0.0 0.0 −0.147860687495 0.0

]T
.

Further, the stability characteristics are represented by the eigenvalues of the monodromy

matrix. The eigenvalues indicate one stable (λ̃s = 0.0004) and one unstable (λ̃u = 2314)

mode. The presence of stable and unstable modes in the linear subspace implies the exis-

tence of stable and unstable invariant manifolds associated with this orbit. The color bar

in Figure 5.2 supplies a visual indication of the direction of motion along the orbit, where

the evolution is marked by color with the initial and final states displayed in blue and red,

  

Figure 5.2. L1 Lyapunov orbit corresponding to C = 3.17216
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respectively. This coloring further indicates a general clockwise direction of motion around

the orbit.

As a first step toward investigating the correspondence between LCS and the invari-

ant manifolds, consider a Poincaré map. Several manifold crossings of a Poincaré map,

Σ := y = 0, are generated using a value of d = 50 km as the orbital offset. At each fixed

point, the offset is directed along the appropriate position-normalized eigenvectors consis-

tent with Equations (3.15) and (3.16). This position-normalized perturbation is introduced

at 1024 discrete fixed points about the orbit. Each propagation produces a trajectory and,

combined, they represent the stable/unstable manifolds corresponding to the Lyapunov

orbit in Figure 5.2. The manifolds are projected onto configuration space and appear in

Figure 5.3; note that the trajectories are plotted to their “second” intersection with the x

axis, such that crossing is consistently in the same direction, and occurs between the Earth

and L1. The “first” intersection represents crossings associated with an “unwinding” of the

trajectories from the orbit. Subsequently, the trajectories are further propagated for an

extended time as represented through multiple iterations of a map. Crossings of the map,

Σ, are defined in the x-ẋ phase space between the Earth and L1 when the state variable y

evolves from a negative to a positive value (for the unstable manifold) or from a positive

to a negative value (the stable case). The map (Σ) and the first and second crossings are

illustrated in Figure 5.4. Crossings associated with both stable and unstable manifolds

appear in Figures 5.5–5.7 (note that the axes associated with these figures are marked in

nondimensional barycentric coordinates). Each point on the map is constrained by Jacobi

constant and the planar formulation. Thus, each point on the map fully embodies a sin-

gle trajectory in the system, but each point does not necessarily represent an independent

simulation given that a single trajectory crosses the map multiple times. As each of the

1024 trajectories evolve at different temporal rates, the crossing numbers indicated in the

figures represent the crossings for which a majority of the trajectories begin to fill out the

associated contour. In Figure 5.5, the stable manifold crossings appear and the unstable

manifold crossings are plotted in Figure 5.6. Note the symmetry across the x axis when

comparing Figures 5.5 and 5.6 or directly apparent in Figure 5.7 where both the stable and

unstable manifolds appear, colored in blue and red, respectively.
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Figure 5.3. Configuration-space projections of stable (blue) and unstable
(red) manifolds (arrows imply direction of integration)
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Figure 5.4. An illustration of the first two crossings of the map Σ
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Figure 5.5. Stable manifold crossings associated with a Lyapunov orbit

  

Figure 5.6. Unstable crossings; counterpart of Figure 5.5
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Figure 5.7. Both stable (blue) and unstable (red) manifold crossings
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The FTLE maps associated with the region from Figures 5.5–5.7 reveal immediate sim-

ilarities to the manifolds in the figures while also highlighting various differences. For

example, in Figure 5.8, the FTLE values result from three iterations of the Poincaré map,

consequently the contours corresponding to the later crossings of the Lyapunov manifolds

have yet to develop. However, in Figure 5.9 (after 5 crossings of the Poincaré map), the

structures associated with these later crossings are present. A comparison of the figures

reflects the fundamental and important observation that FTLE values becomes more rep-

resentative of the dynamics with a longer evolution. Figure 5.10 is included for further

illustration.

  

Figure 5.8. FTLE for three crossings of the Poincaré map, Σ = y = 0
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Figure 5.9. FTLE for five crossings of the Poincaré map, Σ = y = 0

  

Figure 5.10. FTLE for ten crossings of the Poincaré map, Σ = y = 0
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In each of Figures 5.8–5.10, the solid black triangular regions in the top and bottom right

corners correspond to regions forbidden by the Jacobi limiting curves (i.e., the analog of zero

velocity curves as viewed in the x-ẋ phase space). Consistent with previous FTLE images,

the relative value of the FTLE is represented by color saturation where FTLE values of zero

are indicated by black regions and saturated blue and red pixels correspond to the higher

values of forward and backward FTLE, respectively. Finally, the manifold crossings appear

  

Figure 5.11. FTLE (5× of Σ = y = 0) with manifold crossings
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in green on Figure 5.11 as an overlay of the contours from Figure 5.7. While the FTLE

maps require integration of an initial state associated with every pixel, which is significantly

many more trajectory evaluations than required to represent known manifolds, these maps

reveal vastly more detail including potentially unknown stuctures.

Applying the ridge extraction methods described in Section 4.2, ridge points are identi-

fied in the previous FTLE maps. Ridge points are identified in green in Figures 5.12–5.14,

while the red (unstable) and blue (stable) color scheme from the preceding FTLE images is

maintained. The process for producing the ridge-point maps begins with a Gaussian blur

where the image value at a particular pixel, along with its neighbors, is convolved with a

Gaussian distribution, as described in Equation (4.9) to smooth out low-scale noise. The

specific Gaussian blur that is applied is characterized by a Gaussian distribution defined

over 3 standard deviations. The tolerance used to identify zeros in the modified Hessian-

  

Figure 5.12. Ridge points on the three-crossing FTLE map
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Figure 5.13. Ridge points on the five-crossing FTLE map

  

Figure 5.14. Ridge points on the ten-crossing FTLE map
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gradient field, as described in Equation (4.14), is selected as 1 × 10−13, however, this is

not the only criteria available to identify ridge points in an image. While the Gaussian

blur serves to dampen some low-amplitude noise, complete elimination of noisy artifacts

requires excessive blurring resulting in poor correlation with the original image. Therefore,

a second criteria is employed by the ridge algorithm to check against the relative strength of

the ridges. Recall that larger negative values of λ̃2, the smallest eigenvalue of the Hessian,

indicate sharp downward curvature transverse to the ridge. Thus, the magnitude of the

negative λ̃2 supplies the strength of the ridge point. Setting a tolerance on this magnitude

identifies only ridge points possessing at least the level of prominence associated with the

cut-off value. This negative tolerance is selected such that ridge points with λ̃2 < −500

are identified in Figures 5.12– 5.14. This magnitude is an empirically adequate value, and

does not necessarily represent an optimal choice. The accuracy of the resulting ridge points

highlights some of the difficulties in successfully locating ridges. Gaussian blurring dampens

undesirable noise but, unfortunately, it also shifts the positions of ridge points. However,

without such dampening, spurious ridge points that result from the noise, can easily satu-

rate an image. In images with high complexity, it is difficult to identify one set of blurring

parameters and ridge point tolerances that effectively capture all of the desirable features

in the image. Ultimately, while a ridge-finding algorithm supplies an automated means to

capture ridge points, successful implemenation for a given image requires extensive user in-

teraction, defeating a significant advantage of an automated process. Fortunately, locating

ridges within an image is an active area in visualization research centers and more sophis-

ticated ridge-finding algorithms are emerging. For this analysis, the direct investigation of

the FTLE map (wherein LCS are apparent), that is, visually selecting a point along a ridge

and thereby recovering its state, is often very useful.

The zoomed view of a bounded area from Figure 5.13 appears in Figure 5.15. The

isolated region is indicated by the white box in the inset from Figure 5.13. Three yellow

cross-hair markings indicate points on the map that are selected for illustration. These

points are purposefully identified for their proximity to FTLE structures, and data associ-

ated with these points is tabulated in Table 5.1. Note that numerical data concerning the

ridge points is included from visual inspection as well as ridge-finding algorithms. When

the ridge point is determined from visual inspection, the six digits in the table for the initial
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trajectory state corresponding to Point 1 represents the limit of accuracy attainable from

the visual selection of a single pixel from the 2048×2048 image. The six digits in the table

for Points 2 and 3 are actually truncations of the 12 digits available from the automated

ridge-finding scheme.

  

Figure 5.15. Zoom of the five-crossing FTLE map
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Figures 5.16–5.18 are included as trajectory examples that appear to possess an interest-

ing nature, corresponding to the states from Table 5.1, and that are immediately identified

using FTLE maps. In each of the figures, the Earth and Moon are depicted at 3× their

actual size, and the libration points are indicated as red spheres. The Lyapunov orbit near

L1 from Figure 5.2 is included for reference in black. Finally, the ZVC associated with the

Jacobi constant employed throughout the entire subsection, that is C = 3.17216, is also

displayed in each figure. The “forbidden” region is apparent with a solid lavender fill. In

Figures 5.16–5.18, the initial state, plotted as a green point in each figure, is propagated

in both forward and backward time as indicated by blue and red arrows and the resulting

trajectories, respectively. Thus, the red arrow denotes the direction opposite to the natural

motion, while the blue arrow is consistent with both the direction of forward integration

and the natural motion. The trajectory arcs are also colored red and blue consistent with

the direction of the flow. In all six cases, the trajectories are evolved until the ninth crossing

of the x axis occurs. Figure 5.16 corresponds to Point 1 from the table, a point selected

from the map by visual inspection. This point appears to lie at the crossing of LCS that

are associated with both stable and unstable manifolds in the system. While the accu-

racy of the initial state is limited by the visual resolution of the image, it is apparent that

forward and backward propagation of the state evolves into the vicinity of the Lyapunov

orbit. A corrections algorithm could be employed to adjust the trajectory numerically to

approach and remain in a Lyapunov orbit. Both Points 2 and 3 yield similar results as is

apparent in Figures 5.17 and 5.18. Again, blue and red arcs correspond to forward and

backward integration, respectively. Notable in the trajectories associated with these latter

cases is that the stable and unstable propagations nearly mirror one another across the

x axis, potentially correctable to form a closed path through the system. However, these

two arcs, unfortunately, pass beneath the surface of the Moon as is visually apparent in

Figure 5.19 where the Moon is displayed to scale. Despite the ultimate collision, this type

of solution still represents an interesting and potentially useful result; adding a constraint

for an acceptable lunar pass distance in a design process still yields a useful trajectory. All

of the previous results support further investigation. Exploring nearby points, coupled with

numerical corrections, offers viable options as inputs to trajectory design algorithms.
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Figure 5.16. Trajectory arcs associated with Point 1 from Table 5.1



98

  

Figure 5.17. Trajectory arcs associated with Point 2 from Table 5.1
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Figure 5.18. Trajectory arcs associated with Point 3 from Table 5.1
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Figure 5.19. Zoom of Point 3 trajectory arcs focused in the region near the Moon
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5.1.2 Structures In the L4 Region with CL4 < C < CL2

The collinear libration points have recently been a focus of numerous investigations in

various systems, but the equilateral or triangular libration points in the EM system are

also generating new attention. While the previous example highlighted all of the concepts

embodied in this analysis, the following discussion focuses simply on presenting structures

evident in FTLE maps near the triangular points. This discussion also serves to introduce

the concept of periapse Poincaré maps and, in the process, bridges the gap between the

previous and subsequent results. Unlike the characteristic roots computed for the collinear

points, that include both real and imaginary values, the roots associated with the triangu-

lar points are pure imaginary, indicating that these equilibrium points are linearly stable.

Analysis further indicates that periodic orbits near the equilateral points maintain this sta-

bility characteristic [67]. A consequence of the linear stability of these orbits is an obvious

lack of stable and unstable manifolds. In recent years, some proposed mission scenarios

included the possibility of transfers between orbits near the collinear points in the vicinity

of the Moon and orbits associated with the triangular points. Despite the lack of flow that

asymptotically approaches and departs the periodic orbits in the neighborhood of the tri-

angular points, other transfer arcs may still approach these L4 orbits. Inspection of FTLE

maps in the vicinity of the L4 and L5 points supplies an immediate view of any potential

arcs that may pass near the equilateral points, perhaps originating near the collinear points.

If such options exist, the map structures can be exploited for transfer design. A brief survey

of such maps in the vicinity of L4 is summarized below.

To develop FTLE maps, an area near L4 in the x-y plane is defined for examination.

The specific region associated with the following FTLE maps is defined by an x-y bounding

box centered on L4 of width x = xL4 ± 1.106 × 105 km and height y = yL4 ± 1.106 × 105

km, as indicated in Figure 5.20. Since the map is defined in configuration space, the x

and y coordinates are directly available on the map. The FTLE maps then represent the

evolution through a time duration of 10 nondimensional time steps (T ≈ 43 days), unlike

previous maps defined on a Poincaré section. This time-duration mapping, coupled with

a specific value of Jacobi constant does not constrain the two velocity states. Therefore,

constraints are enforced on ẋ and ẏ such that, given x, y, and C, the associated initial
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velocities represent a periapse point with respect to P2. Alternatively, either ẋ or ẏ is

assigned a specific value, thereby constraining the remaining velocity state by the Jacobi

constant value. The periapse condition is selected to produce maps that highlight orbits

near the libration points in the vicinity of the Moon. The specific conditions to define

such a periapse constraint are based on applications by Davis and Howell [68] as well as

Haapala [69]. If the position and velocity of the spacecraft relative to P2 are defined as,

q̄ =
[
x− 1 + µ y z

]T
, (5.1)

˙̄q =
[
ẋ ẏ ż

]T
, (5.2)

then the conditions for periapses are,

q̄ ˙̄qT = (x+ 1− µ)ẋ+ yẏ + zż = 0, (5.3)

v2 + q̄ ¨̄qT = (ẋ2 + ẏ2 + ż2) + (x− 1 + µ)ẍ+ yÿ + zz̈ ≥ 0, (5.4)

where, from Equation (2.27), v2 = ẋ2 + ẏ2 + ż2.

  

Figure 5.20. The L4 region of interest explored in Section 5.1.2
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A series of FTLE maps are constructed within the region near L4 defined in Figure 5.20.

The resulting maps appear in Figures 5.21 and 5.22. In each case, forward FTLE are

represented in shades of blue and backward FTLE are colored red. The sequence begins

in Figure 5.21 (a) and the maps are initially associated with a Jacobi constant value of

C ≈ CL2 . The series of images concludes with Figure 5.22 (e) corresponding to a C value

that is slightly greater than CL4 . It is apparent from these images that some structure is

available and the associated features represent potential trajectory options for exploration

missions.

  

(a) C = 3.1722 ≈ CL2

  

(b) C = 3.1434

  

(c) C = 3.1204

  

(d) C = 3.0973

Figure 5.21. FTLE in the EM L4 region for various C values (I)
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(a) C = 3.0686

  

(b) C = 3.0398

  

(c) C = 3.0168

  

(d) C = 2.9995

  

(e) C = 2.9938

  

(f) C = 2.9880 ≈ CL4

Figure 5.22. FTLE in the EM L4 region for various C values (II)
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5.2 Selected Lagrangian Coherent Structures in the Sun-Saturn System

Investigations combining the periodic nature of the CR3BP and the powerful analytical

framework supplied by Poincaré maps are particularly insightful. Consider defining the

hyperplane of the Poincaré map consistent with trajectory apses. These maps are defined

in configuration space and are, therefore, sometimes more intuitive than maps defined in

a phase space. But, periapse Poincaré maps can allow for a naturally convenient setting

for examination. The combination of such maps with invariant manifold theory to identify

potential transit trajectories, homoclinic and heteroclinic connections, as well as cometary

paths is the focus in Haapala [69]. Characterizing long-term trajectory behavior in a three-

body system is the subject of additional analysis by Davis and Howell [68, 70]. In both

cases, specific results are analyzed in the Sun-Saturn CR3BP (µ ≈ 2.85804 × 10−4). The

discussion in this section elaborates (1) the potential advantages of FTLE/LCS analysis with

their relationship to Sun-Saturn transit trajectories, and (2) the identification of features

associated with both long-term periapse maps and FTLE maps.

5.2.1 Potential Sun-Saturn Transit Trajectories

Haapala explores trajectory arcs in the Sun-Saturn system [69]. The general approach in

Haapala’s analysis is the identification of invariant manifold crossings on a periapse Poincaré

map. These crossings are generally focused in the P2 region of the Sun-Saturn system. Tran-

sits, that is, pathways in and out of the P2 (Saturn) region can be identified by inspecting

the various intersecting regions of the map that are associated with the manifolds of L1/L2

Lyapunov orbits. The invariant manifolds associated with the L1/L2 Lyapunov orbits in the

planar CR3BP act as separatrices in the flow for a specific C value [71]. Thus, the manifolds

generate isolated regions in the map, each with certain characteristics. Regions defined by

stable manifolds might overlap regions determined by the unstable manifolds. State vectors

originating in such an isolated region must pass through, or transit, through the libration

point gateways as they evolve. So, selecting a particular type of intersecting region sup-

plies an initial state that propagates and subsequently enters or exits the P2 region in a

predictable way. This approach is generalized such that a single L1/L2 trajectory passes
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through specified regions of the map, in a pre-determined order, to produce a predictable

path.

As detailed by Haapala in [69], transit trajectory information is observed via periapse

Poincaré maps. Understanding of the dynamical behavior is further expanded through ex-

ploration of the corresponding FTLE data. While intersecting regions are identified from

a periapse map, differing behavior within these regions is only identifiable by blanket in-

spection of the region. An FTLE map supplies the requisite density, with every pixel in the

map containing qualitative information. A periapse Poincaré map appears in Figure 5.23.

The features in this map and the subsequent analysis are characteristic of a specific Jacobi

constant value, C = 3.01740. For this C value, the ZVC are slightly open at L2. In the

figure, stable manifold crossings of the map are indicated as blue dots while the first crossing

of an unstable manifold, enclosing a closed lobe, is colored in red. This overlap of the stable

  

Figure 5.23. Periapse Poincaré map of manifolds (with permission: A. Haapala [69])
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(blue) and unstable (red) manifolds facilitates the design process. The lobe outlined in red

contains intersections of states interior to the first crossing of an unstable manifold with

states inside successive crossings of stable manifolds. The manifold structures are labeled

with the symbol Γ with superscripts U and S indicating unstable and stable manifolds, re-

spectively. The subscript, L1, indicates that these manifold structures are associated with

a L1 Lyapunov orbit in the Sun-Saturn system. Regions of intersection between the stable

and unstable manifolds are colored by their associated crossing of the hyperplane, where dif-

ferent solid-colored regions denote subsequent intersections as indicated by subscript indices

(1-6). The corresponding FTLE map is plotted in Figure 5.24. Consider the yellow region

  

Figure 5.24. FTLE map corresponding to Figure 5.23

from Figure 5.23. This region is also identified in Figure 5.24. All of the points within the

red lobe are first crossings of trajectories that enter the P2 region through the L1 gateway;

this conclusion results from the fact that all such points lie within the red boundary, i.e.,
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the first unstable crossing of the manifold associated with the L1 Lyapunov orbit. Over-

laid on the red lobe are backward crossings of the map by the stable manifold emanating

from the same orbit. Recall that the colored ribbons identify a particular crossing number

where yellow implies the 6th crossing. Within the area of the FTLE map (Figure 5.24)

that corresponds to the yellow band from Figure 5.23, note the region of relatively larger

FTLE values (lighter color) running diagonally along the edge of the lobe. The information

associated with the FTLE map in this region is not captured in the associated Poincaré

manifold plot. Other structures appear that originate with flow in this region that is not

previously captured. Two zoomed views focus on specific areas of this region and appear as

insets in Figure 5.25. These specific areas are identified due to the presence of intersecting

  

Figure 5.25. Zoomed insets focused on regions of interest from Figure 5.24

FTLE. Note that digital enhancement is performed on the insets to highlight the structures.

The intersections are represented by green dots in Figure 5.25 and the associated states are
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listed in Table 5.2. These states are evolved forward and backward in time until they effec-

tively meet and the associated trajectories, along with zoomed views of the Saturn region,

appear in Figures 5.26–5.29. Note that both the Sun and Saturn appear scaled 100× and

20×, respectively, in these figures. Corrections are required to join the arcs at the point of

discontinuity given the manual point identification from the associated image. Thus, these

intersections, readily identified from the FTLE data and not immediately apparent from an

associated manifold Poincaré plot, immediately produce interesting results in the form of

potentially periodic orbits that pass back and forth between the two primary regions in the

Sun-Saturn system. This data is now the focus of further examination elsewhere.

Table 5.2
Point Data Selected Manually from Figure 5.25 for Inspection

[x y z ẋ ẏ ż]T [x y z ẏ ẏ ż]T

Inset (non-dim) (km ×109 | km/s) Figure No.

Top [1.002602 − 0.001474 0.0 · · · [1.430439 − 0.002104 0.0 · · · 5.26, 5.27

0.180594 0.353733 0.0]T 1.742012 3.412110 0.0]T

Bottom [1.004517 − 0.003834 0.0 · · · [1.433169 − 0.005471 0.0 · · · 5.28, 5.29

0.170356 0.213345 0.0]T 1.643254 2.057928 0.0]T
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Figure 5.26. Trajectories from green point in top inset of Figure 5.25
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Figure 5.27. Zoom focused on Saturn region from Figure 5.26
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Figure 5.28. Trajectories from green point in bottom inset of Figure 5.25
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Figure 5.29. Zoom focused on Saturn region from Figure 5.28
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5.2.2 Long-Term Trajectory Analysis in the Sun-Saturn System

Related to the analysis from Section 5.2.1 is an investigation of the long-term behavior

near P2 in the CR3BP. Specifically, the ongoing analysis of Davis and Howell [68,70] employs

periapse Poincaré maps in the vicinity of Saturn to identify capture and escape orbits from

the P2 region. The Jacobi constant utilized here is slightly smaller than that employed in

Section 5.2.1, namely, C ≈ 3.01730, indicating that the ZVC are more widely open at L2.

A three-crossing FTLE map centered at Saturn is plotted in Figure 5.30. The coloring

  

Figure 5.30. FTLE for 3× of the periapse map in the vicinity of Saturn
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in this figure is consistent with previous FTLE maps, i.e., forward FTLE is represented in

blue and backward FTLE is colored red. Recall that LCS associated with forward FTLE

correspond to stable manifold structures and unstable manifold structures are associated

with backward FTLE1. Immediately apparent in the figure is the region from the previous

section where the first crossing of the unstable manifold from the orbit near L1 appears as a

red lobe on the right side of the figure generally below vertical center. Subsequent crossings

of this same L1 unstable manifold in red overlap a blue lobe above vertical center, also on

the right side of the image. This blue lobe is the first stable manifold crossing associated

with the L1 Lyapunov orbit. Similarly, subsequent crossings of the stable manifold overlap

the unstable lobe. On the left side of the figure similar, but smaller, lobes are apparent.

These lobes are associated with the stable/unstable manifolds crossings associated with an

L2 Lyapunov orbit. Interesting features are observed in the form of sharp, bright loops of

FTLE close to P2. All of these salient features appear, again, within three iterations of the

periapse Poincaré map.

Since long-term behavior is a focus of related research efforts, a longer evolution is per-

formed to better establish the associated structures and yield sharpened and more detailed

features. This longer evolution involves ten crossings of the periapse map and appears in

Figure 5.31. A similar periapse Poincaré map appears in Figure 5.32 with permission from

Davis and Howell [70] (some simulation results to produce this map are from Haapala). In

this figure, the same system parameters are employed to produce periapse crossings from

stable manifolds associated with L1 (red) and L2 (blue) orbits. Note that the units in

Figure 5.32 are Hill radii. Additionally, captured orbits are evolved over a significant time

duration to produce the map crossings indicated in black – these are orbits that remain in

the vicinity of Saturn for at least 1000 years. This map is included for general comparison.

Specifically, in Figure 5.31, the “hourglass”2 region in the center, similar to that defined in

Figure 5.32, is apparent. This region of low relative FTLE values is indicative of uniform,

organized motion and implies long-term stability. Also, note the similar narrow regions of

stability on the x axis to the left of center termed the “arrowhead”2 region for its distinctive

shape on the map and the shape of the associated trajectories.

1In the case of apse mapping, crossings actually occur at different times so the observed structures are not

technically LCS, but they essentially supply the same qualitative information.
2as termed by Davis
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Figure 5.31. FTLE for 10× of the periapse map in the vicinity of Saturn
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Figure 5.32. Periapse Poincaré map (with permission: D. C. Davis and K. C. Howell [70])
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Beyond the general comparisons concerning the availability of similar information from

both approaches, the sharp, bright structures appearing in Figures 5.30 and 5.31 near Saturn

warrant investigation. A zoomed view of this region is provided in Figures 5.33 and 5.34,

where focused views are offered for both the 3- and 10-crossing maps to indicate the evolution

of the structures. Note that the actual diameters of Saturn and its rings are included, to

scale, in the center of the figures. Several trajectories are investigated along the various

  

Figure 5.33. Zoom focused on distinctive structures of the 3-crossing FTLE map
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Figure 5.34. Zoom focused on distinctive structures of the 10-crossing FTLE map

structures. A few of these trajectories are specifically indicated in the upper inset zoom of

Figure 5.34. Multiple states are selected and propagated within the indicated green box.

The resulting information reveals two main points: (1) the structures result from numerical

issues associated with proximity to Saturn and (2) while these structures do not represent

LCS, they supply information regarding the fate of trajectories on or near the structures.

Specifically, given an initial state along one of the features, subsequent evolution frequently
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leads to impact with Saturn. Some illustration appears in Figure 5.35, where selected

trajectories are plotted (note, unlike the zoomed FTLE images, the Sun and Saturn are

scaled 100× and 20×, respectively). Specifically, in Figure 5.35, a comparison trajectory

(black) from the darker FTLE region near the structure indicated in the upper inset of

Figure 5.34 is plotted along with an adjacent trajectory (green, originating on the ridge)

that experiences extremely different behavior; this difference of behavior ultimately supplies

the high FTLE value observed in the map. It is indicated that the trajectories pass within

the radius of Saturn and, given the singular nature of the primaries in the CR3BP, continue

to evolve after the “impact”. As the second (green) trajectory continues, it is apparent that

the Jacobi integral is not conserved. This is perceivable as the trajectory violates the ZVC.

Another state is selected centered at the solid green dot1 in the lower inset, much closer to

Saturn, in Figure 5.34. This state is evolved forward and backward in time for 9 crossings

of the periapse Poincaré map (∼31 years in both forward and backward time, or ∼62 years

in total), and the resulting trajectories appear in Figures 5.36 and 5.37 where Saturn is now

drawn to scale. Note that these trajectories, originating from a black region amidst the

tangle of impacts, do not impact Saturn over the length of the integration and C is held

constant to the order of 10−10. Despite the ultimate decrease in numerical accuracy in close

proximity to P2, the effectiveness of the the FTLE map to indicate subsequent collisions

(or numerical difficulty), and perhaps more importantly, indicate regions near Saturn that

do not impact within the duration of the simulation, is clear.

1[x y z ẋ ẏ ż]T = [0.999797 −0.000217 0.0 1.456477 0.560183 0.0]T (nondim) =

[1.426436 −0.000310 0.0 | 14.049186 5.403533 0.0]T (×109 km | km
s

)
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Figure 5.35. Wide numerical divergence induced by close proximity Saturn passages
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Figure 5.36. Trajectory from 9-crossing stable region indicated in Figure 5.34
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Figure 5.37. Saturn focused view of Figure 5.36
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6. CONCLUSION

Lagrangian coherent structures represent a relatively untapped approach for revealing in-

sight in mission design and trajectory analysis. In this chapter a summary of the investi-

gation is provided. Additionally, the potential for further application of these concepts and

techniques is elaborated. Finally, concluding remarks are provided.

6.1 Summary

The dual purpose of this analysis is to apply the fairly nascent concept of LCS to the

CR3BP and to gather and organize the framework associated with these ideas. As such,

the preliminary chapters establish the dynamical context and the ideas associated with La-

grangian coherent structures. Specifically, the model development of the circular restricted

three-body problem is presented within the context of the general n-body problem and the

general three-body problem. Dynamical systems concepts exhibited by the autonomous

CR3BP are presented and summarized. Subsequently, additional concepts leading to the

formulation of the characteristic Lyapunov exponent, its truncated version as the finite-time

Lyapunov exponent, and foundations for Lagrangian coherent structures are introduced.

General computational and computer visualization methods are described providing the

means to realize the primary goal.

To establish the applicability of the described concepts, results are presented in two solar

system three-body configurations, namely the Earth-Moon CR3BP and the Sun-Saturn

CR3BP. Results in the Earth-Moon system that are associated with a specific periodic

orbit as well as a sample FTLE exposition for a specific EM region with consideration

for potential mission design applications contribute to an comprehensive overview of the

concepts. Sun-Saturn results correlate with ongoing work by Haapala [69] and Davis and

Howell [68, 70]. These results highlight the advantages of the application of FTLE and

LCS in mission design investigations in conjunction with other strategies including general

Poincaré mapping.
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6.2 Future Work

Given the potential representented by Lagrangian coherent structures as applied to

astrodynamics, there is large set of possibilities for investigation and application of the

concepts compiled here. In fact, an ancillary goal of this analysis is to establish a foundation

for the expansion of the methods to more detailed models of multi-body motion. However,

additional investigation is possible in the planar CR3BP including expanded analysis near

the triangular points. Further planar inspections introducing perturbing bodies, such as a

four-body formulation, supplies a non-autonomous option while still exhibiting convenient

constraints for FTLE definition on surfaces of section. These planar applications represent

one of many possible research directions.

The application of FTLE and LCS methods to problems involving motion free to move

in all spatial dimensions is a compelling possibility. Poincaré mapping is not generally

amenable to spatial three-body analysis given the lack of sufficient constraints to define a

map. While, FTLE information is conveniently displayed on a Poincaré section, it can be

defined anywhere adjacent trajectories evolve. That is, the FTLE definition supplies the

ability to take analysis efforts directly into three dimensions effectively. Specifically, exten-

sion of these methods to a dynamical regime focused more exclusively in three dimensions,

such as the spatial CR3BP, is a possibility. This three-dimensional augmentation of the

analysis involves added complexities as well as a natural extension to higher fidelity models

including combinations of multi-body ephemerides.

6.3 Concluding Remarks

While LCS continue to draw significant attention as a new focus for research in general

and their applicability has been demonstrated in various problems, applications to astrody-

namical work has been limited. Therefore, a comprehensive development of the associated

theory with respect to orbital mechanics and trajectory design is timely. The applications

in this analysis serve as a foundation to establish the relevance of Lagrangian coherent

structures in a mission design and analysis context and, in turn, expand their use.
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