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a b s t r a c t

Wepresent a free space construction algorithm for a polyhedron that translates in the xy plane and rotates
around its z axis, relative to a stationary polyhedron.We employ the proven paradigm of constructing the
configuration space subdivision defined by patches that comprise the configurations where the boundary
features of the polyhedra are in contact. We implement the algorithm robustly and efficiently. The
challenge is to detect degenerate predicates efficiently and to handle them correctly. We use our ACP
(Adaptive Controlled Perturbation) robustness strategy to prevent degenerate predicates due to input in
special position. The remaining cases are predicates that are identical to the zero polynomial because
their arguments are derived from overlapping sets of input vertices. We detect and handle these cases
with custom logic. We validate the implementation by computing maximum clearance paths.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We present research in rigid body kinematics. We consider a
polyhedron A that translates and rotates in a plane while avoid-
ing a stationary polyhedron B. The polyhedra can have multiple
components and need not be convex. These kinematic pairs model
vehicles that travel on the ground while avoiding obstacles, layout
of parts that rest on a base, and mechanical systems with planar
motion. Fig. 1 shows a simple example in which a tetrahedron A
navigates an obstacle B. Our task is to compute the configurations
(positions and orientations) of A where it is disjoint from B. The
analysis supports motion planning [1], part layout [2], and me-
chanical design [3].

In an appropriately chosen coordinate system, A translates in
the xy plane and rotates by angle θ around its z axis. The manifold
with coordinates (x, y, θ ) is the configuration space. The constraint
that A cannot intersect B restricts A to an open subset of configura-
tion space, the free space. The boundary, the contact space, consists
of the configurations where the boundaries of A and B intersect
but the interiors are disjoint. Fig. 2 shows the contact space of
the example. The free space is its exterior. The free configurations
from Fig. 1 are drawn as green spheres. The tetrahedron can move
in or out of the obstacle along the curve that connects these
configurations.
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Fig. 1. Tetrahedron in four configurations and obstacle.

Wepresent an algorithm for constructing a boundary represen-
tation of free space (Section 3). The key fact is that at a contact
configuration either a vertex of one polyhedron lies on a facet of the
other polyhedron or two edges share a point. The configurations
where a vertex/facet or an edge/edge pair intersect form a surface
called a patch. Fig. 3 shows the two types of patches for our
example and Fig. 4 shows all the patches. The patches subdivide
configuration space into open regions, called cells. The free space
is a disjoint union of cells and the contact space is a subset of the
union of the patches. Our algorithm constructs the subdivision and
identifies the free space cells.

We develop the first robust implementation of the algorithm,
using our ACP robustness strategy [4] (Section 4). We validate the
implementation by computing maximum clearance paths (Sec-
tion 5).
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Fig. 2. Contact space of tetrahedron and obstacle.

Fig. 3. Vertex/facet (left) and edge/edge (right) contacts (a) and corresponding
patches in same colors (b).

Fig. 4. Patches for tetrahedron and obstacle.

2. Prior work

The difficulty of free space construction grows sharply with
configuration space dimension. Dimension two is implemented in
the CGAL library [5]. For dimension three, we have devised state-
of-the-art algorithms for a planar body [4] and for a translating
polyhedron [6]. Both algorithms have the same structure as the
current algorithm – construct the subdivision of the patches and
identify the free cells – and are implemented robustly using ACP.
Kim, Elber, and Kim [7] construct patch intersection curves for
planar bodies bounded by spline curves. The only prior algorithm

for the configuration spaces in this paper [8] is not robust and
never appears to have been implemented. The best algorithm for
configuration spaces of dimension four and up [9] has exponential
complexity in dimension and has not been implemented.

The limited progress in free space construction has led to algo-
rithms in which the configuration space is sampled and the free
samples are linked into a graph via short paths in free space [10].
The hardest case is long narrow passages. One strategy for detect-
ing them is local search near contact configurations [11]. Free space
construction and probabilistic method can also be combined [12].

Wang, Chiang, and Yap [13] argue that exact predicate eval-
uation is too slow for free space construction. They approximate
free spaces of planar bodies using a bounded-depth recursive axis-
parallel subdivision.

The cost of the approximate approaches is proportional to ϵ−d

with ϵ the accuracy and d the dimension of the configuration
space. This cost is prohibitive in robot path planning with narrow
free space passages, in precision assembly planning, in mechanical
design, and in part layout.

Free space construction is related to penetration depth compu-
tation. The penetration depth of a configuration in the complement
of free space is theminimum distance to a configuration in contact
space. In other words, it is the smallest motion that transforms a
configuration in which the parts overlap to one in which they do
not overlap. It appears that the only way to compute the penetra-
tion depth is to construct the free space. The complexity of this
task motivates research on approximate and heuristic penetration
depth computation. Tang and Kim [14] use a heuristic to find a
contact configuration near the overlap configuration then locally
minimize the distance to the overlap configuration. The error is
large when the local minimum is far from the global minimum.
Pan and Manocha [15] approximate the contact space with a
support vector machine (SVM) that they construct from free and
overlap configurations, collected using uniform sampling followed
by active learning. Since an SVM defines a smooth surface, sharp
features and narrow channel are poorly modeled. Kim, Manocha,
and Kim [16] combine this algorithm with local refinement of
the contact space. He, Pan, Li, and Manocha [17] approximate the
contact space with a graph of configurations that they obtain via
randomsampling followed by local search around contact samples.
They compute penetration depth via nearest-neighbor search and
interpolation. The approach is more accurate than prior work, yet
narrow passages remain problematic. None of this work provides
error bounds.

3. Algorithm

The input to the free space construction algorithm is polyhedra
A and B with manifold triangle mesh boundaries. The geometric
part of the algorithm constructs the patches (Section 3.1), the in-
tersection curves of two patches (Section 3.2), and the intersection
points of three patches (Section 3.3). The combinatorial part of the
algorithm constructs the subdivision of the patches and identifies
the cells that comprise the free space (Section 3.4).

3.1. Patches

The configuration of A is C = (u, θ ) with u = (x, y, 0) a
translation vector and with θ a rotation angle around its z axis. A
configuration Cmaps a point p to u+θpwhere θp denotes p rotated
by θ . The image of A is written as A(C). A contact is a configuration C
where (1) a vertex a of A(C) lies on a facet bcd of B, (2) a vertex a of
B lies on a facet bcd of A(C), or (3) an edge ab of A(C) shares a point
with an edge cd of B. The contact is compatible if the interiors ofA(C)
and B are disjoint in a neighborhood of the shared point (Fig. 6).
The compatible contacts form a surface, called a patch. Fig. 5 shows
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Fig. 5. Patch.

Fig. 6. Compatible vertex/facet (a) and edge/edge (b) contacts.

a typical patch. It is defined on an angle interval [s, e], has spiral
edges f (θ ) and g(θ ), has linear edges [f (s), g(s)] and [g(e), f (e)], and
is ruled by the line segment [f (θ ), g(θ )].

The three types of patches lie on algebraic surfaces where a, b,
c , and d are coplanar. The surfaces have the form (a − d) · [(b −

d)× (c − d)] = 0 with · and × denoting the inner and outer vector
products. The equations are obtained by transforming the vertices
of A.

(θa + u − d) · [(b − d) × (c − d)] = 0 (1)

(a − θd − u) · [θ (b − d) × θ (c − d)] = 0 (2)

(θa + u − d) · [(θb + u − d) × (c − d)] = 0. (3)

The surfaces are ruled by lines parallel to the xy plane. Two spirals
delimit the segment of the ruling line where the contact occurs.
Outside this segment, a is in contact with the support plane of bcd
or the support lines of ab and cd are in contact. On the spirals, a
vertex p of A lies on an edge qr of B or vice versa. Let p′

∈ qr have
p′
z = pz . Either u = p− θp′ or u = p′

− θp. We employ the rational
parameterization of rotation

θp =

(
(1 − t2)px − 2tpy

1 + t2
,
2tpx + (1 − t2)py

1 + t2
, pz

)
to express u (f (θ ) or g(θ )) as a rational function of t .

A patch is generated by convex features that are compatible
over an interval of rotation angles that we derive by solving com-
patibility constraints. For a vertex aofA and a facet ofBwithnormal
n (Fig. 6a), n · θ (e− a) > 0 for every edge ae. For a vertex of B and a
facet of A, θn · (e− a) > 0. For edges ab of A and cd of B (Fig. 6b), let
v = b − a and w = d − c , let the incident facets have normals m1
and n1, let the facets incident on ba and dc have normalsm2 and n2,
and let si and ti denote the signs of θmi · w and ni · θv. The contact
is compatible if s1 = −s2 = −t1 = t2.

The compatibility constraints have the form θn·v > 0 or n·θv >

0with n a facet normal of one polyhedron and v an edge tangent of
the other. The equations θn · v = 0 and n · θv = 0 are quadratic in
the rational parameter t . Their roots are EF-angles where an edge

Fig. 7. PP-curve.

Fig. 8. EP-points of spiral (a) and linear (b) edges.

parallels a facet. The constraints hold on angle intervals bounded
by EF-angles. Edge ae of A parallels facet bcd of B if

(θe − θa) · [(c − b) × (d − b)] = 0.

For an EF-angle θ that solves this equation, the EF-line is the set
of u satisfying Eq. (1). For an edge ae of B and a facet bcd of A, the
EF-angle equation is

(e − a) · [(θc − θb) × (θd − θb)] = 0

and the EF-line is determined by Eq. (2).
The patch normal is n, −θn, or s1θv × w. Motion in the normal

direction causes A and B to separate in a neighborhood of the
contact point, whereas motion in the opposite direction causes
them to overlap. The patch boundary traversal f (s), g(s), g(e), f (e)
is counterclockwise with respect to the normal.

3.2. Patch intersection curves

The intersection curves of patches P and Q are called PP-curves
(Fig. 7). There cannot be two PP-curves at a θ value because the
patches intersect at the intersection point of the ruling line seg-
ments. A PP-curve separates a portion of P that lies on the normal
side ofQ , whereA and B locally separate, fromaportionwhere they
intersect. The normal side is to the left of the PP-curve if, at every
point a, t · (n × m) > 0 with t the PP-curve tangent, m the normal
of P , and n the normal of Q .

The endpoints of a PP-curve, called EP-points, are intersection
points of an edge of one patch with the other patch. A spiral
edge h intersects a patch P with spiral edges f and g (Fig. 8a) if
(h(θ ) − f (θ )) × (f (θ ) − g(θ )) = 0, which is a quadratic equation
in t , θ is in the angle intervals of h and of P , and h(θ ) lies on
the line segment [f (θ ), g(θ )]. A linear edge h with EF-angle θ

intersects P (Fig. 8b) if it intersects the line segment [f (θ ), g(θ )].
The PP-curves are constructed by computing the EP-points, sort-
ing them by θ to obtain p1, . . . , pm, and forming PP-curves for
(p1, p2), (p3, p4), . . . , (pm−1, pm).
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Fig. 9. PPP-point.

C

Fig. 10. Free space construction algorithm.

3.3. Patch intersection points

An intersection point of three patches is called a PPP-point
(Fig. 9). The ruling lines ki(θ )x+ li(θ )y+mi(θ ) = 0meet at a point,
which yields the equation⏐⏐⏐⏐⏐k1 l1 m1
k2 l2 m2
k3 l3 m3

⏐⏐⏐⏐⏐ = 0.

We substitute ki, li,mi from Eqs. (1)–(3) to obtain a quartic in
t . We compute its zeros using ACP (Section 4). At each zero, we
intersect two of the ruling lines to obtain a candidate PPP-point
and test if it lies on the three patches.

3.4. Algorithm

Fig. 10 summarizes the free space construction algorithm. We
discuss each step in turn. The discussion is brief because the com-
binatorial algorithms are standard and are described elsewhere [6].

Step 1 of the algorithm constructs the patches. We enumerate
the convex vertex/facet and convex edge/convex edge pairs, com-
pute the compatible intervals, and construct the patch boundaries.

Step 2 subdivides the patches into faces. We enumerate the
pairs of patches whose bounding boxes intersect, using an oc-
tree, and derive the PP-curves. The bounding box in x and y is
determined by the projection of the spiral edges into the xy-plane,
which is a pair of circular arcs. Fig. 11a shows an example with
PP-curves ab, bc , and de. Each PP-curve defines a PP-edge in the
orientation where the normal side of the other patch is to its
left (Fig. 7). These edges are marked with arrows in Fig. 11b. The
subdivision edges are constructed by splitting the patch edges at
the EP-points (e.g. a, c, d, e) and splitting the PP-edges at the PPP-
points (e.g. q). The face boundaries are constructed by forming and
nesting the loops of subdivision edge. The only loop in our example
is abqef (s)g(s).

Step 3 completes the free space construction. We group the
subdivision faces into surfaces via a graph traversal. A surface is
part of contact space if it bounds a cell of free space. Select a
face, a random θ in its angle interval, and a random point on its θ
cross-section.Move a randomdistance into the cell in the direction
perpendicular to the cross-section segment, stopping short of an

Fig. 11. Patch with PP-curves (a) and edges (b).

intersection with another patch’s cross-section segment. The cell
is free if A(C) and B are disjoint at the resulting configuration. We
obtain the free space boundary representation by nesting these
surfaces via ray casting.

4. Robustness

We describe a robust and efficient implementation of the free
space construction algorithm. An implementation of a computa-
tional geometry algorithm is robust if the output is correct for
every input. It is efficient if the running time is consistent with
the real-RAM complexity of the algorithm and the constant factor
is modest. The challenge is to implement the control logic, which
branches on the signs of predicates, correctly and efficiently. A
predicate is the sign of a multivariate polynomial that is evaluated
at the coordinates of geometric objects. It is degenerate if the sign is
zero. The sign of a predicate can often be computed using floating
point arithmetic and then verified using an error bound. If the
verification fails, as is always the case for a degenerate predicate,
exact evaluation is required. The CGAL library [18] supports this
technique, but exact evaluation of predicates on algebraic num-
bers is costly. This section explains how we achieve robustness
efficiently by avoiding algebraic computation.

4.1. Special position

One way for a predicate to be degenerate is that its arguments
are inputs in special position. One example is coplanar facets of B,
which generate coplanar patches, whichmakes the PP-curve pred-
icates degenerate. Another example is a facet that is perpendicular
to the z axis. We prevent input in special position with our ACP
(Adaptive Controlled Perturbation) technique [4,6], which builds
on a perturbation scheme due to Halperin [19].
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ACP adds a random relative perturbation of at most δ = 10−8

to each input vertex coordinate. The perturbation is negligible
relative to the measurement and manufacturing error in applica-
tions. Predicates are evaluated in double-float interval arithmetic,
which verifies the sign unless the interval contains zero, in which
case ACP switches to extended precision interval arithmetic and
increases the precision until zero is excluded. Despite the use of
extended precision arithmetic, predicate evaluation takes less than
20% of the running time.We attribute this low overhead to the fact
that most degenerate predicates have non-degenerate derivatives,
so their perturbed values are δ-far from zero, whereas the interval
widths are small multiples of the double-float rounding unit µ ≈

10−16.

4.2. Identities

A second way for a predicate to be degenerate is that its argu-
ments are related. For example, the signed area predicate for points
a, b, q is degenerate when the points are collinear. If a, b, q are in-
put points, this cannot occur because of the input perturbation. But
if q is the intersection point of line segments ab and cd, it is collinear
with a and b by construction. Substituting the definition of q in
terms of a, b, c, d into the predicate yields the zero polynomial, so
perturbing a, b, c, d does not remove the degeneracy.

We call a predicate that is identical to the zero polynomial
an identity. We need to detect the identities in the free space
construction algorithm and to extend the control logic with zero
branches for those predicates.

Identities occur when geometric objects are derived from over-
lapping sets of vertices of A and B. We assign each object a unique
label consisting of its vertex set and, if it is the root of a polynomial,
its ordinal index. An EF-angle is labeledwith five vertices, two from
the edge and three from the facet, plus the ordinal index. A spiral
is labeled with three vertices: one from A and two from an edge
of B or vice versa (p, q, and r in Section 3.1). Patches, EP-points,
PP-curves, and PPP-points are labeled similarly.

We describe the six types of identities and explain how they are
detected and resolved. We write the patch generated by a vertex a
of A and a facet bcd of B as a + bcd, and write abc + d and ab + cd
for the other types of patches. Likewise, a + bc and ab + c denote
spiral edges.

(1) The EF-angles α and β are equal.
Predicate: Is α less than β?
Detection: The angles α and β have equal labels.
Resolution: Return false.

(2) A spiral edge g overlaps a spiral edge h of patch P .
Predicate: Is the EP-point in the cross-section of P?
Detection: The spirals of g and h have equal labels.
Resolution: Return false.

For example, patches a + bcd and a + cbe with overlapping angle
intervals both have edges on the a + bc spiral.

(3) A linear edge g overlaps a linear edge h of a patch P .
Predicate: Is the EP-point in the angle interval of P?
Detection: The EF-angles of g and h have equal labels.
Resolution: Return false.

For example (Fig. 12), the top edge g of a+cde and the bottom edge
h of ab+ cd are on the EF-line of ab and cde. As A traverses this line,
ab translates in the plane of cde from u1 to u4. For configurations in
u1u3, ab contacts cd. For u2u4, a contacts cde. Hence, g = u1u3 and
h = u2u4, which overlap on u2u3.

(4) A linear edge g intersects a spiral edge h of a patch P .
Predicate: Is the EP-point in the cross-section of P?
Detection: The label of the spiral of h is a subset of the label of the
EF-angle of g .

Fig. 12. Identity 3 example.

Fig. 13. Identity 4 example.

Fig. 14. Linear PP-curves with (a) and without (b) shared spiral.

Resolution: Return false.

For example (Fig. 13), the top edge g = u1u2 of a + cde is on the
EF-line of ab and cde. The cross-section of ab + df at that EF-angle
is v1v2 and v2 puts ab in contact with d and plane cde, so v2 lies
on g = u1u2 and g intersects the spiral edge h = ab + d at v2. The
angle interval of ab+df is not constrained by the ab+cde EF-angle,
so v2 is in the interior of the spiral edge h.

(5) Two patches intersect along an EF-line.
Predicate: Is the PP-curve increasing in θ?
Detection: The union of the labels consists of two vertices from one
polyhedron and three vertices from the other.
Resolution: Assign both endpoints the EF-angle of the EF-line, so
the PP-curve is linear. If one endpoint lies on a shared spiral edge
(Fig. 14), the PP-curve is singular at this point, so we compute the
PP-edge orientation at the other endpoint.

For example (Fig. 15), the patches ab + cd and ab + de intersect
along the EF-line of ab and cde, which is defined even though cde
is not a facet. The patches have a common spiral edge ab + d. If ab
does not contain dwhen its support line passes through d, there is
no common spiral edge.

(6) A linear PP-curve uv intersects a patch P .
Predicate: The PPP-point construction fails.
Detection: The angles of u and v have equal labels.
Resolution: Intersect uv with P as in Section 3.2 (Fig. 16).



E. Sacks et al. / Computer-Aided Design 90 (2017) 18–26 23

Fig. 15. Identity 5 example.

Fig. 16. Identity 6 example.

Table 1
Input complexity: vertices v, edges e, facets f , convex vertices, vc , and convex edges
ec .

v e f vc ec
A1 4 6 4 4 6
A2 9 21 14 9 18
A3 9 21 14 8 16
A4 18 48 32 16 36
A5 185 549 366 53 172
A6 187 555 370 70 199
B1 370 1104 736 112 437
B2 1318 3960 2640 838 2079
B3 2316 6942 4628 2036 4701
B4 9367 28101 18734 5886 14836
B5 4036 12102 8068 2154 6132
B6 7251 21765 14510 3728 10061

5. Validation

We validated the free space computation program on six robots
A (Fig. 17) and six obstacles B (Fig. 18). Table 1 gives their com-
plexity. The robots have general 3D shapes and the obstacles are
2.5D with fixed xy cross-sections. Since the obstacles are triangu-
lated, they contain coplanar vertical triangles, which is a difficult
degenerate case for a general 3D algorithm and challenges our ACP
technique.

Table 2 describes the output complexity and the running time of
free space computation for the 36 robot/obstacle pairs. The timings
are for one core of an Intel 1.7 GHz i5-421U CPU with 4 GB of
RAM. The output complexity c is linear in the input complexity,
as measured by the combined number of A and B faces. The av-
erage and max ratios are 240 and 1080, whereas the worst-case
is degree 6 in the input size. The average and maximum ratios of
running time to output complexity are 0.003 and 0.018 with no

Fig. 17. Test robots.

Fig. 18. Test obstacles.

correlation between the ratio and the input or output complex-
ity. The running time is dominated by EP-point computation. On
average, 13% of the running time is for computing the roots of
polynomials.

We further validated the program by computing maximum
clearance paths. The clearance of a free space path between config-
urations C1 and C2 is the minimum distance between A and B over
the path.Maximumclearance paths are important in path planning
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Table 2
Free space construction: contact space vertices, edges, and facets c , EP-vertices ep, PPP-vertices ppp, PP-edges pp, spiral
edges sp, and linear edges le, running time t , and polynomial root finding time rt .

c ep ppp pp sp le t rt

A1 B1 6894 12034 71 1759 1400 2468 5.44 1.23
A1 B2 362558 215619 310 12869 2640 4600 26.78 3.17
A1 B3 172603 94294 158 36224 3639 6209 21.53 5.67
A1 B4 97470 659476 192 23100 20619 35157 271.36 35.6
A1 B5 286812 867465 516 54597 18420 31194 365.15 47.21
A1 B6 29314 578964 423 48652 5943 10809 420.19 52.36
A2 B1 7584 32034 156 5789 2536 4580 16.27 3.54
A2 B2 762214 548729 549 35286 7216 12486 72.69 18.63
A2 B3 3548789 157896 476 69781 5146 8560 297.47 17.68
A2 B4 97470 659476 192 23100 20619 54846 331.21 35.26
A2 B5 568448 867465 1051 47865 21420 33260 568.17 48.59
A2 B6 61254 845896 672 48652 5943 10809 657.18 22.67
A3 B1 7584 29486 201 52498 3062 4580 19.44 2.74
A3 B2 712348 512346 432 36487 6986 12486 40.98 18.13
A3 B3 3125468 234685 621 65423 5548 9454 334.81 22.51
A3 B4 114566 678495 148 22986 1961 56236 437.28 53.26
A3 B5 632154 836547 654 51236 2840 31284 623.67 53.31
A3 B6 72365 945687 571 46875 6254 9954 768.87 23.65
A4 B1 15236 54236 287 11247 3960 6480 33.67 6.53
A4 B2 544233 752365 678 52031 12684 6864 55.73 10.25
A4 B3 5023146 2412546 595 145697 8950 13950 835.37 30.18
A4 B4 1035698 659476 248 25670 20619 54846 1926.87 49.75
A4 B5 6123548 987456 984 54879 39486 65280 4113.59 61.91
A4 B6 716484 912354 786 65464 7520 15340 6127.74 45.71
A5 B1 15236 54236 287 11247 3960 6480 63.48 7.53
A5 B2 544233 752365 678 52031 12684 6864 130.58 30.25
A5 B3 5023146 2412546 595 145697 8950 13950 1948.57 30.18
A5 B4 1035698 659476 248 25670 20619 54846 4984.11 49.75
A5 B5 6123548 987456 984 54879 39486 65280 7867.85 61.91
A5 B6 716484 912354 786 65464 7520 15340 9439.62 45.71
A6 B1 15236 54236 287 11247 3960 6480 72.36 7.53
A6 B2 544233 752365 678 52031 12684 6864 150.17 31.65
A6 B3 5023146 2412546 595 145697 8950 13950 2687.91 750.84
A6 B4 1035698 659476 248 25670 20619 54846 5781.98 1074.39
A6 B5 6123548 987456 984 54879 39486 65280 9951.84 2367.96
A6 B6 716484 912354 786 65464 7520 15340 12804.36 3191.23

Table 3
Maximum clearance experiments: input and output complexity for first iteration if and of , and for last iteration il and
ol , and time (s) for first and last iterations tf and tl .

if of il ol tf tl ol/of tl/tf
R1 O1 3924 6894 57468 43587 5.44 85.29 6.32 15.68
R1 O2 75798 362558 591265 2320376 26.78 518.05 6.40 19.35
R1 O3 159110 172603 1416079 1018358 21.53 488.32 5.90 22.69
R1 O4 228956 97470 1854543 738935 271.36 5874.944 7.58 21.65
R1 O5 396186 286812 3288343 1976902 365.15 8646.75 6.89 23.68
R1 O6 552384 29314 4916217 395739 420.19 12513.26 13.50 29.78
R2 O1 48830 75841 698269 320807 16.27 282.94 4.23 17.39
R2 O2 217166 762214 3018607 8278068 72.69 1743.11 10.87 23.98
R2 O3 431870 354879 5562053 2851959 297.47 8082.26 8.04 27.17
R2 O4 621452 269274 8924050 3680975 331.21 10360.25 13.67 31.28
R2 O5 1075362 498632 16108922 5861662 568.17 22567.71 11.76 39.72
R2 O6 1499328 845896 20479276 10462887 657.18 28626.76 12.37 43.56
R3 O1 52685 29486 853497 363946 19.44 479.19 12.35 24.65
R3 O2 227837 512346 3941580 6916671 40.98 1140.89 13.50 27.84
R3 O3 465965 234685 8014598 3184644 334.81 11313.23 13.57 33.79
R3 O4 670514 678495 12531906 9218982 437.28 16822.17 13.59 38.47
R3 O5 1160259 836547 23054346 14748323 623.67 26979.94 17.63 43.26
R3 O6 1617696 945687 32143619 16316883 768.87 37759.21 17.25 49.11

and in assembly planning because they are maximally robust to
sensing and navigation error.We use theMinkowski sum of Awith
a sphere of radius r centered at the origin, called an r-offset. If the
r-offset of A has a path from C1 to C2, A has a path with clearance
r . We approximate the spheres with polyhedra and compute the
r-offsets with our prior program [6]. A path exists when C1 and C2
are in the same free space cell. We use bisection search to compute
the maximum r for which a path exists.

We computed maximum clearance paths for the robots A1,
A2, and A3 and the six obstacles. The initial offset is r = 1 and
the bisection search ends when the interval width reaches 0.025.
Fig. 19 shows the setup for A3 and B2. Table 3 shows the results for
the 18 tests. The output complexity ratio between the last and first
iterations ol/of is between 4 and 18with amean of 11. The running
time ratio tl/tf is between 15 and 50 with a mean of 30. The ratio
of tl/tf to ol/of is between 2 and 4 with a mean of 3. We conclude
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Fig. 19. Blowup of robot A3 and of r = 1 sphere (a) and start and end configurations
for maximum clearance path in obstacle B2 (b).

that the running time increases three times faster than the output
complexity. This is duemainly to an increase in the number of pairs
of patches that are tested for intersection.

6. Discussion

We have presented a free space construction algorithm for a
polyhedron that moves in a plane relative to a stationary poly-
hedron. We have demonstrated a robust implementation whose
running time is linear in its output size, which in turn is linear
in the input size, based on 36 test inputs. In order to detect the
same connectivity, a probabilistic approach would have running
time ϵ−3, where ϵ is smaller than the clearance. In contrast, our free
space construction has only a mild dependence on the clearance.

The algorithm uses the proven approach of generating feature
contact patches, constructing their subdivision, and identifying the
free cells. Our contribution is the specifics of patch construction
and intersection. The robust implementation uses our proven ACP
robustness technique to avoid degeneracy due to input in special
position. Our contribution is logic for detecting and handling the
degenerate predicates that are identically zero due to relations
among derived geometric objects.

The bottleneck in our implementation is patch intersection.
Although we use an octree to find the patches whose bounding
boxes intersect, few of these patches intersect. In contrast, bound-
ing boxes are highly effective for linear patches [6]. A research
direction is to enclose patches in tighter containers that are still
easy to intersect. The bottleneck in our algorithm is that it gener-
ates and discards the subdivision cells (EP-points, PP-curves, PPP-
points, etc.) whose boundaries are disjoint from the contact space.

A research direction is to generate the contact space incrementally,
starting from a known contact configuration, as proved effective in
Minkowski sum construction [6].

We have validated the identity detector via extensive testing.
If we had missed even a single identity, ACP would have thrown
an exception when it failed to resolve the sign of that polynomial.
Even though empirical validation of software is the norm, we
would prefer a rigorous identity detection scheme. More impor-
tantly, we cannot envision enumerating the identities in a four-
dimensional configuration space.We areworking on an automated
alternative.
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