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Abstract.  We present an approximate dynamical systems model for the mass center trajectory of a tapped column of �
uniform, inelastic, spheres (diameter �), in which collisional energy loss is governed by the Walton-Braun linear 
loading-unloading soft interaction. Rigorous analysis of the model, akin to the equations for the motion of a single 
bouncing ball on a vibrating plate, reveals a parameter � �� ��	
�� 
 �� ��  that gauges the dynamical regimes and 
their transitions. In particular, we find bifurcations from periodic to chaotic dynamics that depend on frequency 	, 
amplitude ��� of the tap. Dynamics predicted by the model are also qualitatively observed in discrete element 
simulations carried out over a broad range of the tap parameters. 
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�

INTRODUCTION 

A tapped assembly of granular materials will 
exhibit a variety of behaviors that depend on the tap 
amplitude �, frequency 	�and the duration of the 
relaxation interval between taps ��.  Over the last few 
decades, there have been numerous reports in the 
literature on this topic (mostly for �� � �) focused on 
wave motion, surface behavior, fluidization, density 
relaxation and segregation phenomena (e.g., [1-11]). 
Perhaps the most ostensibly clear-cut problem is the 
one-dimensional analog, i.e., a column of � uniform 
spheres.  The simplest case of a single ball on a 
continuously oscillating plate is well-understood 
(albeit complex [12]) and is often regarded as a 
paradigm dynamical system. This paper is focused on 
understanding the dynamics of a column of uniform 
spheres that are subjected to taps imposed by the 
motion of a rigid floor.  Dynamics are studied over 
time scales that are large as compared with the 
compression-expansion wave that propagates through 
the system [13]. We consider the efficacy of the mass 
center to capture the overall behavior of entire stack of 
spheres – cognizant of actual complexities of the 
individual dynamics of the particles comprising the 
column. More specifically, our investigation addresses 
the ability of the mass center to qualitatively predict 
essential features of the column dynamics (e.g., 
period-doubling bifurcations and transitions to chaos).  

DYNAMICAL SYSTEMS MODEL  

We apply Newton’s laws to a stack or column of 
spheres (diameter �, mass density �) under gravity 
whose collisional exchanges are governed by a 
Walton-Braun [14] type linear loading/unloading 
interaction. The role of inelasticity is characterized by 
restitution coefficient (�) that quantifies energy loss 
through particle-particle and particle-floor collisions. 
The resulting system of � nonlinear, second-order 
ordinary differential equations for the particle centers  
locations ��  is reduced to a single equation for the 
mass center via a plausible assumption on the 
relationship between ����� and �����. A sketch of the 
derivation follows. (See [15] for details).  

Derivation of the Model 

Let � � �� � �� � � � �!  be the positions of the 
centers of the spheres of radius � � ���, such that the 
floor location �� is a periodic function given by 

          ����� � � "�#$%�	�� & � � � � ' 	��&������ ' 	� � � � (    (1) 

where  � � � � (, ' 	 ) (� , and � * �. According to 
Newton’s law, for � � + � �, we have 

                �,� � �-� 
./�01��/� 
 1��2�3             (2) 
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In (2),  1��/�, 1��2� are the forces on particle + imparted 
by  + - � and + 
 �, respectively (� � + � � - ��: 
1�� � �45� - 67�8�9��:;�<�;��=�>8��>& 8�9��     (3)  

8�9� �� �9� - �9��? �;� �� � - 8��? �8�� �� ��� - ���
1��2� � -45� - 67�8�9��:;�<�;��=�>8��>& 8�9��   (4) 

8�9� �� �9�2� - �9�? ;� �� � - 8��? 8�� �� ��2� - ������
                             1!!2� � �                                  (5)  

                             1��/� � �-1�/��                                (6) 
where, 

    7�@� �� A-�& @ � ��&����@ � ��&���@ * � ,    <�B� �� C�& B � ��& B * �           (7) 

and =�D& E�F���&G� H 5�&G� is a continuous penalty 
function designed to ensure that particles cannot pass 
though one another or the floor.  We note that = is 
only active at large overlaps ; when particles are 
approaching each other. Initial locations of the spheres 
are determined by setting��9� � �,� � � (� � + � �) in 
(2), resulting in a system of linear equations that are 
solved for I�����&J & �!���K. In (3) and (4), the 
loading and unloading springs have stiffness values4�� 
 6� and 4�� - 6�, respectively. This results in a 
restitution coefficient � � �� - 6
� �� 
 6
�� , with � � � (� � �) corresponding to the limit of perfectly 
plastic (elastic) collisions.   

FIGURE 1.  Simulated trajectories of the mass center (bold 
dotted line) and spheres over 10 taps at 1 � �L��MN and � � � �OL� O Triangles on the �-axis represent tap initiation. 

Reduced Mass Center Model

The equation for the mass center �� ��� �! P ��!�Q� , 
found directly by summing (2) over the index + is, 

   ��, � -� 
 R
S 5� - 67�8�9��:;�<�;��=�>8��>& 8�9�� (8) 

              ����� � �/� P �T���!TQ� & ��9 ��� � �           (9) 

Since the right-hand side of (8) contains �����, it is 
necessary to assume a relationship between the motion 

of the sphere adjacent to the floor and �����. We 
postulate that ����� U ����� �� ; thus, the reduced mass 
center model with N �� �� and NV �� WX - �� becomes, 
     
          N, � -� 
 R

S 5� 
 67�NV9 �:�� - NV�
                              <�� - NV�=�>NV>& NV9 �           (10) 

   N��� � �/� P �T���!TQ� & N9��� � �              (11) 

Our assumption that ����� U ����� ��  is reasonable 
when periodic behavior takes place (see Fig. 1); 
however, we find that other features of the dynamics 
of the mass center in (10) signal the same transitions 
that occur in the full system (2) – (7). We demonstrate 
this via discrete element simulations described in a 
subsequent section.   

FIGURE 2. Simulated trajectories of the mass center ����
(bold dotted line) and spheres over 10 taps at 1 � �L��MN
and � � � �OL� O (�Y � �Z � �O[L) 

Correspondence with Bouncing Ball 

It can be shown that the reduced model (10) and (11) 
is equivalent to that of a bouncing ball having mass �\, under gravity ���, and restitution coefficient  � � �� - 6
� �� 
 6
�� . Consequently, all results 
available for the single ball apply to the mass center 
dynamics, and in particular, the existence of period 
doubling, chaotic regimes and strange attractors.  
Specifically, one can use an approximate discrete 
dynamical model similar to that employed by Holmes 
[16] to analyze the motion.  

The idea is to monitor successive times I�]K of 
impact with the floor and the corresponding velocities IE]K, which are directly related to the coefficient of 
restitution e, via a difference equation of the form 

                 ��]2�& ]̂2�� � �_��]& ^�]�             (12) 

that can be taken to be defined on an infinite circular 
cylinder owing to the periodicity in the timing of the 
taps.�More precisely, the system (12) is recast in non-
dimensional form as 

                �`]2� � `] 
�E]&�����.a��	(�E]2� � �E] 
 �b�`] 
�E]�                 (13)  
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where .a��	(� means treats all values differing by 
an integral multiple of 	(�as equal, ` �� 	�, E�� �	^��, �F� � ���	
��� 
 ����� and b is an 	(-
periodic function defined on a period interval as 

                    b�B� �� "cd#�B� &���� � B � '�&�������' � B � 	(             (14)                       

Observe that the parameter � is proportional to the 
acceleration �	
 of the floor and that (13) is in the 
form of a “standard” map [16] with dynamics (iterates) 
that can be analyzed in depth.�

For example, analysis of (13) in [15, 16] shows 
that, like the bouncing ball, there is a period-doubling 
cascade leading to chaos corresponding to increasing 
values of �. In addition, full-fledged horseshoe type 
chaos, and strange attractors (inelastic collisions) can 
be shown to exist for certain sufficiently large values 
of �. Among these and other facts to be inferred from 
the analysis is that there are arbitrarily large parameter 
windows for which (13) has stable cycles of period 
three and higher odd periods. 

FIGURE 3.  Simulated trajectories of the mass center ����
(bold dotted line) and spheres over 10 taps at 1 � �L��MN
and � � � �OL� , �Z � �O�& �Y � �O[L.   

There is another discrete dynamical model that is 
directly related to the height � and velocity e�of the 
mass center of the ball at the periodic times of 
application of the taps. This is manifested in the 
Poincaré map and represented by 

                ��]2�& e]2�� � f��]& e]�.                      (15)                    

An analysis of (15) actually shows the same range of 
dynamical behaviors as (13). 

One can also consider several discrete dynamical 
variations of the systems (13) and (15) – an example 
of which is currently being explored via simulation.  
Here, the height is fixed to be the radius of the ball and 
the successive times I�]K when the mass center is at 
that height are determined. The result is the one-
dimensional discrete dynamical system modeled as  

                              �]2� � �g��]�                            (16) 

A fixed point of g corresponds to a periodic motion of 
the ball, while a fixed point of g
 that is not fixed by �
represents period doubling. If no such pattern is 
discernible, chaos is strongly indicated. Several 
simulations of iterates of (16), which one can identify 
with the evolution of the phase of the motion, will be 
carried out and reported in a future paper.   

FIGURE 4. Solid lines are the sphere trajectories at  � �� � � and 1 � h� Hz, while the dotted line is the mass 
center trajectory.  

DISCRETE ELEMENT SIMULATIONS 

We considered a column of �� � ��� uniform spheres 
initially resting on a floor which moves according to 
(1) with relaxation �i � �Oj�B with ( �� �' 	� � 
 �i�. 
Interactions between colliding spheres follows the 
Walton-Braun model [14] where loading and 
unloading is governed by linear springs of stiffness k�
and k
 (respectively), with k� � k
 and � � lk� k
� .   
We selected an integration time step three orders of 
magnitude smaller than that given by the loading 
period ml. k��  in order to accurately capture the 
dynamics and minimize computational round-off 
errors.  The restitution coefficient (�Y � �O[L) used in  
our studies was selected from experimentally reported 
[17] values for acrylic spheres.   

We carried out the following parameter studies: (1) 1� � ��� Hz, � �� � �O�L& �OL�& �OnL& �O�& �O�L& �OL�, 
and (2) � �� � �OL�, 1 � L& ��& �L& ��& �L& h� Hz.  
Periodic mass center trajectories that occurred were 
run for 100 taps to ensure that the dynamics remained 
stable. Fig. 1 shows the first 10 taps (� �� � �OL�, 1 � �L Hz) of a periodic trajectory, while Fig. 2 
shows the results for � �� � �OL� and 1 � �L Hz. 
Triangle markers placed on the �-axis indicate the 
times when taps were applied.  A small change in the 
restitution coefficient of the floor �Z from 0.95 to 1.0  
drastically modifies the column dynamics (Fig. 3), a 
sensitivity characteristic of chaos. Most noticeable is 
the difference in the trajectory of the particle nearest 
the floor at �Z � � that ultimately influences the 
dynamics of the other particles.  However, at lower 
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��� values where the mass center motion was 
periodic, this small change in �Z engendered no 
perceptible effect on the dynamics.  Observations of 
the results showed that transitions of the column 
dynamics from periodic to chaotic behavior as �
increased were reflected in the mass center trajectories 
in accordance with our analysis of the model.  

FIGURE 5. Trajectories �� ��  at  � �� � � shown for 1 � �L
Hz (solid line) and 1 � �� Hz (dotted line). 

Variations in tap frequency at fixed � ��  had an 
analogous effect on the system, i.e., larger frequencies 
resulted in chaotic trajectories.  Chaotic trajectories at 1 � h� and � �� � � of the mass center and column 
particles are presented in Fig. 4 over 10 taps. mass 
center at 1 � �L Hz (solid line) and 1 � �� Hz 
(dotted line) over 50 taps for � �� � �, where one 
might expect chaotic instead of the periodicity 
observed. This seemingly anomalous behavior is 
suggested by our analysis ([15]) that revealed windows 
corresponding to large γ values where (13) has stable 
periodic orbits. 

CONCLUSIONS 

We derived an approximate dynamical system model 
for the behavior of the mass center of a column of 
uniform, inelastic spheres subjected to the tapping 
induced by a floor. Collisional exchanges between 
particles and particle-floor interactions obeyed the 
Walton-Braun linear loading-unloading law. Upon 
making a rather plausible assumption concerning the 
trajectory of the particle closest to the floor, it was 
shown that mass center dynamics, represented by a 
system of just two differential equations (reduced from 
2N), is essentially equivalent to that of a single 
massive ball on a periodically tapped floor.  The 
evolution of the reduced continuous system was
further approximated by a discrete dynamical system 
(expressed as a pair of difference equations). Analysis 
of the discrete dynamical model revealed various 
behavioral regimes (e.g., periodicity, period doubling 
paths to chaos) characterized by a single bifurcation 
parameter � �� �	
�� 
 �� �� , which correlated well 
with simulations of a column of 20 particles.  We 

observed that the mass center trajectory appeared to be 
a good indicator of transitions from regular to chaotic 
dynamics of the column. Simulations also confirmed 
the effectiveness of the mass center in predicting the 
onset of chaos and the importance of �. Current efforts 
involve computation of the Poincaré map and 
Lyapunov exponents via simulation over an expanded 
parameter space that includes the number of particles 
and relaxation time between taps. In addition, we are 
investigating the possibility of using similar methods 
to describe the evolution of particle densities 
manifested by the distances among spheres. 
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