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Abstract We report our findings on the evolution of solids
fraction in a tapped system of inelastic, frictional spheres as a
function of the applied acceleration obtained via discrete ele-
ment simulations. Animations of the simulation data reveal
the propagation of a wave initiated from the base that causes
local rearrangements of the particles ultimately leading to
the development of a dense microstructure. We also describe
the analysis of dynamical models capable of predicting the
simulated behavior, and advanced visualization techniques
for revealing the dynamics.

Mathematics Subject Classification 35C07 · 35Q51 ·
37N15

Electronic supplementary material The online version of this
article (doi:10.1007/s10035-012-0343-2) contains supplementary
material, which is available to authorized users.

A.D. Rosato, D. Blackmore and X. Tricoche were partially supported
by NSF grant CMMI-1029809. Computational resources were
obtained from the Open Science Grid (under the support of the
National Science Foundation and US Department of Energy’s Office
of Science) and Engineering Computing at NJIT.

V. Ratnaswamy · A. D. Rosato (B) · N. Ching · L. Zuo
Granular Science Laboratory and Mechanical & Industrial
Engineering Department, New Jersey Institute of Technology
(NJIT), Newark, NJ 07102-1982, USA
e-mail: rosato@njit.edu

D. Blackmore
Department of Mathematical Sciences and Center for Applied
Mathematics and Statistics, NJIT, Newark, NJ 07102-1982, USA

X. Tricoche
Department of Computer Science, Purdue University,
West Lafayette, IN 47907-2107, USA

Keywords Solids fraction evolution · Dynamical systems
model · Density wave visualization · Discrete element
simulation · Vertical tapping

1 Introduction

An intrinsic property of granular materials is that their den-
sity can vary greatly depending on handling and environ-
mental conditions. This has important consequences in the
industrial sector concerned with the processing of bulk solids
for the production of particulate-based products in everyday
use. Perhaps one of the most interesting phenomena is density
relaxation [16]—a term used to describe the process by which
a granular material increases its bulk density as a result of
mechanical disturbances, such as continuous vibrations, tap-
ping or shearing. Packaged bulk materials transported over
long distances often become compacted, which usually is
an impediment in subsequent handling procedures. Alterna-
tively, an improvement in packing efficiency in the process-
ing of granular materials is often desirable in reducing costs
and in meeting consumer demands.

The phenomenon of density relaxation has historical roots
in the literature on packing studies, which can be traced back
to Kepler in 1611, who in a pioneering work on crystals,
conjectured that the densest arrangement of spheres was fcc
(the subject of a later numerical proof by Hales [13]). Hooke
followed with an exploration of the packing arrangements
of disks and spheres. Since then, there has been continual
interest in the subject. Recent investigations (of which we
list only a few) on density relaxation have involved compu-
tational approaches, theoretical models and physical experi-
ments[1–3,9,10,16,18,24,25,29,30,34]. We remark that the
study of waves in continuously vibrated granular systems has
also been a topic of interest, as in [32] or the experiments of
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Eshuis et al. [11] who developed a phase diagram delineating
five physical regimes in a layer.

The work reported here follows our earlier findings [31],
which suggested that the process by which the bulk den-
sity increases is the propagation of an ordering effect of the
flat base up through the assembly as the system potential
energy is reduced. In this paper, we report on the non-mono-
tonic evolution of the density of a vertically tapped system
of uniform, inelastic frictional spheres as a function of the
tap displacement amplitude at a fixed frequency. The dynam-
ics during the application of a single tap-relaxation cycle are
also examined, where an upward propagating density wave
is observed. This wave causes the local rearrangement of the
particles that, after many taps, produces a dense packing. We
note that lateral vibrations have also been shown to cause an
increase in bulk density [21].

In the next section, a concise description of the numerical
simulations is given followed by an extended presentation
and interpretation of the results. We then briefly describe our
recent dynamical paradigm for tapped systems [5,6] in con-
junction with an approach, including visualization, that can
predict the simulated behavior. Our goal is to develop—from
the models—scaling parameters capable of characterizing
density relaxation.

2 Description of simulation

We simulate via the soft-sphere discrete element method the
behavior of an assembly of inelastic, frictional spheres of
diameter d and mass m that is subjected to a series of taps of
frequency f and displacement amplitude a. We intentionally
selected mono-disperse spheres (as opposed to a distribution
of sizes) to correspond to experiments in the literature and
as a continuation of our recently reported work. The compu-
tational volume consists of an open-top rectangular parallel-
epiped with laterally periodic boundaries, a square base of
length w/d = 12 and a plane floor of infinite mass. Momen-
tum is transferred to the particles by the floor which imparts a
half-sine pulse at a fixed frequency f = 7.5 Hz over a range
of displacement amplitudes 0.2209 ≤ a/d ≤ 1.2148 that
correspond to dimensionless accelerations 1.0 ≤ Γ ≤ 5.5,
where Γ ≡ aω2/g, ω = 2π f and g is the acceleration due
to gravity. Each pulse is followed by a relaxation interval
during which the assembly of particles is allowed to collapse
to a state of zero kinetic energy. We remark that an explo-
ration of the effect of frequency is currently underway, and
forthcoming results will be reported soon.

The collision force models used are those of Walton and
Braun [35] in which normal and tangential impulses are func-
tions of an allowed overlap between particles, typically less
than 1 % of the diameter in accordance with the behavior
of real colliding spheres. Along the direction of the line

Fig. 1 The black disks are the ensemble-averaged solids fraction 〈v〉
as a function of acceleration Γ ( f = 7.5 Hz). Representative evolution
curves of 〈v〉 for Γ = 1, 2.75, 4.0 are shown in the inset

connecting the centers of two impacting sphere, linear load-
ing and unloading springs respectively corresponding to con-
stants K1 and K2 are used (where K2 > K1), which yields a
constant restitution coefficient given by e = √

K1/K2. The
value of K1 was chosen so that no overlap exceeds 1 % of
a particle diameter. In the tangential direction, a hysteretic
model is employed [36] in which particle tangential stiffness
diminishes with increasing surface displacement until full
sliding takes place at the friction limit μ. Thus particles can
rotate due to the transmission of tangential impulses.

Integration of the equations of motion through a time step
�t ∝ √

m/K1 , consequent on the loading period in the nor-
mal direction, is carried out with a Verlet algorithm. For the
case studies reported here, acrylic particles are chosen hav-
ing a mass density ρ = 1200 kg/m3, e = 0.9 and μ = 0.1
in reasonably good agreement with the experimental mea-
surements [19]. The integration time step was O(10−6)s. At
t = 0, particles are randomly placed within the computa-
tional volume, and are then allowed to fall or pour under
gravity until stable. An ensemble of 25 poured realizations
was generated, such that the distributions of coordination
number, solids fraction (mean value of 〈v0〉 = 0.609) and
free volume (as computed from Voronoi tessellations) were
statistically indistinguishable.

The average solids fraction was monitored at the end of
every tap-relaxation cycle and then an ensemble averaged
value 〈v〉 was calculated over the realizations. An ample
number of taps was completed so that the solids fraction
temporal profile leveled out and this value was then selected
as the steady state corresponding to the particular ampli-
tude a/d under consideration. Results summarized in Fig. 1
show 〈v〉 as a function of Γ , while the insert presents typ-
ical evolution curves at Γ = 4.0 (a/d = 0.8335); Γ =
2.75 (a/d = 0.6074); and Γ = 1.0 (a/d = 0.2209). A
non-monotonic dependence of the solids fraction on Γ is
observed, which peaks around Γ ≈ 2.75 where 〈v〉 ≈ 0.709
or approximately 95.6 % of the hexagonal close-packed value
π

√
2/3 = 0.7409. The results also indicate that for large

accelerations it is possible for the system density to be
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Fig. 2 Solids fraction (particle vol./Voronoi vol.) distribution of the
poured system (ensemble averaged) and the assembly at Γ = 2.75,
where 〈v〉 ≈ 0.708

Fig. 3 Top Ensemble-averaged distribution of free volume for initial
poured configuration. Bottom Distribution at Γ = 2.75, where 〈v〉 ∼=
0.7076 ± 0.0320

reduced below the poured value. We comment that our max-
imum density corresponds to roughly a 16 % increase from
〈v0〉 = 0.609, which is larger than that reported in [16]
(approximately 9 %). We suggest that this discrepancy is due
for the most part to the fill depth of our system (≈22d) as
compared with the experiments (≈435d). Figure 2 provides
comparison of the solids fraction distribution (via Voronoi
diagrams) between the poured assembly (ensemble-averaged
over 25 realizations) and at Γ = 2.75.

Evidence of the structural ordering at Γ = 2.75 is deduced
from the free volume distribution (following [17]) V f =(
Vpoly − Vhcp

)
/Vhcp, where Vpoly is the Voronoi polyhedron

volume and Vhcp is the same for a hexagonal closed-pack-
ing. Comparison of the distribution (Fig. 3) at Γ = 2.75 with
that of the initial configuration (ensemble-averages over 25
realizations) indicates the development of a regular micro-
structure. Solid lines are fits1 to the gamma distribution
f (x;α, θ) = xα−1e−x/θ

θαΓ (α)
, where Γ(a) = ∫ ∞

0 tα−1et dt .

3 Dynamical systems model analysis

Here we describe the dynamical systems approach used to
inform and complement the simulation and visualization
aspects of our current research insofar as predicting behavior
verifiable by comparisons and discovering general mathe-
matical trends and relationships that might elude compu-
tational and visual investigation. The dynamical domain is
R := {x ∈ R

3 : 0 ≤ x, y ≤ w, z0(t; a, f ) ≤ z}, where
d is the diameter the particles, and z0 represents the vertical

1 Calculated using MATLAB 7.11 routinegamfit that generates max-
imum log-likelihood estimates of the parameters α and θ .

tapping motion of the container floor, with z0(0; a, f ) = 0.
The collection of particles is assumed monodisperse with a
common diameter d and mass m. It is also assumed that the
dynamics is periodic in the x and y so that one has periodic
boundary conditions on the lateral boundaries of R. The par-
ticle centers are denoted by xi = (xi , yi , zi ), which satisfy
the properties: (i) There are N particles, 1 ≤ i ≤ N ; (ii)
0 < xi , yi < w for all i ; and (iii) z0(t; a, f ) < zi for all i
and t ≥ 0. Finally, the interaction forces follow the Walton–
Braun–Mindlin–Deresiewicz models described above.

It follows from Newton’s 2nd law that the (vector) equa-
tions of motion can be written as

mẍi = −mgê3 + Fi (�x(i j),�ẋ(i j)) (1)

for all i , where ê1, ê2 and ê3 are the orthonormal basis vectors
along the x−, y− and z-axes, respectively, the dot denotes
d/dt and �x(i j) and �ẋ(i j) represent the increments x j −xi

and ẋ j − ẋi , respectively, for all nearest neighbors x j of the
particle at xi . One can solve (1) numerically, as our simulation
does nearly optimally, but this is computationally expensive
when N is very large and it is difficult to use the results for
predictive analysis. Approximations of the mean-square dis-

placements D :=
√∑

i
∑

j

∣∣x j − xi
∣∣2, where |·| represents

the usual euclidean norm, can be obtained as a function of
time—a measure of the evolution of density.

Direct analysis of the system (1) to obtain even approxi-
mate solutions is nearly impossible for large N owing to the
nonlinear nature of the Fi . However, it is possible to prove,
using techniques from the modern theory of dynamical sys-
tems [7,12,15,28], such qualitative results as the system (1)
exhibits chaotic dynamics if the amplitude a or the frequency
f is sufficiently large. But although this result and several oth-
ers of a similar type can be verified rather routinely, detailed
proofs would require considerably more space than is avail-
able in this paper. Given the difficulties inherent in the use
of exact models, an important component of this research is
to identify and exploit an approximate dynamical systems
model that is simple enough to be amenable to extensive
mathematical analysis, yet capable of effectively predicting
much of the dynamics for a significant class of granular flows
of current interest. In this regard, it is interesting to note that
we have found in a work-in-progress [8] that by isolating the
motion of the center of mass of a 1D configuration, we are
able to obtain a rather simple model capable of indicating
dynamical bifurcations of the complete system, very much
along the lines of the method of averaging [15]. This, how-
ever, is a very special case that does not provide the kind of
general model being sought.

One can treat (1) in the context of lattice dynamics [20,
26,33,37], wherein it is assumed that the particles form a
regular lattice (e.g., cubic), which automatically determines
the nearest neighbors in (1) and allows to view the system

123



166 V. Ratnaswamy et al.

as differential difference equations that are all, except at the
domain boundary, represented by a single equation. Then
exact solutions—especially of the traveling wave kind—can
sometimes be found by making an ansatz about the form of
the solutions, as in [20,26,33]. This approach is most effec-
tive in 1D systems, but results such as those in [37] indicate
that it can be extended to (1).

Another approach to (1) is to derive continuum (PDE)
models using limiting processes, such that the resulting
dynamics mimics that of the Newtonian system. One pop-
ular method is the long wavelength limit (LWL) in which
the particles form a regular lattice with edge length h much
smaller than any acoustic wavelength. The particle positions
are expanded in Taylor series in h, and truncated at a con-
venient order (usually four) to produce PDEs for the coordi-
nates, which in the case of (1) yields

(x, y, z)t t − ∇2(κ1x, κ2 y, κ3z) = (G1, G2, G3), (2)

where ∇2 := ∂2
ξ + ∂2

η + ∂2
ζ is the Laplacian expressed in

terms of the limit variables (ξ, η, ζ ), the κi are positive con-
stants and the Gi are nonlinear functions of the coordinates
and their partial derivatives of order up to four. These limits
have been studied for 1D configurations by several research-
ers including [6,14,22,23,27], and have been shown to be
integrable (defined in [7,12]), with soliton solutions, in the
ideal (isoenergetic) case [6,22]. In the 2D and 3D cases, it
may still be possible to modify existing methods to show that
(2) exhibits interesting wave dynamics. Observe that if one
has a solution of (2) and the auxiliary conditions, it is easy to
determine the evolution of the density using the continuity
equation, which is of course of considerable importance in
the study of granular flows.

The BSR method for generating approximate infinite-
dimensional dynamical models for granular flows uses a
locally averaged limit in the transport mode along trajectories
as N → ∞ to produce an integro-PDE of the form [4]

Dt u = −gê3 +
∫

R3

(y − x, u(y, t) − u(x, t)) dy, (3)

where u is the velocity, Dt is the total derivative and the
kernel 
 vanishes outside a small neighborhood of x. This
model appears to be the most promising for a variety of rea-
sons including the following: An investigation of this model
in the 1D ideal case [5,6] has shown that this dynamical sys-
tem is also integrable, and it appears that the same is true
of higher dimensional versions. If the system is dissipative
as we are assuming in this study, our preliminary research
indicates that there is still a rather good chance of finding
decaying traveling wave solutions. The left-hand side of (3)
is just the general kinematic wave equation operator; hence,
this equation should be (as strongly indicated in our inves-
tigations so far) well-suited to studying wave propagation
and shocks via characteristic-based methods. Numerically

Fig. 4 Animation of evolution of v̄loc at Γ = 2.25 ( f = 7.5 Hz)

speaking, (3) together with any associated auxiliary condi-
tions also comprises a boundary value problem, but the lower
order and integration lead to improved convergence over the
LWL method. And as in the LWL, a solution of this model
can be used to calculate the density.

4 Visualization of dynamics

To better understand the physical mechanism, animations of
the dynamics were completed. For this, we saved configura-
tions (particle coordinate positions) every 10−5 s based on
simulations of the wave speed in a granular column of the
order of 150 m/s and the system fill height of ≈22d.

The visual analysis of the resulting transient data focused
on a continuous animation through which the dynamic evolu-
tion of the system could be monitored. Important visual cues
about the spatial organization of the assembly were obtained
through global illumination of the scene. The second part of
our analysis focused on the quantitative study of the evolu-
tion of a relative solids fraction v̄loc := vloc/0.7409, where
vloc is the local solids fraction. Specifically, the 3D Voronoi
diagram of the particle set was constructed for each saved
configuration to enable the assessment of the local solids
fraction vloc := (πd3)/6Vpoly, where Vpoly is the volume of
the encapsulating Voronoi polyhedron. These 3D diagrams
were then mapped to 2D images by integrating along rays
perpendicular to the tapping plane. This measure gives val-
ues in the interval (0, 1], whereby the wave itself corresponds
at each step to a spatially coherent region of low values.

Figure 4 shows a sequence of frames taken from the ani-
mation 2 of v̄loc at Γ = 2.25 for a single tap ( f = 7.5 Hz)
of duration 0.06667s followed by a relaxation period (floor
is stationary) lasting 0.06667s. In the gray scale image, dark
grey corresponds to the maximum v̄loc attained (� 0.87).
Please refer to the provided scale in Fig. 4. The first frame
at t = 0.0335s corresponds to the start of the wave pulse.

2 See online supplementary material
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From the evolution of v̄loc in the animations, we observed
the following sequence of events. At the outset, the system
begins to translate en masse upwards and as a result of the
transmission of impulses through particle contacts, dilation
of the system commences. The second frame in the sequence
is the map v̄loc when the floor has reached its peak position,
while the third frame is the configuration when the floor is at
the zero position and has stopped moving. At this time, the
assembly is still dilating (t ≈ 0.1s). The expansion reaches
a maximum dilation at t ≈ 0.13375s (frame 4) after which
particles on the average start to move back down.

When spheres near the bottom collide with the floor,
they bounce slightly up thereby propagating some upward
momentum to the particles that lie above them. The last frame
in the figure shows v̄loc at t = 0.1665s, where the shock can
be seen moving upward shortly after the assembly has col-
lided with the floor. Eventually, a density profile is locked in
as the kinetic energy of the system decreases due to inelas-
tic collisions. The application of continued taps in the same
manner ultimately produces a system having a steady-state
density (∼0.70 at Γ = 2.25 in Fig. 1).

5 Summary and conclusions

A discrete element model was used to simulate the den-
sity relaxation in an assembly of uniform, inelastic, fric-
tional, soft spheres within a laterally periodic box subjected
to taps imposed by the motion of a flat plane floor. Mate-
rial properties were selected to correspond to acrylic, the tap
frequency was fixed at 7.5 Hz and a wide range of tap dis-
placement amplitudes were chosen. We find a non-monotonic
dependence of the ensemble-averaged bulk solids fraction (or
equivalently bulk density) on dimensionless acceleration Γ ,
with a peak value that is approximately 95.6 % of the theoret-
ical maximum value. There is an accompanying shift of the
solids fraction distribution from an initially random structure
to one that contains a significant degree of HCP order.

Animations of the evolution of normalized solids frac-
tion revealed a process during a single tap whereby the
assembly dilated, reaching a maximum after the floor motion
had ceased. As particles begin to move downwards in a
’contraction process’, collisions with the floor cause an
upward propagation impulses that eventually locks in a den-
sity profile. Finally, analysis of the dynamical systems mod-
els for the relaxation flows yield predictions consistent with
both the simulations and visualizations. Thus, the dynamical
systems—simulation—visualization approach appears to be
very promising for the investigation these granular flows.
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