
1

3D Image Warping in Architectural Walkthroughs
Matthew M. Rafferty, Daniel G. Aliaga, Anselmo A. Lastra

Department of Computer Science

University of North Carolina at Chapel Hill

{ rafferty | aliaga | lastra } @cs.unc.edu

ABSTRACT
We are investigating methods to accelerate rendering of
architectural walkthroughs. In this paper, we improve upon
a cells and portals framework by using image-based
rendering techniques. We first store a few reference images
of the view through each portal. At run time, we replace
portals with these images warped to the current viewpoint.
We begin with a well-known scheme for handling the
complexity of a model, whereby the boundaries of enclosed
spaces (cells) are used to divide the total space, and views
of geometry beyond the currently occupied space are
limited to the openings (portals) by walls. Our system
improves upon the replacement of portals with
conventional textures because the warping removes the
popping effect when switching between image samples and
significantly reduces the number of image samples needed.

Keywords: geometry, images, image-based rendering,
plenoptic warping, cells, portals, interactive.

1. Introduction
High quality architectural walkthroughs require large and
complex models with many geometric primitives. Recently,
algorithms have been presented to take advantage of the
structure of an architectural model by subdividing it into
cells and portals [Airey90, Teller91, Luebke95]. These
methods compute which cells (or rooms) are visible from
the current location by finding the visible portals (windows,
doors, etc.) to adjacent cells. We can use the information to
cull parts of the model that are not visible.

As models increase in complexity, even this portal culling
does not reduce the amount of rendered geometry enough
to maintain interactivity. Our previous research explored
the use of conventional textures at portals as replacements
for the geometry of the view they represent [Aliaga97]. The
rendering burden is substantially reduced by this method,
since the portal textures can be sampled once and reused.
The main problem is that a portal texture is only correct
from a given viewpoint. If we want to maintain accuracy
and provide motion parallax as the user moves, we have to
use multiple portal textures. If we don't use enough portal
textures to represent each portal, the user notices a “pop”
from one texture to the next. The method of portal textures
can require a large number of samples to reduce popping to
an acceptable degree. This demands more texture memory
(or the use of a large amount of main memory and copying
to texture memory as necessary).

To combat this problem, we have applied image-based
rendering techniques [Chen93, McMillan95c, Gortler96,
Levoy96, Mark97] to warp the portal textures to the current

viewpoint, thereby achieving smooth transitions. We are
thus able to greatly reduce the number of images required
per portal. There are problems with the warping algorithms
such as exposures, which are gaps that appear in the
warped image because unsampled areas of the scene should
become visible. In this paper, we describe our solutions to
these problems to produce an interactive system for
architectural walkthroughs.

The following section presents an overview of portal
culling and the use of portal textures to replace geometry.
Section 3 describes portal warping and the problems
encountered, along with our solutions. In section 4 we
describe the implementation. Section 5 shows some results
we have obtained using the system. Finally, section 6
describes some future work and section 7 presents some
conclusions.

2. Portal Culling and Portal Textures

2.1 Portal Culling
Architectural models can be subdivided into cells and
portals. Each cell contains a list of portals to adjacent cells.
The cells and portals form a connectivity graph. At run-
time, the system, starting with the cell containing the
viewpoint (view cell), recursively traverses the connectivity
graph by visiting all adjacent cells connected to the current
cell by a visible portal.

Figure 1. Portal Culling. The light gray cells are visible and must
be rendered. The medium gray cell, although it lies in the view
frustum, is not rendered because it did not appear during the
recursive traversal.

2

2.2 Replacing Portals with Textures
Our previous system renders the view cell normally but
renders all visible portals as textures. Substituting textures
for geometry has the advantage that a texture can be
rendered in time independent of the geometric complexity
it represents, and texture mapping is often supported by
graphics hardware. As the viewpoint approaches a portal,
we switch to rendering the geometry of the cell behind the
portal. Once the viewpoint enters the adjacent cell, it
becomes the view cell and the previous cell will now be
rendered as a texture.

The major problem with this approach is the number of
portal textures required to adequately represent the adjacent
cells. The simplest case is to only use a single texture, say
sampled from directly in front of the portal. The problem is
that as the user moves, the single texture appears more like
a large painting hanging on the wall than like another room.
To provide the desired 3D effect, we can use multiple
textures [Aliaga97] and switch between them as we move.
However, if we don't use enough of them, we see a very
objectionable popping effect as the viewpoint moves and
the system switches textures. In the accompanying video,
we see that to get smooth transitions, we use a total of 120
textures sampled across a portal. On many machines that's
just too much storage.

In order to smooth the transitions, we use image-based
rendering techniques, specifically the one described in
[McMillan95c], to warp one or more reference images to
the current viewpoint. The next section describes the
methods used to perform the warping.

3. Warping of Portal Images

3.1 Formulation of the Image Warping
We use the McMillan and Bishop warping equation (best
described in [McMillan95b and McMillan97]) formulated
as

x2 = δ(x1)P2
-1(c1-c2) + P2

-1 P1 x1

where

• x1 is a set of coordinates for a reference image point,

• x2 is a set of coordinates locating the corresponding
point in the desired image,

• c1 is the center of projection (COP) of the reference
image,

• c2 is the COP of the desired image,

• P1 is the transformation matrix of the reference image,

• P2
-1 is inverse of the transformation matrix of the

desired image,

• δ(x1) is the disparity of the reference image pixel at x1.

The disparity term is related to the classical stereo disparity
measure, and is proportional to the distance from the COP
of the reference image to a pixel, divided by the range to
the surface represented by that pixel. Thus, the disparity is
inversely proportional to distance and measures how far a
pixel will flow as the viewpoint changes — closer objects

will move farther. In section 4, we discuss how we compute
disparity from the z buffer of the reference image.

Since the reference image is on a regular grid, many of
these computations are incremental, thus fast. The amount
of work is similar to that required by traditional texture
mapping.

Note that the results of this warp are not one to one:
multiple points in the reference image may be warped to a
single point in the desired image. This raises the issue of
visibility resolution: we must somehow ensure that when
multiple pixels from the reference image warp to the same
pixel in the desired image, the one representing the closest
of the points to the current viewpoint is the one that “wins”.
We could use z-buffering to resolve visibility, but in our
case it's faster to use the back-to-front occlusion-
compatible order described in [McMillan95a].

This algorithm is similar to a painter's algorithm. We first
determine the projection of the COP of the desired image in
the reference image. We use that point to divide the
reference image into a number of sheets. There are four,
two, or one, depending on whether both, one, or neither of
the coordinates of the projected intersection lie in the image
domain. We then determine whether we must warp the
pixels in the sheets towards or away from the projected
point, depending on whether the desired COP is in front of,
or behind the reference COP.

Since the sheets can be warped and rendered independently
with correct occlusion guaranteed, we can parallelize the
implementation of the warp as described in section 4.

3.2 Reconstruction
In our laboratory, we've used two methods for resampling
of the desired image, bilinearly interpolated surfaces and
splatting [Westover91]. [McMillan97] includes a good
discussion of the reconstruction issues involved in image
warping. We decided that surface patches would be too
expensive to evaluate, therefore we used a splat. Through a
software switch, we can decide whether to compute an
approximation to the projected size of each pixel (for a
more accurate splat) or to use a fixed-size footprint. Since
the fixed-size splat is cheaper to compute and provides a
visually pleasing result, we usually use a three by three
footprint in preference to the more accurate solution. We
note that in [Gortler97] the authors also decided to use a
fixed-size kernel.

3.3 Exposures
A typical image represents an environment from only a
single viewpoint. Therefore, there is information about only
a single surface at each pixel, the one nearest to the COP
(ignoring clipping by a hither plane). As we move in three-
dimensional space warping a single reference image, we
see areas of the environment that were not sampled in the
image (note the example in figure 2). We have no
information about the exposed surfaces, so we don't know
what to render. The effect of these exposures in warped
images is illustrated in color figure A. If nothing is done to
correct for the problem, the exposures appear as “tears” or
sharp shadows in the images.

3

The simplest solution is to increase the number of reference
images per portal. Thus when the viewpoint moves, the
reference image being warped is close to the desired image
and the widths of the tears are proportionally reduced.
However, it is not practical to use this solution, because it
exacerbates the problem we were trying to solve by
warping, namely the large number of reference images.

A better solution is to warp multiple reference images,
expecting that surfaces exposed in one reference image will
have been sampled in another image. We implement this
solution by warping the two nearest reference images. We
don't decide explicitly which warped pixels are best.
Rather, we warp the second nearest reference image first,
then warp the closest reference image into the buffer over
the first. In practice, this seems to provide an excellent
solution. Color figure B shows the result of warping the
two images nearest to the same viewpoint used to render
color figure A. Notice that the exposed regions are now
filled and the image looks quite good. For comparison, we
provide an image in color figure C that is rendered from
geometry. The only part that is wrong in the warped image
is visible through the doorway on the left. Apparently there
was some detail that was not visible from either of the two
reference images. Presumably this was visible only from a
narrow angle.

We could warp more reference images in order to try to
reconstruct the environment in greater detail. However this
is not practical because of the time involved and not
particularly rewarding given the small amount of detail
that's lost. Also, since transitions are smooth during
movement, the small artifacts are not particularly
noticeable. In practice, warping the two nearest reference
images seems to give very acceptable quality and good
performance.

One more solution that we have tried is to allow previous
images to persist in the buffer as we warp new ones
[McMillan, personal communications]. We accomplish this
trivially, by leaving the warp buffer uncleared (which has
the benefit of also reducing memory access). Although this
is a “hack”, it tends to fill the tears with a plausible color,

as long as the warped image is not too far from the
reference images, and the movement is smooth. If we warp
a single reference image too far or the viewpoint changes
are large, the effect is rather hallucinatory. In practice, it
works well.

4. Implementation

4.1 System
We implemented our system on a Silicon Graphics Onyx
(250 MHz R4400, 2GB main memory) with Infinite Reality
graphics (containing 64MB of texture memory) and on an
Indigo2 (250 MHz R4400, 128MB memory) with Max
Impact graphics (and 4MB of texture memory). The system
is coded in C++, and uses the OpenGL graphics library.

At run-time, our visibility algorithm determines which
portals are visible. Then, we make sure the reference
images for warping are created. We chose a nominal image
size of 256x256 pixels. All visible portal images are
warped into a common warp buffer of the same aspect ratio
as the main window. Then, the warp buffer is copied to the
frame buffer; finally all visible geometry is rendered on top
(leaving holes at the location of the portals through which
we see the warped images).

For our application, the COP of the desired image typically
projects onto the reference image, producing four roughly
equal-sized sheets. We can take advantage of this to
parallelize the warp. We accomplished this by using fork-
join multiprocessing directives. Our system employs up to
four processors to warp the sheets in parallel.

The top-level visibility algorithm is described below:
Visibility(cell, frustum) {
 Mark cell visible
 Cull cell to frustum
 Foreach portal {
 Cull portal to frustum
 if (portal is visible) {
 if (portal is image) {
 Choose best reference image(s)
 Warp reference image(s)
 } else
 Visibility(portal’s adjacent cell,
 culled frustum)
 }
 }
}

4.2 Reference Images
A portal image, its dimensions, and its camera model
parameters are grouped into a single data structure. The
image’s depth buffer is also retained, but the depth value
for each pixel must be converted to a disparity value by the
formula

disparity(u,v) = 1 - z(u,v) * (f - n) / f

where

• z(u,v) is the OpenGL z-buffer value for a pixel at u, v,

• f is the distance from the reference viewpoint to the far
clipping plane, and

• n is the distance from the reference viewpoint to the
near clipping plane.

Figure 2. If the reference image is taken from viewpoint A, and we
warp to point B, we have no information about the section of wall
(shown in black) behind the sofa or about the side of the sofa. Since
parts of these surfaces are visible from B, we must obtain this
information from another reference image.

A B

4

We need to define a set of reference images for the warping
algorithm. As in [Aliaga97], our reference images are
sampled along a semicircle in front of each portal located at
the typical viewing height. The semicircle does not need to
cover the full halfspace in front of a portal, but only the
span from which the portal will be seen. In our examples,
we typically generate a reference image every 10 or 20
degrees in front of the portal over an angular range of 60 or
120 degrees.

5. Results
We tested our system with two architectural models. The
first model, named Brooks House, is that of a one-story
radiosity-illuminated house. The house has 19 cells, 52
portals and 528,000 polygons. The second model, named
Haunted House, is a smaller two-story house with 214,000
polygons, 7 cells and 12 portals.

We recorded a 520-frame path through Brooks House. We
ran the path twice, warping one and two reference images
per portal. For this path, we used 256x256 reference images
and a 640x512 common warp buffer. When warping one
image per portal, we obtained speedups of up to 4.9 over
portal culling alone (overall speedup of 1.87). Figure 3
shows the results of portal culling alone. Figure 4 shows
the frame times when image warping is enabled. If we time

the same path, but warp two images per portal, our
maximum speedup is 3.17 (overall 1.25). Note that an
advantage to the use of portal images is that the portal
warping time is independent of the amount of geometry.
Thus, we should see higher speedups for more complex
models.

Since we require few reference images per portal, we
precompute the images and store them in host memory.
Thus, the total number of reference images stored per portal
does not affect performance only the number of
reference images actually warped per frame affects
performance. We have experimented with computing the
images on the fly. We obtain the same speedups except for
sporadic spikes whenever a reference image is created. We
feel that the amount of storage needed to store the reference
images is not unreasonable (for example, in the Brooks
House model there are 52 portals for a total of 312 images).

We also timed how fast our algorithm can warp and draw a
reference image. On our workstation, we can warp a single
256 by 256 reference image into the 640 by 512 buffer in
0.036 seconds (including the time to copy to the frame
buffer). A 512 by 512 reference image can be warped in
0.101 seconds.

6. Future Work
The work that might yield the most immediate benefit is an
investigation into the placement of reference images. We
chose the semicircle in front of the portal only because it
was the same pattern that we used in our previous system.
Perhaps a regularly spaced grid of sample points might
work best, especially if we were to work on models with
larger rooms.

For the same case of larger spaces, we might have to look
more closely at reconstruction. The farther we get from
reference images, the more important it becomes do a better
job of resampling.

We have considered the use of inverse warping
[McMillan97] as a second pass in order to render the portal
image. We could forward warp from the best reference
image, then inverse warp to fill in any remaining samples.
Similarly, it may be fruitful to investigate representations
of reference images with multiple depths per sample
[Max95, Gortler97].

Our models use only diffuse lighting (with a precomputed
radiosity solution). High specularity, in particular, might
force us to use more reference images. We could
investigate deferred shading of the warped samples,
although the cost might be prohibitive.

Finally, we are investigating specialized hardware to
compute the warped image more rapidly. This would allow
us to not only increase our frame rate, but would also
enable us to generate more detailed portal images.

7. Conclusions
We have presented a system for interactive rendering of
architectural walkthroughs that uses image-based
techniques to increase performance while maintaining high

Figure 3. Rendering time of a path through the Brooks House
model using only portal culling.

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

Frame

R
en

d
er

in
g

 T
im

e
(s

ec
.)

Figure 4. Rendering time of the same path but warping one and two
reference images. Note the improvement in performance and the
reduced variability in frame time.

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

Frame

R
en

d
er

in
g

 T
im

e
(s

ec
.)

5

quality and smooth motion. To our knowledge, this is the
first practical application of warping techniques, such as
that of McMillan and Bishop, that take depth at each pixel
into consideration.

We employ multiple processors to accelerate the 3D-image
warping and use a simple reconstruction kernel. We also
investigated how to reduce the exposure events that occur
in portal image warping when previously occluded regions
suddenly become visible. Furthermore, we are able to
transition smoothly between portal images using an order
of magnitude fewer of them than with the portal textures
method alone. Since so few reference images are required,
it's feasible to precompute them as we do in our production
walkthrough system.

8. Acknowledgments
We would like to thank Leonard McMillan for the warping
code from which we began our development, Wolfgang
Stuerzlinger for code and advice, and Bill Mark for insight
into image-based rendering.

The Brooks House model is courtesy of many generations
of students and members of the UNC Walkthrough team.
Dave Luebke and Mike Goslin created the Haunted House
model.

This research was supported in part by grant number
RR02170 from the National Institutes of Health National
Center for Research Resources, the Defense Advanced
Research Projects Agency under order number E278, and
grant number MIP-9612643 from the National Science
Foundation.

References
[Airey90] John Airey, Increasing Update Rates in the
Building Walkthrough System with Automatic Model-Space
Subdivision, Ph.D. Dissertation, University of North
Carolina (also UNC Computer Science Technical Report
TR90-027), 1990.

[Aliaga97] Daniel G. Aliaga and Anselmo Lastra,
"Architectural Walkthroughs using Portal Textures", to
appear in Proceedings of IEEE Visualization ‘97.

[Chen93] Shenchang Eric Chen and Lance Williams,
"View Interpolation for Image Synthesis", SIGGRAPH 93,
279-288, 1993.

[Gortler96] Steven Gortler, Radek Grzeszczuk, Richard
Szeliski and Michael Cohen, “The Lumigraph”,
SIGGRAPH 96, 43-54, August 4-9, 1996.

[Gortler97] Steven Gortler, Li-we He, and Michael Cohen,
“Rendering from Layered Depth Images”, Microsoft
Research Technical Report MSTR-TR-97-09, March 19,
1997.

[Levoy96] Marc Levoy and Pat Hanrahan, “Light Field
Rendering”, SIGGRAPH 96, 31-42, August 4-9, 1996.

[Luebke95] David Luebke and Chris Georges, "Portals and
Mirrors: Simple, Fast Evaluation of Potentially Visible
Sets", Proc. Symp. on Interactive 3D Graphics, 105-106,
1995.

[Max95] Nelson Max and Keiichi Ohsaki, “Rendering
Trees from Precomputed Z-Buffer Views”, Proc. of the 6th
Eurographics Workshop on Rendering, June 1995.

[McMillan95a] Leonard McMillan and Gary Bishop,
“Head-Tracked Stereo Display Using Image Warping”,
Stereoscopic Displays and Virtual Reality Systems II, Scott
S. Fisher, John O. Merritt, Mark T. Bolas, ed., SPIE
Proceedings 2409, (San Jose, CA), Feb 5-10, 1995, 21-30.

[McMillan95b] Leonard McMillan and Gary Bishop,
“Shape as a Perturbation to Projective Mapping”, UNC
Computer Science Technical Report TR95-046, University
of North Carolina, April 1995.

[McMillan95c] Leonard McMillan and Gary Bishop,
"Plenoptic Modeling: An Image-Based Rendering System",
SIGGRAPH 95, 39-46, August 1995.

[McMillan97] Leonard McMillan, An Image-Based
Approach to Three-Dimensional Computer Graphics, Ph.D.
Dissertation, University of North Carolina (also UNC
Computer Science Technical Report TR97-013), April
1997.

[Mark97] William R. Mark, Leonard McMillan and Gary
Bishop, "Post-Rendering 3D Warping", Proc. Symp. on
Interactive 3D Graphics, 7-16, 1997.

[Teller91] Seth Teller and Carlo H. Séquin, “Visibility
Preprocessing For Interactive Walkthroughs”, SIGGRAPH
91, 61-69, 1991.

[Westover91] Lee Westover, Splatting: A Feed-Forward
Volume Rendering Algorithm, Ph.D. Dissertation,
University of North Carolina, 1991.

Note: some of the UNC references are available in
electronic form on http://www.cs.unc.edu/~ibr/pubs.html.

6

Color Figure A: Exposure Events. This image shows
a single reference image being warped (from a total
of six sampled across the portal). The viewpoint is at
the worst location for this reference image. Observe
the black areas where we have no visual information.

Color Figure C: Geometry. An image from the same
viewpoint as A, but rendered using the model
geometry for purposes of comparison with figures A
and B. The main difference is some detail through the
left doorway. Apparently these were some features
that were not visible from either reference image.

Color Figure B: Two Reference Images. An image
from the same viewpoint as A, but we are warping
the two nearest reference images (from a total of six)
to render the desired image. Most of the areas that
were invisible from one are visible from the second.

Color Figure D: Difference Image. This image is a
signed difference image between Color Figure B and
C. Gray equals zero difference.

Color Figure E: Haunted House. A screen shot from
the Haunted House model. In this example, we are
warping one image from a total of six reference
images.

