
Fidelity in Visualizing Large-Scale Simulations
Voicu Popescu and Christoph Hoffmann

Computer Science, Purdue University
West Lafayette, IN 47907, USA

Abstract
Computer simulations are powerful tools frequently used today in many important applications,
for example to build safer buildings, to crash-test an automobile before it is built, to stabilize the
Pisa tower, to design artificial joints that are comfortable and durable, or to investigate what-if
scenarios to avoid and best recover from natural or man-made disasters. The simulation codes
have reached a very high-level of sophistication and, by running on powerful computing
machinery, can accurately track with infinitesimal time steps dozens of physical properties of
millions of interacting elements under extreme conditions. In order to take fully advantage of the
bounty of information concealed in the data produced, visualization is a uniquely powerful tool
since it caters to the sense that provides our highest bandwidth connection to the surrounding
world.

Unfortunately, simulation results are usually examined with graphics and visualization tools that
are one or several steps behind the state-of-the-art. We describe our efforts of producing high-
fidelity visualizations of the results of large-scale simulations using the latest commercial

rendering and animation systems. To this effect we built a
scalable and reusable link between the software worlds of
animation and simulation. Our system also offers a set of
tools that allow integrating the results of the simulation in the
surrounding scene, of great importance when the intended
audience extends beyond the researchers that designed the
simulation. We built our system as part of the efforts of a
larger, interdisciplinary team to produce a high-quality,
physically accurate visualization of the September 11 attack

on the Pentagon.

Introduction and
Motivation
Physical simulations have
become an important tool
to understand and analyze
critical events, such as an
airplane crash or an earth
quake, and, routinely, to
analyze the performance
of devices. Using finite
element analysis (FEA),
several commercial
programs offer
sophisticated tools for
evaluating and simulating
physical events. By
measuring specific

Figure 1 Simulation data visualization using our system.

quantities such as stress and strain, or simply by scrutinizing the unfolding of an event in small
time steps, important insights can be had that illuminate specific strengths and weaknesses of
structures and mechanical systems, as well as provide clues on how to improve the performance
of engineering designs.

Much work has been done to simplify and automate formulating an FEA problem from a given
shape design, particularly in the context of discrete manufacturing. Furthermore, considering
only the geometric aspect of this problem, geometric mesh generation addresses the key problem
of converting a boundary-based shape representation, familiar from computer-aided design
(CAD), into an equivalent point- and element-based representation suitable for describing the
shapes to be analyzed by the FEA, as well as representing ambient space for flow problems. This
work has migrated into many commercial software packages, such as Ansys, Fluent, Elfini, to
name a few. Once the FEA has completed, the results of the analysis are then visualized using a
variety of tools geared to the FEA representation. These standard visualization tools are adequate
to show salient features of the analysis in a manner that is familiar to engineers and specialists,
and are well-suited to discrete manufacturing.

For communicating the results of a FEA to a public audience, however, the traditional way of
visualizing is not optimal. When evaluating an abnormal event such as a plane crash, public and
policy interests are also in play, and properly communicating the event to the wider audience
suggests that the visualization of the results should be ready to be grasped by people who are
unfamiliar with, e.g., false color schemes, and other traditional tools for accentuating engineering
quantities. Moreover, a realistic and engaging visualization of the simulation results is useful as
well for integration into virtual reality training and documentary presentation.

In this paper, we address how to visualize with high fidelity FEA results for a forensic simulation
of an event by combining the physical quantities and events computed by the FEA with real-
world, natural environments, or even synthetic environments familiar form computer games. In
particular, we discuss how to convert the FEA representation to ones suitable for commercial
animation systems, how to add special effects, and how to situate the results in the surrounding,
natural environment. Some aspects of integrating visualization with simulation have been
discussed in [2]. and have focused on the overall problems of managing simulation complexity
and federating commercial FEA systems with commercial visualization and animation systems.

We discuss our subject in the context of a case study, the September 11 attack on the Pentagon.
One of our collaborators at Purdue University had been invited to participate in the forensic study
of the damage the Pentagon building sustained in that attack. To better understand the
performance of the building, eventually reported in [1], several simulation studies were done in
2002 using the commercial FEA code LS-Dyna [7, 8]. The simulations culminated in two runs
on an IBM Regatta supercomputer, and the data so obtained was first analyzed using the standard
post-processor of LS-Dyna. See [3], Phase I, for the visualizations done using traditional post-
processing. It was clear at the time that the visualizations so obtained were interesting, but were
inferior to visualizations common in computer graphics. This motivated us to investigate how to
achieve high fidelity in visualizing the simulation using 3DS Max [21], a commercial rendering
and animation software package.

Prior Work
Large-scale simulations have become an accepted research tool in science and engineering. They
require accurate models of the physical properties under considerations and appropriate geometric
details. Accurate material models and algorithms are devised and validated from experiments and
theoretical considerations. They are discussed in text books and major sections of the literature.
Of equal importance, but not as well known, is how to achieve high fidelity in visualizing the

results so that salient properties can be readily discerned and the overall implications of the
simulation can be communicated widely. The goals for such visualization strategies include
scalability when preparing high-quality, realistic renderings, and the incorporation of the
surrounding environment in which the simulated events take place. The literature on scientific
visualization concerns itself, to a large part, with the analysis of acquired images from devices
such as MRI or CT scans, and with the extraction of significant features such as stream lines and
vortex cores from simulated flow fields.

Our data for this paper is derived from the simulation of the 9/11 events using LS-Dyna. This
simulation is situated in the context of aircraft crash experiments that have been carried out and
described by Sugano and others [5]. The insights from these earlier experiments include
understanding the time-dependent force exerted through the impact on a building or other
structure, as well as a risk assessment whether the building or structure is breached. The
experiments usually include smaller planes, and the results of those crashes are then transposed to
larger plane crashes by some scaling argument. On experimental grounds it has been found that
the engine of a jet fighter incurs the most significant damage in a crash. Elsewhere [22] we have
argued that in the case of the Pentagon attack it was not the engines that did the major structural
damage. In fact one of the engines was lost at the generator outside, before the impact of the
plane into the Pentagon. However, we are unaware of significant crash experiments and analyses
that investigate consequent damage to structures impacted by a fully fueled commercial jet liner.
This specific question must await future experiments to be fully understood experimentally.

An FEA system such as LS-Dyna writes, as part of the simulation, a data base of nodal positions,
pressures, stresses, and other engineering quantities at time intervals chosen by the user. There
are visualization packages devoted to interpreting and rendering such FEA data visually, notably
the VTK tool kit [10]. These visualization packages do not offer tools that incorporate
environmental settings or simplify animation scripting of, e.g., the flight path prior to impact.
Animation and rendering software such as 3DS Max, on the other hand, offer many sophisticated
tools to render the environment, construct pre- and post-event animations, and add special effects.

3DS Max and other such rendering and animation systems do not offer specific tools to import
FEA data. In fact, the shape representation of 3DS Max and LS-Dyna are conceptually very
different, the former based on visible surfaces, the latter based on representing the interior of
objects as well as their surface. Since 3DS Max allows programmatic extensions to enhance and
customize system functionality, there is in principle the possibility of writing a plug-in that
extracts the needed FEA data from the pre-computed data base, reformats it, and then renders it in
the context of the surrounding environment and its other components. Such a plug-in has to be
scalable in order to be able to ingest the FEA data in a reasonable amount of time.

Industrial Light and Magic has worked on combining physical simulation with sophisticated
visual presentations that include a cinematic environment. This is the closest work relating to our
effort . For example, the animation of Star Wars Episode V includes importing a rigid-body
dynamics simulation of the motion of the bracelets on the arms of one of the synthetic actors [24].
In this proprietary work, the simulation software has been written from scratch and carefully
tuned for the specific problem at hand. It cannot provide a general solution such as the one we
present in this paper based on federating general-purpose simulation and animation software.

Simulation and Meshing
For the impact simulation, LS-Dyna [8] was selected as the FEA code since it is widely used in
automobile crashworthiness investigations and has the ability to model and analyze large-scale
deformations and nonlinear material behavior. The forensic investigation after the attack,
conducted by the Association of Civil Engineers (ASCE), provided the raw data for the observed

damage to the reinforced concrete columns of the building [1]. The column damage pattern in the
first floor of the building provided therefore a ready basis for confirming the simulation results.

The fidelity of the simulation is influenced by the mesh size. A coarse discretization used for the
elements of the Lagrangian mesh reduces the fidelity for contact and yielding behavior. Similarly,
a coarse discretization used for the elements of the Eulerian mesh reduces the fidelity for mass
transfer computations for the advection process, Euler-Lagrangian coupling, and the accuracy of
fluid flow. For the simulation, we wanted complete control over the mesh and therefore created
our own set of meshing tools. This allowed us to balance the desire for high resolution meshes,
and the accuracy so obtained, with the necessity to accommodate the limitations of the computing
platform, an IBM Regatta.

A completely automated meshing program that derives an FEA mesh from a geometric model is a
significant undertaking; e.g., [25,26]. However, much can be accomplished when the meshing is
semi-automatic. We wanted a predominantly hexahedral mesh with only a few triangular
elements. Because we combined separately meshed parts, we chose early-on to generate the mesh
in two passes: The first pass generates a mesh description in an intermediate format that is
independent of the one LS_Dyna expects. A second pass then translates the intermediate
representation into a form that is suitable for input to LS_Dyna. Thus, we can easily change the
FEA package, for instance when comparing fidelity and performance of different FEA systems.

The structure of most buildings can be
done using meshes of only a few primitive
shapes and carrying out various operations
combining those primitive meshes. The
Pentagon is no exception. However, the
columns of the Pentagon have a particular
structure that is a significant factor in the
building performance and must be
modeled. There is a round core of
concrete confined by a spiral rebar further
secured with longitudinal rebars. This
very strong core is faced by an outer
concrete shell which is not reinforced and
is comparatively weak. Accordingly, we
meshed the columns using the topology
shown in Figure 2 with rebars arranged
around the perimeter of the inner core.
Using a different material model for the
core and the facing allowed us to model
the behavior of the aggregate structure
accurately.

The airplane was modeled for the most part using quadrilateral shell elements. This is rather easy
for the main cabin and the wings. Beams, stringers and ribs can be added easily by sharing nodes
in longitudinal or transversal direction and defining beam elements. The floor of the cabin was
also modeled since its rib structure is a significant part of the overall integrity of the fuselage.

The fuel in the tanks of the aircraft was modeled since it provided a large part of the kinetic
energy of the impact. We used an Eulerian mesh surrounding the wing tanks and the center tank.
The mesh moves and deforms with the moving plane. The action of the liquid is computed by
tracking the percentage fluid volume contained in each mesh cell. Initially, the percentage liquid
occupancy is the percent volume to which a cell lies in the interior of the wing tanks. Since the

Figure 2 Column meshing for finite element analysis.

hexahedral elements of the wings are twisted, that is, since they are bounded by faces that are not
planar, the volume computation is not entirely routine. We computed the initial percent
assignment by generating a very fine subdivision of the wing and center tank cells. In a fine
subdivision, the face curvature can be ignored and the volume of each element can be determined
rather accurately by an elementary estimate. Each such element was then represented by its
centroid, and its volume was added to the fluid occupancy of the Euler cell in which the centroid
was situated. This is a simple way to estimate the intersection volume of each Euler cell with the
wing and center tanks, but since the summation uses the centroid of the elementary volume, it is
possible that some Euler cells are over-full. We accounted for that possibility by smoothing the
cell occupancy, distributing excess volume to the neighboring cells that could accommodate it.
Only a few passes were needed to resolve over-full elements.

Based on these considerations, a script language was developed to drive a meshing program.
Using the script language, meshes in the intermediate representation are created for simple shapes
and can be manipulated. Key operations on meshes include identifying nodes, so combining two
separate meshes, renumbering nodes and elements, and replicating and repositioning meshes.
Meshes can also be deformed. An important aspect of the scripting approach is to allow symbolic
expressions that evaluate to coordinates and parameters so that different meshing structures can
be parameterized using only a few parameters. The script interpreter therefore is a simple CAD
system coupled with a programming language interpreter. The approach is quite efficient, both in
user time and in mesh generation computation. For instance, a good mesh for a fighter jet crash
can be put together in a few hours from a small set of dimensional measurements.

Conceptually, our mesh generation approach is one in which the geometric models are
constructed as part of the mesh generation. In many cases, the geometric model precedes mesh
generation and meshing is conceptualized as an automated follow-on that takes a CAD model as
input and produces a mesh for it as output. This second approach is more complicated and much
work has been done in this area to automate it. A particular difficulty is that the geometric model
usually has much more detail than the FEA analysis needs, and it would be useful to first simplify
the shape. Unfortunately, shape simplification is a difficult problem that has not yet found a
satisfactory solution

Visualization Challenges
Large scale simulations produce massive multidimensional datasets. Although some scalars can
be examined and presented using tables and graphs, the 3D visualization of the simulation scene
has long been used as a powerful means of conveying the results of such simulations. In the case
of FEA simulations that analyze the mechanical interaction of entities under the extreme
conditions of a high-kinetic-energy impact, visualization is an indispensable tool. In order to
capitalize on high-fidelity finite element modeling, material and contact behavior, the
visualization should have high fidelity as well.

The fidelity of the visualization can be measured in two dimensions: rendering quality and visual
realism. Rendering quality is determined by factors that include complexity of light, material and
shading models, pixel and color resolutions, and level of antialiasing. The rendering quality has to
be sufficient to reveal all information contained in the simulation results. Detail is essential for
developing, confirming and/or dismissing theories and hypotheses about the simulated events.
Moreover, a high-quality rendering of the simulation results is a powerful debugging tool useful
for designing new simulation codes.

Visual realism enables the dissemination of the simulation results to non-specialists. Presenting
the simulation such that the entities involved are easily recognized and associated with their real
scene counterparts improves the communication in interdisciplinary teams, improves decision

making in defense and emergency management, increases the effectiveness of virtual training,
and provides powerful yet accurate opinion forming material suitable for use in courts of law and
mass media. Visual realism also helps the specialists that designed the simulation compare the
results of the simulation to the results observed during real experiments. In the case of complex
scenes, not every part of the scene can nor should be included in the simulation. The
computational resources should be allotted to accurately following the behavior of the entities
most relevant to the event studied. An important aspect of visual realism is the modeling,
integration and rendering of the surrounding scene with the simulation scene.

Besides producing high-quality images of the simulation, a successful visualization system has to
have important basic capabilities including scene file management, material editors, convenient
view selection tools, interactive rendering mode (albeit at draft quality), lights design tools, and
network rendering.

Visualizing the enormously complex simulation scene is a challenge even for the latest graphics
workstations and software systems. Although the geometric complexity of the scene is
manageable, animating every node at every state has proved to be a serious bottleneck. Another
important challenge is rendering the animated liquid. Global illumination models are
inappropriate since they require laborious reflection and refraction rendering algorithms. Liquid
animation is challenging. The liquid behavior is computed by the simulation code for each state.
A slow motion visualization of the simulation requires rendering the scene at intermediate time
steps. Interpolating the liquid between the simulation states in a way that achieves continuity is a
problem.

Modeling the surrounding scene realistically is another challenge. Usually there is no 3D data
available for the surrounding scene. The scene has to be constructed from heterogeneous data
such as outdated blueprints, photographs, low resolution video, and witness accounts.

Currently there is no visualization software system - commercial or public domain - that
overcomes these challenges and produces high-fidelity visualizations of large scale simulations.
Various components exist but the differences between the way they conceptualize geometry,
material properties and animation are difficult to reconcile. Our work can be thought of as a first
cut at building such a system.

Solutions
Commercial animation systems offer a good number of the desirable features, including state-of-
the-art high-fidelity rendering, material editing, view selection and camera animation, light
modeling, geometry editing, distributed rendering and convenient scene management. In addition
those systems have a relatively open architecture. We decided to use a commercial animation
system as the basis for our system.

The first problem that we had to be overcome was importing the simulation results data into the
animation system. For this we implemented a custom plugin, a custom programmed extension of
the animation system, that loads the simulation data directly into the animation system. The scene
is first subdivided by materials. The user can choose to load only the objects made of certain
materials, and/or a subset of the states. Figure 3 shows the data of one simulation state imported
into the commercial animation system. No processing has been done yet, all surfaces including
the cells of the ALE mesh containing liquid are shown in wireframe. The wireframe visualization
has been useful in illustrating the granularity of the finite elements used to run the simulation.

The plugin removes the internal faces of the objects built of hexahedral elements that are
irrelevant during rendering. Elements erode over the course of the simulation and faces that are
originally hidden can become visible at the fracture. For this the objects are subdivided according

to the state when they erode. The internal
faces of the sub-objects can be safely
eliminated, in linear time using a hash
table. Shell (quadrilateral) elements are
imported as a mesh of triangles or quads
and the beam (segment) elements are
imported as renderable splines.

The FE code computes the position of the
node at every state. Adding one position
controller for every node and for every
state takes days and produces unusable
scene files that take hours to load and
save and require minutes to update each
frame. Note that position controllers are
needed only when a node moves off the
line defined by the previous and next
controller. The user can intuitively tune
the collinearity threshold which is
measured in distance units (millimeters in
our case) to control the accuracy of the
trajectory approximation. Maximum
fidelity is achieved when the threshold
chosen is the machine precision, which is
still economical in the number of

controllers for the stationary part of the scene.

In LS-Dyna, liquid can be modeled using an arbitrary Lagrange-Euler formulation (ALE) or else
using a smooth particle hydrodynamics approach (SPH). We chose the former for the 9-11
simulation because of its greater maturity at the time. This is the imported data format

For a given state, the fractional occupancy values are transformed in a mesh (Figure 4) defining
the surface of the liquid either by selecting all the cells that have at least a minimum occupancy
value and eliminating the internal faces or by building an isosurface. The animation system offers

much support for designing the liquid
material including custom attenuation-with-
distance functions, surface reflectivity, and
refraction index. Raytracing the liquid mesh
with such a material produces convincing
visualizations (Figure 5). This degree of
realism is not always needed as it could hide
important details or blur the distinction
between surfaces. For example, rendering
the liquid as a Lambertian opaque object
helps visualize the shock waves.

Animating the liquid is more difficult than
animating solid objects. Although the
Eulerian grid offers a connection between
states, the occupancy values vary
considerably. This makes the liquid shells

Figure 3 Simulation state imported using the plugin.

Figure 4 Liquid visualization. Mesh used to render
the jet fuel shown in wireframe.

very different from one state to the next. A morph that continuously changes the shell at state k
into the shell at state k+1 is hard to develop. We opted for a simpler solution that worked well.
Instead of representing the liquid as a shell deforming over the course of the animation, we
interpolated the occupancy values and the Eulerian grid node positions for every frame of the
animation. Visibility controllers (one per liquid shell) ensure that the appropriate shell is visible
for the current frame. This technique does not allow extremely slow animations since that would
exceed a practical geometry budget. In our case the technique worked well for up to 5
interpolated states, which totals (5+1)*50 = 300 animation frames, or 10 sec replay time at 30 fps.

The plugin binary is a 200 KB dynamically linked library that the user copies in the plugin folder
of his animation system. The plugin will work with future releases of the animation system. Much
of the plugin is independent of the input data format. Future plugins that handle the output of
other simulation codes can therefore be constructed at a fraction of the effort to implement this
first plugin.

Image-based rendering (IBR) is a relatively recent direction of computer graphics research and is
well suited for realistically modeling and rendering the surrounding scene. IBR techniques can be
subdivided into classes according to the type and amount of geometry they use to model the
scene. At one extreme are light field methods [14, 15] that model the scene exclusively with
images. Registered photographs are converted in ray databases that queried during rendering for

the rays defining the desired view.
Unfortunately the technique is less
suited for very large scenes. Image-
based rendering by warping (IBRW)
[12] uses images enhanced with per
pixel depth as rendering primitives.
Several depth extraction technologies
are available. When depth is available,
IBRW is a good solution for
realistically rendering natural scenes.
View morphing and panorama
rendering limit the camera motion and
are of less interest for our application.

Hybrid techniques rely on a coarse
geometric model of the scene that is
colored using photographs [13]. We
chose this technique since the required
scene description data was available.

Figure 5 Liquid visualization including reflections and refractions (raytracing).

Figure 6 Approach scene. The plane and building are
rendered using a CAD model. The ground plane is textured
from a satellite photograph.

From blueprints we built a model of
the Pentagon building. The terrain
surrounding the Pentagon was
modeled simply by a large plane.

High-resolution aerial and satellite
imagery was used to color the model.
For the approach of the plane we
mapped a satellite image [18] onto the
ground plane (Figure 6). The satellite
image covers the surrounding area
well, but it contains no information
about the façade. We texture mapped
the façade conventionally with stock
textures available in the animation

system. The airplane was rendered using a B757 model used for computer games [17].

The scene after the attack was modeled using a high resolution photograph taken from a
helicopter (Figure 7). The CAD model was altered manually to match the destruction visible in
the photograph. Then the photograph was sprayed onto the ground plane and modified CAD
model. The process consists of two steps, camera matching and projective texture mapping.
Camera matching finds the position and view direction for each of the photographs used to
texture the model. We selected manually correspondences between the photograph and the
geometric model. The search converged quickly to solutions with only 2-3 pixel errors for 3000 x
2000 pixel images taken with an unknown camera. Projective texture mapping effectively sprays
the photograph pixels onto the polygons of the model and automatically builds individual texture
maps. The resulting sprayed model produces very realistic animations which instantly place the
simulation in context (Figure 8).

The scene file can be exported to a format suitable for hardware accelerated rendering such as
VRML, which allows for the interactive exploration of the visualization results. In that case, the
liquid has to be rendered in a simpler but much more efficient way such as alpha blending.

A final, important step in conveying information through visualization is to present the user with
the views he wants. Often, especially in the case of complex 3D scenes, the user does not know
exactly which view reveals best the important properties of the phenomena under scrutiny.
Typically the user finds it necessary to freely navigate through the 3D scene, in search of an ideal
view. The standard approach is for the user to specify a new view by incrementally changing the
current view, using keyboard, mouse or joystick. This approach is artificial and non-intuitive,
thus it is an ineffective way of navigating the 3D scene.

Virtual Reality technology provides limited support for
an immersive exploration of the 3D scene. Using
polarizing glasses or head-mounted displays, the user is
presented with a stereo pair of views that she/he fuses
into a spatial image. The six degrees of freedom of the
head are tracked and the rendering system quickly
updates the images accordingly. Unfortunately virtual
reality technology is still relatively crude. Few or no
researchers work for extended periods of time in the
virtual environments. Latency, low resolution,
inconvenient eyewear, and isolation from real world
(collaborators, computer, notepad) are factors that have

Figure 7 Photograph projected on geometric model of
Pentagon building.

Figure 8 Novel view rendered from the
projectively texture-mapped model.

been found to rapidly fatigue the user.

A promising alternative are 3D displays
that show a 3D scene so that it can be
viewed by one or several users
simultaneously, without glasses. We have
experimented with good results with an
autostereoscopic display [23]. A rapidly
revolving screen is located inside a glass
dome and displays in rapid succession
slices of the 3D image to be displayed.
Because of the latency of the eye, the 3D
image is perceived as a spatial sculpture of
light. The image can be viewed from any
angle simultaneously by as many viewers

as can be placed around the 20 inch glass ball. The color depth of our device is limited to 3 pixels
(8 colors) but the effect is visually stunning. The latency-free motion parallax obtained by freely
translating the head and walking around the display are unparalleled by any classic 2D or VR
display technology. The data imported into the animation system using our plugin can be re-
exported in a format suitable for the 3D display, and this high-lights another important use of the
plugin as a data conversion tool. Figure 9 shows two photographs from different angles of the 3D
display displaying the simulation data of a liquid-column impact simulation.

Summary and Future Work
We have demonstrated high-fidelity visualization of a large scale simulation using a commercial
animation system enhanced with a custom plugin. The plugin has been distributed to civil
engineering researchers on campus and they report it to be a useful tool. At first they were using
it just to illustrate their work, but now they are using it more and more to inspect the results of
their simulations. One of the hurdles was learning the key features of the animation system, a
more complex system than the post-processor used before. Tutorials specifically tailored to their
needs should speed up the learning process.

The visualization system can be extended and improved in many ways. Various visualization
techniques such as boundary and silhouette enhancement, tone shading, and feature halos can be
added as rendering plugins. We will investigate importing and rendering particle-modeled fluids.
Dust, smoke and fire are important in many simulations, and we plan to address them in the
future.

An important topic is closing the loop; that is,
beginning with a model suitable for rendering,
extract from it the FEA model, simulate the
model, and then re-import the results into the
animation system. A closed loop minimizes
the amount of time users need to study a
problem. Several approaches come to mind.

A popular approach is to generate meshes
automatically from geometric models and use
them for the FEA. This approach is
particularly attractive in manufacturing where
artifacts are created in CAD systems whose
performance must be understood using FEA.

Figure 9 Photographs of volumetric display showing
3D images of liquid-column impact data.

Figure 10 Images rendered by our civil
engineering colleagues for illustration (left) and
material model validation (right).

Here, difficulties arise because of the possible uncertainties in the CAD model that arise from the
internal geometric computations and the fine detail of CAD models that may be unnecessary for
the FEA. Full-service CAD systems offer the ability to render mechanical artifacts with high
fidelity. However, in forensic situations we do not begin with CAD models of the scene.

An approach better suited to our simulation study would be to build the meshes and the geometric
objects simultaneously. For this purpose we have developed the script language in which the
models and meshes can be built. This is not ideal because the textual scripts have not been
generated using a graphical interface. It should be possible to generate them in the animation
system using minimal user interaction. This would require a plugin that allows designating
certain parts of models, eliminating some of the features to simplify shape, and annotating
elements of the scene.

Acknowledgements
Our many discussions with Sami Kilic from Purdue’s Computing Research Institute and Mete
Sozen from the Department of Civil Engineering were very helpful and are gratefully
acknowledged. The material models of the Pentagon attack simulation were devised by them,
and Sami Kilic did the FEA runs and the traditional animations. Scott Meador and Jason Doty of
ITaP did the illustrative animations that script the plane approach to the Pentagon and illustrate
the context of the simulation. Hendry Lim and Mihai Mudure helped with implementing the
projective texture mapping module. Paul Rosen helped display the data on our 3D display. Their
help is gratefully acknowledged.

References
1. SEI, The Pentagon Building Performance Report, Struct. Engr. Inst. of the Am. Assoc. of

Civil Engr., ASCE 2003, 78 pages.

2. V. Popescu, C. Hoffmann, S. Kilic, M. Sozen, S. Meador. “Producing High-Quality
Visualizations of Large-Scale Simulations,” Proc. Visualization 2003, Seattle, WA, p.

3. URL http://www.cs.purdue.edu/homes/cmh/simulation/
4. M. Pauline Baker, Dave Bock, Randy Heiland. Visualization of Damaged Structures.

NCSA, University of Illinois. URL:
http://archive.ncsa.uiuc.edu/Vis/Publications/damage.html

5. T Sugano et al. Full-scale aircraft impact test for evaluation of impact force, Nuclear
Engineering and Design, Vol. 140, 373-385, 1993.

6. McGlaun, J. M., Thompson, S. L. and Elrick, M. G. 1990. “CTH: A three dimensional
shock wave physics code”, Int. J. Impact Engng., Vol. 10, 351 – 360.

7. J. O. Hallquist and D. J. Benson, Dyna3D User’s Manual (Nonlinear Dynamic Analysis
of Structures in Three Dimensions), Report #UCID-19592-revision-3, Lawrence
Livermore National Laboratory, Livermore, California, pp. 168, 1987.

8. LS-DYNA, URL: http://www.ls-dyna.com/
9. http://www.hpcmo.hpc.mil/Htdocs/UGC/UGC98/papers/3b_chal/
10. http://public.kitware.com/VTK/
11. S. Chen. QuicktimeVR- an image-base approach to virtual environment navigation. In

Proc. SIGG. '95, pages 29-38.
12. L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. In

Proc. SIGGRAPH '95, pages 39-46, 1995.
13. Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering

Architecture from Photographs. In Proc. of SIGGRAPH '96.

14. M. Levoy and P. Hanrahan. Light field rendering. In Proc. of SIGGRAPH '96, pages 31-
42, 1996.

15. S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In Proc. of
SIGGRAPH '96, pages 43-54, 1996.

16. G. Bell, The future of high-performance computers in science and engineering, CACM
32, 1091-1101, 1989.

17. Casper, Terry, Amazing 3D Graphics, Inc., P.O Box 1821, Payson, Arizona 85547, URL:
www.amazing3d.com, 2002.

18. SpaceImaging, URL: http://www.spaceimaging.com/gallery/9-11/default.htm
19. M. Segal, C. Korobkin, R. van Sidenfelt, J. Foran, and P. Haeberli, Fast Shadows and

Lighting Effects Using Texture Mapping. Computer Graphics, 26(2), 249-252 (1992).
20. Alias | WaveFront, URL: http://www.aliaswavefront.com
21. Discreet, URL: http://www.discreet.com/products/3dsmax/

22. Christoph Hoffmann, Voicu Popescu, Sami Kilic and Mete Sozen The Pentagon on
September 11th. IEEE Computing in Science and Engineering, January/February 2004.

23. Actuality Systems. http://www.actuality-systems.com/volumetric3d.php3
24. Siggraph 2002, Yoda and beyond: creating the digital cast of Star Wars Episode II,

special presentation 21 July 2002, San Antonio;
www.siggraph.org/2002/conference/special/index.html.

25. J. Thompson, Z. Warsi, C. Mastin; Numerical Grid Generation. North Holland, 1985.
26. P. Ang, C. Armstrong; Adaptive shape-sensitive meshing of the medial axis, Engr. With

Comp. 18, 253-264, 2002.\

