
1

The Vacuum Buffer
Voicu Popescu, Anselmo Lastra

University of North Carolina at Chapel Hill

ABSTRACT
Image-based rendering (IBR) techniques have the potential of
alleviating some of the bottlenecks of traditional geometry-
based rendering such as modeling difficulty and prohibitive cost
of photorealism. One of the most appealing IBR approaches uses
as primitives images enhanced with per-pixel depth and creates
new views by 3D warping (IBRW). Modeling a scene with
depth images lets one automatically capture intricate details hard
to model conventionally. Also rendering from such
representations has the potential of being efficient since it seems
that the number of samples that need to be warped is
independent of the scene complexity and is just a fraction above
the number of samples in the final image. However, selecting
the subset of reference-image samples that need to be warped to
generate the new view is a very difficult task.
We present a sample-selection method that uses the vacuum
buffer algorithm. Like other techniques, our method proceeds by
considering samples of reference images that were acquired
from locations close to the current camera position. Unlike other
techniques however, our method offers a conservative estimate
on whether samples of visible surfaces were potentially missed
and it also points to the scene locations where such surfaces
might be. The vacuum buffer is essentially a generalized z-
buffer and it measures what sub-volumes of the current view-
frustum have been determined.
Another important difference is that our method uses the current
view, which allows it to reduce the number of chosen samples
more than other methods that offer a sample-selection solution
to be used for several desired camera views. The tradeoff for
using the current view is having to solve the sample selection at
each frame. By exploiting the coherence in the reference images,
groups of nearby samples become the actual primitive, which
massively reduces the total cost. Since our method does not
build an intermediate scene representation, it avoids the
undesirable additional resampling and is also better suited for
use in conjunction with IBRW hardware.
KEYWORDS: image-based modeling, image-based rendering.

1 INTRODUCTION
The illusive goal of interactive photorealism and the enormous
difficulty of modeling complex scenes with polygons and
material-and-light descriptions made 3D-computer-graphics
researchers consider images as the rendering primitive. Images
capture automatically intricate geometric detail and complex
light / material interactions and there is hope that the quality of
the photographs can be conveyed to the rendered images.
Numerous image-based rendering (IBR) techniques were
developed.

Chen [Chen95] proposes panoramas that even though they offer
a correct 3D view only from one location, they are a simple way
of modeling and rendering complex natural scenes. Other
methods approximate the 3D transformations of scenes with
simpler 2D transforms ([Seitz96], [Torborg96]). The Lumigraph
and Lightfield ([Gortler96], [Levoy96]) approaches create a
database of rays that is queried at rendering time. Unfortunately
the databases grow to impractical sizes for complex scenes.

McMillan suggested enhancing the photographs with per pixel
depth [McMillan95]. The depth, the pixel coordinates and the
camera pose uniquely locate the color sample in 3D space so
samples can be reprojected (warped) at will on new images. The
IBR by warping method (IBRW) is essentially reusing the
original rays, under the lambertian-reflectance-model
assumption. The method is general and it has reasonable storage
/ memory bandwidth requirements.

The method also has the potential of being very efficient if only
one can determine a small set of reference-image samples that
suffice to reconstruct the current view. Ideally the number of
samples needed would not depend on the scene complexity but
only on the size of the output image. Finding such a set however
is a challenging problem. When an input (reference) image is
warped, surfaces that were not originally visible can become
disoccluded due to motion parallax and gaps form in the warped
image (disocclusion errors). The gaps need to be covered with
samples from other reference images. Also the sampling of
surfaces from reference to output (desired) image changes
differently for every surface.

This paper presents a new technique for selecting reference-
image samples based on the vacuum buffer algorithm. Before
we present the method in detail, we discuss previous sample-
selection techniques for IBRW.

1.1 Related work
One simple solution is to just warp all samples of reference
images that were taken from locations nearby the desired camera
position. Complicated scenes require dense sampling with
reference images and this approach generates too many samples.

Layered Depth Images (LDIs) bring substantial improvement
[Shade98]; they generalize the concept of a depth image by
allowing for more than one sample along a ray. Consequently an
LDI can store samples of surfaces that are hidden from the view
of the LDI. As the view changes, the originally hidden samples
become visible avoiding disocclusion errors. Since there are
only few samples in the deeper layers, the total number of
samples in an LDI is only marginally larger than the number of
samples in an equivalent depth image. The LDIs are constructed
as a preprocess by warping reference images to the view of the
LDI and discarding samples that warp at the same location and
at the same depth.

An important question is what reference images need to be
combined in an LDI in order to completely eliminate
disocclusion errors? One approach is to combine as many as
possible regularly spaced reference images, hoping that all
potentially visible surfaces are sampled in at least one of the
reference images ([Shade98], [Popescu98]). Such an approach
can evidently miss surfaces.

Another concern is that an LDI offers only one sampling rate for
a particular surface1, which has to be adapted to the desired-
image sampling rate at rendering time. Chang addresses this

1 Moreover it is a resampling of the surface, which always
introduces additional errors.

2

problem by using a tree of LDIs [Chang99] and choosing the
appropriate resolution level according to the desired-image
sampling requirement for each surface.

Also since LDIs are used to recreate several views, an LDI will
inherently contain samples that are hidden for a particular view,
and thus are unnecessarily warped.

Another important motivation in looking for a new sample-
selection technique is our interest in designing and building
hardware for accelerating IBRW ([Popescu00]). LDIs are
complicated structures that cannot be easily warped in hardware.

Our sample-selection technique is based on the vacuum buffer
algorithm that conservatively decides whether a set of reference-
image samples is sufficient for a particular desired view. If not,
the algorithm will indicate where in the scene surfaces might
have been missed. The next section presents the vacuum buffer
algorithm in detail and section 3 describes its use at choosing
reference-image samples to adequately reconstruct the desired
view.

2 THE VACUUM BUFFER ALGORITHM
The main idea behind the vacuum buffer algorithm is to
determine the subvolumes of the desired view frustum that could
contain visible surfaces that were missed by the current set of
reference images. We call these undetermined subvolumes
vacuum.

The vacuum buffer algorithm makes use of information
contained in depth images that is usually ignored. The depth to
the sample has been used to warp (reproject) the sample to the
output image but it also tells us the distance to the first surface
in the reference image. Consequently we know that there are no
other occluders between the center of projection of the reference
image and the surfaces sampled.

Figure 1 shows a reference image with center of projection R
used to reconstruct the desired image with center of projection
D. The scene is shown by the line A0A1…A5. The area (volume
in 3D) shown in light gray (blue) is determined as being free of
occluders by the reference image R. For simple referencing we
call it air, since in most scenes it corresponds indeed to air. The

desired image D sees part of the air seen by the reference image
R and that subvolume of the desired image is determined as
empty.

The A1A2 segment of the scene is a connected opaque surface
(occluder) and although other surfaces might be located behind
it as seen from D, such surfaces cannot affect the desired image
since they are hidden. The “shadow” that is cast in the desired-
image view-frustum by occluders define a don’t care
subvolume. For the purpose at hand, don’t care subvolumes are
equivalent to air volumes.

The vacuum subvolumes shown in dark gray (red) could contain
surfaces that are not sampled in the reference image R and are
visible in the desired image D. Vacuum is not a guarantee that
visible surfaces were missed. In figure 1 for example, the
vacuum zone close to D might resolve to air when an
appropriate reference image that encompasses it is used.
However vacuum zones might contain visible surfaces and one
has to resolve them.

Considering the case presented in figure 1, one could naively
consider that the problem of missing samples could be detected
by searching the frame buffer for uninstantiated pixels. Indeed
the framebuffer will contain a gap between the new positions of
A2 and A3 but missing samples can occur even when the
framebuffer is instantiated as seen in the simple case presented
in figure 2.

The next subsection presents the algorithm in more details.

2.1 Algorithm Overview

Given a set of reference images and a desired view, the
algorithm computes the amount and location of vacuum that
remains after all reference images are used. Initially the entire
view frustum of the desired image is undetermined thus filled
with vacuum. The air and the occluders of each reference image
are used to resolve vacuum, by intersecting the vacuum with the
air and with the shadows of the occluders. The volume
intersections are computed efficiently using a generalized z-

R D

A0 A1

A1'

A2

A2'

A3B1 B2

R1

Figure 2. The reference image R samples the surfaces
A0A1A1’A2’A2A3. It does not sample the hollow sphere. When used
to reconstruct the desired image D, the hollow sphere projects to
B1B2 and the corresponding pixels are already instantiated with a
fragment of A0A1. Choosing another reference image to fill the gap
between A1 and A2 might not suffice to reveal the missing object as
is the case of reference image R1 .

R
D

A1A0

A2

A3
A4 A5

air

vacuum

don't care

Figure 1. The reference image R is used to determine the volume of
the view frustum of the desired image D

3

buffer, which we call the vacuum buffer. The vacuum buffer is
similar to the z-buffer but it stores z intervals, or spans, along
each ray, whereas the classic z buffer stores a single value2. The
list of z spans at one vacuum buffer location corresponds to the
vacuum remaining in the view frustum along that particular ray.

The algorithm first processes the air of the current reference
image. As a preprocess, the reference image is recursively
subdivided in quadtree fashion and the closest z values are
precomputed for each subregion. This subdivides the reference
image frustum in subfrusta as seen in figure 3. The first frustum
is defined by the hither plane and the plane of closest z. The next
level frusta are defined by the parent-region’s closest z plane
and each subregion’s closest z plane.

The vacuum buffer algorithm processes the frusta recursively,
starting from the root of the quadtree. The frustum composed of
six quadrilateral faces is transformed, projected to the desired
image plane and each of the six faces are scan-converted. Since
the frustum is a convex polyhedron, a vacuum buffer location
will be either hit twice or not hit at all. When a vacuum buffer
location is hit by two samples of the faces of the air frustum, the
list of intervals is updated by eliminating the vacuum according
to the span of air between the two samples (see figure 4).

The next important question is when to stop the recursive
subdivision of the reference image frustum. The lower the level
of the recursion, the smaller the progress (amount of eliminated
vacuum) while the cost increases exponentially. On the other
hand, stopping the recursion early doesn’t use all the
information available in the reference image; some of the air
information is wasted.

There is another consideration crucial for deciding what the
smallest subregion (tile) of the reference image should be.
Remember that the second step of the algorithm is to ignore all
vacuum behind occluders. If the tiles are small enough they are,
in general, part of the same occluder and one can ignore
everything behind the desired image projection of the tile.
However computing the exact desired image projection of the

2 The method of intersecting volumes using rasterization buffers
was first used in constructive solid geometry ([vanHook86],
[Salesin90] and others).

tiles is expensive and it is equivalent to warping the tile. This
obviously defeats the purpose when the vacuum buffer
algorithm is used to choose the tiles needed for the current
frame. In order to compute the desired image projection of tiles
efficiently we replace the height field corresponding to the tile
with a single quad3. All vacuum behind the projection of the
quad is eliminated (see figure 5).

If the tiles are too large then the approximation is too coarse and
one can incorrectly eliminate vacuum where unsampled surfaces

3 For surface continuity one chooses the four corner samples that
are connected by two triangles; note that in general the four
samples are not coplanar but there is always a way of selecting
the two triangles such that the resulting polyhedron is convex.

R

D

R

D

Figure 4. Initially, each vacuum buffer location contains the span
(hither, yon) since nothing has been determined. The figure on the
left shows the vacuum buffer after the first level frustum of the
reference image R has been processed. Several locations contain two
spans since part of the vacuum has been determined. The right figure
shows the vacuum buffer after the second level frustum has been
processed.

R
D

A0

A1

A2

A3 A4 A5
A6

A7

Figure 5. The reference image is split in eight tiles. The leafs of the
quadtree are frusta defined by the closest-z plane of the previous
level and the quads (here AkAk+1 segments) that approximate the
height field of the tile. The leaf frusta, shown in gray (blue), are
processed similarly to the other frusta. The occluding faces of the
frusta are used to eliminate all vacuum behind them (the dotted rays
in D's frustum indicate the eliminated vacuum).

z0

z1

z21

z31

z32

Figure 3. 2D view of the quadtree subdivision of the reference image
frustum. Only three levels are shown. At each subdivision one of the
children will have the same closest z as its parent so three new frusta
are created with each subdivision (one in the 2D view shown).

4

could potentially hide. We found that 16x16 sample tiles are
adequate for a variety of test scenes. Moreover, 16x16 tiles are
rendering primitives favorable to efficient IBRW architectures
[Popescu00].

No matter how small the rectangular tiles are there will be some
tiles stretch from one object to the other. Such silhouette tiles
that are not patches of a single occluder cannot be assumed to be
a continuous surface and the vacuum behind them cannot be
eliminated.

We detect these tiles by detecting the depth discontinuities in the
reference image [Popescu00]. Tiles with depth discontinuities
are still useful for the first phase of the algorithm when the air of
reference images is used to resolve vacuum from the vacuum
buffer. At the second step, depth discontinuity tiles can be
ignored relying on tiles from other reference images to sample
the two occluders independently. However for small features
like the light poles in Color Figure 2, it is very likely that no
reference image will have tiles that map entirely on the light
pole. Thus one should segment the tile according to the surfaces
sampled (see Color Figure 2). The resulting tile segments will
each model one object now and they can be treated as regular
tiles. Note that tile segmentation does not depend on the desired
view so it can be done as a preprocess. The next subsection
summarizes the algorithm and presents implementation
guidelines.

2.2 Algorithm Implementation
1. For each reference image

1.1. Compute depth discontinuities
1.2. Segment tiles
1.3. Build quadtree of frusta

2. Initialize vacuum buffer
3. Initialize vacuum accounting tree (VAT)
4. Clear item buffer
5. For each reference image

5.1. ProcessFrustum(F0)
6. Done: VAT measures and locates the amount of

vacuum left in the view frustum

The recursive ProcessFrustum(Frustum *F) routine is
summarized next:

1. if (F == null) return
2. if F not leaf and F->closestZ is F->parent->closestZ

2.1. go to 6
3. Transform, clip, and project frustum
4. Scan-convert faces in item buffer

4.1. if item buffer location hit first time
4.1.1. UpdateZBuffer(z0)
4.1.2. UpdateItemBuffer(F)

4.2. if item buffer location hit second time
4.2.1. dv = UpdateVacuumBuffer(z0, z1)
4.2.2. UpdateVAT(dv)

4.3. if current face is occluder
4.3.1. dv =UpdateVacuumBuffer(z0, yon)
4.3.2. UpdateVAT(dv)

5. if F is leaf
5.1. ProcessFrustum(F->next)

6. else
6.1. for (i = 0; i < 4; i++)

6.1.1. ProcessFrustum(F->child[i])
The reader will recognize the algorithm described previously.
The resolution at which vacuum is determined, in other words,
the number of rays in the vacuum buffer, does not have to be the

resolution at which desired images will ultimately be produced.
A lower vacuum-buffer resolution can be used (we used
320x240 for VGA resolution output). However, the resolution
cannot be lowered indefinitely since the projection of the quads
that approximate the tile height-field need to have meaningful
sizes and shapes.

The VAT is a fast way of knowing how much vacuum is left in
the desired view frustum and where it is located. It is a quadtree
subdivision of a buffer of vacuum buffer resolution. A leaf node
stores for every vacuum buffer location the sum of the vacuum
spans in that linked list. In other words a leaf stores the amount
of vacuum along a certain ray of the vacuum buffer. A higher
level node stores the sum of the vacuum stored at its four
children. The root stores the amount of vacuum left in the entire
vacuum buffer. The VAT is initialized to full once per desired
view: vacuum from hither to yon along all rays in the vacuum
buffer. It is then updated as frusta are processed, using the
amount of vacuum determined by the current air-faces sample
pair or current occluder sample.

The item buffer is also at the vacuum buffer resolution and it
stores unique frusta identifiers. It is used to detect second hits of
samples from the faces of the same frustum. Since the frusta
identifiers are unique, the item buffer does not need to be
cleared from one frustum to the next. The z-buffer, also at the
vacuum buffer resolution, is used to record the z of the first hit.
When the second hit occurs, the value in the z-buffer and the
new z value are used to update the vacuum buffer. Updating the
vacuum buffer is equivalent to subtracting the new determined
interval from the vacuum intervals stored in the list at that
location. The amount of vacuum determined is returned and
used to update the VAT. The z-buffer does not need to be
cleared since it is always used in conjunction with the item
buffer.

The tiles that are segmented generate two or more frusta at the
leaf level of the reference image quadtree. In this case the the
additional frusta need also to be processed
(ProcessFrustum(Frustum *F), step 5.1. and 1.). The frusta
are processed recursively. If the current frustum has the same
closest z as its parent, it doesn’t need to be processed since no
progress can be made (ProcessFrustum(Frustum *F), step
2).

A case that needs to be treated carefully is the case of frusta
clipped by the hither plane. New faces need to be introduced to
make sure that the faces that are scan-converted form indeed a
convex polyhedron; scan-converting a frustum without the top
base incorrectly misses second hits since one can "see inside"
the frustum.

One might wonder what happens when only one hit occurs or
several hits occur, due to potential scan-conversion precision
limitations. If only one hit occurs, typical for the desired-view
silhouette of the frustum, there will be no air span generated to
update the vacuum. This is the correct degenerate-case behavior.
If more than two hits occur, typical for edges of the frustum that
project over another face, the vacuum buffer is updated using
tiny air spans. The results are correct and the sole penalty is in
efficiency. We avoid such cases by setting a threshold below
which air spans are discarded.

From figure 4 one can see that the typical vacuum buffer update
is done with adjacent air spans. To insure the adjacency in the
presence of numerical error, the vacuum-buffer update routine
starts by increasing the air span with epsilon at each end.

5

Adjacency is of course important since it keeps the vacuum-span
lists short, which translates into efficient update times.

The next section presents the application of the vacuum buffer
algorithm to reference-image sample choosing, called tile
choosing since tiles are the level at which samples are selected.

3 Tile choosing
In the introduction we discussed the requirements for a sample-
selection method. Here they are again, phrased more concisely.
An ideal set of samples satisfies the following conditions:

• completeness: all surfaces visible in the desired view
should be represented

• good quality: the resolution at which the surfaces are
sampled in the reference images should be as close as
possible to the resolution at which the surfaces are sampled
in the desired view; oversampling leads to aliasing artifacts
and high cost and undersampling leads to poor quality
(blurriness)

• non-redundancy: invariably some surfaces are sampled in
more than one reference image; assuming that the surfaces
are close to diffuse, the multiple samples are equivalent and
one can / should discard the redundant copies4.

• low depth complexity: for efficiency, the set should contain
very few or no samples that are hidden in the desired
image.

For the reasons discussed previously we split the reference
images in tiles and the set of samples that has to be determined
is actually a set of tiles. It is obvious that the vacuum buffer
measures the completeness of a set of tiles but more needs to be
said in order to explain how it can help with satisfying the other
three conditions.

We measure the quality of the samples in a tile by analyzing
how much it stretches or shrinks when projected in the desired
image. Small changes indicate similarity between the sampling
rates in the reference and output images thus the samples of such
a tile are preferred. From an implementation point of view, the
quality is efficiently derived from the size of the bounding box
of the projection of the quad corresponding to the tile. Having
defined a quality metric we need to explain next how to
determine whether two samples originating from different
reference images sample the same surface.

In order to do this we utilize an additional z-buffer and an
additional item buffer at the resolution of the vacuum buffer that
simply store at each location the z of the closest occluder and a
pointer to the tile it originates from. When an occluding face is
processed, the occluder z-buffer is consulted. If the current
occluder sample is within epsilon of the closest occluder z, it is
assumed to sample the same surface. If the quality of the current
tile is better, the occluder item buffer location is overwritten,
otherwise the current sample is simply discarded. This
eliminates redundant samples of lesser quality.

4 Even in the case of specular surfaces, ensuring that each
surface is sampled only by one reference image helps avoiding
inconsistencies that produce disturbing speckling and frame to
frame flickering. The shading is of course not correct but the
static highlights are by far more esthetically pleasing than
perfectly diffuse surfaces.

If the current occluder sample is clearly behind the closest
occluder sample, the current sample is again discarded. This
reduces the depth complexity.

The tiles that could not be segmented in order to avoid internal
depth discontinuities cannot be processed by the algorithm, and,
conservatively, have to be chosen.

The tile choosing algorithm starts with the reference images that
were acquired from a location closest to the desired camera
location. More and more distant reference images are processed
until the amount of vacuum remaining is below a certain
threshold. The chosen tiles are the tiles that have at least one
sample present in the occluder item buffer: they were not
completely occluded nor were they completely replaced by
better tiles. In order to avoid scanning through the occluder item
buffer, we maintain presence counters for each tile.

Color Figure 1 illustrates tile choosing using the vacuum buffer
algorithm.

3.1 Results

We tested the tile choosing technique described on a complex
model of a town (seen in the accompanying videotape). The
reference images used as input were rendered using the 3D
Studio Max modeling package. The reference images were
rendered from locations that form a regular 3D grid; the grid
subdivides the viewing volume in equal cells (boxes).

Our first version of the tile-choosing algorithm presented with
the WarpEngine architecture [Popescu00] did not use the
vacuum buffer. It just considered the 8 sampling locations
defining the cell of the current camera position and rendered the
tiles in the occluder item buffer and the occluder z-buffer. In
order to minimize the chances of missing a visible surface the
cell size was small (3mx3mx3m for eurotown). Also no tile
segmentation was attempted.

With the vacuum buffer we were able to double the sides of the
cell. This equates to 8 times fewer reference-images, which is
obviously of great importance when real world data is acquired.
Like in the previous case the tile choosing starts by considering
the images of the current cell. Tile choosing stops when the total
amount of vacuum decreases below a threshold. We used 1/z for
the vacuum buffer and the initial vacuum span was (100.0, 0).
Using 1/z is convenient since it gives more importance to
vacuum spans that are close to the camera. Objects that are close
have a large screen area and the artifact resulting from missing
them is more noticeable. In our particular case, the threshold
below which no more disocclusion errors were noticeable was
1500 (the average per location amount of vacuum is about 0.02).
Increasing the size of the cell means that occasionally one had to
consider images from neighboring cells since the vacuum would
not decrease below the set threshold only by using the reference
images of the current cell.

Tile segmentation was done allowing a maximum of 6 segments
per tile. If a tile could not be successfully segmented it was
conservatively chosen. The following table presents the results
of tile choosing for both the old and the current method with
output at VGA resolution.

old current

Visible tiles 15K 13K

Selected tiles & tile segments 7K 3.3K

6

Selected unsegmented tiles 2.5K 1.8K

Selected tiles that are segmented 0 1.1K

Selected tile segments 0 1.5K

Unsegmentable tiles 4.5K 0.4K

First, there are fewer visible tiles since the reference images are
further apart. The number of selected tiles (including segments)
is much lower mainly because the number of unsegmentable
tiles decreased substantially. The number of selected tiles that
did not have to be segmented (no depth discontinuities) also
decreased since the tile segments eliminated some of the full
tiles.

In a VGA resolution image there are 1.2K 16x16 tiles. So the
ratio between the number of reference-image samples selected
and the number of output image samples is 2.75. We counted
256 samples per tile segments since in the case of the
WarpEngine architecture the samples of a tile are processed in
SIMD fashion and one cannot save if some samples are "off".
Other factors that make this figure deviate from the ideal value
of 1.0 are:

• The closest reference-image sampling rate for a surface is
not exactly the desired image sampling rate

• There still are a few tiles that are not segmented, which
cause undetected redundancy.

The next section analyzes the complexity of the algorithm and
investigates possible hardware acceleration.

4 HARDWARE ACCELERATION FOR
VACUUM BUFFER ALGORITHM

As stated earlier, the resolution of the buffers used in the
algorithm can be lower than the resolution of the final image.
Thus clearing the buffers (once per frame) is not a substantial
burden. The bulk of the work is done at step 4 of the
ProcessFrustum routine.

If at most eight sampling locations are considered at each frame,
and if cube depth-panoramas are used centered at the sampling
location, there could be as many as 6 x 8 = 48 reference images
that need to be considered.

Of course not all reference images have samples that project in
the view frustum. At step 3, if the current sub-region of the
reference image is completely outside the view frustum it is
culled and the recursion is stopped early. In order to determine
whether the sub-region is needed, one transforms, clips and
projects a second bottom face of the frustum, defined by the
farthest z. If the larger frustum defined by the parent's closest z
plane and the farthest z is outside of the view frustum, the
subregion is not useful for the current view and can be safely
ignored (see figure 6). In our test scenes, using 1k x 1k reference
images5 on average 13K 16x16 tiles passed the view-frustum-
culling test. This is equivalent to 3-4 full reference images.

The number of frusta that have to be processed for each full
reference image is:

,5120)))43(4(...43(43 16322565121024 =+++++= FFFFFN

5 The reference images had 90 degrees field of view and the
output view frustum was 65 degrees horizontally.

where Fw is a frustum that corresponds to a w x w subregion.
Analytically, the number of frusta can be computed with the
formula

512044 1 =+= −kkN

where k is defined as

616log1024logloglog 2222 =−=−= tileimage wwk

Each frustum has 6 quadrilateral faces, thus, the number of
triangles that need to be rendered per second, assuming 30Hz
update rate is6:

sMtrisT /75120*2*6*4*30 ≈=

Our software implementation takes about 20 seconds per frame,
which is orders of magnitude too slow for interactive rendering.
The average number of triangles rendered per frame for the
eurotown scene was 263Ktris, which represents 7.8Mtris/s,
confirming the estimate above.

The obvious way to accelerate the vacuum buffer is to use
polygon-rendering hardware. Besides the fact that 7Mtris/s is a
sizeable task even for the most recent polygon-rendering
hardware, there is the problem of updating the vacuum buffer.

Graphics hardware doesn’t offer the possibility of storing
several z values at each location. Having the CPU read back the
z-buffer and item buffer after each face of a frusta is rendered is
not a practical solution. First, the operation is very costly on
most graphics architectures. Second, the CPU would have to
traverse the bounding box of the projection of the face in order
to use the z’s of the current face, which most likely offsets the
advantage of hardware rendering.

6 The tiles belong to more than four reference images so there
are more higher level frusta than in the ideal case of full images.

R D1

D2

D3

z
near

z
far

parentz
near

Figure 6. Only the current subregion of the reference image R is
shown. Out of the possible desired view frusta D1, D2, and D3, the
subregion can be ignored only for D3 . The air information of the
subregion is pertinent to D1, which wouldn’t have been detected if
we used the frustum defined by the znear and zfar planes. If we used
the parent znear- znear frustum, as required by processing the
subregion’s air information, the subregion would have incorrectly
been ignored for D2 . The only conservative approach is to use the
parent znear- zfar frustum.

7

We believe that the most promising solution is to design
hardware for accelerating the vacuum buffer. The architecture
would be similar to current triangle rendering architectures.
However, the rendering task consists only of flat shaded
triangles, so the architecture will be simpler in many ways.

The only additional complexity is a z-buffer that can store
several samples at each location. Because of the incremental
updates to the vacuum buffer, the number of z’s that need to be
stored is small, and it seems practical to provide storage for a
fixed number of z values. The next table shows for our scene,
how many times per frame, on average, a list grew longer than a
certain value. For example on average, at each frame, there were
118 lists that grew from length 7 to length 8.

Length 4 5 6 7 8 9 10 11

Exceeded 2785 925 399 118 28 5 2 0

If the limit is exceeded, exceptions can be raised that discard the
shortest interval or eliminate the smallest gap by merging nearly
adjacent intervals (whichever is smaller). From our simulations,
if the maximum hardware list length is set to 8, the amount of
vacuum incorrectly eliminated to serve the exception was
negligible7 and the same set of tiles was chosen as in the case of
unlimited list lengths. Since the resolution of the vacuum buffer
is low, it is feasible to store a maximum of 8 spans at each
location.

5 CONCLUSIONS
We presented a method of selecting reference samples to be
warped to create the desired view. The method uses the vacuum
buffer algorithm to conservatively estimate the subvolumes of
the view frustum that have not been determined by the reference
images considered so far. A software only implementation is too
slow to be practical. The bulk of the work consists in rendering
polygons and the number of polygons that need to be rendered
per second is within the capabilities of today's hardware. The
modification required is to extend the z-buffer to contain several
spans of z. The number of spans at a vacuum buffer location is
small. This enables a simple hardware implementation that
supports vacuum-span lists of fixed maximum length.

6 FUTURE WORK
The current version considers the reference images of the
current cell in the order defined by the increasing distance to the
camera position. The residual amount of vacuum should
decrease more rapidly if:

• First process the reference image that sees the desired view
location and has the view direction the closest to the
desired image view; this eliminates all the vacuum close to
the desired view camera

• Use the VAT to localize the remaining vacuum and then
select the reference images that see that vacuum

This reference image ordering might allow us to space the
reference images even further apart. This brings us to what we
believe is another important application of the vacuum buffer
algorithm.

7 The average was below .1 where the original vacuum span
(hither, yon) is (100.0, 0)

6.1 Determining sampling locations

An obvious goal in computing the locations where the reference
images should be placed is to acquire as few images as possible
while minimizing the number of disocclusion errors. This is the
well known next best view problem ([Connoly85], [Maver93]
and many others).

We speculate on an iterative process based on the vacuum buffer
algorithm that automatically produces a set of candidate
sampling locations.

First, the scene is subdivided according to a regular 3D grid. A
cell of this grid would be a cube of side 0.5m for a room or 20m
for a town. Complete panoramas (6 faces of a cube) should be
acquired at each grid node. Then, for each cell, the vacuum
buffer algorithm is executed at locations that form a more
refined grid, with nodes that are let’s say .1 m apart. The
reference images used are the reference images acquired at the
corners of the current cell and the cells adjacent to the current
cell. The node of the refined grid at which the most vacuum
remained undetermined is a new sampling location. The residual
vacuum at the refined grid locations is computed again. Again
the location with the most undetermined vacuum becomes a new
sampling location. The process stops when the budget of
sampling locations / cell is reached or when the maximum
residual vacuum value dips below a tolerable threshold.

The greedy approach described does not provide the optimal
solution but it is fully automatic and the solution might be good
enough.

7 ACKNOWLEDGEMENTS
We would like to thank John Eyles, Nick England and the UNC
IBR group for useful comments and suggestions. This work was
funded by DARPA under order #E278 and NSF under grant
#MIP961.

REFERENCES
[Chang99] Shade J., Gortler S., He L., and Szeliski R., “LDI

Tree: A Hierarchical Representation for Image-Based
Rendering”, Proc. SIGGRAPH ’99, 291-298 (1999).

 [Chen95] Chen S., “Quicktime VR - An Image-Based
Approach to Virtual Environment Navigation”, Proc.
SIGGRAPH ’95, 29-38 (1995).

[Connolly85] Connolly, “The detemination of next best views”,
IEEE International Conference on Robotics and
Automation, pages 432-435, (1985).

 [Gortler96] Gortler S., Grzeszczuk R., Szeliski R., and Cohen
M., “The Lumigraph”, Proc. SIGGRAPH ’96, 43-54
(1996).

 [Levoy96] Levoy M. and Hanrahan P., “Light Field
Rendering”, Proc. SIGGRAPH ’96, 31-42 (1996).

[Maver93] Maver and Bajcsy, “Occlusions as a guide for
planning the next view”, IEEE Transactions on Pattern
Analysis and Mmachine Intelligence, 15(5):417-433
(1993).

[McMillan95] McMillan L. and Bishop G., “Plenoptic
Modeling: An Image-Based Rendering System”, Proc.
SIGGRAPH ’95, 39-46 (1995).

[Popescu00] Popescu V., Eyles J., Lastra A., Steinhurst J.,
England N., and Nyland L., “The WarpEngine: An

8

Architecture for the Post-Polygonal Age”, to appear Proc.
SIGGRAPH '00, (2000). Note to the reviewers: this paper
can be found online at
http://www.cs.unc.edu/~popescu/warpengine.pdf

[Popescu98] Popescu V., Lastra A., Aliaga D., and Oliveira M.,
“Efficient Warping for Architectural Walkthroughs using
Layered Depth Images”, Proc. VIS'98, 211-216 (1998).

 [Seitz96] Seitz S. and Dyer C., “View Morphing: Synthesizing
3D Metamorphoses Using Image Transforms”, Proc.
SIGGRAPH ’96, 21-30 (1996).

[Shade98] Shade J., Gortler S., He L., and Szeliski R., “Layered
Depth Images”, Proc. SIGGRAPH ’98, 231-242 (1998).

[Torborg96] Torborg J. and Kajiya J., “Talisman: Commodity
Real-time 3D Graphics for the PC”, Proc. SIGGRAPH ’96,
353-364 (1996).

[vanHook] van Hook T., “Real-Time Shaded NC Milling
Display”, Proc. SIGGRAPH ’86, 15-20 (1986).

[Salesin90] Salesin D., “Rendering CSG Models with a ZZ-
Buffer”, Proc. SIGGRAPH ’90, 67-76 (1990).

