
Proceedings of SIGGRAPH 2000 1

The WarpEngine: An Architecture for the Post-Polygonal Age
Voicu Popescu, John Eyles, Anselmo Lastra, Joshua Steinhurst, Nick England, Lars Nyland

University of North Carolina at Chapel Hill

ABSTRACT
We present the WarpEngine, an architecture designed for real-
time image-based rendering of natural scenes from arbitrary
viewpoints. The modeling primitives are real-world images with
per-pixel depth. Currently they are acquired and stored off-line; in
the near future real-time depth-image acquisition will be possible,
and WarpEngine is designed to render in immediate mode from
such data sources.
The depth-image resolution is locally adapted by interpolation to
match the resolution of the output image. 3D warping can occur
either before or after the interpolation; the resulting
warped/interpolated samples are forward-mapped into a warp
buffer, with the precise locations recorded using an offset.
Warping processors are integrated on-chip with the warp buffer,
allowing efficient, scalable implementation of very high
performance systems. Each chip will be able to process 100
million samples per second and provide 4.8GigaBytes per second
of bandwidth to the warp buffer.
The WarpEngine is significantly less complex than our previous
efforts, incorporating only a single ASIC design. Small
configurations can be packaged as a PC add-in card, while larger
deskside configurations will provide HDTV resolutions at 50 Hz,
enabling radical new applications such as 3D television.
WarpEngine will be highly programmable, facilitating use as a
test-bed for experimental IBR algorithms.

KEYWORDS: Graphics hardware, image-based rendering.

1 INTRODUCTION
Research efforts in interactive 3D computer-graphics have been
targeted at providing high-quality, high-resolution images. This
goal has proven elusive: renderings that can be mistaken for
photographs can usually be obtained only by sacrificing
interactivity.
This problem, and the extreme difficulty of modeling natural
environments, motivated research on image-based rendering.
Although the image-based primitives are novel, conventional
polygon-based graphics hardware has been used for the rendering.
Few attempts have been made to take advantage of the new
image-based primitives with novel hardware.

In this paper, we present the WarpEngine architecture for
rendering directly from an image-based representation,
specifically from images with per-pixel depth [McMillan95]. The
prototype that we plan to build promises high performance at
HDTV resolution, as well as extensive programmability to
support research in algorithms for image-based rendering.
We first review related work in image-based rendering (and
graphics hardware that uses image-based primitives). Then we
present the algorithm on which the WarpEngine is based,
followed by a detailed architectural description of the machine.
We close with proposed future work and conclusions.

1.1 Related Work
The spectrum of image-based approaches ranges from those that
exclusively use images to those that re-project acquired imagery
onto geometric models.
[Chen95] employed 360° panoramas, stitched together from
overlapping photographs. A panorama offers a realistic view of
the scene, but the user has a correct 3D perspective only from a
single location. However, using inexpensive hardware, the user
can view, at interactive rates, outdoor or indoor scenes that are
hard to model as a collection of polygons.
Image morphing approaches [Wolberg90, Beier92, Chen93,
Seitz96] allow some range of motion but the transformation of the
reference views to the desired views is approximated by
interpolation. To maintain a high update rate, the Talisman
architecture [Torborg96] reused portions of rendered images by
re-projecting to a new, nearby, view using a 2D warp.
The Lumigraph [Gortler96] and Light Field [Levoy96] densely
sample light rays to create a ray database. Unfortunately, the
database of rays grows quite large for bigger viewing volumes.
[Regan99] describes low-latency rendering hardware for a one-
axis light field.
At the other end of the spectrum are methods based largely on
geometry. Texture mapping is the most common way to
incorporate images in the scene description. The Façade system
[Debevec96] represents the scene with an approximate geometric
model (semi-automatically created) texture-mapped, in a view-
dependent fashion, from photographs.
McMillan and Bishop's [McMillan95] method is in the middle of
the spectrum, representing the scene as a collection of images that
in addition to color also store depth at each pixel. The desired
view is generated by a 3D-warp of the depth images.
We have chosen image-based rendering by 3D warping (IBRW)
as the basis for the WarpEngine. There are two reasons for this:
(1) the storage and bandwidth requirements are manageable, and
(2) laser rangefinders [K2T, Beraldin92, Cyra] and other range-
acquisition equipment [Kanade99, Minolta] are rapidly improving
and appearing on the commercial market. Some instruments can
even acquire range in real time. Such a "depth camera" coupled
with the WarpEngine will enable extraordinary applications: a
spectator of a live event will not be confined to the view of the
TV camera; he or she can choose any seat in the arena, and even
venture onto the stage or court.

{popescu, jge, lastra, jsteinhu, nick, nyland}@cs.unc.edu
Sitterson Hall, CB#3175, CS UNC, Chapel Hill, 27599, NC

Proceedings of SIGGRAPH 2000 2

1.2 3D Image Warping
McMillan and Bishop show in [McMillan95] how to compute the
desired image coordinates of a depth image sample using the 3D
warping equations

)1(

),(
),(
),(
),(

113413313231

112412312221
2

113413313231

111411311211
2

vuwvwuww
vuwvwuww

v

vuwvwuww
vuwvwuwwu

δ
δ
δ
δ

⋅+⋅+⋅+
⋅+⋅+⋅+

=

⋅+⋅+⋅+
⋅+⋅+⋅+=

where u2, v2 are the desired image coordinates, u1, v1 the original
(reference) image coordinates, the w’s are transformation
constants obtained from the reference and desired image camera
parameters, and δ(u1, v1) is the generalized disparity at sample (u1,
v1), which is defined as the ratio between the distance to the
reference image plane and zeye(u1, v 1).
The warping equation is equivalent to the vertex transformation
commonly used in computer graphics, but allows one to take
advantage of the regular structure of images to perform
incremental transformation. The warped coordinates of a sample
can be computed with six adds, five multiplies1, and one divide.
Reconstructing by simply setting a desired image pixel to the
color of the sample that warps within its boundary results in holes
thus not acceptable. Also, more than one visible sample can warp
to the same pixel, and simply discarding all but one sample
produces aliasing. Reconstruction is a challenging task when
warping images with depth; we analyze it in more detail next.

1.3 Reconstruction
The 3D warping equation is a forward mapping that takes samples
from the reference domain and maps them to the destination
domain. An inverse mapping (as in conventional texturing) would
be ideal. Unfortunately there is no analytically computable inverse
for 3D warping (there is a rather costly search procedure
described in [McMillan97]).
Reconstruction for IBRW is mainly done in one of two ways
[Mark97, McMillan97]: with splats or with a polygonal mesh.
A splat [Westover90] is a representation of the projected shape of
the reference sample. The original use for splats was to render
transparency for volume rendering; thus the splats were blended
in front-to-back order. For IBRW, we do not want to blend
samples that are at different depths. Rather we want to overwrite
samples that should be hidden and only blend samples that
represent the same surface. This is very difficult to do because in
IBRW we have no information about surfaces. To prevent
samples of hidden surfaces from showing through, the sizes of the
splats are overestimated [Shade98], thus overlapping splats may
incorrectly erase visible samples, resulting in aliasing.
Good reconstruction can be obtained by connecting the samples of
the reference image into a polygonal mesh. Not all samples should
be connected, of course; in Section 2.1 we present a simple
method for detecting depth discontinuities. With meshing,
continuity of the surfaces is maintained where desired, and
hardware acceleration increases performance. On WarpEngine,
we connect samples, but avoid the overhead of general polygonal
rendering.

1 If w34 is non-zero (non-zero translation from reference position)
one could save a multiply by dividing all w 's by w34.

1.4 Why WarpEngine?
One might ask, why build the WarpEngine if existing graphics
hardware can be used for IBRW? One reason is performance;
another is efficiency.
Assume that 1280 by 1024 is the targeted resolution and that on
average we warp twice the reference samples as the desired
resolution. Two triangles need to be rendered for every warped
sample. The average number of triangles per second to sustain a
frame rate of 30 Hz is
 sMtrisN /157302210241280 ≈××××≈
Neither high-end systems like PixelFlow [Molnar92] or
InfiniteReality [Montrym97], nor the rapidly improving PC 3D
graphics accelerators, can produce the necessary performance.
Moreover, we speculate that it will take years for them to reach
this sustained level of performance. Even then, it will take more
hardware than on a machine optimized for IBRW. We believe that
WarpEngine is more efficient because it takes advantage of the
regularity of image-based primitives and of the small screen-size
of the warped samples.
More needs to be said to explain the number of reference-image
samples required at each frame. This number depends on the
scene and on how it is modeled. One must process (on average)
more than one reference image sample per desired image location
because:

• there are surfaces that are redundantly captured in more than
one reference image;

• there are surfaces captured in the reference images that are
not visible in the desired image (depth complexity is greater
than one);

• there are surfaces that were better sampled in the reference
image than in the desired image, which leads to more than
one visible sample per desired image pixel.

Two input samples per output pixel is a reasonable lower bound;
in practice we have found it difficult to use fewer. With real-time
depth-image updates (immediate mode), the number of samples
will be determined by the number, resolution and update rates of
the cameras.
The most viable alternative to IBRW is to simplify triangle
meshes in order to reduce the polygon count, and thus meet our
performance goals with conventional graphics hardware (in fact,
other members of our team are investigating this approach).
However, simplified meshes are less well suited to real-time depth
updates because of the pre-processing required.

2 RENDERING ALGORITHM
We wish to treat the depth image as connected (as in the mesh
approach) in order to prevent samples of hidden surfaces from
showing through. The triangles resulting from the mesh method
are very small in screen space; thus scan conversion time is
dominated by setup. Instead of conventional scan conversion, we
propose simply bilinearly interpolating between connected
samples in reference image domain, reducing per-sample setup.

Proceedings of SIGGRAPH 2000 3

The algorithm is:

For all adjacent, connected samples
Bilinearly interpolate color and depth to obtain subsamples
Warp resulting subsamples to desired image space
Z-composite warped subsamples into the warp buffer

In order to reduce aliasing, we warp into a sub-pixel resolution
warp buffer (usually 2x2), then filter to produce the final image in
the frame buffer. The sub-samples are z-buffered.
The interpolation factor (number of subsamples created in each of
x and y directions) is critical in order to ensure that (1) back
surfaces do not show through, and (2) we do not generate too
many subsamples. We describe the computation of the
interpolation factor in more detail in Section 3.3.
Recall that the reference-image depth information is stored as
generalized disparity that is proportional to 1/zeye, which is linear
in image space. Consequently, if the four neighboring samples are
planar, the sub-samples resulting from the interpolation are
correctly located on the same plane. If the samples are not
coplanar, the sub-samples define a general bilinear patch.
Adjacent patches exhibit C0 continuity.
An alternative rendering algorithm, to save the cost of warping the
sub-samples (dominated by the inverse computation, see Equation
1) is to first warp the reference-image samples and then
interpolate. This still avoids the triangle setup costs. Just as when
interpolation is done in reference-image space, if the original
samples lie on a plane, the sub-samples are also on the plane.

However the similarity between the two methods ends when the
four original samples are not coplanar and the resulting screen-
space quad might be concave (resulting in a "bow tie", see Figure
1). Our simulations show that this is a very infrequent case, which
usually occurs between silhouette samples that were marked as
disconnected anyway.

2.1 Determining Connectivity
We devised a robust and inexpensive way of detecting which
samples should not be connected by interpolation, based on the
surface curvature (see also [McAllister99]). At every reference
image sample we compute the second derivative2 of the
generalized disparity along four directions: E-W, SE-NW, N-S,
and SW-NE. If the surface sampled is planar the second derivative
is exactly zero. If it exceeds a threshold (which is unique per
scene) the samples are marked as disconnected (see Figure 2).

2.2 Reconstruction Using Offsets
We want to render high-quality, antialiased images. Conventional
jittered supersampling is not an option because of the forward-
mapping nature of the warping process; warping produces sub-
samples that do not correspond exactly with the centers of warp-
buffer locations. Even with a 2x2 warp buffer, aliasing is greater
than we wish.
Our proposed alternative is to compute the (x, y) location of the
warp to a precision higher than that of the warp buffer, and store
that more precise location as an offset from the corner of the warp

2 difference of neighboring differences

Figure 1. Once warped, the
four neighboring reference-image
samples u0v0, u1v0, u1v1, and u0v1

may form a concave quad.
Interpolating in desired-image space
produces the sub-samples shown
with little squares, which is
different from the projection of the
surface on the image plane.

When interpolating in reference-
image space and then warping, the
surface projection is approximated
better, but at higher computational
cost.

u1v0

u0v0

u1v1

u0v1

Figure 3. In the warp buffer fragment shown, the green lines define
the warp buffer locations. The blue lines delimit the output pixels,
which span four warp buffer locations each. The fine black lines
show the virtual subdivision of the warp buffer locations
corresponding to the two 2-bit offset values. The locations at which
these samples warped are shown by black squares and are recorded
to a precision of 1/8 th of a pixel. There is exactly one sample per
warp buffer location.

The output pixel is reconstructed using a two-pixel wide kernel, with
a half pixel (one warp buffer location) overlap. The kernel is shown
in gray. The 16 color samples are weighted according to their
position inside the warp buffer location, as modified by the offsets.
The reconstruction is equivalent to reconstructing from an 8x8
supersampled buffer that is sparsely populated, without having to
explicitly allocate the dense buffer or to search for the locations that
are populated.

Figure 2. The vertical and horizontal depth discontinuities are
marked in green and red, respectively. The detection algorithm
works well in spite of the great range of distances in the image.

Proceedings of SIGGRAPH 2000 4

buffer location. The offsets are used during reconstruction to
obtain better filtering and a higher-quality final image. We have
found that a 2-bit offset in each of x and y (total of 4 bits per warp
buffer location) provides good results. This, combined with a 2x2
warp buffer, locates the warped subsamples to within one-eight of
a pixel (see Figure 3). The results are illustrated in Figure 4.
Offsets are, of course, not equivalent to higher warp buffer
resolution. Although its location is recorded more precisely, only
one sample is stored at each warp buffer location. In the expected
case, when the sampling resolution of the desired image is within
a factor of two of that of the reference images, the 2x2 warp
buffer with 4x4 offsets provides a good reconstruction. Outside
that interval, other reference images should be used. One could
increase the resolution of the warp buffer to accommodate even
bigger sampling mismatches, but this comes at a substantial
additional cost, not only in memory, but also in warping since
more reference image samples must be used.
The offset reconstruction also has good temporal antialiasing
properties. Antialiasing by jittered supersampling or coverage-
mask-based methods suffer from the problem of collinear

sampling locations within a pixel. No matter how the sampling
locations are chosen, at least two of them are collinear in jittered
supersampling and k are collinear when kxk subpixel masks are
computed. If from one frame to the next all collinear sampling
locations move from one side to the other of a slowly moving
edge, the change in color of the output pixel is too abrupt. Using
2x2 pixel kernels with 2x2 warpbuffer and 4x4 offsets guarantees
16 intermediate levels (when an edge moves slowly enough). We
refer the reader to the conference-proceedings videotape and
DVD-ROM, which illustrate the dynamic antialiasing properties
of our algorithm. Also the conference-proceedings CD-ROM
includes the antialiasing examples. Please look at the images on
the CD to see the full effects of the antialiasing. Figures 5, 6, and
10 (at the end of the paper) show images of various test scenes
rendered with the WarpEngine simulator.

3 WarpEngine ARCHITECTURE

3.1 Overview
The hardware architecture must provide sufficient warping power
for all required reference-image samples and sufficient bandwidth
to the warp buffer.
We decided to partition the reference images into 16x16-sample
tiles (with a 15x15 payload) and to use these as the basic
rendering primitive. Tiles provide several important advantages:
• we can selectively use portions of reference images as

needed for adequate sampling and coverage of visible
surfaces (Section 3.3);

• one can easily estimate the screen area a tile transforms to,
enabling efficient high-level parallelism (Section 3.1.3);

• tiles are small enough that the same interpolation factor can
be used for all samples, enabling SIMD low-level parallelism
(Section 3.1.1).

Offset Viewpoint Rotated Viewpoint Translated Zoom

1x

4x4

8x

1x

1x1
(none)

8x

Figure 4. Antialiasing using offsets. These images were
rendered from a depth image of a checkerboard. The left column
is just rotated, the right also translated. We show both original
and 8X zoomed versions. All images used a 2x2 warp buffer.
The upper set was rendered with two bits for each of x and y
offset. The lower set used no offsets and exhibits more aliasing.

Figure 6. The upper image was rendered on the WarpEngine
simulator. For comparison, the lower image was rendered
directly from the geometric model.

Figure 5. Eurotown images were made from reference depth
images placed on a regular grid. Only the reference images of the
current grid-cell were used to render each frame.

Proceedings of SIGGRAPH 2000 5

3.1.1 Warping and Interpolation
All the samples of a tile can be warped and interpolated with the
same set of instructions so a SIMD implementation is, we believe,
the most efficient. We opted for an array of simple byte-wide
processors, similar to the one used in PixelFlow [Molnar92]. For a
computation that can be efficiently mapped, a SIMD array
provides efficient use of silicon, since control is factored out over
all the processors. A large array of simple processors is more
easily programmable than a complex pipelined processor. The
programmability is necessary for use of the WarpEngine as a
research tool.
A SIMD array equal in size to the reference-image-tile maps very
efficiently, since the warping calculation is the same for every
pixel, with minimal branching required. Nearest neighbor
Processing Element (PE) connectivity provides each PE with
access to the three other samples needed for interpolation.

3.1.2 Warp Buffer
The biggest design concern was providing sufficient warp buffer
bandwidth. We assume the maximum resolution to be HDTV
(approximately 2K x 1K pixels) and 60 Hz update rate; we
assume again that one needs to use at least two reference-image
samples per output pixel. This implies that at least 240 million
reference samples per second must be warped. In our simulations,
a 2x2 warp buffer resolution required in some cases an average
interpolation factor of 4x4. Thus, for each warped reference-
image pixel, 16 warped samples are generated, and the warp
buffer must process approximately 4 billion warped samples per
second. Each sample is about 12 bytes in size (4 bytes RGB; 4
bytes Z-buffer; 4 bytes X and Y values, including offsets).
Assuming a depth complexity of two, and that 50% of the hidden
samples initially pass the Z-comparison test, an average of 10 byte
accesses is required per warped sample. Thus total warp buffer
bandwidth is about 40 GigaBytes/sec.
To achieve this enormous warp-buffer bandwidth, a very large
number of commodity DRAMs is required (well over 100);
similarly, the warping/interpolation processors would require
hundreds of pins dedicated to interfacing with the warp-buffer. By
placing the warp buffer on-chip, that is, on the same ASIC as the
processors that generate the warped samples, very wide and fast
memory interfaces can be used.

3.1.3 Region-Based Rendering
With current technology, a single ASIC can provide neither
sufficient processing power nor sufficient warp buffer memory3.
Thus multiple ASICs are required, and some form of high-level
parallelism must be employed. Partitioning the warp buffer into
contiguous screen regions with each region assigned to an ASIC
(screen-space subdivision) is appealing, because the typical
16x16-sample tile intersects only one screen region and therefore
needs to be processed by a single ASIC (tiles that overlap region
boundaries are assigned to multiple regions). By contrast, with
interleaving, each tile would need to be processed by many or all
of the ASICs.

3 As silicon technology improves, a full-sized warp buffer becomes
feasible (on an embedded-DRAM process).

For partitioning by screen-space subdivision, primitives must be
sorted by screen region4. Using tiles as the rendering primitive
means that sorting is performed on 256 samples at a time; the
number of tiles per frame ranges from a few thousand to a
maximum of a few tens of thousands (depending on screen
resolution) so the computational and memory burden of sorting is
considerably less than for the general polygon-rendering case. By
assigning multiple screen regions to each ASIC, a smaller number
of ASICs is sufficient; however this requires sorting into buckets
corresponding to screen regions [Ellsworth97], because an ASIC
must process all primitives in a given region before moving to its
next assigned region.
The sort first, sort middle, sort last taxonomy developed to
describe object-parallel polygon-rendering architectures
[Molnar94], can also be applied to IBR architectures. Sorting by
reference-image tiles is sort first from the point of view of
reference-image samples, since after a tile has been assigned to a
screen region, it is known a priori that its sub-samples will warp
to the desired screen region (those that do not can be discarded,
since the tile will be assigned to all pertinent regions). In polygon
rendering, sort first [Mueller95] is prone to load-balancing
difficulties; this is not be a problem for IBR, since reference-
image tiles and interpolation factors are chosen to sample the
destination image uniformly. We believe that sort first is an
attractive approach for the WarpEngine, because it makes scaling
of the system relatively painless. Performance is increased by
adding additional ASICs, and assigning fewer screen regions to
each ASIC. Screen-space subdivision requires a central processor,
perhaps the host, which can perform the tile sorting, or a way of
distributing these tasks across the multiple ASICs.

3.1.4 Processing Warped Sub-Samples
It is straightforward to build a region-sized on-chip warp buffer
with very high performance. Since each warped sample maps to
only one location in the warp buffer, the warp buffer can be
partitioned, with a sample processor assigned to each partition.
Very high numbers of samples can be processed by instantiating
more sample processors, processing simultaneous streams of
warped samples. Load-balancing can be achieved by sub-pixel
interleaving the partitions and providing input FIFOs for the
sample processors. The region size is determined by the silicon
budget for the warp buffer, independently of the number of
partitions.
The sample processors are very simple: they combine a new
warped sample with the previous contents of the warp buffer
location, using a z-compare operation. Since the sample
processors’ memory interface does not cross chip boundaries, it
can be very wide and very fast; thus the sample processors are not
bandwidth limited.

3.2 WarpEngine Implementation
Our architecture, the WarpEngine, consists of one or more
identical Nodes (typically 4 to 32); each Node consists of an ASIC
and a Tile Cache. The ASIC contains:
• a 16x16 SIMD Warp Array , for warping and interpolating

reference-image samples;

4 For tiles, this is efficiently done by warping the 4 corners, using both the
tile’s minimum and maximum disparity values; the resulting 8 points
define the tile’s screen-space bounding box.

Proceedings of SIGGRAPH 2000 6

• a Region Accumulator, which includes a double-buffered
warp buffer for a 128x128 screen region and 4 sample
processors for resolving visibility;

• a Reconstruction Buffer, for computing final pixel values;

• a Network Interface, which connects the Nodes together into
a high-bandwidth ring, and provides a connection to the host,
a connection to each of the Warp Arrays, and a connection to
the Tile Cache.

The Tile Cache is a commodity DRAM device; it is used for
caching both reference-image tiles and instructions. A double-
buffered Frame Buffer receives the final pixel values from the
Nodes for display.

The basic operation of the system is as follows (see Figure 7):
• The host determines which reference-image tiles are to be

used to compute the destination image, and computes the
screen-space bounding box for each of these tiles. For each
screen region, the host maintains a bin; each bin contains
pointers to the tiles whose bounding boxes intersect that
screen region.

• For each screen region, the host assigns a Node to be
responsible for that screen region. The host sends each tile in
the region’s bin to the Node. (Tiles are cached in each node’s
Tile Cache. If a tile is resident in one of the caches, the host
instructs the Network Interface to forward it to the
appropriate Node. If not, the host must send the tile data to
the Node).

• Each tile received by each Node is loaded into the Warp
Array, which performs the warping and interpolation
calculations for the tile, and forwards the warped samples to
the Region Accumulator.

• The Region Accumulator collects the warped samples into its
sub-pixel resolution warp buffer.

• After all tiles in the region’s bin have been processed, the
Region Accumulator swaps its buffers and initializes the
visibility buffer, in preparation for processing the next screen
region.

• Concurrently with processing the next screen region, the
Region Accumulator steals memory cycles to send the
previous region’s data to the Reconstruction Buffer. The
Reconstruction Buffer computes the final pixel values for the
region and forwards them to the Frame Buffer.

• After all regions have been processed and the final pixel
values calculated and forwarded to the Frame Buffer, the
Frame Buffer swaps buffers.

The system can function in retained mode, in which there is a
fixed set of reference images describing an environment, or
immediate mode, in which new reference images are being
received “on the fly”.

3.2.1 Warp Array
The Warp Array (see Figure 8) consists of 256 processing
elements (PEs), arranged as a 16x16-pixel array. Each PE consists
of a simple byte-wide ALU and 160 bytes of local memory
partitioned as: 128 bytes main memory, 16 bytes IO Buffer, 16
bytes Sample Buffer.
A distributed linear expression evaluator provides values of the
linear expression Ax+By+C to each PE simultaneously, in byte-
serial form (x and y represent the position of the PE in the 16x16
array). It is used for very fast computation of the linear part of the
numerator and denominator of the warp-equation expressions (see
Equation 1). Each PE includes a byte-wide connection to its
neighbor in each dimension. Clock rate for the PE and local
memory will be at 300 MHz or more.
The IO Buffer is used for inputting reference-image tiles (from
the Tile Cache or host, via the Network Interface) via a 300
MByte/sec interface. The Sample Buffer is used for exporting
warped samples to the Region Accumulator, over the sample port,
via an on-chip 4.8 GigaByte/sec interface. Access to these buffers
may occur simultaneously with accessing of the main memory by
the ALU, so that the next tile may be loaded during processing of
the current one, and one set of interpolated samples can be
computed while the previous set is being output to the Region
Accumulator.

16
 P

E
 A

LU
's

128 bytes

16
 P

E
s

PE
Main

Memory

In
pu

t/O
ut

pu
t

B
u

ff
er

16

S
am

p
le

B
u

ff
er

16

Linear
Expression
Evaluator

Sample
Port

IO
Port

16 Panels of 16 PEs each

LEE
Coefficients

ALU
Micro-

Instructions

Local
Memory
Address

Figure 8. Block diagram of the Warp Array

Figure 7. Block diagram of the WarpEngine

Region Accumulator

Reconstruction Buffer

Frame Buffer

Tile
Cache

from host

Network Interface

Tile
Cache

Warp Array

Region Accumulator

Reconstruction Buffer

Network Interface

Warp Array

Proceedings of SIGGRAPH 2000 7

3.2.2 Region Accumulator
The Region Accumulator (Figure 9) consists of a large SRAM
warp buffer (the Region Buffer) and a set of 4 Sample Processors,
which combine warped samples into Region Buffer memory.
The Region Buffer contains data for a 128x128-screen region, at
2x2 sub-pixel resolution; a half-pixel wide boundary is added, to
allow reconstruction kernels up to two pixels wide. The Region
Buffer is partitioned into 4 sections, interleaved 2x2 across the
sub-pixel grid.
Each word of Region Buffer memory is divided into three fields.
Two double-buffered fields (the RGB/Offset/Present fields)
include RGB values, the offsets used for reconstruction, and a
present bit (used to avoid z-buffer initialization). One buffer is
used for accumulating samples for the current region, while the
other buffer contains the previous region’s values for output.
The third field contains values that are not required for
reconstruction and need not be double-buffered. Besides z value,
we are reserving space for measures such as the quality of each
sample [Mark99]. If the z of two samples are similar, the sample
processor gives preference to the better sample. The quality of the
sample is derived differently according to the scene. In the context
of imperfect registration characteristic to our (and probably all)
current depth-image acquisition devices, we obtained better
results when we consistently chose the samples of one sampling
location and used the additional samples from other images just to
fill in holes. Synthetic data simulates perfect registration and the
quality of the samples was derived from the interpolation factor of
the tile it belonged to: the closer the interpolation factor was to
2x2, the higher the quality5.
A 128-bit wide memory interface provides read/write access to all
three buffers in parallel.
Each Sample Processor processes a sample every two clock
cycles; this is the maximum possible rate, since 2 Region Buffer
accesses (1 read and 1 write) are required for each sample. The
Sample Processor is pipelined, so that each computation has
several cycles to execute, while sustaining the rate of a sample
every two clock cycles. Thus 4 Sample Processors handle an
aggregate rate of 2 samples per clock cycle, or 600 million
samples/sec at 300 MHz.
The back buffer outputs samples from the previous region to the
Reconstruction Buffer, via a shift path that spans all 4 partitions
of the Region Accumulator. A small fraction of memory cycles
are stolen from the Sample Processors, to feed this scan-out path.

3.2.3 Reconstruction buffer
The Reconstruction Buffer accepts the stream of final warped
subsample values from the Region Accumulator, and filters them
to produce final pixel values for the 128x128 pixel region. The
Reconstruction Buffer includes two scan-line-sized accumulators,
and four simple processors. For each RGB/Offset/Present value,
each color component is multiplied by a weight from the filtering
kernel and added to a sum. Normalization by the sum of weights
produces the final pixel value, which is output from the ASIC to
the Frame Buffer. The filter kernel is 2x2 pixels in size, with 4x4
sub-pixel resolution. The two 2-bit offset values select the proper
kernel element within each sub-pixel.

5 A 2x2 interpolation factor implies destination image sampling close to
reference image sampling, which is desirable.

3.2.4 Frame Buffer
The Frame Buffer is a straightforward assembly of commodity
DRAMs and programmable parts. It must absorb the full
bandwidth of the Reconstruction Buffers on all Nodes, so the peak
output rate of the Nodes must be tuned to avoid over-running the
Frame Buffer.

3.3 Host and Software
The host is responsible for determining which reference-image
tiles will be used to compute the current destination image, for
sorting the tiles according to screen region, and for sending the
tiles to the WarpEngine Nodes. The host must also determine the
interpolation factor for each chosen tile and send instructions to
control the warping and interpolation, but these instructions are
cached in the Tile Caches and should not represent a significant
computational or bandwidth burden for the host.

3.3.1 Retained Mode
Since all reference images are available beforehand, and since the
depth discontinuities in the reference images do not depend on the
desired view, surface connectivity is estimated as a pre-process.
This frees the Warp Array of an additional task at the price of a
few additional connectivity bits per reference-image sample.
Determining which tiles are needed for the current image begins
with choosing the tiles that are visible. This is done efficiently by
subdividing each reference image down to 16x16 tiles in quad-
tree fashion and recursively testing whether rectangular sub-
images of the image are visible. The visibility test itself is
identical to the bucket sorting of tiles: the 4 corners of the sub-
image are warped with the minimum and then the maximum
disparity of the sub-image. The bounding box of the 8 resulting
points is a conservative estimate of the screen area covered by the
sub-image. If the sub-image is a tile (a leaf in the quad-tree) it is
also assigned to the appropriate screen region bin(s).

to
Reconstruction

Buffer
Shift Register

Multiplexer

From Warp Array

Sample
Processor

12
8

b
it

s

16641 Words

z-buffer

RGB/Offset/Present (Buffer 1)

RGB/Offset/Present (Buffer 0)

FIFO

Figure 9. Block diagram of the Region Accumulator

Proceedings of SIGGRAPH 2000 8

Depending on the scene, a large number of tiles can be visible and
warping all of them is inefficient. Not all visible tiles are needed
for the current frame since some tiles sample the same surfaces.
Choosing among the visible tiles is not a trivial task. First one
needs to determine which tiles sample the same surfaces and then
choose among the several candidate tiles according to a quality
metric.
The algorithm we use approximates each visible tile by two
triangles. The triangles are transformed, projected and scan-
converted according to the desired view. The z-buffer test is fuzzy
and when two samples are close, the one that belongs to a better
tile wins. A better tile is a tile whose approximating triangles have
a desired-image size closer to 16x16, which implies a reference-
image sampling close to the destination-image sampling. After all
visible tiles are processed the chosen tiles are the tiles that have at
least one sample left in the tile-choosing buffer.

Table 1 shows the average number of visible tiles in our
simulations and the number of tiles chosen by the algorithm. It
also shows the overlap factor, the average number of regions a
tile mapped to in our simulations. The number of chosen tiles is
high due to the tiles that have depth discontinuities and for which
the triangle approximation breaks. Such tiles are conservatively
chosen since the algorithm cannot establish their potential
redundancy. We are currently investigating splitting the tiles that
have depth discontinuities into depth-discontinuity-free tiles,
whenever possible. We believe that this will reduce the total
number of chosen tiles since the algorithm presented above will
now eliminate more redundant tiles. The overlap factor also will
be lower since tiles with depth discontinuities have an
unnecessarily large screen-space bounding box.
The host needs to determine the interpolation factor for each
chosen tile. The ideal interpolation factor is the minimum value
for which surface continuity is preserved. We first find the
maximum changes in disparity along each direction, then we use
them to estimate the maximum screen-space distance between two
neighboring samples. The maximum one-pixel disparity variation
is computed as a pre-process, taking into consideration depth
discontinuities. Table 1 shows the average of the interpolation
factors used in the simulations shown on the video.
Frame-to-frame coherence can be exploited to minimize
bandwidth requirements by storing each rendered tile in the Tile
Cache of the WarpEngine Node that rendered it6. A large

6 Using a 64-MegaBit SDRAM chip as the Tile Cache, each WarpEngine
node can cache up to 4,096 reference-image tiles (each tile contains, 256
pixels, each with 4 bytes of color and connectivity, and 4 bytes of
disparity).

percentage of these tiles can then be used in rendering the same
region for the next frame, and many of the remainder can be re-
distributed using the Network Interface and used by other
WarpEngine Nodes for other regions. Only a relatively small
percentage of the tiles will need to be sent from the host; in fact,
with a modest number of reference images, it should be possible
to cache all the reference-image tiles. A PC's AGP interface
should provide plenty of bandwidth for sending missing tiles and
pointers to cached tiles7.

3.3.2 Immediate Mode
For immediate-mode, frame-to-frame coherence cannot be
utilized as effectively, since users may wander into areas of the
environment that have not been previously sampled in reference
images, and the environment itself may indeed be in flux (persons
moving, for example). This means that bandwidth requirements
from the host will be much higher. In the worst case, it may be
necessary on each frame to send every tile from the host to the
WarpEngine, and to render every tile.
Within the next few years, we do not expect real-time depth-
image acquisition at better than VGA resolution. We can build an
immediate-mode system with 20 WarpEngine Nodes that contains
a full-screen-sized warp buffer; this means that bucket sorting is
not required. Similarly, the low-resolution yields a manageable
amount of data. If one data stream provides 640*480 pixels at
30Hz, this is 36,000 tiles/sec or 72 megabytes/sec. For an
immediate mode system with four such data streams, a single
high-end PC host with an AGP 4X Interface could handle routing
tiles to the WarpEngine Nodes. Silicon technology (for the
WarpEngine ASIC) and interface technology (for data bandwidth)
should scale as depth-image acquisition scales. We are also
investigating the possibility of decompressing tiles within the
Warp Array.
Another difference is that the PEs will have to compute
connectivity information. This is not a serious performance loss
since the computation required is simple enough: two adds and a
compare for each of the four directions along which connectivity
is estimated; a PE can easily get the disparities of the neighboring
samples through the closest-neighbor communication paths. Also
the host cannot approximate the interpolation factor as described
in 3.3.1 since the tile information needed cannot be pre-computed.
Our solution is to let the Warp Array estimate the interpolation
factor: after all PEs warp their sample, using the inter-PE paths,
the Warp Array establishes the maximum distance between
consecutive warped samples, in both directions. This produces
interpolation-factors that are close to ideal, as described in 3.3.1.

3.4 Performance Considerations
The performance estimates are based on our WarpEngine
functional-block-level software simulator. The Warp Array
performance was measured with a cycle-accurate simulator. The
Warp Engine system has two basic performance limits: the
number of tiles per second that can be warped and interpolated,
and the number of regions per second for which final pixel values
can be reconstructed and forwarded to the Frame Buffer. The first
defines the maximum achievable rendering rate, while the second
defines the maximum achievable update rate for a given screen-
size.

7 AGP 2X presently supports peak data transfer rates of 533 MBytes/sec,
with a future 4X extension to 1066 MBytes/sec planned. Actual usable
throughputs are 50-80% of the peak rate.

Scene Tiles Overlap
factor

Interpolation
Factor

w/o t.c. 6246 1.28 2.3x2.5Reading
room w/ t.c. 4863 1.32 2.4x2.6

w/o t.c. 15050 1.23 2.2x2.4
Eurotown

w/ t.c. 6736 1.44 2.6x2.9

w/o t.c. 9101 1.47 2.5x3.7
Helicopter

w/ t.c. 4976 1.61 3.3x4.8

Table 1. Simulation results on three test scenes at VGA resolution (see
Color Plates 3-5) with and without tile choosing.

Proceedings of SIGGRAPH 2000 9

3.4.1 Tile Warping/Interpolation Performance
We have found that the Warp Array will require 1878 cycles to
perform a 3D image warp for all samples in a tile, using fixed-
point arithmetic as described in [Mark99].
If interpolation is done after warping, the interpolated samples
will be computed and output to the Region Accumulator one
sample at a time (over the entire tile). Outputting one sample for
the entire tile requires 256 clock cycles (one cycle per PE). The
time to actually compute each interpolated sample from the
warped samples will be significantly less. Table 1 indicates that,
on average, interpolation generates about 8 sub-samples, so about
8 * 256 = 2K cycles are required to interpolate and output the
warped samples. The Region Accumulator can process up to two
samples per clock cycle, assuming decent load-balancing, so it is
very likely that the one sample per cycle peak output rate of the
Warp Array can be sustained. The total time per tile is therefore
about 4K cycles, or about 75K tiles per second, per Node. Table
1 shows a typical overlap factor of less than 1.5, so the net
performance will be 50K tiles per second per Node. Table 1
shows that at VGA resolutions 5K tiles are typically required to
render a scene; we believe that these numbers extrapolate to
higher resolutions. Using these assumptions, we computed the
following performance numbers for some typical system
configurations:

These numbers show that 4 Nodes can easily handle VGA output
resolution loads and that 32 Nodes make a quite powerful system
capable of high update rates at HDTV resolution.
If interpolation is done before warping (which we do not think is
necessary), it takes on average 8200 cycles to interpolate and
warp the same average number of 8 sub-samples. However, there
is enough time for the warped sub-samples to be forwarded to the
Region Accumulator so no additional cycles are needed. This
indicates that interpolation and then warping is feasible but it
requires on average twice as many Nodes for the same
performance.

3.4.2 Reconstruction Performance
The Reconstruction Buffer operates on the back buffer. It requires
64K clock cycles to compute final pixel values for a region, which
is pipelined with the time to render another region. Only if the
next region is assigned fewer than 16 tiles (less than it takes to
cover the region) will the reconstruction time affect performance.

4 FUTURE WORK
The programmability and high-performance of the WarpEngine
will allow us to conduct many experiments. Thus far we have not
attempted to generate view dependent effects. If provided with the
necessary BRDF information, perhaps as a shader program, the
Warp Array could compute the view dependent color [Olano98].
Similarly, one could experiment with changing the original
lighting conditions of the reference images.
Tile-choosing is a very important and difficult problem, similar to
the visibility and level-of-detail problems in conventional
rendering. Our tile-choosing is presently complicated by having to

detect and resolve inconsistencies between the samples of the
same surface seen in several reference images. Dealing separately
with view-dependencies will simplify tile-choosing.
Another challenging problem is encountered at the silhouettes.
Since photographs or antialiased renderings are used, the color of
a silhouette sample is a blend between the color of the front and
back surfaces. When warping the depth image, this blended color
persists on both the front and the back surfaces, which are no
longer adjacent. To prevent this, we discard the silhouette
samples, and rely on other reference images to provide
replacement samples. For very thin features however, correct
samples cannot be found in any of the reference images, causing
the thin features to disappear. This comes at no surprise since, in
order to respect the Nyquist sampling-rate criterion, the reference
images should sample the scene at least twice as densely as the
output image. We could, of course, use higher-resolution
reference images, but practical considerations will usually prevent
this.
An alternative approach, at least in retained mode, is to detect the
thin features and model them with tiles from higher resolution
images closer to the objects. For example, a light pole that
projects one-pixel wide in the desired image can be extracted
from a reference image that sees it as several pixels wide.
Detecting the thin features can be done relatively easily using the
depth-discontinuity detection method described. For efficient tile
utilization, the reference-image coordinates of the samples can be
stored explicitly, which allows packing the pole samples on one
tile, at the price of more data per tile and slightly longer warping
time.
An attractive alternative use for the WarpEngine architectural
ideas is in a hybrid geometry/image-based rendering machine,
which uses images as impostors to bound the total number of
polygons [Aliaga99].

5 CONCLUSIONS
The WarpEngine is a 3D graphics hardware architecture designed
specifically for rendering by warping images with depth. It might
be argued that warping and then interpolating is equivalent to
creating a quadrilateral mesh and rendering it on conventional
polygon-rendering hardware. There is some truth to this, but the
WarpEngine ASIC is a quad renderer particularly optimized for
this application. This is because the quads formed by warping the
samples of a reference-image tile are of small and uniform size,
and conveniently grouped into square arrays, so a SIMD array
provides particularly efficient processing. Furthermore, bilinearly
interpolating between warped samples (a forward-mapping)
requires minimal setup costs, unlike conventional scan conversion
(which is a reverse-mapping), further optimizing the processing of
tiny quads. Finally, the SIMD array allows flexible
programmability, facilitating experimentation with new
algorithms. And integration of the SIMD array with the on-chip
warp buffer obviates bandwidth concerns and the use of off-chip
memory (except for the frame buffer), and the partitioning
facilitates scalability to very high performance levels.
The WarpEngine will be implemented using a single custom
ASIC, replicated as necessary to meet the desired resolution and
warping performance. We expect the ASIC to measure about 12
mm by 16 mm when fabricated on a 0.18-micron process, and to
run at 300 MHz or higher. A small 4-node system could fit on a
board inside a PC, while a 32-node system will be in a
workstation-sized enclosure. We expect to begin layout of the
WarpEngine ASIC later this year.

Screen
size

Tiles/
frame Nodes Sub-

samples/sec
Update

rate
640x480 5K 3 307 M 30

1280x1024 20K 16 1.6 G 40
2048x1024 32K 32 3.2 G 50

Table 2. Projected performance of typical system
configurations.

Proceedings of SIGGRAPH 2000 10

Building the WarpEngine will provide us with insights applicable
not only to IBRW architectures but also to architectures for
conventional polygon-based rendering, particularly when
rendering small polygons.
We expect that the WarpEngine, coupled with image-based
modeling or real-time depth imaging, will render images that look
truly photorealistic, leading to a dramatically heightened sense of
presence for applications like visual simulation and tele-presence,
and enabling entirely new applications such as 3D TV.

ACKNOWLEDGEMENTS
We would like to thank Gary Bishop and John Poulton for their
encouragement at early stages of this work, David McAllister for
his important contributions to depth-image acquisition, and Henry
Fuchs for his useful critique of earlier versions of this paper.
Special thanks to Mary Whitton for organizing the SIGGRAPH-
submission event here at UNC. Support was provided by DARPA,
order number E278, and NSF grant number MIP-9612643.

REFERENCES
[Aliaga99] Aliaga D. and Lastra A., “Automatic Image Placement to

Provide a Guaranteed Frame Rate”, Proc. SIGGRAPH ’99, 307-316
(1999).

 [Beier92] Beier T. and Neely S., “Feature-Based Image Metamorphosis”,
Proc. SIGGRAPH ’92, 35-42 (1992).

[Beraldin92] Beraldin J.-A., Rioux M., Blais F., Domey J., and Cournoyer
L., “Registered Range and Intensity Imaging at 10-Mega Samples
per Second”, Opt. Eng., 31(1): p. 88-94 (1992).

[Chen93] Chen S. and Williams L., “View Interpolation for Image
Synthesis”, Proc. SIGGRAPH ’93, 279-288 (1993).

[Chen95] Chen S., “ Quicktime VR - An Image-Based Approach to Virtual
Environment Navigation”, Proc. SIGGRAPH ’95, 29-38 (1995).

[Cyra] The Cyrax System, in http://www.cyra.com/.
[Debevec96] Debevec P., Taylor C., and Malik J., “Modeling and

Rendering Architecture from Photographs: A Hybrid Geometry and
Image-Based Approach”, Proc. SIGGRAPH ’96, 11-20 (1996).

[Ellsworth97] Ellsworth D., Polygon Rendering for Interactive
Visualization on Multicomputers, PhD thesis, University of North
Carolina at Chapel Hill, 1997.

[Gortler96] Gortler S., Grzeszczuk R., Szeliski R., and Cohen M., “The
Lumigraph”, Proc. SIGGRAPH ’96 , 43-54 (1996).

[Kanade99] Kanade T., Rander P., Vedula S., and Saito H., “Virtualized
Reality: Digitizing a 3D Time-Varying Event As Is and in Real
Time”, Mixed Reality, Merging Real and Virtual Worlds, Y. Ohta
and H. Tamura, Editors. Springer-Verlag. p. 41-57 (1999).

[K2T] Scene Modeler, http://www.k2t.com/.

[Levoy96] Levoy M. and Hanrahan P., “Light Field Rendering”, Proc.
SIGGRAPH ’96, 31-42 (1996).

[Mark97] Mark W., McMillan L., and Bishop G., "Post-Rendering 3D
Warping", 1997 Symposium on Interactive 3D Graphics, 7-16
(1997).

[Mark99] Mark W., Post-Rendering 3D Image Warping: Visibility,
Reconstruction, and Performance for Depth-Image Warping , PhD
thesis, University of North Carolina at Chapel Hill, 1999.

[McAllister99] McAllister, D., Nyland L., Popescu V., Lastra A., McCue
C., "Real-Time Rendering of Real-World Environments", Rendering
Techniques '99, Proc. Eurographics Workshop on Rendering, 145-
160, (1999).

[McMillan95] McMillan L. and Bishop G., “Plenoptic Modeling: An
Image-Based Rendering System”, Proc. SIGGRAPH ’95 , 39-46
(1995).

[McMillan97] McMillan L., An Image-Based Approach to Three-
Dimensional Computer Graphics, PhD thesis, University of North
Carolina at Chapel Hill, 1997.

[Minolta] Minolta 3D 1500 , in http://www.minolta3d.com/.
[Molnar92] Molnar S., Eyles J., and Poulton J., “PixelFlow: High-speed

Rendering using Image Composition”, Proc. SIGGRAPH ’92 , 231-
240 (1992).

[Molnar94] Molnar S., Cox M., Ellsworth D., and Fuchs H., "A Sorting
Classification of Parallel Rendering", IEEE Computer Graphics and
Aplications, 14(4), 23-32 (1994)

[Montrym97] Montrym J., Baum D., Dignam D., and Migdal C.,
“InfiniteReality: A Real-Time Graphics System”, Proc. SIGGRAPH
’97, 293-302 (1997).

[Mueller95] Mueller C., “The Sort-First Rendering Architecture for High-
Performance Graphics”, 1995 Symposium on Interactive 3D
Graphics, 75-84 (1995).

[Olano98] Olano M. and Lastra A., “A Shading Language on Graphics
Hardware: The PixelFlow Shading System”, Proc. SIGGRAPH 98 ,
(1998).

[Regan99] Regan M., Miller G., Rubin S., and Kogelnik C., “A Real Time
Low-Latency Hardware Light-Field Renderer”, Proc. SIGGRAPH
’99, 287-290 (1999).

[Seitz96] Seitz S. and Dyer C., “View Morphing: Synthesizing 3D
Metamorphoses Using Image Transforms”, Proc. SIGGRAPH ’96 ,
21-30 (1996).

[Shade98] Shade J., Gortler S., He L., and Szeliski R., “Layered Depth
Images”, Proc. SIGGRAPH ’98, 231-242 (1998).

[Torborg96] Torborg J. and Kajiya J., “Talisman: Commodity Real-time
3D Graphics for the PC”, Proc. SIGGRAPH ’96, 353-364 (1996).

[Westover90] Westover L., “Footprint Evaluation for Volume Rendering”,
Proc. SIGGRAPH ’90, 367-376 (1990).

[Wolberg90] Wolberg G., Digital Image Warping, IEEE Computer
Society Press, Los Alamitos California, 1990.

Figure 10. These images were rendered with the WarpEngine simulator. The reference depth images were created by registering color images with the
range information acquired by our laser range finder. The range finder captured data from two positions in the center of the room. We are missing some
data, on the ceiling for example.

