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Preface

The deluge of data observed throughout research and industry has turned the analy-
sis of the resulting information into the primary limiting factor for the rapid progress
of science, engineering, and medicine. The field of visualization strives to tackle this
data analysis challenge by devising visual representations that afford users an effec-
tive interface with their datasets. Driven by the explosion in data size and complexity
experienced over the last decade, a prominent trend in today’s visualization research
applies a data abstraction approach to yield high-level depictions emphasizing vari-
ous salient properties of the phenomenon considered. Topology-based methods have
proved especially compelling in this regard, as the topological abstraction provides a
common mathematical language to identify remarkable structures in a broad range of
applications and semantic contexts. Topological concepts and metaphors are therefore
permeating the visualization literature and they are the focus of a significant research
effort spanning theoretical, algorithmic, and practical aspects.

This book describes the research that was presented during the third Workshop on
Topological Methods in Data Analysis and Visualization, which took place in Snowbird,
Utah, on February 23-24, 2009. Following two successful, seminal TopoInVis work-
shops held in Europe, the 2009 edition was organized in the United States in response
to the growing international interest in topological methods. As in previous years, this
event offered international experts the opportunity to present their ongoing research in
an informal and inspiring atmosphere, as well as to discuss the emerging trends and
open challenges of the field. A defining feature of the 2009 edition was the attention
paid to applications, reflecting the importance of topological techniques in practical data
analysis scenarios and the increased prominence of problem-driven research. The work-
shop featured two eminent invited speakers (Herbert Edelsbrunner, Duke University,
and Jackie Chen, Sandia National Laboratory), who gave exciting lectures highlighting
significant accomplishments and promising avenues for both fundamental and applied
research on topological methods. All in all, TopoInVis ’09 was a resounding success
thanks to the excellent contributions of over 60 participants.

Each of the 20 research papers contained in this book was accepted for presentation
at the workshop after careful peer-review by the international program committee. The
contents are organized in 5 main themes that correspond to major research directions.

The first part is concerned with the theoretical foundations of the topological
approach. Jordan et al. apply topological concepts to the precise visualization of
1-manifolds, while Kälberer et al. employ the topology of a tubular surface to define
a globally consistent stripe texture. Edelsbrunner and his co-authors prove the stability
of apparent contours (i.e. silhouettes) under the erosion distance and Dillard et al. study
the topologically consistent reconstruction of cell complexes from cross-section images.

The second part of the book focuses on hierarchical topological data structures, as
required by the analysis of very large datasets. Vivodtzev et al. present a new technique
for the topology-preserving simplification of very large tetrahedral meshes. Guylassy
et al. propose several improvements to the computation of Morse-Smale complexes
in the context of feature detection algorithms, while Comić and De Floriani introduce
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two simplification operators for Morse complexes applicable in arbitrary dimensions.
Suthambhara and Natarajan consider the simplification of Jacobi sets from a level set
and offset manifold perspective, and Reininghaus and Hotz describe a novel combina-
torial framework for the topological analysis of 2D vector fields.

The third part deals with the algorithmic extraction of topological structures of
interest in vector and tensor fields. Kasten et al. put forward a Galilean invariant notion
of critical points that captures significant patterns in turbulent flows, while Obermaier
and his co-authors propose an algorithm for the segmentation of three-dimensional
grid-less flow simulations. Sreevalsan-Nair et al. study the impact of the interpola-
tion scheme on the topological structure of 2D eigenvector fields. Finally, Sadlo et al.
present a new method for the efficient computation of Lagrangian coherent structures
in unsteady flows.

The following part is dedicated to practical applications of topological methods
in data analysis and visualization. Grottel et al. consider defect detection in crystal
structures; Keller and his co-authors apply a user-assisted multi-scale technique to the
detection of salient features in LiDaR datasets. Wiebel et al. report on the shortcomings
of existing topological approaches in the analysis of rotation-mediated cell aggregation
and propose a novel solution to this problem. Szymczak applies category theory to the
robust segmentation of airways from CT scans, while Bajaj and his co-authors visualize
the complementary space of complex geometric models to resolve subtle structures with
applications to uncertainty and dynamics visualization.

The book concludes with two papers that specifically consider the challenges posed
by the topological analysis of very large datasets produced by state of the art combus-
tion simulations. Mascarenhas et al. present a combinatorial streaming algorithm for
the efficient characterization of topological features in large-scale datasets, which they
apply to the comparison of terascale combustion simulations. Weber and his co-authors
propose a novel technique, leveraging Reeb graphs to study the temporal evolution of
burning regions in simulated flames.
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Geometric Topology & Visualizing 1-Manifolds

Kirk E. Jordan1, Lance E. Miller2, Thomas J. Peters3, and Alexander C. Russell4
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Abstract: Ambient isotopic approximations are fundamental for correct representa-
tion of the embedding of geometric objects in R3, with a detailed geometric construction
given here. Using that geometry, an algorithm is presented for efficient update of these
isotopic approximations for dynamic visualization with a molecular simulation.

1 Approximation and Topology for Visualization

Figure 1(a) depicts a knot5 and Figure 1(b) shows a visually similar protein model6.
prompting two criteria for efficient algorithms for visualization:

(a) (b)

Fig. 1. (a) Complicated Unknot, (b) Protein-enzyme complex.

– a piecewise linear (PL) approximation that preserves model topology,
– preservation of topology during dynamic changes, such as protein unfolding.

The visual comparison from Figure 1 led to invoking knot theory to provide the uni-
fying mathematics. This paper presents a curvature-adaptive, topology preserving ap-
proximation for a parametric 1-manifold with the primary result being Theorem 3. The
piecewise linear (PL) approximations presented will

5Image credit: R. Scharein, www.knotplot.com
6Image credit: http://160.114.99.91/astrojan/protein/pictures/parvalb.jpg



2 Jordan, Miller, Peters, and Russell

(i) be topologically equivalent to the original manifold,
(ii) minimize the number of linear approximants,

(iii) respect user-specified error bounds for distance & curvature.

While many approximation methods fulfill criteria (ii) and (iii), the stipulation of
criterion (i) is of recent interest and the methods here are for a rich class of curves,
extending related results. The topological equivalence chosen for dynamic molecular
visualizations is by ambient isotopy, as this preserves the embedding of the geometric
model over time.

Definition 1. Let X and Y be two subsets of n-dimensional space Rn. An ambient iso-
topy is a continuous function H : Rn × [0,1] → Rn such that

1. H(·,0) is the identity function,
2. H(X ,1) = Y , and
3. For each t in [0,1], H(·,t) is a homeomorphism on Rn.

2 Related Work

Preliminary work by some of these authors and collaborators has appeared: for the
integration of time and topology in animations and simulations [12] and for isotopic
approximations on various classes of spline curves [14–17]. The theory presented here
extends to a broad class of parametric curves that properly includes splines. While one
approximation method could be applied to general parametric curves [12] the isotopy
results within that paper relied upon Bézier geometry.

The proof techniques for isotopy here are a slight variant of the well-known ‘push’
from geometric topology for a 3-manifold [2]. The importance for applications is the
creation of explicit neighborhoods within which the approximant can be perturbed
while remaining ambient isotopic. These can serve as the basis for determining effi-
cient updates for these isotopic constraints during dynamic visualizations.

A previous application of these tubular neighborhoods has emphasized visualiz-
ing knots undergoing dynamic changes [4]. Another tubular neighborhood algorithm
[14] for rational spline curves [19] relies upon specialized numerical solution soft-
ware, whereas computation with Newton’s method has been exhibited on Bézier curves
[15,16]. Related treatments to curve approximations are available: within Hilbert spaces
[10], with restrictions to planar curves [8] or specialized to spline curves [18]. The ap-
proach of approximating with respect to curvature is similar to an approach for ‘aes-
thetic engineering’ [20].

This terse summary on curve approximation stresses only the most relevant litera-
ture, as any comprehensive survey would be voluminous, with one indication being that
a literature search on curve approximation resulted in 1.4 million hits7. The distinguish-
ing feature, here, is the additional insistence of topological equivalence. This emphasis
upon geometric topology is appropriate when a geometric model is present, as for the
molecular models discussed, and could prove complementary to other uses of topology
in visualization that depend largely upon algebraic topology [6, 7].

7http://scholar.google.com/
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3 Curvature & Topology for Parametric 1-Manifolds

Each curve considered here is assumed to be a compact 1-manifold, thereby excluding
self-intersections, where stated differentiability assumptions also preclude wild arcs8.
Further, each 1-manifold is assumed to be parameterized by arc length over the unit9

interval.

Notation: Let c : [0,1] → R3 be a C3 curve and we denote

μc([a,b]) =
b∫

a

||c′′(t)||dt,

which will be invoked as the basis for our curvature-adaptive approximation.

Theorem 1. Let c : [0,1] → R3 be a C3 curve. For each ε > 0, there exists a natural
number n and a partition X = {p1, . . . , pn} ⊂ [0,1] such that, for i = 1, . . . ,n, p1 =
0, pn = 1; p1 < p2 . . . < pn−1 < pn; and

pi+1∫

pi

‖c′′(z)‖dz = μc([pi, pi+1]) < ε, (1)

there is a set of compact cylinders {Ci}n
i=1, such that each Ci has its axis aligned with

the tangent at c(pi) and has radius ε . Furthermore both the polyline formed by consec-

utively connecting the vertices {c(pi) : i = 1, . . . ,n} and the curve c lie in
n⋃

i=1
Ci.

Theorm 1 can be used to create a PL approximation of a curve, but there are no
guarantees given that the approximant is topologically equivalent to the original curve.
Further constraints must be imposed upon the choice of ε to ensure that the approximant
produced is ambient isotopic to the original curve, as will be developed in the rest of
this paper. The proof of Theorem 1 follows.

Proof. We construct one cylinder Ci for each point in the set X . Let Li be the line
containing the vector c′(pi). Consider the plane normal to c′(pi+1). This plane intersects
Li at a point, denoted as q. Define Ci to be the cylinder of radius ε whose axis is the
portion of Li connecting pi and q. By Taylor’s Theorem if t ∈ [pi, pi+1] then

|c(t)− c(pi)− (t − pi)c′(pi)| ≤
t∫

pi

||c′′(z)||(t − z)dz ≤
pi+1∫

pi

||c′′(z)||dz < ε.

Hence, c(t) is of distance at most ε from c(pi)+ (t − pi)c′(pi). Thus c(t) is at most
ε away from Li, and so c(t) is in the cylinder Ci. The last statement is clear as each
cylinder is convex and the endpoints c(pi),c(pi+1) of an approximating segment are
contained in the cylinder Ci.

8Any C2 compact 1-manifold is tame [14].
9If not of unit length, scale accordingly.



4 Jordan, Miller, Peters, and Russell

If, for each i, Inequality 1 is modified so that μc([pi, pi+1]) = ε , then a previously
published proof [12] can be applied for an asymptotic limit on the number of segments
in the approximation. For ε > 0, denote by N(ε) the number of cylinders given by the
construction in the proof of Theorem 1.

Corollary 1. If c is also C3 such that ||c′′(t)|| > 0 for all t, then

lim
ε→0

√
ε ·N(ε) =

1∫

0

√
||c′′(u)||du.

We identify important properties studied in geometric topology and prove mainte-
nance of those characteristics for the approximant. For the remainder of the section we
will refer to the set X = {p1, . . . , pn} where the pi’s are ordered as described, above,
and the cylinders Ci are constructed as in Theorem 1. We ensure that the curve is well-
behaved within each cylinder through the following lemmas.

Lemma 1. Let c : [0,1] → R3 be a C3 curve and r,s ∈ [pi, pi+1], then

||c′(r)− c′(s)|| ≤
√

3ε.

Proof. For t ∈ [0,1] denote by c′(t)x the x-coordinate for c′(t). We can apply Taylor’s
Theorem to see for r,s ∈ [pi, pi+1],

|c′(r)x − c′(s)x| ≤
s∫

r

|c′′(u)x|du ≤
s∫

r

||c′′(u)||du ≤ ε.

The case is similar for the y and z coordinates, and the result follows.

Corollary 2. Let c : [0,1] → R3 be a C3 space curve, and ε <
√

2/3. Then for points
r,s ∈ [pi, pi+1] the tangential deviation between c′(r) and c′(s) is no more than π/2.

Proof. Since we are parameterized using arc length, we have ||c′(r)|| = ||c′(s)|| = 1 for
any r,s ∈ [pi, pi+1]. Further, by Lemma 1,

||c′(r)− c′(s)|| <
√

3ε.

The Law of Cosines shows the angle between them is arccos(1− 3
2ε

2). When ε <
√

2
3 ,

we have arccos(1− 3
2ε

2) < π
2 .

So we can explicitly control the tangential deviation within each cylinder Ci. The
benefit here is that we can use this information to control intersections within each
cylinder.

Lemma 2. Let c : [0,1] → R3 be a C3 curve and [a,b] ⊂ [0,1]. Assume all of the tan-
gent vectors of the subcurve c([a,b]) deviate in angle by no more than η < π

2 from
a particular tangent vector c′(t) for t ∈ [a,b]. If Π is a plane with normal c′(t) and
Π ∩ c([a,b]) 
= /0, then |c([a,b])∩Π | = 1.
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Proof. Orient the plane Π so that it is parallel with the xy-plane and c′(t) with the
positive z-axis. In this orientation if c′(r)z = 0 for any r ∈ [a,b] then c′(r) is parallel to
the plane Π and this would be a contradiction as c′(t) is normal to the plane Π and the
angular deviation of tangent vectors is not more than π

2 . For any s ∈ [a,b] with s 
= t, if
c(s) lies on the plane Π then c(s)z = 0 and since c(t)z = 0 we have, by the Mean Value
Theorem, another point r with c′(r)z = 0, which is a contradiction.

Notation: For the remainder of this paper, let

– c : [0,1] → R3 denote a C3 curve,
– κ = max ||c′′(z)||, α = min{1, ||c′′(z)||},
– X be a set which satisfies the hypothesis of Theorem 1, and
– For pi, pi+1 ∈ X , let ci = c([pi, pi+1]).

Our next step is to construct sets upon which we can build local isotopies between
the curve and the approximant. In order to do this we will make use of Taylor’s theorem,
as in the following lemma.

Lemma 3. Let γ be chosen such that γ > 0, but γ � (κ/2)(t − pi)2. For t ∈ (pi, pi+1],
let St be the closed ball with center c(pi) + (t − pi)c′(pi) and radius rt , with rt =
(κ/2)(t − pi)2 + γ . Then, c(t) ∈ int(St).

Proof. By Taylor’s theorem we have

||c(t)− c(pi)− (t − pi)c′(pi)|| ≤
t∫

pi

||c′′(z)||(t − z)dz

≤ κ [t2 − (1/2)t2 − (t pi − (1/2)p2
i )].

However t2 − (1/2)t2 − (t pi − (1/2)p2
i ) = (1/2)(t − pi)2. The use of γ permits the

conclusion about containment in the interior.

For each t ∈ (pi, pi+1], define a ‘snowcone’ Kt as the convex hull10 of St and {pi},
where the use of the colloquial term ‘snowcone’ is meant to suggest the compact set
created, with a planar cross-section shown in Figure 2. The next lemma shows the rela-
tionship between the opening angle of these snowcones11 for different values t.

Lemma 4. Choose ε ∈ (0,α/(2κ)). Let t ∈ (pi, pi+1], let θt be opening angle at c(pi)
for Kt . Then θt is an increasing function of t and each snowcone Kt , for t ∈ (pi, pi+1],
is contained in the snowcone Kpi+1 .

10For any two sets A and B, their convex hull is defined as the smallest convex set that contains
A∪B.

11In the United States, a frozen desert having a two dimensional profile similar to that of
Figure 2 is known as a ‘snowcone’.



6 Jordan, Miller, Peters, and Russell

Proof. Denote by rt = (κ/2)(t − pi)2 the radius of St . Since

pi+1∫

pi

||c′′(z)||dz < ε

we have that α(pi+1 − pi) < ε and since ε < (2α/κ) we have that

(t − pi) ≤ (pi+1 − pi) ≤ ε/α ≤ 2/κ .

Thus, (κ/2)(t− pi) ≤ 1 and (κ/2)(t − pi)2 ≤ (t − pi). Therefore, c(pi) is not contained
in the sphere St . Consider a planar cross section of the snowcone Kt and within this
planar cross section, choose a tangent to St and denote the point of tangency as v.
Denote the angle between c′(pi) and the segment [c(pi),v] by θt . Denote by z the center
of St . Using the triangle defined by z,v,c(pi) one can conclude that sinθt = rt/(t −
pi) = (κ/2)(t − pi). For reference, consider Figure 2. Since rt is finite, θt < π/2. For
t,s ∈ [pi, pi+1] with t < s, sinθt < sinθs and so θt < θs, as θs < π/2.

Fig. 2. Cross section of snowcone Kt

Hence, for t ∈ (pi, pi+1], Kt ⊂ Kpi+1 .

Corollary 3. The snowcone Kpi+1 contains ci.

Proof. First note that c(pi) ∈ Kpi+1 as it is the apex of this snowcone. For each t ∈
(pi, pi+1],c(t) ∈ Kpi+1 by Lemmas 3 and 4.

Notation: First, modify the existing notation Kpi+1 to be Ki,i+1, using the order of these
subscripts to express that the snowcone’s apex is at pi and opens towards pi+1. This is
to contrast it with a similar snowcone, denoted as Ki+1,i, which will have its apex as
the point c(pi+1), its axis as the line containing c′(pi+1) but will open towards pi, as
indicated in Figure 3.
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Lemma 5. For each i = 1, . . . ,n−1, denote the approximating segment connecting the
points c(pi) and c(pi+1) by ai,i+1 . For each cylinder Ci, there is a convex subset of Ci,
denoted Vi,i+1, containing ci, such that

Vi,i+1 ∩Vi+1,i+2 = c(pi+1).

Proof. Define Vi,i+1 = Ki,i+1 ∩Ci ∩Ki+1,i. Since each of the intersecting sets is convex,
it is clear that Vi,i+1 is convex. But then, since both c(pi) and c(pi+1) are in Vi,i+1, it is
clear that ai ⊂ Vi,i+1. From Corollary 3, ci ⊂ Vi,i+1.

Ki+1,i

Ki,i+1

ai,i+1

Ci

c(pi)

c(pi–1) c(pi+1)

c

Fig. 3. Cross Section for bounding volume Vi,i+1

4 Building the Ambient Isotopy

The results so far only provide local views on c by focusing on each ci independently. It
is often easy to build an isotopy locally on one portion of a curve, but considerable sub-
tlety can be required to unify these into an isotopy of the entire curve. The snowcones
were defined for use in an iterative algorithm to establish an ambient isotopy for all of
c.

Outline of Algorithm for Entire Curve: The geometric objective for the algorithm is
to continue to reduce the radius of each cylinder Ci used in defining the sets Vi,i+1 until
the interiors of these Vi,i+1 are pairwise disjoint, that is, for i 
= j,

int(Vi,i+1)∩ int(Vj, j+1) = /0.

The algorithm begins with a seed value for δ to construct a set X1 such that for each
i = 1, . . . ,n, and pi, pi+1 ∈ X1, we have μc([pi, pi+1]) < δ . The algorithm proceeds by
replacing the value of δ by δ/2, so that at each successive iteration j, the set Xj has
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the above mentioned containment properties relative to the current value of δ . The al-
gorithm proceeds until these bounding volumes are pairwise disjoint in order to form
an isotopy of the entire curve. A previously published termination proof [15] can be
easily modified for this snowcone geometry. Indeed, the more aggressive containment
snowcone geometry used here actually simplifies the previous proof, so that both al-
gorithms terminate in O(logΔ−1) iterations [15], where Δ is the minimum separation
distance of the curve. For the curve c, define d : [0,1] → R to be the distance function
d : (s,t) 
→ ‖c(s)− c(t)‖. Then the minimum separation distance is the minimum crit-
ical value of d. A useful geometric formulation of this problem is to find all pairs of
distinct points at parametric values s and t of c to satisfy the equations [13]:

(c(s)− c(t)) · c′(s) = 0 (2)

(c(s)− c(t)) · c′(t) = 0. (3)

Recent approaches to efficiently solve these simultaneous Equations 2 and 3 have
appeared [15]. The value of Δ is then the minimum Euclidean distance over all pairs
(c(s),c(t)) that are solutions to these simultaneous equations. The role of Δ as a stop-
ping criterion can be intutitively expressed as measuring the minimum Euclidean dis-
tance between points of c that can be geodesically far apart. The algorithm restricts the
size of the snowcones relative to Δ .

We first build a local homeomorphism on ci and use that as a basis for constructing
an ambient isotopy over all of c. For each point w ∈ ci, let Nw denote the normal plane
to ci at w. Choose ε , in accordance with Corollary 2 to ensure that tangents on ci deviate
by less than π/2. Define the function

hi : ci → ai,i+1

by

hi(w) is the single point in Nw ∩ai,i+1.

Theorem 2. The function hi is a homeomorphism that fixes both c(pi) and c(pi+1).

Proof. We consider the intersection of each Nw and ai,i+1.
First, suppose that ai,i+1 is a subset of Nw, requiring that both end points of ai,i+1

were in Nw. But these end points are also points of ci, which would be a contradiction to
Lemma 2. If w is either endpoint of ci, then it is also a point of ai,i+1, but then Lemma 2
provides that this endpoint is the only element of the Nw ∩ai,i+1.

So, suppose w is not an endpoint, then c(pi) cannot also be in Nw, by Lemma 2,
and, similarly, c(pi+1) cannot be in Nw. But, then, since π/2 is an upper bound on the
tangents on ci, it is clear that c(pi) and c(pi+1) must be on opposite sides of Nw. So,
ai,i+1 and Nw cannot be disjoint. But, then, Nw and ai,i+1 intersect in a single point, since
a plane and a line can intersect only in the line itself or in a single point.

Then hi is a well-defined function on each ci, where continuity is obvious. Moreover,
note that hi keeps the end points of ci fixed. That hi is onto follows since the endpoints
of ai,i+1 remain fixed and the image of hi is a connected subset of ai,i+1. That hi is 1-1
follows, since ai,i+1 is within ε of ci, with ε chosen to be less than 1/(2κ) (with κ
chosen to be the maximum curvature) so, the line segments given by [w1,h(w1)] and
[w2,h(w2)] do not intersect.
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Now we are set to define a local isotopy within the bounding volume Vi,i+1. But first
we need to recall some easily proven properties of convex sets of Rn. Let A denote a
non-empty, compact, convex subset of Rn, for some positive integer n.

Lemma 6. For each point p ∈ int(A) and b ∈ ∂A, the ray going from p to b only inter-
sects ∂A at b (See Figure 4(a).)

(a) (b)

Fig. 4. (a) Rays outward. (b) Variant of a push.

Lemma 7. Let A be a compact convex subset of R2 with non-empty interior and fix
p ∈ int(A). For each boundary point b ∈ ∂A, denote by [p,b] the line segment from p to
b. Then A =

⋃
b∈∂A[p,b].

Many of the arguments of the proof of Theorem 2 can be adapted to build the am-
bient isotopy of c. The construction relies strongly on having a compact, convex set of
support, as illustrated in Figure 4(b). The previous attention to convexity of Vi,i+1 was
directed towards this construction.

Corollary 4. There is an ambient isotopy of ci, with compact support Vi,i+1 that takes
each point of ci to h(ci).

Proof. A value of ε > 0 should be chosen so that ε <
√

2/3 to fulfill the conditions of
Corollary 2 so that each hi is a homeomorphism. Simultaneously choose, ε < α/(2κ)
to satisfy the hypotheses of Lemma 4 while also constraining ε ≤ δ to ensure that the
interiors of the bounding volumes Vi,i+1 and Vj, j+1 are disjoint, with δ being the output
of the iterative algorithm outlined at the beginning of this section. It should be clear that
bounding volumes Vi,i+1 and Vi+1,i+2 intersect only at the point c(pi+1).

The proof is a variant of a ‘push’ [2], where point p and q are in the interior of
a non-empty, convex, planar set. As illustrated in Figure 4(b), each point v on a line
segment between p and a boundary point b is mapped by linear interpolation onto the
segment [q,b], as p is mapped onto q, and then Lemmas 6 and 7 are applied to build the
ambient isotopy from the homeomorphism of Theorem 2.
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Theorem 3. There is an ambient isotopy of c onto its PL approximant a and this isotopy
has compact support

⋃
iVi,i+1.

Proof. The snowcone construction leaves bounding volumes Vi,i+1 and Vi+1,i+2 inter-
secting only at the point pi+1, which is fixed under the local isotopy, so a ‘pasting
lemma’ [16] can be applied to complete the proof.

5 Conclusions and Future Work

The primary result of this work is a curvature-adpative, ambient isotopic approximation
for a 1-manifold, inclusive of distance and tangency error bounds on the approximant.
The bounding volumes also constrain many isotopic movements of the approximant
curve.

The image of Figure 1(a) is the first frame of an animation showing that curve de-
forming under the application of energy described by Gaussian functionals, with guar-
antees that the embedded topology is preserved during this process. Similarly, the long-
term focus here is to produce dynamic visualization of complex molecules undergoing
simulated deformations under energy and chemical changes that also preserve the em-
bedded topology. The essential first step is to produce a topology-preserving approxi-
mation of the static model. A specific approximated geometry model might be able to
have multiple ambient isotopic perturbations within its bounding volume. However, if
successive movements have the approximated geometry approaching the boundaries of
the bounding volumes, new bounding volumes need to be computed. As long as the
curve remains C2 the existence of these new bounding volumes is known from classical
differential topology [11].

However, those existence theorems typically do not provide explicit bounding ge-
ometry and they are not necessarily adaptive in the sense shown here. The value pro-
vided here is the detailed geometric constructions can be used to create algorithms that
will allow for efficient updates of the geometric bounding neighborhoods as fundamen-
tal for dynamic visualization. The algorithm outlined in the second paragraph of Sec-
tion 4 can be refined further, dependant upon the specific models being considered, for
even more aggressive bounding volumes, when geometric alternatives to the snowcones
used here might be useful on specific data.

In Figure 1(b), there was considerable empty space around the geometric model
being unfolded, but Figure 5 depicts a very dense configuration12.

The control for isotopies can become quite delicate for molecular models. In Fig-
ure 5, the close geometric proximity and associated small bounding volumes will re-
quire updates after even small movements. This model has been the subject of consid-
eration for dynamic visualization of molecular simulation [12] and is the current test
case for algorithmic performance. The geometry in Figure 5 is also multi-dimensional,
but the geometric topology used has well-known generalizations beyond dimension one.
Guidance for extension to higher dimensions may be gained by considering other pa-
pers on topological approximation of 2-manifolds [1, 3, 5, 9]. A particularly relevant

12Image credit: http://domino.research.ibm.com/comm/pr.nsf/pages/rscd.bluegene-
picaa.html.
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Fig. 5. Dense molecular configuration.

comparison is to recent results focusing on a sufficiently dense set of sample points [5]
to give both error bounds and topological guarantees.
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Stripe Parameterization of Tubular Surfaces

Felix Kälberer, Matthias Nieser, and Konrad Polthier

Freie Universität Berlin

Abstract. We present a novel algorithm for automatic parameterization of tube-
like surfaces of arbitrary genus, such as the surfaces of knots, trees, blood vessels,
neurons, or any tubular graph with a globally consistent stripe texture. Mathe-
matically, these surfaces can be described as thickened graphs, and the calculated
parameterization stripe will follow either around the tube, along the underlying
graph, a spiraling combination of both, or obey an arbitrary texture map whose
charts have a 180 degree symmetry.
We use the principal curvature frame field of the underlying tube-like surface to
guide the creation of a global, topologically consistent stripe parameterization of
the surface. Our algorithm extends the QuadCover algorithm and is based, first,
on the use of so-called projective vector fields instead of frame fields, and second,
on different types of branch points. That does not only simplify the mathematical
theory, but also reduces computation time by the decomposition of the underlying
stiffness matrices.

1 Introduction

Tubular surfaces appear in many application areas such as networks of blood vessels
and neurons in medicine, or tube and hose systems in industrial environments. Often a
tubular structure must be recovered and segmented from noisy scan data. Our stripe pa-
rameterizer is an efficient and automatic method for the parameterization and remesh-
ing of free-form tubular surfaces given as triangle meshes. Our special focus lies on
free-form surfaces which are not made out of regular, cylindrical tube pieces - those
can be handled better by other algorithms from CAD. An additional benefit of the stripe
parameterization is the enhanced visualization of the underlying geometric structure.

1.1 Previous work

Surface parameterization is an active research area. We will not attempt a complete
review of the literature but instead refer the reader to the surveys by Floater and Hor-
mann [6] and [11].

A very early surface parameterization method is the Tutte’s [24] barycentric graph
embedding. Tutte embeddings are of combinatorial structure and do not capture the
geometry of the surface. Early global parameterization methods were introduced by
Haker, Gu and Yau [8,9,13] who studied conformal parameterizations. Conformal maps
are angle preserving at the cost of possibly large length distortions, as angles and lengths
can not be preserved at the same time.

To reduce length distortion, Kharevych et al. [16] used cone singularities for con-
formal parameterization, which relax the constraint of a flat parameter domain at few
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isolated points. Such singularities have proven to be essential for high quality parame-
terizations and have been used in other parameterization schemes as well.

Tong et al. [23] use singularities at the vertices of a hand-picked quadrilateral meta
layout on the surface. The patches the meta layout are then parameterized by solving
for a global harmonic one form. Dong et al. [3] use a similar idea for parmeterization
but create the quadrilateral meta layout automatically from the Morse-Smale complex
of eigenfunctions of the mesh Laplacian.

Ray et al. [21] parameterize surfaces of arbitrary genus with periodic potential func-
tions guided by two orthogonal input vector fields. This leads to a continuous parame-
terization except in the vicinity of singular points on the surface. These singular regions
are detected and reparameterized afterwards. With the QuadCover algorithm [15] we
built upon their idea to use an input field as guiding directions for parameter lines. Input
fields can be principal curvature directions, for example, or user-designed fields using
one of the recent tools for the design of rotational symmetry fields like [22], [18], [25],
or [17]. The idea of QuadCover is to find a parameterization whose gradient matches
the input directions as well as possible.

The literature on parameterization of tubular objects is by far not as extensive as for
general surfaces. Huysmans et al. [12] construct a progressive mesh which they map
to an open cylinder. A subsequent iterative scheme optimizes the vertex positions in
the cylindrical domain. Unfortunately, that method can not handle bifurcations. Antiga
and Steinman [1] handle blood vessels with bifurcations by splitting the vessel tubes
at their branches, and parameterize each segment separately which leaves visible arti-
facts at the joints of the segments. Zhu et al. [26] use conformal parameterizations on
tubular objects. Since conformal maps do not allow precise control over the direction
of parameter lines, they cannot be aligned with the tube axis.

1.2 Contributions

We introduce the stripe parameterizer, an algorithm for the generation of globally con-
sistent stripe parameterizations, see Fig. 1 and 9. Each parameterization is a collection
of texture maps which may also be used to remesh and segment a surface. The stripe
parameterizer is a generalization of QuadCover, which parameterizes general surface
meshes. The stripe parameterizer allows to map stripe patterns onto a surface, i. e.,
texture maps whose individual charts are symmetric with respect to rotations of 180
degrees. In contrast to QuadCover, where all texture image charts have to be symmetric
with respect to 90 degree rotations, the stripe parameterizer allows a more general set
of texture images with only 180 degree symmetry.

We develop the mathematical theory for stripe parameterizations and discuss the
differences to grid parameterization techniques including those in QuadCover. Stripe
parameterizations allows only a subset of the branch point types of QuadCover. For
example, cone points of index 1/4 at the corners of a cube can not be used in stripe pa-
rameterizations since 90 degree rotational symmetric textures charts would be required,
see the cube in Fig. 2.

Only one type of branch points can occur on a 2-sheeted covering, so there is no
need to handle different branch types. The 4-sheeted branched covering surface from
QuadCover projects onto a unique 2-sheeted branched covering surface for the stripe
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parameterizer. Furthermore, the stiffness matrix from QuadCover decomposes into two
matrices of quarter size. Thus, the numerical effort of computing a stripe parameteriza-
tion is seriously reduced.

We tested the stripe parameterizer on several test models and real world examples
including clinical data and various tree-like surfaces.

Fig. 1. Tree with stripe parameterization. Singularities are marked in green. The texture
image consists of a vertical stripe visualizing the u-isolines of the parameterization.

2 Overview

A stripe parameterization is a special case of a (u,v)-parameterization, where the pa-
rameter lines can be globally separated into u-lines and v-lines, as in Fig. 1. This sep-
aration property is not present on general surfaces if singularities of quarter index are
present.

Stripe parameterizations can be used for mapping texture images which are sym-
metric by rotations of 180 but not necessarily 90 degrees, such as stripe textures. An
example of a parameterization which is not suitable for mapping stripe textures is shown
in Fig. 2.

Projective fields. The parameterization is guided by a so-called projective field,
which is a vector field on M, where the vectors v and −v are identified for all v ∈ TpM,
p ∈ M. Thus, the vectors may change their sign without producing a discontinuous
projective field. Note, that projective fields are a special case of N-RoSy fields for N = 2
as introduced by Palacios and Zhang [18].

The algorithm takes two projective fields as input and generates two scalar func-
tions (u and v), whose gradients match up with the input fields as well as possible. The
coordinates u and v can be used as texture coordinates in order to map a pattern onto
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Fig. 2. QuadCover parameterization with quad texture and stripe texture. Stripe textures
can not simply be used in parameterizations from QuadCover.

the surface. If you are only interested in a stripe pattern, you could use only one input
field and skip the computation of v.

Construct an input field. It is up to the user to construct an input field. A canonical
choice is the field of minimum curvature: In each point, the corresponding vector points
in direction of the (absolute) smaller principle curvature and has unit length. Using
this field (together with the 90 degrees rotated field) as the input fields yields nearly
curvature line parameterizations.

The algorithm. Starting from a given projective field, the algorithm first constructs
a locally integrable field. Second, the surface is cut open to a topological disk and this
field is integrated yielding a parameterization. Third, the parameterization is adapted
such that the grid lines are connected across the cuts. Details are given in Sect. 4.

Special issues arise when the projective field has singularities. They are resolved
by using branched covering spaces. The projective field naturally simplifies to a sin-
gle vector field on the covering, and then standard Hodge-Helmholtz decomposition
techniques are used to assure global integrability. Details are explained in Sect. 3.2.

3 Mathematical Setting

We use the theory of QuadCover’s 4-fold symmetric fields and apply it to the projective
vector field setting with 2-way symmetry properties. We introduce the notion of pro-
jective vector fields and discuss consequences for the branched 2-fold covering spaces.
We will describe our concepts in the smooth cast first, followed by the discretization for
triangle meshes.

3.1 Parameterizations and Matchings

Smooth case. Given a smooth 2-manifold M with charts Ui ⊂ M, ∑i Ui = M. A param-
eterization is a collection of diffeomorphisms fi = (ui,vi) that map all charts into the
parameter domains fi : Ui →Ωi ⊂ R

2. One can now visualize the parameter lines on M
as the preimage under fi of the unit grid N×R (ui lines) and R×N (vi lines).
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A globally continuous stripe parameterization consists of parameter functions
fi in the charts Ui, such that the ui lines (resp. vi lines) coincide in all regions where
two charts Ui, Uj overlap. Thus, the parameter lines of a stripe parameterization can be
globally separated into u-lines and v-lines.

Given two guiding fields on the surface, we will only focus on computing the u-
component from the first input field, as the same rules apply for computing v from the
second field.

The transition functions between adjacent charts of a stripe parameterization satisfy
two conditions: First, the gradients of ui and u j have to agree up to sign, because we do
not distinguish ui lines and −ui lines on the parameterized surface. Thus, the gradients
of the charts are related by

∇ui(p) = (−1)ri j∇u j(p), p ∈ Ui ∩Uj (1)

with a constant number ri j ∈ {0,1} on the intersection Ωi ∩Ω j. We call the values ri j

matchings between charts Ui and Uj.
Second, the values of ui and u j may differ only by integer values, since the u lines

in the unit grid are invariant under translations by integer values.
Thus, we require the values of u in overlapping charts Ui and Uj to fulfill:

u j(p) = (−1)ri j ui(p)+ ti j , ri j ∈ {0,1}, ti j ∈ N, p ∈ Ui ∩Uj . (2)

Discretization. Each triangle of the mesh is considered as a chart. The transition
function between two adjacent triangles is fully determined by the matching and the
translation vector associated to their common edge, see (2). See Sect. 4.1 for details on
how we compute the matching.

3.2 Projective Fields

A parameter function u can be characterized by its gradient field. In each chart, the gra-
dient field ∇u is a continuous vector field. At the transition between two charts Ui, Uj,
the sign of the vectors may flip depending on the matching. Thus, we cannot describe
the derivatives of u as a globally defined vector field, but use projective fields which are
invariant under sign flips.

Definition 1. Given a manifold M with charts Ui and matchings ri j . A projective field K
on M is a collection of one vector field Ki in each chart Ui, such that for all overlapping
charts Ui ∩Uj 
= /0:

Kj = (−1)ri j Ki. (3)

Discretization. The projective fields are piecewise constant on the triangles. Store
one vector per triangle and the matching number on each edge. This fully defines a
discrete projective field. An odd matching at any edge means that the vector in one
adjacent triangle corresponds to the negated vector of the other triangle.
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3.3 Branched Covering Spaces

We use the notion of branched covering surfaces for an equivalent description of pro-
jective fields. A projective field on the input surface can be regarded as a vector field on
a covering surface. This allows us to apply standard vector field calculus to projective
fields.

Coverings. First, recall some definitions on Riemann surfaces, see [5,7,14]. We will
give an abstract definition of a covering and explain below how we actually construct
one.

U ′
i,0

U ′
i,1

0
i

1
i

Ui

i

i j

Ui Uj

U ′
i,0

U ′
i,1

U ′
j,0

U ′
j,1

i j

Ui Uj

Fig. 3. From left to right: Trivial covering. / Patching two coverings together with
matching ri j = 1. / A projective field lifted to a vector field on the covering.

Definition 2. Let M be a Riemann surface. A 2-sheeted covering M′ of M is a Riemann
surface with a local homeomorphism π : M′ → M with the property: For each point
p ∈ M, there exists a neighborhood Up whose preimage π−1(Up) is the union of exactly
two pairwise disjoint topological disks. Fig. 3, left shows a 2-sheeted covering.

We allow branch points p in our setting, where the preimage of a neighborhood of
p is exactly one topological disk (instead of two), cp. Fig. 4, middle.

Fig. 4. Left: Stripe parameterization with branch point. The isolines of the u function
and its gradient vectors are drawn. Middle: The same parameter function on the 2-
sheeted covering (the covering surface is not embedded, it has self-intersections). Right:
Branch point on a parameterized tube object.
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Construction. We construct a covering of M as follows: From each chart Ui, make
two copies (layers) and name them U ′

i,0 and U ′
i,1. Let πi : U ′

i,0 ∪U ′
i,1 →Ui be the operator

which projects the copies back to Ui and τi,0 : Ui → U ′
i,0, τi,1 : Ui → U ′

i,1 the inverse
maps. The two layers U ′

i,0 ∪U ′
i,1 together with πi is called the 2-sheeted trivial covering

of the chart Ui (Fig. 3, left).
In the next step, we glue these layers at the overlaps of the adjacent charts together.

For each pair of charts the layers can be glued in two different ways. The matchings ri j

define how the layers are identified.

Definition 3. A covering surface induced by matchings ri j is uniquely defined by the
following construction:

Let (U ′
i ,πi) be 2-sheeted trivial coverings of the charts Ui. The covering surface is

given as the union of all U ′
i where the following points are identified: In each two over-

lapping charts Ui, Uj, identify all points τi,0(p) with τ j,ri j(p) and τi,1(p) with τ j,1−ri j(p),
p ∈ Ui ∩Uj (see Fig. 3, middle).

Since the trivial coverings of charts have no branch points and the charts cover
the surface, we cannot construct any branch points this way. We allow branch points
by removing single points from the surface. Depending on the matchings we obtain a
branch point there as shown in Fig. 3.

Discretization. In the discrete setting, branch points are located at vertices. On a
2-sheeted covering they occur when the sum of all matchings of incident edges is odd.
This means starting somewhere in the neighborhood of v and walking once around the
vertex ends on a different layer in the covering than the start point.

3.4 Vector Fields on Covering Spaces

Projective fields can be described as vector fields on a covering surface. This result
allows us to apply the classical vector field theory to projective fields.

A projective field K on M with matchings ri j canonically lifts to a vector field K′ on
the covering induced by ri j . In each chart Ui, define the vectors on its trivial covering as
follows: For all p ∈U ′

i,0 set K′(p) := Ki(πi(p)) and for p ∈U ′
i,1 set K(p) :=−Ki(πi(p)),

see Fig. 3, third image.
The result is a globally well defined vector field K′ on M′, since the layers of the

covering are connected in the same way as the vector fields permute when another chart
is chosen.

Definition 4. Let M be a manifold with matchings ri j and M′ the induced covering. A
projective field lifted to a vector field K on M′ is called a covering field of M.

4 Stripe Parameterizer Algorithm

In this section we describe the main extensions and simplifications which have been
made to QuadCover to yield the stripe parameterizer. An important difference is the use
of projective vector fields instead of frame fields.
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Compute the potential function. Given a surface M together with a projective
field K, or, equivalently, a covering surface M′ with a vector field K′. The parameter
function is a scalar function u′ : M′ →R. It can be projected back to a parameter function
u : M → R by taking the values of u′ in one of the two layers (it does not matter which
layer is taken, because the parameter lines in both layers will be congruent).

The parameterization algorithm is divided into two stages: Assuring local continuity
and global continuity. The two stages are explained in Sect. 4.3 and 4.4. Sect. 4.1 deals
with the creation of an input field. For the integration of a projective field, we need to
cut the surface open at a given cut graph. Sect. 4.2 explains the construction of such a
cut graph.

4.1 Generate Input Field and Matching

Curvature field. In our experiments, we used the field of minimum principle curvatures
as input to the parameterizer. Discrete principal curvature directions and values can
be calculated as proposed in [2] or [10]. Note that we deal with curvatures given on
triangles, not on vertices.

Finally, one gets a unit vector v in each triangle pointing along that principle curva-
ture direction which corresponds to the (absolute) smaller curvature value. In triangle t,
set K0(t) := v and K1(t) = −v.

We define matchings ri j between every two adjacent triangles ti and t j by setting
ri j = 0 if 〈K0(ti),K0(t j)〉 ≥ 0 and ri j = 1 otherwise. This ensures that the field does not
turn around, but proceeds as straight as possible.

Note that the position of branch points immediately follows from the choice of
matchings and the matchings are determined by the input field. A branch point arises at
each vertex where the sum of matching of outgoing edges is odd.

4.2 Generating Cut Paths

A cut graph is a graph G embedded in the surface, such that M \G is a topological disk.
We use a cut graph for the integration of projective fields in Sect. 4.3, and use cut paths
for the global continuity in Sect. 4.4.

Cut paths on M. Loosely speaking, cut paths are a set of paths on the surface whose
union is a cut graph. On closed surfaces, generating loops of the first fundamental group
are suitable cut paths. In QuadCover, we use certain generators, namely the shortest
system of loops as computed in Erickson and Whittlesey [4]. A system of loops is a set
of 2g simple loops with a common base point, whose union is a cut graph.

We can treat branch points as tiny holes, as if they were removed from the surface
(see Sect. 3.3). Erickson and Whittlesey handled closed surfaces only, but we might
have a surface with boundary. Once we have more than one boundary component, each
additional boundary component needs one path. Thus, in presence of b > 1 boundary
components (or branch points) we need 2g + b−1 paths.

In our implementation for triangle meshes we identify all boundary vertices and
branch points into one point B. On this surface (now without any boundary), we apply
the method of [4] with B as the base point. When we undo the identification of boundary
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points, the paths which looped through B now turn into paths that connect boundary
components and branch points.

Cut paths on covering. For our algorithm, we need cut paths on the covering sur-
face M′. We get the cut paths by computing them on M and lifting them to the covering.
The resulting paths cut M′ into two separate simply connected pieces. Thus, one of the
paths could theoretically be discarded. It does not matter for our method that the cover-
ing decomposes into two pieces. It is more important that the cut paths are symmetric
with respect to a change of layers, i. e., for each path there is another path which runs
in the other layer and has the same projection onto M, see Sect. 4.4.

Fig. 5. Surface with boundary and two
branch points. The colored lines visualize the
five cut paths.

Fig. 6. Parameterization after the first stage.
Grid lines are discontinuous across the cuts.

4.3 Local Continuity

The gradient of the parameterization should align with the given input field as well as
possible, i. e., u′ should minimize the energy

E(u′) =
∫

M′
‖∇u′ −K′‖2dA. (4)

Recall that the vectors of K′ are identical up to a different sign in the two layers.
Since the energy has a unique minimum and due to the symmetric shape M′, the solution
u′ is also a map with negated function values in different layers.

The optimization problem (4) can be solved using the Hodge-Helmholtz decompo-
sition. It states that any vector field K′ has a unique decomposition

K′ = P+C + H (5)

with a gradient field P, a cogradient field C and a harmonic field H. P and H are curl
free (locally integrable), whereas C contains the curl part. Furthermore, the three spaces
of potential fields, copotential fields and harmonic vector fields are perpendicular in L2

norm. Thus, discarding the second term leads to a curl free field X̃ ′ := P + H whose
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integral is the minimizer of Energy (4). The middle term C of the Hodge-Helmholtz
decomposition is a non-conforming function and is found by solving a linear system of
equations with one variable per edge. For details on the Hodge-Helmholtz decomposi-
tion and integration of discrete vector fields see [19].

So far, the parameterization algorithm outlines as follows:

1. Perform Hodge-Helmholtz decomposition of input field K′.
2. Discard the non-integrable curl part and obtain a locally integrable field.
3. Cut the surface open to be simply connected and lift the cut graph to the covering,

such that the covering is cut into two connected pieces.
4. Obtain the parameterization u′ by integration: Perform a linear run over all ver-

tices (using a growing disk which does not cross the cut graph) and compute the
parameter values at each vertex such that the gradient matches up with the vector
field.

4.4 Global Continuity

The parameter lines of the solution u′ from the previous paragraph are not necessarily
continuous everywhere. They may have a mismatch at the cut graph G, see Fig. 6. Let
γi be a set of cut paths. For each path γi and each point p ∈ γi, one can measure the gap
di (discontinuous jump) as the difference of function values on the right and left side of
the path.

The parameterization can now be “repaired” such that the parameter lines match up.
This is exactly the case if all gaps are integer values. The repairing algorithm is based
on the following observation: along each path γi, the gap is always a constant di, since
the derivative of the function is locally integrable. Note, that there is an exception if two
paths γi,γ j merge and run on top of each other. In this case, the gap turns into di + d j.
For further details, see [15].

Thus, the grid lines are globally continuous if and only if all di ∈ Z. In order to
adapt the function to fulfill the global continuity condition, we add a scalar function ψ
to u′ such that ũ′ := u′ +ψ satisfies d̃′

j ∈ Z (where d̃′
j are the gaps of ũ′).

The remaining problem is to find this scalar function with given gaps. In order to
minimally distort the initial parameterization, we let ψ be a harmonic function, as they
are the smallest functions with given gaps in L2 norm. ψ is found via minimizing the
Dirichlet energy ED =

∫
M ‖∇ψ‖2dA under the constraint of given gaps.

The second stage of stripe parameterizer has the following outline:

1. Compute cut paths γi.
2. Measure gaps di.
3. Find harmonic map ψ with gaps round(di)−di.
4. Add ψ to u′.

In step 3, the gaps are rounded to the closest integer. Rounding the gaps such that
the distortion is minimized is an NP hard combinatorial problem. As we do not solve
this problem exactly, the rounding behavior slightly depends on the choice of cut paths.
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5 Results

We have tested our method on different tube-like surfaces. Simple examples are the
knots in Fig. 7 without branchings. The principal curvature directions are stable and can
be computed very accurate in each point, so the algorithm produces a parameterization
of high quality.

Fig. 7. Left: Only u coordinates are used to map stripes on the knot surface. Middle:
Only v coordinates are used. Right: u and v coordinates are used. The texture image is
a diagonal line which connects two opposite corners.

Fig. 8. The tree model of Fig. 1 with diagonal stripe pattern generates a candy cane.
Singularities are marked in green.

The tree in Fig. 8 has a more complicated shape. It bifurcates and the thickness
of the twigs vary. Note the accurate placement of branch points. There are two branch
points at each bifurcation, allowing the circular stripes to split.

Fig. 10 shows a complex neuron model of genus 23, captured using confocal mi-
croscopy. The produced parameterization has very little distortion even on this compli-
cated object.

The unshaded version in the top demonstrates how a stripe pattern helps to perceive
the complicated shape of the neuron. But also in the fully shaded images, the stripes
help to capture the object more easily.
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Fig. 9. Parameterized blood vessel, captured by MRT. Courtesy of Fraunhofer MEVIS.

Fig. 10. Parameterized neuron by courtesy of Freie Universität Berlin, Department of
Neurobiology. Top: depth shading. Bottom: full shading.
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The surface in Fig. 9 shows a human blood vessel which contains parts with a very
large tube radius as well as very filigrane branches. Regardless of this difference in the
scaling, the stripe density stays nearly constant everywhere.

The parameterization of these models was fully automatic. We only chose the den-
sity of the lines and the amount of curvature field smoothing. The models had approxi-
mately 20k to 40k triangles and the algorithm terminated in less than a minute.
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sign. ACM Trans. Graph., 27(2):1–13, 2008.

23. Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. Designing quadrangulations with
discrete harmonic forms. In Eurographics Symp. on Geom. Proc., 2006.

24. William T. Tutte. How to draw a graph. Proc. London Math. Soc., s3-13(1):743–767, 1963.
25. E. Zhang, J. Hays, and G. Turk. Interactive Tensor Field Design and Visualization on Sur-

faces. IEEE Trans. on Visualization and Computer Graphics, pages 94–107, 2007.
26. L. Zhu, S. Haker, and A. Tannenbaum. Flattening maps for the visualization of multi-

branched vessels, 2005.
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Abstract. The (apparent) contour of a smooth mapping from a 2-manifold to
the plane, f : M → R

2, is the set of critical values, that is, the image of the points
at which the gradients of the two component functions are linearly dependent.
Assuming M is compact and orientable and measuring difference with the erosion
distance, we prove that the contour is stable.

1 Introduction

The most familiar setting of the problem studied in this paper is the view of a three-
dimensional, solid body. We only see its surface and only one side at a time, but we get
cues about its shape from the curve of points at which the surface normal is orthogonal
to the viewing direction [17]. The view is the projection to a plane and its apparent
contour is the image of the mentioned curve under the projection. Common roughly
synonymous terms are fold, silhouette, outline, and profile. Only the first of these terms
has a precise meaning introduced by Whitney [20]. Specifically, he defines fold points
and cusp points that admit parametrizations of the neighborhood such that the mapping
can locally be written as f (x1,x2) = (x2

1,x2) and f (x1,x2) = (x1(x2
1 − x2),x2), and he

showed that these are the only kinds of critical points that are stable under infinitesimal
perturbations. We will refer to them as double points and triple points of the mapping.
A related concept is the Jacobi curve as introduced in [9]. This is the set of critical
points, and its image is the apparent contour. In computer graphics, the contour of the
projection of a surface is often used for artistic enhancements of displays [6, 7]. In the
typical case, the computational cost of the contour is significantly smaller than that
of the entire surface [13, 16]. This motivates its use in efficient rendering; see [15]
for a survey of algorithms generating contours. Additional applications are for shadow
calculations, occlusion testing, and the simplification of surface models [8, 19].

The main result in this paper is a quantitative contribution to the structural stability
of the apparent contour. This study began with Whitney’s seminal paper [20] which
originated the related fields of catastrophe theory [2] and singularity theory [14]. Look-
ing at smooth mappings of manifolds, these fields focus on the structure of singularities

∗This research is partially supported by the Defense Advanced Research Projects Agency
(DARPA) under grants HR0011-05-1-0007 and HR0011-05-1-0057.
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and their stability under infinitesimal perturbations. In contrast to these studies, we al-
low for more severe perturbations and we quantify the changes in the contour. In a
nutshell, we prove that a small perturbation of the mapping of an orientable 2-manifold
to the plane changes the apparent contour only slightly. This seems plausible but is
false for naive measurements of the distance between two contours. Indeed, even small
perturbations can introduce arbitrarily many creases, each delimited by arbitrarily long
contour lines. The crucial insight is that creases are thin, that is, they are delimited by
pairs of contour lines that run roughly parallel to each other at close distance. We thus
have two cases: creases that are thin in a technical sense that we will make precise
shortly, and contour lines that are close to contour lines of the unperturbed mapping.
This distinction is crucial in any effort to simplify the contour of a mapping in a way
that retains its essential character.

Outline. Section 2 explains the setting for our study. Section 3 introduces important
concepts. Section 4 presents our main result, a global statement of stability of the ap-
parent contour. Section 5 contains the proof. Section 6 concludes the paper.

2 The Setting

In this section, we describe the setting, namely generic, smooth mappings from an ori-
entable 2-manifold to the plane.

The apparent contour. Instead of projections of surfaces, we consider the more gen-
eral setting of mappings f : M → R

2, in which M is a compact, orientable 2-manifold
without boundary. It may or may not be embedded in R

3. We assume the mapping is
smooth and satisfies a small number of requirements we need in the proof of our result.
This includes that for most points x ∈ M, the derivative of f at x, which we denote as
D f (x) : R

2 → R
2, is surjective. We call these the regular points of f . All other points of

M are critical points of f and their images are critical values. A point in R
2 is a regular

Fig. 1. The projection of the torus to the plane. The distance function defined by the
marked value in the plane is illustrated by showing one of its sublevel sets.
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value if it is not a critical value or, equivalently, if all its preimages are regular points.
We call the set of critical values the (apparent) contour of the mapping, denoting it by
Contour( f ). The adjective serves as a reminder that we are not talking about a structural
property of the 2-manifold but rather of its mapping to the plane. We refer to Figure 1
for an example. The vertical projection of the torus to the plane below it has a contour
that consists of two concentric circles. In contrast, the projection to the drawing plane
is more complicated, with the inner circle twisting up twice, forming a triangle on the
left and another one on the right. Two vertices of each triangle are cusps, that is, values
at which the contour comes to a sudden halt and reverses its direction. The third vertex
is a crossing, that is, a value at which the contour intersects itself.

Distance functions. Fixing a value a ∈ R
2, we let fa : M → R be the distance function

that maps every point x to the Euclidean distance of its image from a, that is, fa(x) =
‖ f (x)−a‖2. In Figure 1, one such distance function is illustrated by showing the value,
the two points in its preimage, a disk around the value, and the preimage of the disk.
The sublevel set of fa for threshold r ≥ 0 is the set of points with function value at most
r, denoted as Mr(a) = f−1

a [0,r]. Writing Br(a) for the closed disk with center a ∈ R
2

and radius r, the sublevel set of fa is the preimage of this disk, Mr(a) = f−1(Br(a)).
Following Morse theoretical ideas, we increase r and notice that the sublevel set changes
its topology only at critical values. To explore this, we apply the chain rule to get the
derivative of fa at a point x as the composition of the derivative of f at x and the scalar
product with u = f (x)− a. Writing D f (x) : R

2 → R
2 for the former and σu : R

2 → R

for the latter, we have D fa(x) = σu ◦D f (x) : R
2 → R. The point x is regular for fa if

D fa(x) is surjective and it is critical if D fa(x) is the zero function. If x is regular for f
then D f (x) is surjective, and unless f (x) = a, this implies that D fa(x) is surjective and
hence x is regular for fa. On the other hand, if x is critical for f then it may or may not
be critical for fa but it will be critical for the distance function defined by another value.

CRITICAL POINT LEMMA. A point x ∈ M is critical for f iff there exists a value
a 
= f (x) in R

2 such that x is critical for fa.

Genericity. We aim at limiting the class of mappings to those with manageable prop-
erties. For reasons of exposition, we do not strive to make the class as large as possible
but rather large enough to be interesting. In particular, we sacrifice some generality to
avoid the need to explain homology groups before giving the proofs.

DEFINITION. Let M be a compact, orientable 2-manifold without boundary. We call
a smooth mapping f : M → R

2 generic if

(I) the distance function, fa, is tame for every value a ∈ R
2;

(II) there are no critical points of f beyond double and triple points;
(III) the apparent contour of f has finitely many cusps and crossings.

Condition (I) means that fa has only a finite number of critical values and every sublevel
set consists only of finitely many components with finitely many holes. Condition (II)
prohibits critical points other than the two simple types, fold points and cusp points.
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Not allowing other, more complicated critical points is convenient and not a serious
restriction since the corresponding mappings are dense in the larger class of smooth
mappings [20]. Condition (III) implies the existence of a finite, smooth stratification of
the plane compatible with the contour. Specifically, with X

1 = Contour( f ) and X
0 the

set of cusps and crossings, we have a decomposition /0 = X
−1 ⊆ X

0 ⊆ X
1 ⊆ X

2 = R
2

such that each stratum, Si = X
i −X

i−1, is either empty or an i-dimensional manifold.
Calling the components of the strata the pieces of the stratification, we have only a
finite number and each piece is smoothly embedded in R

2. We call the pieces in S2 the
chambers of the stratification.

3 The Concepts

In this section, we introduce the main concepts needed to give a precise statement of
our result.

Degree. An important step in our construction is the assessment of the shape of a com-
ponent in the sublevel set of a distance function. For this purpose, we use the standard
concept of degree, which we first define for the entire 2-manifold. To begin, we orient
all sufficiently small, simple, closed curves in M in a consistent manner. This is possi-
ble because M is orientable. Let a ∈ R

2 be a regular value and f (x) = a. A sufficiently
small, simple, closed curve going around x in M maps injectively to a closed curve go-
ing around a in R

2. We count +1 if this curve goes around a in a counterclockwise order
and −1 if it goes around a in a clockwise order. Finally, we sum these numbers over all
preimages of a and denote the result as deg( f ,a). Extending this definition to critical
values, we count 0 for each double point and +1 or −1 for each triple point. Moving a
continuously from one value to another does not change this number. This is clear if we
stay inside the same chamber but also when we cross the contour, picking up or losing
two points whose contributions cancel each other. This implies deg( f ,a) = deg( f ,b) for
all a,b ∈ R

2, and it makes sense to call this value the degree of f , denoted as deg( f ).
Since M is compact, its image under f does not exhaust R

2. The degree of f at a value
outside the image vanishes, which implies deg( f ) = 0.

Next, consider the closed disk Br(a) with center a ∈ R
2 and radius r ≥ 0. As men-

tioned earlier, the preimage of this disk is the sublevel set of fa for threshold r. Let C
be a component of this sublevel set and f |C : C → R

2 the restriction of f to C. For each
value b in Br(a), we get deg( f |C,b) by summing the contributions over all points in the
preimage, f |C−1(b) = f−1(b) ∩C. As before, this number is the same at all values in
the disk so we can call it the degree of f |C. However, the number may change when we
leave the disk so the degree is not necessarily zero.

Level sets and well function. We study the contour in terms of the family of preimages
of all values. For a given value a ∈R

2, we call the preimage the level set of f at a. Equiv-
alently, this is the zero set of the corresponding distance function, f−1(a) = f−1

a (0). By
Condition (I), this is a finite set of points in M. The central concept in our approach
is the health of these points. Considering the sublevel set, Mr(a) = f−1

a [0,r], we wish
to distinguish between components that necessarily map to the entire disk and compo-
nents that can be pushed off the disk with moderate effort. We call a component C of



The Stability of the Apparent Contour 31

Mr(a) well if the degree of f |C is non-zero and ill if the degree is zero. For r = 0, each
point in the level set forms its own component, which is well if the point is regular or
a cusp and ill if it is a double point. As we increase r, we get a nested sequence of
sublevel sets, Mr(a) ⊆ Ms(a) for all 0 ≤ r ≤ s <∞. If the interval [r,s] does not contain
any critical value of fa then the components of Mr(a) grow continuously into those of
Ms(a) without changing their degree and status. At a simple critical value of fa, we ei-
ther encounter a new component or we merge two old components into one. The newly
formed component has vanishing degree and is therefore ill from the start. When we
merge two components, we add their degrees. The status of the new component thus
depends only on the status of the old components. Specifically, merging a well and an
ill component gives a well component, while merging two well or two ill components
gives an ill component. There are also non-simple critical values, where we encounter
two or more critical points at the same time or we encounter a cusp approaching it from
its normal direction. In such a case, the change in the level set can be understood as the
composition of a few simple changes as described.

The history of a component in the nested sequence of sublevel sets is therefore
straightforward. If the component begins as a regular point or a triple point then it starts
out well and falls ill later, at some critical value of fa. We call this a terminal critical
value to distinguish it from others at which no component falls ill. If the component
begins as a double point then it is ill from the start. Once a component is ill, it does
not get well any more (except it can become part of another, well component). It thus
makes sense to introduce a function ϕ : M → R defined by mapping x to the terminal
critical value of fa, with a = f (x), at which the component that contains x falls ill. We
call ϕ the well function of f and ϕ(x) the well threshold of x. We have ϕ(x) = 0 iff x is
a double point and ϕ(x) > 0 if x is a regular point or a triple point.

Well diagrams. Fixing a value a ∈ R
2, we get a well threshold for each point x ∈

f−1
a (0). We collect these thresholds to form a multiset of real numbers, called the well

diagram of fa and denoted as Dgm( fa). For most regular values a of f , this diagram
consists of an even number of positive thresholds that come in equal pairs. For each
pair, the two contributing points lie on patches facing opposite directions. A threshold
in Dgm( fa) is simple if it is positive and occurs only twice. A non-trivial property of
the well diagram is its stability; see the Stability Theorem for Well Diagrams in Section
5 but also [11]. To make this precise, let a,b ∈ R

2 and let 0 ≤ u1 ≤ u2 ≤ . . . ≤ ul and
0 ≤ v1 ≤ v2 ≤ . . . ≤ vl be the thresholds in the well diagrams of fa and fb, possibly after
adding zeros to the shorter sequence so we get the same length for both. The mentioned
theorem states that |ui−vi| is bounded from above by the L∞-difference between the two
functions. Using the triangle inequality, we get ‖ fa − fb‖∞ ≤ ‖a−b‖2 and therefore

max
1≤i≤l

|ui − vi| ≤ ‖a−b‖2. (1)

In words, corresponding well thresholds change at most by the Euclidean distance be-
tween the values in the plane.

Surgery. The stability of the well diagram expressed in (1) provides some hope that the
well function defined earlier is continuous. This is indeed the case at points with simple
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well thresholds. Similarly, ϕ is continuous at double points, where it is zero. However,
continuity is not guaranteed at points with positive but non-simple well thresholds. Let
a ∈ R

2 be a value and u > 0 a threshold that occurs at least four times in Dgm( fa).
Equivalently, a is equidistant to at least two different values of the contour. Take for

a

x1

x2

x3

x4

bc

Fig. 2. Schematic cross-section of the twisted triangle in Figure 3. To make the well
function continuous, we cut at x1 and x3 and reglue the sides as indicated by the light
and dark shading.

example a value a somewhere in the interior of the bold, black segment connecting the
upper left cusp with the center of the twisted triangle in Figure 3. It has four points in
its preimage, x1, x2, x3, x4, indexed from front to back in the picture. Figure 2 shows
a section of the configuration, crossing the black, bold segment at a. These four points
have four identical well thresholds. For a value b to the right of a, the top (front) two
points in the preimage have a small well threshold, while for a value c to the left of a,
the middle two points have a small well threshold. The other preimages of b and c have
a large well threshold. As we move from b to c, we observe a jump of ϕ at x1 and x3.
The same jump occurs along the entire length of the black, bold segment. We remedy
the discontinuity by cutting along the segment and regluing the sides as necessary to
get continuity. In particular, the surfaces to the left of x1 and to the right of x3 are glued
and so are the surfaces to the right of x1 and to the left of x3.

Branch points. Even more interesting is what happens at the center, a, of the twisted
triangle, the lower right endpoint of the bold segment in Figure 3. It has three closest
values on the contour. We study the structure by going around a in a counterclockwise
circle and drawing the well diagrams as we go. Each value b on this circle has four
preimages, y1,y2,y3,y4, indexed from front to back, as before. Growing the disk cen-
tered at b, we get a tree that describes how the components of the preimage merge until
only one component remains. All four components start out well and fall ill in pairs
during the process. This is illustrated in Figure 3, where well components are repre-
sented by bold branches in the trees and their falling ill is marked by shaded dots. As
discussed earlier, there is a switch between y1 and y3 when we cross the bold segment.
Symmetrically, there is a switch between y2 and y4 when we cross the segment con-
necting the lower cusp with the center of the triangle. The switches imply that we have
to go around the circle twice to return to the original configuration. In other words, the
surgery along the bold segment creates a branch point at the center of the triangle, that
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Fig. 3. Enlarged view of the twisted triangle to the left of the hole in the torus in Figure
1. The trees sketch the health histories of the points in the level sets at the marked
values.

is, a point with a disk neighborhood that covers the neighborhood of a ∈R
2 twice. Using

complex numbers to parametrize the neighborhood of a, the map to the neighborhood
of the branch point can locally be written as z 
→ z2/‖z‖.

We note that the situation leading to the creation of the branch point reminds us of
the concept of a ring species in biology; see e.g. [12]. Locally, at a value b, we seem
to have two distinct species, y1 and y3, which we discover to be the same if we take a
more global view of the situation.

Summary. Using the distance function defined for a value a ∈R
2, we have defined well

thresholds for the points x ∈ f−1(a), and by exhausting all values in the plane, we have
constructed a well function, ϕ : M → R. Similar to the elevation function defined in
[1], the well function is continuous almost everywhere but not necessarily everywhere.
The stability of the well diagram implies that we can do surgery to change M to a
2-manifold with boundary, Φ , on which the well function is continuous. Specifically,
we cut M along the curve of critical points of f . Doing so, we double every point to
form the boundary of the 2-manifold with boundary. In addition, we cut and reglue
along select curves originating at triple points. When we cut, we double the points and
when we glue, we identify points in pairs. The two operations change the topology but
cancel each other’s effect on the multiplicity of points in the interior of the cut lines.
Each such line starts at the third copy of a triple point (the first two copies are part of
the boundary) and either ends at the third copy of another triple point or at a branch
point. For reasons that will become clear later, we keep each branch point as two points
with indistinguishable neighborhoods. The result is a non-Hausdorff 2-manifold with
boundary,Φ , and a continuous well function,ϕ :Φ →R. It vanishes along the boundary
and is positive everywhere else.
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4 The Result

In this section, we compare two mappings of the same 2-manifold and relate the dif-
ference between the contours to the difference between the mappings. We have two
statements of stability. The first is straightforward and leads up to the second statement,
our main result.

Silhouette stability. The silhouette of a mapping f : M → R
2 is the boundary of the

image, Sil( f ) = bdim f . Thinking of the image as the foreground and its complement
as the background, the silhouette is the subset of the contour that separates foreground
from background. To compare the silhouette of f with that of another mapping g : M →
R

2, we define the dilation of a set A ⊆ R
2 by a radius ε ≥ 0 as the set of points in R

2 at
distance at most ε from some point in A. We denote this set by A+ε . The Hausdorff or
dilation distance between two sets A,B ⊆ R

2 is the infimum of the radii for which each
dilated set contains the other, un-dilated set,

D(A,B) = inf{ε | A ⊆ B+ε and B ⊆ A+ε}.

Setting ε = maxx∈M ‖ f (x)−g(x)‖2, we can be sure that every value in the image of f
has a value in the image of g at distance at most ε . Together with the symmetric relation,
this implies our first result.

SILHOUETTE STABILITY LEMMA. The Hausdorff distance between the images of f
and g is D(im f , img) ≤ maxx∈M ‖ f (x)−g(x)‖2.

This result is nothing short of trivial and allows for easy generalizations to higher di-
mensions, spaces that are not manifolds, and mappings that are neither generic nor
smooth. Note that the small Hausdorff distance between the images does not imply that
the two silhouettes are everywhere close. Indeed, it allows for small holes arbitrarily far
from the other silhouette.

Erosion distance. When we consider the entire contour then small holes cannot disap-
pear without a trace. To the contrary, little islands may appear or disappear anywhere
inside the foreground. This motivates us to define the erosion of a set A ⊆R

2 by a radius
ε ≥ 0 is obtained by removing all points at distance at most ε from the complement, that
is, A−ε = R

2 −(R2 −A)+ε . The complementary Hausdorff or erosion distance between
two sets A,B ⊆ R

2 is the infimum of the radii for which each eroded set is contained in
the other, un-eroded set,

E(A,B) = inf{ε | A−ε ⊆ B and B−ε ⊆ A}.

To extend the idea of erosion to the manifold, we note a relation between the well
function and the Euclidean distance in the image stated as the Well Function Lemma in
Section 5. Specifically, ϕ(x) is the distance between a = f (x) and a locally closest value
of Contour( f ). In other words, ϕ(x) measures how far x is from the relevant portion of
the boundary of Φ , and this measure is taken in the image rather than on the manifold.
Eroding in the plane thus generalizes to taking a superlevel set of the well function,
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that is, Φ−ε = ϕ−1[ε,∞). Letting g : M → R
2 be another generic, smooth mapping

and γ : Γ → R its well function after surgery, we define Γ−ε = γ−1[ε,∞). The erosion
distance between Φ and Γ is then the infimum of the radii ε ≥ 0 for which there are
injections ι f :Φ−ε →Γ and ιg :Γ−ε →Φ such that f (x) = g◦ ι f (x) and g(y) = f ◦ ιg(y)
for all points x and y.

Contour stability. We are now ready to state the main result of this paper. It compares
the image of the eroded 2-manifold, Φ−ε , using f , with the image of the un-eroded 2-
manifold, Γ , using g, where ε = maxx∈M ‖ f (x)−g(x)‖2, as before. Specifically, it says
the second mapping covers every value in R

2 at least as often as the first mapping. The
same is true if we exchange f and g.

CONTOUR STABILITY THEOREM. Let M be a compact, orientable 2-manifold with-
out boundary and f ,g : M → R

2 two generic, smooth mappings. Then the erosion dis-
tance is E(Φ,Γ ) ≤ maxx∈M ‖ f (x)−g(x)‖2.

We illustrate the result in Figure 4, which shows the familiar projection of the torus
superimposed on a perturbation of that projection. The perturbed mapping has two ex-
tra cusps connected to each other by two contour lines bounding a narrow lip-shaped
chamber. Cutting along the corresponding curves of critical points, we get a hole in the
surface, which we mend by cutting and regluing along two preimages of the medial line
between the two contour lines of the lips; see Figure 4. We get no additional branch
point but instead two new components, each covering the lips once.

Fig. 4. Superposition of the faint contour of the original mappings of the torus and the
clear contour of the perturbed mapping.

At this juncture, we wish to draw attention to the fact we use injections in the def-
inition of the erosion distance. Write Estrong(Φ,Γ ) for the strong version in which we
require ι f and ιg be embeddings. Clearly, E(Φ,Γ ) ≤ Estrong(Φ,Γ ) so that substituting
the strong for the original version of erosion distance would give a stronger theorem.
Our proof does not support this strengthening. Although we currently do not have an
example that shows such a strengthening is impossible, we believe such examples exist.
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5 The Proof

In this section, we present the proof of our main result, delegating the bulk of the un-
derlying algebraic construction to [11].

From components to homology groups. In lieu of the components in the sublevel set,
Mr(a), we consider the 0-dimensional homology group of that set, which we denote
as Fr(a) = H0(Mr(a)). With this formalization, we gain access to the concept of per-
sistence, as introduced in [10]. Particularly important is the stability of the persistence
diagram, which was established for tame functions in [5]. To explain this result, we
consider again the nested sequence of sublevel sets, Mr(a) ⊆ Ms(a) for 0 ≤ r ≤ s < ∞.
The inclusion between two sublevel sets induces a homomorphism between the corre-
sponding homology groups, giving rise to 0 → . . . → Fr(a) → Fs(a) → . . ., which we
call a filtration. Within it, a component is born at Fr(a) if the minimum function value
of its points is r, and it dies entering Fs(a) if it merges at s with another component
born before itself. The component is thus characterized by two numbers, r and s, which
we interpret as coordinates of a point in the plane. We set s =∞ if the component never
dies, so we need the extended plane, R̄

2 = [−∞,∞]2, to draw the points. Representing
each component that ever appears in the filtration, we get a multiset in R̄

2, which we
call the persistence diagram of fa, denoted as Dgm( fa). For a technical reason that
will be clear shortly, we add infinitely many copies of every point on the diagonal to the
diagram. Letting g : M → R

2 be a second mapping, we get a second distance function
and a second persistence diagram, Dgm(ga). Using the triangle inequality, it is easy
to show that the difference between the distance functions is ‖ fa −ga‖∞ ≤ ε , where
ε = maxx∈M ‖ f (x)−g(x)‖2. The mentioned stability result states that the bottleneck
distance between the persistence diagrams is bounded by the difference between the
functions and therefore by ε , that is,

W∞(Dgm( fa),Dgm(ga)) ≤ ε, (2)

see [5]. This means there is a perfect matching between the points in the two diagrams
such that the L∞-distance between matched points is at most ε . This result suffices to
derive a local statement of contour stability but not the stronger, global statement given
in Section 4.

Equivalence of definitions. To go the extra mile, we need to understand the sub-
groups of the homology groups generated by the well components of the sublevel sets.
We refer to these as the well groups, Ur(a) ⊆ Fr(a). These groups have been stud-
ied in [11], where a different, more general definition is used. We reproduce this def-
inition. Letting f ,h : M → R

2 be two mappings, we call h a ρ-perturbation of f if
maxx∈M ‖h(x)− f (x)‖2 ≤ ρ . Note that the level set of h at a is contained in the sub-
level set of fa for radius ρ , that is, h−1(0) ⊆ Mρ(a). Hence, there is a homomorphism
jh : H0(h−1(a)) → Fρ(a). The image of jh is a subgroup of Fρ(a) and so is the common
intersection of like images,

⋂
h im jh ⊆ Fρ(a), where h ranges over all ρ-perturbations

of f . Finally, we set ρ = r + δ for a sufficiently small δ > 0, and we define Wr(a)
as the largest subgroup of Fr(a) so its image in Fρ(a) is contained in this common
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intersection. The group Wr(a) is what [11] calls the well group of Mr(a). Our aim here
is to prove that for the setting in this paper, the two definitions give the same groups.

WELL GROUP LEMMA. We have Ur(a) = Wr(a) for every a ∈ R
2 and every r ≥ 0.

Proof. Fixing a ∈ R
2, we consider a point x ∈ f−1(a), and for every r ≥ 0, we let Cr be

the component of Mr(a) that contains x.
CASE 1: Cr is well. We show that there exists δ > 0 such that Cr+δ ∩ h−1(a) 
= /0 for

every ρ-perturbation h of f , where ρ < r+δ . Specifically, we choose δ < ϕ(x)− r and
note that Cr+δ is well. Consider the homotopy defined by gt(x) = (1− t) f (x)+ th(x).
Since the boundary of Cr+δ is too far from the center for its image to reach a, the
degree of gt restricted to Cr+δ at a remains unchanged. This degree is non-zero for
f = g0 and therefore also non-zero for h = g1. This implies that h−1(a) has a non-empty
intersection with Cr+δ , as required.

CASE 2: Cr is ill. We show that for every δ > 0 there exists a ρ < r + δ and a ρ-
perturbation h of f such that Cr ∩ h−1(a) = /0. We use induction, following the change
in the sublevel set as we increase the radius. The first time we have to prove something
is when r = ϕ(x). At this radius, two well components merge to form Cr, which is now
ill. Let y be a double point at which the two components touch; see Figure 5. The per-

r+

r

y

aa

y

δ

Fig. 5. Left: two well components meeting at y. Right: the locally perturbed mapping in
which the two merged components avoid a.

turbation needs to move y beyond a, which it can do without changing f outside Cr+δ .
If there are two or more such double points, we move all of them beyond a the same
way. We choose δ < s−ϕ(x), where s is the next, larger critical value of fa, and call the
resulting perturbation h0 : M → R

2. It is good for all radii ϕ(x) ≤ r < s. Now suppose
r = s and the growing component merges with another, ill component, forming Cs. Let
h1 : M → R

2 be the perturbation we constructed for this other component when it fell ill
at ϕ(x′) < s. Choose t such that max{ϕ(x),ϕ(x′)} < t < s. The two perturbations differ
from each other in two disjoint components of Mt . We can therefore combine them to
get a new perturbation h01 : M → R

2 that agrees with f outside these components, with
h0 inside one, and with h1 inside the other component. The level set of h01 at a has
empty intersection with Cr, as required. The claimed relationship follows by induction.
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Stability of diagram. While being more complicated algebraically, the persistence dia-
gram of the well groups is simpler geometrically. Specifically, it is only 1-dimensional,
namely precisely the well diagram introduced in Section 3. The complete proof of the
stability of the well diagram is beyond the scope of this paper. The main idea is the
realization that the well groups for a given value form a zigzag module as defined in
[4]. We sketch the construction of this module for the distance function fa : M → R. By
definition of a generic, smooth mapping, fa has only finitely many critical values and
therefore only finitely many different homology groups. We index them consecutively
as Fi. Let Ui ⊆ Fi be the corresponding well groups. A class may fall ill entering Ui+1

because it dies entering Fi+1 or because its image in Fi+1 does not belong to Ui+1. To
express the two cases algebraically, we let Qi be the quotient formed by identifying all
classes in Ui that differ only by a class that maps to zero in Fi+1. Inserting the quotient
between the two well groups and connecting it with the obvious forward and backward
maps, we get the zigzag module, . . . ← Ui → Qi ← Ui+1 → . . .. It is characterized by
its persistence diagram, like a filtration [4]. By the Well Group Lemma, this diagram is
precisely the well diagram described in Section 3. Stability does not follow from gen-
eral principles known yet but has been established in [11]. We skip the argument and
state the result.

STABILITY THEOREM FOR WELL DIAGRAMS. Let f ,g : M → R
2 be two generic,

smooth mappings. Then the bottleneck distance between the well diagrams of the dis-
tance functions at any value a ∈ R

2 is W∞(Dgm( fa),Dgm(ga)) ≤ ‖ fa −ga‖∞.

As mentioned earlier, the difference between the distance functions is bounded from
above by ε = maxx∈M ‖ f (x)−g(x)‖2.

Eroding the manifold. The stability of the well diagram justifies the surgery which
turns M into a non-Hausdorff 2-manifold with boundary, Φ , such that the well func-
tion, ϕ : Φ → R, is continuous. We recall that for each point x ∈Φ , the value, ϕ(x), is
the well threshold of x, that is, the terminal critical value of fa, a = f (x), at which the
component of x in the sublevel set falls ill. The well threshold has another geometric in-
terpretation. Letting p : [0,1] →Φ be a path on the manifold after surgery, we consider
its composition with the mapping, f ◦ p : [0,1] → R

2, and write �(p) for the length of
the image, f ◦ p[0,1]. Taking the infimum over all paths that start at x and end on the
boundary, ∂Φ , we get dist(x) = infp �(p), the distance of a = f (x) from the relevant
portion of the contour. We note that dist(x) is not necessarily the distance to the near-
est point on the contour but rather to the nearest point that affects the wellness of the
component of x in the sublevel set of fa.

WELL FUNCTION LEMMA. Let f : M → R
2 be a generic, smooth mapping and ϕ :

Φ → R its well function. Then ϕ(x) = dist(x) for every point x ∈Φ .

PROOF. Let a = f (x). The point x belongs to the zero set of fa and its component
in the sublevel set falls ill at Mϕ(x)(a). We write R = ϕ(x) for short. The goal is to
prove R = dist(x). It is easy to see that R ≤ dist(x). By the Stability Theorem for Well
Diagrams, we have |ϕ(x)−ϕ(y)| ≤ ‖ fa − fb‖∞, and by the triangle inequality in R

2,
we have ‖ fa − fb‖∞ ≤ ‖a−b‖2, where b = f (y). It follows that ϕ(y) > 0 for all points
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y with ‖a− f (y)‖2 < R. Since ϕ is zero at the boundary, this implies that all points of
∂Φ are at Euclidean distance at least R from a.

The more difficult direction is to prove dist(x) ≤ R. To get a contradiction, we as-
sume R < dist(x). Let q : [0,1] →Φ be a path starting at q(0) = x with length �(q) = R,
and let y = q(1) be its endpoint. It belongs to the component C of MR(a) that contains
x. Since ϕ(y) > 0, there is a positive radius δ such that the component, C′, of Mδ (b)
that contains y is well, that is, the degree of f restricted to C′ is non-zero. Since C and
C′ overlap, their degrees are the same and we can form the union to get a patch, C ∪ C′,
that has the same degree still. We do the same for all points y reachable from x by paths
of length R, choosing δ > 0 smaller than the minimum well threshold of any of these
points. The result is a component C′′ of MR+δ (a) that contains C and the restriction of
f to C′′ has the same degree as the restriction to C. Hence, C′′ is well, contradicting the
choice of R as the well value of x.

Similarity of well functions. We have one more hurdle to clear, namely showing that
the well functions for similar mappings are similar. Let ϕ : Φ → R and γ : Γ → R be
the well functions of the mappings f ,g : M → R

2. We say the difference between them
is at most r, denoted as ‖ϕ− γ‖∞ ≤ r, if there are subspaces Φ0 ⊆ Φ and Γ0 ⊆ Γ that
contain all points with well threshold r or larger and a bijection ι : Φ0 → Γ0 such that
f (x) = g ◦ ι(x) for every x ∈ Φ0 and g(y) = f ◦ ι−1(y) for every y ∈ Γ0. We derive an
upper bound on the difference between the two well functions.

HOMOTOPY LEMMA. Let f ,g : M → R
2 be two generic, smooth mappings with cor-

responding well functions ϕ : Φ → R and γ : Γ → R. Then the difference between the
two well functions is ‖ϕ− γ‖∞ ≤ maxx∈M ‖ f (x)−g(x)‖2.

PROOF. We use the straight-line homotopy between f and g defined by ft (x) = (1−
t) f (x) + tg(x). All ft are smooth but not necessarily generic. Nevertheless, the well
diagram is defined for each distance function ( ft)a. The Stability Theorem for Well Di-
agrams holds also for non-generic functions, implying that the points in these diagram
vary continuously with a and t. Specifically, the bottleneck distance between the dia-
grams of ( ft )a and ( ft′ )a is bounded from above by |t − t ′|ε , where ε is the maximum
Euclidean distance between corresponding images, as before.

To relate ϕ with γ , we pick a point ϕ(x) in the well diagram of fa = ( f0)a. Initializ-
ing the construction of a function α : [0,1] → R, we set α(0) = ϕ(x). Increasing t, we
continuously extend α until we either reach t = 1 or α vanishes. Whenever we reach
t = 1, we get a point y ∈ Γ with α(1) = γ(y). Because the slope of α is between ±ε ,
we have |ϕ(x)− γ(y)| ≤ ε . Collecting all pairs (x,y) generated by this process, we get
the bijection ι : Φ0 → Γ0 required by the claim. We get ϕ(x) < ε for all x ∈ Φ −Φ0

because α vanishes before reaching t = 1. The construction of the functions α can also
be done in the other direction, starting at t = 1. Making sure we get the same pairs, we
also get γ(y) < ε for all y ∈ Γ −Γ0, as required.

Note that the paths connecting points x with y form a homeomorphism between Φ0

and Γ0, unless there are branch points in the graph of the homotopy connecting f and
g. In the absence of such branch points, we can substitute a homeomorphism for the
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bijection in the definition of difference between well functions and embeddings for the
injections in the definition of erosion distance.

Finale. We are now in a position to tie up all ends and finish the proof of the Con-
tour Stability Theorem. Let ϕ : Φ → R and γ : Γ → R be the well functions of the
mappings f and g. By the Well Function Lemma, eroding the 2-manifolds with bound-
ary is the same as taking superlevel sets of the well functions, Φ−r = ϕ−1[r,∞) and
Γ−r = γ−1[r,∞). By the Homotopy Lemma, ‖ϕ− γ‖∞ ≤ ε . We recall that this means
there is a bijection, ι :Φ0 →Γ0, that is compatible with the two mappings. Here, Φ0 ⊆Φ
and Γ0 ⊆ Γ contain all points with well threshold ε or larger, that is,

Φ−ε = ϕ−1[ε,∞) ⊆ Φ0;

Γ−ε = γ−1[ε,∞) ⊆ Γ0.

Restricting the bijection to the superlevel set of ϕ , we get the injection ι f : Φ−ε → Γ
defined by ι f (x) = ι(x). Symmetrically, restricting it to the superlevel set of γ , we get
the injection ιg : Γ−ε →Φ defined by ιg(y) = ι−1(y). By construction, f (x) = g◦ ι f (x)
for every x ∈ Φ−ε and g(y) = g ◦ ιg(y) for every y ∈ Γ−ε . It follows that the erosion
distance between the 2-manifolds with boundary is E(Φ,Γ ) ≤ ε , which completes the
proof of the Contour Stability Theorem.

6 Discussion

An immediate application of our result is to the artistic representation of shapes using
contours. Instead of the entire contour, or perhaps the entire visible contour, we advo-
cate drawing only the portion that remains after a small erosion. A similar strategy may
be used to improve the efficacy of shape matching methods that work by comparing
contours [18].

The current statement of the Contour Stability Theorem is based on injections in the
definition of the erosion distance. It would be nice to replace them by embeddings, but
possible branch points in the homotopy as constructed in the proof of the Homotopy
Lemma would contradict their existence. Can we find an explicit example in which at
least one branch point occurs? Can we substitute piecewise embeddings for the injec-
tions?

References

1. P. K. AGARWAL, H. EDELSBRUNNER, J. HARER AND Y. WANG. Extreme elevation on a
2-manifold. Discrete Comput. Geom. 36 (2006), 553–572.

2. V. I. ARNOLD. Catastrophe Theory. Third edition, Springer-Verlag, Berlin, Germany, 1992.
3. H. BLUM. A transformation for extracting new descriptors of shape. In Models for the Per-

ception of Speech and Visual Form, W. Wathen-Dunn (ed.), MIT Press, Cambridge, Mas-
sachusetts, 362–380, 1967.

4. G. CARLSSON AND V. DE SILVA. Zigzag persistence. Manuscript, Dept. Mathematics, Stan-
ford Univ., Stanford, California, 2008.



The Stability of the Apparent Contour 41

5. D. COHEN-STEINER, H. EDELSBRUNNER AND J. HARER. Stability of persistence dia-
grams. Discrete Comput. Geom. 37 (2007), 103–120.

6. F. COLE, A. GOLOVINSKIY, A. LIMPAECHER, H. S. BARROS, A. FINKELSTEIN, T.
FUNKHOUSER AND S. RUSINKIEWICZ. Where do people draw lines? SIGGRAPH Conf.
Proc., ACM Trans. Graphics 27 (2008), 1–11.

7. D. DECARLO, A. FINKELSTEIN, S. RUSINKIEWICZ AND A. SANTELLA. Suggestive con-
tours for conveying shape. AMC Trans. Graph. 22 (2003), 848–855.

8. F. DUGUET AND G. DRETTAKIS. Robust epsilon visibility. SIGGRAPH Conf. Proc., ACM
Trans. Graphics 21 (2002), 567–575.

9. H. EDELSBRUNNER AND J. HARER. Jacobi sets of multiple Morse functions. In F. Cucker,
R. Devore and P. Olver (eds.), Foundations of Computational Mathematics, Minneapolis
2002, 35–57, Cambridge University Press, 2004.

10. H. EDELSBRUNNER, D. LETSCHER AND A. ZOMORODIAN. Topological persistence and
simplification. Discrete Comput. Geom. 28 (2002), 511–533.

11. H. EDELSBRUNNER, D. MOROZOV AND A. PATEL. Quantifying transversality by measur-
ing the robustness of intersections. Manuscript, Dept. Comput. Sci., Duke Univ., Durham,
North Carolina, 2009.

12. D. J. FUTUYAMA. Evolutionary Biology. Third edition, Sinauer Associates, 1998.
13. M. GLISSE AND S. LAZARD. An upper bound on the average size of silhouettes. Discrete

Comput. Geom. 40 (2008), 241–257.
14. M. GOLUBITSKY AND V. GUILLEMIN. Stable Mappings and Their Singularities. Springer-

Verlag, New York, 1973.
15. T. ISENBERG, B. FREUDENBERG, N. HALPER, S. SCHLECHTWEG AND T. STROTHOTTE.

A developer’s guide to silhouette algorithms for polygonal models. IEEE Comput. Graph.
Appl. 23 (2003), 28–37.

16. L. KETTNER AND E. WELZL. Contour edge analysis for polyhedron projections. In Ge-
ometric Modeling: Theory and Practice, 379–394, eds. W. Straßer, R. Klein and R. Rau,
Springer-Verlag, 1996.

17. J. J. KOENDERINK. What does the occluding contour tell us about solid shape? Perception
13 (1984), 321–330.

18. P. MIN, J. CHEN AND T. FUNKHOUSER. A 2D sketch interface for a 3D model search
engine. SIGGRAPH Technical Sketches (2002), 138.

19. P. V. SANDER, X. GU, S. J. GORTLER, H. HOPPE AND J. SNYDER. Silhouette clipping.
SIGGRAPH Conf. Proc., Computer Graphics (2000), 327–334.

20. H. WHITNEY. On singularities of mappings of Euclidean space. I. Mappings of the plane to
the plane. Ann. Math. 62 (1955), 374–410.



Reconstructing Cell Complexes From Cross-sections

Scott E. Dillard1,2, Dan Thoma1, and Bernd Hamann2

1 Materials Design Institute, Los Alamos National Laboratory
2 Institute for Data Analysis and Visualization, Department of Computer Science, University of

California, Davis

Abstract. Many interesting segmentations take the form of cell complexes. We
present a method to infer a 3D cell complex from of a series of 2D cross-sections.
We restrict our attention to the class of complexes whose duals resemble triangu-
lations. This class includes microstructures of polycrystalline materials, as well
as other cellular structures found in nature. Given a prescribed matching of 2D
cells in adjacent cross-sections we produce a 3D complex spanning these sec-
tions such that matched 2-cells are contained in the interior of the same 3-cell.
The reconstruction method considers only the topological structure of the input.
After an initial 3D complex is recovered, the structure is altered to accommodate
geometric properties of the dataset. We evaluate the method using ideal, synthetic
datasets as well as serial-sectioned micrographs from a sample of tantalum metal.

1 Introduction

Cross-section imaging is a common technique used to study and analyze the structure
of materials. A series of planar cross-sections through a specimen is generated and
the cross-sections are used to reconstruct a 3D representation. A related, well-studied
problem in computer graphics and visualization asks to construct a surface from a set
of curves lying in the cross-sections. There have been many solutions suggested for
the two-phase version of this problem, in which the reconstructed surface divides space
into two “phases” and hence can be a manifold. For example, the zero-surface of a
continuous scalar function divides the domain into two phases: points with negative
values and points with non-negative values. In this paper we consider the multiphase
generalization of this problem, in which the non-manifold separating surface divides
space into multiple phases. This distinction in illustrated in Figure 1.

Solutions to the problem of constructing a surface from cross-sections can be di-
vided into two types: mesh-based ones, operating on an irregular collection of vertices,
edges and faces, and voxel-based ones, operating on a 3D array of sample points. See
the papers by Nonato et al. [6] and Braude et al. [1] and the references therein for ex-
amples of mesh and voxel-based solutions, respectively. Previous solutions to the multi-
phase problem have all been of the voxel-based type. See the paper by Dillard et al. [3]
and references therein for examples.

We present a novel mesh-based solution to the multiphase segmentation recon-
struction problem. In voxel-based methods, topological and geometric properties are
conflated, which is beneficial if one wants to optimize some geometric criterion (e.g.,
smoothness) without being hindered by topological constraints (e.g., genus). In the mul-
tiphase problem, however, direct control over reconstructed topology can be important.
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Fig. 1. In a two-phase segmenta-
tion (top) every point is incident
on at most two regions. In a mult-
phase segmentation (bottom) there
are “triple points.”

Fig. 2. A Δ -complex, in solid dots and lines,
and its dual Δ∗-complex in hollow dots and
dashed lines.

An example of this kind of control is given by Nonato et al. [6] in their mesh-based β -
connection method, a solution to the two-phase reconstruction problem. Their method
provides a user with control over the reconstruction topology through a parameter β .
Higher values of β favor reconstructed surfaces of higher genus. Our method supports a
similar type of control in the multiphase setting: The user can prescribe that two regions
in two adjacent cross-sections should be path-connected, or not. A significant challenge
in the mesh-based setting is the avoidance of self-intersections in the constructed sur-
face, a problem that most voxel-based methods avoid by design.

The data we consider are serial-sectioned micrographs of polycrystalline material.
Each phase represents a grain, a region of uniform crystal structure. The ability to pre-
scribe connections between 2D cross-section regions is important when the imaging
mode provides more information than just region boundary geometry. In the case of
metal micrography, electron back-scatter diffraction (EBSD) measures crystallographic
orientations, and we therefore prescribe a connection between two cross-section regions
if their orientations are similar and they are relatively close to each other.

2 Definitions

Many of the terms are familiar from simplicial complexes, with subtle yet important
differences in definition. A d-simplex Δd ⊂ R

d is the convex hull of d + 1 affinely in-
dependent vertices. A face of a simplex is the (d − 1)-simplex obtained by removing

a vertex. Let ∂Δd be the union of all faces of Δd , and Δ̊d = Δd \ ∂Δd . Let the se-
quence (v0 . . .vd) be an ordering of the vertices of Δd , then the ordering of the ith face
is (−1)i(v0 . . . v̂i . . .vd) where the “hat” indicates that vi is removed and a negative coef-
ficient swaps the first two vertices of the sequence. Let X be a topological space and let
σ : ∂Δd → X be a continuous map. A new space Y = X ∪σ Δd is obtained from X by
attaching a cell to X , giving Y the quotient topology of X ∪Δd/∼, where y∼σ(y) for
all y ∈ Y . A d-dimensional cell complex, or just d-complex, is a topological space con-
structed by attaching cells of dimension no greater than d. A Δ -complex is a collection
of maps σi : Δd → X such that:
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1. The restriction σi|Δ̊d is injective, and each point of X is in the image of exactly
one such restriction. We say that σi is a d-cell, and let σ̊i denote the restriction.
Referring to σi in the context of a set refers to its range.

2. Each restriction of σi to one face of Δd is one of the maps σ j : Δd−1 → X , iden-
tifying the face of Δd with Δd−1 by the linear homeomorphism that preserves the
ordering of vertices. We say that σi is attached to σ j.

3. The restriction σi|∂Δd is injective.
4. A set A ⊂ X is open iff σ−1

i (A) is open in Δd for each i.

Conditions 1, 2 and 4 follow Hatcher [4]. We impose condition 3 to prevent degen-
eracies such as loops. This class of complexes contains simplicial complexes, but is
broader. For instance, we may have multiple 1-cells each incident on the same pair of
0-cells. Informally, one may think of a Δ -complex as a triangulation with curved edges
and faces.

Two cells σi and σ j are incident on each other if σi ∩σ j 
= /0. Two d-cells are adja-
cent if there exists a (d −1)-cell and a (d +1)-cell on which they are both incident. Let
all 0-cells be incident on a single (−1)-cell, and if σi and σ j are of maximal dimension,
let them be adjacent only if they are incident on a common (d − 1) cell. Since we are
concerned here only with 2-complexes and 3-complexes we make the following abbre-
viations: A vertex is a 0-cell. An edge is a 1-cell. A face is a 2-cell, and henceforth only
a 2-cell. A tetrahedron is a 3-cell of a Δ -complex. A 2-complex that is also a Δ -complex
is a 2Δ -complex, and a 3Δ -complex is defined analogously. The valence of a vertex is
the number of edges that are incident on it.

Let C be a cell complex. C ′ is a subcomplex of C if C ′ is a cell complex and
C ′ ⊆ C . The closure of a set of cells is the smallest subcomplex containing it. Two d-
complexes C and C ′ are isomorphic if there exist bijections Mk : Ck → C ′

k , 0 ≤ k ≤ d,
such that if cells a,b ∈C are adjacent then so are Mk(a) and Mk(b). Two d-complexes C
and C ∗, are duals if there exist bijections Dk : Ck →Cd−k, 0 ≤ k ≤ d such that if a,b ∈C
are adjacent then so are Dk(a) and Dk(b). For example, in a pair of dual 3-complexes,
tetrahedra of one complex are mapped to vertices of the other, and faces to edges. Our
method is restricted to a certain class of segmentations because it exploits the structure
of the dual complex. In particular, the dual must be a Δ -complex. Correspondingly, we
call the complex that represents the segmentation a Δ∗-complex. An example of dual Δ
and Δ∗-complexes is shown in Figure 2.

A bijection f is a homeomorphism if both f and f−1 are continuous. If such f exists,
its domain and range are homeomorphic. A Δ -complex is a manifold if for every vertex
v, the union of the interiors of cells incident on v (the star of v) is homeomorphic to
the open unit ball {x : ‖x‖ < 1} ⊂ R

d . The relevant implication is that every (d − 1)-
cell in a manifold d-complex is incident on two d-cells. A complex is a manifold with
boundary if the star of every vertex is homeomorphic to the open unit ball or the half-
ball {x : x1 ≥ 0,‖x‖ < 1} ⊂ R

d , and its boundary is the closure of those (d − 1)-cells
that are incident on only one d-cell. A Δ -complex is a sphere if it is homeomorphic to
the standard sphere {x : ‖x‖ = 1} ⊂ R

d , and a ball is homeomorphic to {x : ‖x‖ ≤ 1}.
A homotopy between two continuous functions f ,g : X →Y is a continuous function

h : [0,1]×X → Y , such that h(0,x) = f (x) and h(1,y) = g(y). Denote the existence of
h by f � g. X and Y are homotopy equivalent if f ◦ g � idY and g ◦ f � idX , where
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idX(x) = x ∈ X . A space is contractible if it is homotopy equivalent to a point. Crucially,
if S is a contractible subcomplex of C , then the complex C ′ obtained by replacing
S with a vertex is homotopy equivalent to C [4]. Because homotopy equivalence is
transitive, we may also replace S by any other contractible complex.

2.1 Edge Flip

An important operator for 2Δ -complexes is the edge flip, which modifies a complex
by replacing two adjacent faces. Let face f be attached to edges s, r and q, spanning
vertices a, d and c. Similarly, face g is attached to edges r, t and p spanning vertices a,
c and b. This is shown in Figure 3(a). We flip the edge r by first removing f and g, then
removing r, then reattaching r′ to b and d, then reattaching faces f ′ and g′ to edges r′,
p, q and r′, s, t, as shown in Figure 3(b). The flip consumes f and produces f ′.

In a 2D simplicial complex, a flip must not be performed if the vertices to be con-
nected by the new edge are already connected. Doing so collapses the space because
every simplex is uniquely determined by its vertices. This constraint is overly restrictive
because a Δ -complex admits multiple edges between the same pair of vertices. Let the
apex of a triangular face with respect to an edge e be the vertex of that face which is not
incident on e. In a manifold 2Δ -complex, we allow an edge e to flip if the apexes of its
two incident faces, f and g, are not the same vertex. If this is the case, then the closure
of { f ,g} is contractible and the complex resulting from the flip is homotopy equivalent
to the original. If the two apexes of f ,g are the same, then flipping e creates a loops.
While not immediately changing the topology of the complex, loops complicate further
operations such as edge contractions, so we avoid them altogether. An example of a
non-flippable edge is shown in Figure 3(c), labeled r.

(a) (b) (c)

Fig. 3. (a) and (b) show the process of flipping edge r. In (c), edge r is not flippable.
The apexes of f and g with respect to r are both b, so flipping r would create a loops.

2.2 Edge Contraction

An edge contraction modifies a 3Δ -complex by merging two adjacent vertices. We
decompose the edge contraction into three operations that contract a 1-cell, some 2-
cells and some 3-cells. Collapsing the initial edge removes the edge e and one vertex.
The resulting complex is not a Δ -complex: every face that was incident on e is now a
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2-cell incident on only two edges. To restore the Δ -complex property we contract these
2-cells, but this still does not create a Δ -complex: every tetrahedron that was incident
on e is now a 3-cell incident on only two faces, resembling a triangular “pillow.” We
finally contract these 3-cells to restore the Δ -complex property. This process is shown
in Figure 4.

Fig. 4. An edge contraction.

This operation is decidedly different from the edge contraction operation for simpli-
cial complexes. For that operation, the condition to preserve the topology of the com-
plex is much stricter [2]. In Δ -complexes the condition is more relaxed: As with edge
flipping, we forbid edge contractions that create loops. If vertices u and v are both in-
cident on the same pair of edges, then neither of those edges may be contracted. As a
consequence of condition 3 in the definition of a Δ -complex, the closure of every cell
is a contractible subcomplex, and thus the intermediate complexes during the edge con-
traction process are all homotopy equivalent. Avoiding the creation of loops suffices to
preserve condition 3. To see that the result is a Δ -complex, note that every tetrahedron
incident on the contracted edge is turned into a valid face, and every incident d-cell,
d < 3, is removed. This holds only as long as C ′ has enough vertices to satisfy the
definition of a Δ -complex.

3 Algorithm

The problem is defined as follows: Let K1 and K2 be two 2-sphere Δ -complexes, and
let P be a prescribed matching between their vertices, such that each vertex is matched
with at most one other vertex, and that vertex is in the other complex. These complexes
are the duals of cross-sections of a segmentation, and their vertices represent the regions
or “phases” of that segmentation. The output is a 3-sphere Δ -complex C that contains
subcomplexes C1 and C2 isomorphic to K1 and K2, respectively. Additionally, for ver-
tices u and v, u ∈ K1, v ∈ K2, if (u,v) ∈ P, then the isomorphisms Mi : Ki → C map
u and v to the same v′ ∈ C . In other words, C connects K1 to K2 and unifies matched
vertices.

K1 and K2 are first combined to create a singleΔ -complex K. To do so, nest K1 inside
K2, then find two faces, f1 and f2, from K1 and K2, respectively, and connect them with
a ball 3Δ -complex containing f1 and f2 on its boundary, like a triangular prism. Call
this prism F . If possible, F should be chosen so that its three pairs of vertices each
match under P. Next, two new vertices are created, v1 and v2, and each vi is connected
to Ki by a cone Vi, which is a ball 3Δ -complex containing vi as a vertex and Ki as its
boundary. The cone Vi lies on the side of Ki opposite F . The result, V1 ∪V2 ∪F = B is a
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3-ball. The boundary of this ball, A, is a 2-sphere formed by faces of Ki and F . Figure 5
shows a cut-away diagram of this construction.

Fig. 5. The initial Δ -complex. Nested
spheres K1 and K2 are connected by a solid
prism F . Vertex v1 is connected to the inte-
rior of K1 by solid cone, and likewise v2 is
connected to the exterior of K2. The union
of these cones and F forms a ball, and the
complement of this is a sphere bounded by
the surface A.

(a) EF move

(b) RV move

Fig. 6. The two boundary operations
used to modify the active surface. The
EF move effectively flips an edge, and
the RV move removes a vertex.

The algorithm fills in the space bounded by A, turning B into a 3-sphere. This is ac-
complished by attaching tetrahedra to A in one of two ways. In each case, B is extended
by one additional tetrahedron, and A is updated to track the boundary of B. A loses ver-
tices in the process, until it eventually reduces to one of two 4-vertex configurations,
at which point the algorithm terminates. This is ensured because A remains a 2-sphere
throughout the process. All operators take place on the surface A so one can think of
A as the “active surface.” The two operations on A are the following: An EF operation
adds a tetrahedron c to B by attaching it to two adjacent faces in A. After updating A
to track the new boundary, we see that the edge between these faces is flipped. An RV
operation attaches c to three mutually adjacent faces of A, effectively removing a vertex
from the boundary of B. These operations are illustrated in Figure 6.

Edge flips, vertex removals and edge contractions are applied in a goal-directed way.
We call a vertex who has no matching a “loner,” and likewise, two matched vertices
“mates.” The goal is to remove every loner and contract an edge between every mated
pair. To remove a loner w, we perform EF moves until the valence of w is three, then
remove w by an RV move. If u and v are a mated pair then we use EF moves to flip
all edges along a shortest path from u to v through the faces of A. Doing so is always
possible, and causes u and v to become adjacent via a shared edge which is subsequently
contracted, producing a new loner vertex.

Let a face path of a 2Δ -complex be a path between vertices u and v consisting of
a sequence of faces fi, 0 ≤ i ≤ n, such that u is incident on f0 and v is incident on fn,
and each fi is adjacent to fi+1. A face path is shortest if no other face path between u
and v has fewer faces. When we refer to “the edges of a face path” we mean a sequence
of edges ei such that fi and fi+1 are both incident on ei, i.e., the edges one crosses
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when walking along the path. By the length of a face path we mean the number of
edges, which is one less than the number of faces. In the proofs below, all complexes
are assumed to be 2-spheres without loops.

Lemma 1. The first edge of a shortest face path between distinct, non-adjacent vertices
u and v is not incident on u.

Proof. Let u, w1, w2 be the vertices of f0. If e0 = uw1, then u is also incident on f1 and
the path is not shortest. By the same logic, e0 
= uw2, leaving only e0 = w1w2. ��

Lemma 2. The first edge of a shortest face path between distinct, non-adjacent vertices
is always flippable.

Proof. By Lemma 1, u is incident on f0 and not incident on e0, so u is the apex of f0

with respect to e0. If e0 is not flippable, then u is also the apex of f1. If u is then incident
on both faces, and no shortest face path from u to any other vertex passes through e0. ��

We call a face path flippable if the first edge is flippable, and after flipping it the
remaining path is flippable or empty. The previous lemma implies that shortest face
paths are flippable.

Lemma 3. Let ei, 0 ≤ i≤ n, n ≥ 1, be the edges of a flippable face path between distinct,
non-adjacent vertices u and v. Flipping ei in order of increasing i results in a Δ -complex
in which u and v are adjacent.

Proof. Let n = 1, then flipping e0 immediately connects u and v. Now let ei, 0 ≤ i ≤ k
be the edges of a face path between x and u of length k. Assume that by flipping each
ei in sequence, a face s is created with u and x incident on s. Let w be the apex of s
with respect to edge ux, let t be the other face on edge ux, and let y be the apex of t
with respect to ux. (By assumption y 
= u.) After flipping edge ux, y is made adjacent
to u. The length of the face path between y and u was k + 1, so the claim follows from
induction on k. ��

Lemma 4. Any sequence of l flips, transforming 2Δ -complex C0 to Cl , and causing
vertices u,v not adjacent in C0 to become adjacent in Cl , defines a face path between
u,v in C0 of length at most l.

Proof. Let Si be a sequence of sets of faces, where Sl contains a face of Cl incident
on u and v. Construct Si−1 from Si as follows: Remove from Si the faces produced by
flip i. There are three cases where zero, one or two faces are removed. If one face r is
removed, add to Si−1 the two faces p,q that are consumed by flip i. If Si was a connected
face path, then so is Si−1 because any face s adjacent to r in Ci is adjacent to one of p or
q (which are themselves adjacent) in Ci−1, or s is consumed by the flip. If two faces are
removed, Si remains connected for the same reason. Thus, if Sl contains a single face,
then all Si are connected face paths. Vertices u and v are each incident on faces of Si for
all i, and therefore the path in S0 connects them. At each iteration, the cardinality of S
is increased by at most 1, so the cardinality of S0 is at most l + 1. ��
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Corollary 1. If the shortest face path between u and v has length l, then no sequence
of fewer than l flips can make u and v adjacent.

The previous lemma and corollary allow us to guarantee that no mated pair of ver-
tices become inadvertently connected by multiple edges, so that when the time comes to
merge this pair the edge contraction is always possible. We define the cost of removing
a vertex to be the number of EF moves required to remove it from the active surface.
When removing a loner v the cost is |3−valence v|, because the valence of v must first
become three using EF moves before v can be removed with an RV move. When merg-
ing a pair of mated vertices u and v, the cost is the length of the face path between u and
v.

Lemma 5. If every mated pair of vertices is either non-adjacent or adjacent by one
edge before an iteration, and the iteration performs the cheapest vertex removal, then
the same is true after an iteration.

Proof. Let c be the number of edge flips needed to remove the vertex. No face path of
length c−1 or less exists between any pair of mated vertices, and thus by Corollary 1,
performing c−1 flips does not cause any mated pair to become adjacent. After perform-
ing c− 1 of the c flips needed to remove the vertex, it is still true that no other mated
pair is adjacent. Flipping a single edge can only add one edge between any pair of non-
adjacent vertices, implying that after the final flip every mated pair is still connected by
at most one edge. ��

If A starts with n vertices, then we perform exactly n−4 iterations. In each iteration
we perform the cheapest move sequence to merge a mated pair or remove a loner. After
n − 4 iterations, what results is a Δ -complex in one of two configurations: either a
tetrahedron or the complex shown in Figure 2, which is a tetrahedron that has had one
edge flipped.

Lemma 6. Any sphere 2Δ -complex with four vertices is isomorphic to either the
boundary of a tetrahedron or the complex shown in Figure 2.

Proof. If each edge is attached to a different pair of vertices, then the edges form a
complete graph. The other possibility is that two edges, e and f , are attached to the
same pair of vertices, u and v. Because the complex is a 2-sphere, the path from u along
e to v and back along f to u separates the complex into two balls which must each
contain one of the remaining vertices. ��
The algorithm is summarized as follows:

1. Connect the two input spheres with a prism, and fill in the interior of each sphere
with a cone. Initialize A to the boundary of the space between the spheres.

2. If A has four vertices, stop. If A is isomorphic to the complex in Figure 2, apply an
EF operation to transform it into a tetrahedron.

3. Determine the cheapest sequence of EF and RV moves that either removes a loner
or connects a mated pair.
(a) If the cheapest operation is to remove a loner, then perform EF moves until

valence is three, then perform an RV move.
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(b) If the cheapest operation is to connected a mated pair of vertices, then find a
shortest face path between them. Flip those edges in sequence, then contract
the resulting edge between the pair. Mark the newly merged vertex as a loner.

4. Update A and goto 2.

Main Theorem. The 3-sphere Δ -complex constructed by this algorithm contains sub-
complexes isomorphic to K1 and K2, and this isomorphism identifies vertices of K1 and
K2 that match under P.

Proof. After first constructing A, C already contains K1 and K2 as subcomplexes. No
edge between two vertices of K1 or two vertices of K2 is ever contracted, nor any such
face removed, so the output complex still contains these subcomplexes. Every matched
pair of vertices from K1 and K2 is connected by flipping the edges of the shortest face
path between them (Lemma 3.) Doing so does not create loops (Lemma 2) nor does
it create multiple connections between any mated pairs (Lemma 5) and so the edge
between the pair can always be contracted. Every iteration of the algorithm removes
one vertex from A while maintaining that A is a 2-sphere Δ -complex, so when the
algorithm terminates (Lemma 6) the complex is a 3-sphere.

4 Discussion

An initial 2-sphere can be constructed from a segmented planar image by adding an
additional region containing everything “outside” the image. The algorithm can be ex-
tended to multiple input cross-sections by turning each one into a 2-sphere and sequen-
tially nesting these spheres like the layers of an onion, then performing the algorithm
on the cavity between each pair of consecutive layers. After the algorithm finishes, the
cells representing the “outside” are removed, leaving a 3-ball to be embedded in R

3.
Most of this embedding is prescribed by the boundary curves of the cross-sections, but
the vertices created by the algorithm (dual to tetrahedra of the Δ -complex) need to be
placed. We place them by iteratively moving them toward the average position of nearby
vertices. Placing them without self-intersections is a challenge.

A straightforward implementation of the algorithm has a run-time complexity boun-
ded by O(n3) in the worst case, where n is the number of vertices in the initial complex.
There are exactly n−4 iterations, each iteration having to determine the cheapest move.
The cost of mating a pair is the length of the shortest face path between vertices, which
can be determined by an O(n) breadth-first search. There can be as many as O(n) mated
pairs, thus an upper bound on the running time of O(n3). In practice, the lengths of
shortest face paths are much less than O(n). There is usually a path of nearly constant
length close to the interface between K1 and K2 in A. Further, if we have already found
a shortest path of length l, we can cut future searches short. These two facts make the
practical running time nearly linear for well-behaved inputs.

5 Results

To evaluate the 3D models produced by the algorithm, we have reconstructed two types
of synthetic ideal cellular structures. Figure 7 shows the reconstruction of a polycrystal
microstructure that has been simulated using the Potts model [5]. The algorithm was
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run on three different sets of cross-sections of the simulation lattice. One containing
every plane of lattice sites, one containing every third plane, and one containing every
fifth plane. The cross-sections were extracted from the lattice using marching-triangles,
and subsequently simplified using an area-preserving polyline simplification method.

Fig. 7. Three reconstructions of a simulated microstructure on 423 cubic lattice. Some
exterior grains have been removed for illustration. The solid lines are reconstructed
grain edges and the dashed lines are input cross-sections. From left to right the distance
between cross-sections is 1, 3 and 5 voxels.

Figure 8 shows the reconstruction of a group of cells called truncated octahedra.
Each cell is bounded 14 faces, six squares and eight hexagons. Figure 8(a) shows the
initial output of the algorithm, in which the reconstructed faces are not all squares and
hexagons, a consequence of ambiguity. However this is a good starting point for fur-
ther refinement, as the faces contain multiple polylines from adjacent cross-sections,
which allows the estimation of a plane fitting the face, or a local region of it. Using
this information we have modified the reconstructed complex to achieve the correct cell
structure, shown in Figure 8(b).

(a) (b)

Fig. 8. Two reconstructions of a group of truncated octahedra. Reconstructed edges of
the complex are drawn with solid lines and the input cross-sections are drawn with
dashed lines. The left image shows the output of the algorithm as presented. The right
image shows the complex after local topological modifications guided by the cell face
geometry.
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This modification process is the subject of ongoing research, so we only sketch the
method here. Notice in Figure 8(b) that not every cell edge intersects a cross-section. We
group such ambiguous edges into clusters. In the dual, this edge cluster is a cluster of Δ -
tetrahedra bounded by non-ambiguousΔ -faces. The interior of the cluster is deleted and
then re-tessellated using the following heuristic: Non-ambiguousΔ -faces are associated
with lines defined by the triple points from consecutive cross-sections, and during re-
tessellation we favor creating Δ -tetrahedra whose faces are associated with lines that
come closest to intersecting. Not every edge of the Δ∗-complex intersects enough cross-
sections to define a line, but if there are a sufficient number of non-ambiguous edges
and faces then their gemoetry can be used to resolve topological ambiguities.

Figure 8(b) was created by placing the unconstrained vertices—those not lying in a
cross-section—to minimize the sum of squared distances to the planes of incident faces.
This strategy produces accurate reconstructions if ambiguities are correctly resolved,
but can cause severe self-intersections if they are not.

Figure 9 shows the reconstruction of a sample of tantalum. The sample was sub-
jected to impact and consequently it exhibits deformed polycrystal grains and a number
of small and large voids. There are 1976 cells in total. The running time of the main
portion of the algorithm was approximately 30 seconds on a computer with a 2.1 GHz
processor. The cross-sections were observed using an EBSD microscope, at a spacing
of 25μm. A larger portion of this same dataset has been previously reconstructed us-
ing a voxel-based method [3]. The cross-sections in Figure 9 are sparse, and the planar
boundary curves are complex, so there are some self-intersections.

Fig. 9. A portion of a reconstruction of 13 cross-sections of a sample of shocked tanta-
lum. The input cross-sections are indicated by horizontal lines.

Conclusion

We have presented an algorithm for reconstructing a 3D cell complex from a series
of 2D cross-sections. Given any matching of regions between cross-sections, the algo-
rithm produces a cell complex that connects matched regions. Self-intersections remain
an outstanding issue. The constructed complex is guaranteed to have simple topology,
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but embedding it in R
3 may not be straightforward. Indeed since any matching be-

tween cross-sections is permitted, it is quite easy to produce intractably tangled cell
complexes. The embedding the reconstructed complex in R

3 remains an area of future
research.
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Abstract. Interdisciplinary efforts in modeling and simulating phenomena have
led to complex multi-physics models involving different physical properties and
materials in the same system. Within a 3d domain, substructures of lower di-
mensions appear at the interface between different materials. Correspondingly,
an unstructured tetrahedral mesh used for such a simulation includes 2d and 1d
substructures embedded in the vertices, edges and faces of the mesh.
The simplification of such tetrahedral meshes must preserve (1) the geometry and
the topology of the 3d domain, (2) the simulated data and (3) the geometry and
topology of the embedded substructures. Although intensive research has been
conducted on the first two goals, the third objective has received little attention.
This paper focuses on the preservation of the topology of 1d and 2d substruc-
tures embedded in an unstructured tetrahedral mesh, during edge collapse simpli-
fication. We define these substructures as simplicial sub-complexes of the mesh,
which is modeled as an extended simplicial complex. We derive a robust algo-
rithm, based on combinatorial topology results, in order to determine if an edge
can be collapsed without changing the topology of both the mesh and all embed-
ded substructures. Based on this algorithm we have developed a system for sim-
plifying scientific datasets defined on irregular tetrahedral meshes with substruc-
tures. The implementation of our system is discussed in detail. We demonstrate
the power of our system with real world scientific datasets from electromagnetism
simulations.

1 Introduction

In this paper we introduce a system that is able to robustly preserve surfaces and poly-
lines defined as substructures in a tetrahedral mesh simplified by repeated edge col-
lapses. This problem originates from an application in electromagnetism, as detailed in
the next section. The surfaces (resp. polylines) we are dealing with consist in a subset
of faces (resp. edges) of the tetrahedral mesh. Thus, collapsing an edge of the mesh
may result in modification of the surfaces and polylines. Preserving these substructures
during simplification is a new topic in the literature. There have appeared several pa-
pers that have tackled a more specific issue: the preservation of boundary surfaces in
tetrahedral meshes. The proposed solutions to boundary surface preservation, however,
are often too restrictive. Some systems reject any edge collapses in the neighborhood of
boundaries, while others do not allow collapses between boundary and internal vertices.
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Fig. 1. Electromagnetism simulation for furtivity studies on a large irregular tetrahedral
mesh where surface and linear substructures are the heart of the simulation as they
influence the field propagation.

In contrast our system is less restrictive: edges may be collapsed anywhere in the
mesh, even in the neighborhood of substructures, and even between a vertex in the
substructures and a vertex outside the substructures. This leads to higher simplification
rates. Furthermore the simplification is uniformly spread out across the mesh, regardless
of the underlying substructures.

The main contribution of our paper is a robust algorithm to detect if an edge can
be collapsed without modifying the topology of the mesh and of its substructures. Our
system combines this topological validity test with simple geometric and numeric error
measures in order to drive the simplification. However the focus of this paper is clearly
on preserving topology – not on preserving the geometry of the mesh or the numeri-
cal values attached to it. As a matter of fact, the numerous geometric error measures
proposed in other papers can be straightforwardly extended to take into account the
geometry of substructures in a mesh, whereas the preservation of the topology of the
substructures is the real challenge.

In a previous work [14] we introduced a topological test for preserving polylines
in non-manifold triangular meshes. Our current work extends the algorithms of [14]
to tetrahedral meshes with 2D and 1D substructures. This extension is not trivial, both
from a theoretical point of view and for the implementation. The latter is done very care-
fully in our system. Efficient data structures and algorithms are precisely described. Fol-
lowing [14], the mesh is modeled as a simplicial complex extended by new simplices
connecting the substructures to a dummy vertex. The validity of the edge collapse is
checked in the extended complex using results from [4]. Thus there is only one con-
sistent test to ensure the preservation of the topology of the mesh and of all embedded
substructures. In particular we do not rely on heuristic solutions that would treat the
mesh and the substructures independently.

The remainder of the paper is structured as follows. Section 1.1 and 1.2 give some
additional motivation for this work. Section 2 reviews related work. Section 3 presents
the theory and Section 4 describes the implementation in detail. Section 5 presents
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Fig. 2. (le f t) Detail of a substructure shown at high resolution only inside a volume
of interest. The topology of the mesh and the substructures is preserved everywhere.
(right) Multiresolution visualization of a thin layer of material with the associated elec-
tromagnetic field magnitude.

the integration of the topological test in our visualization system, with examples of
application on real world datasets.

1.1 Strength of the Topological Criteria

Geometric error metrics in simplification are coupled with a threshold value that one
can adapt to coarsen or refine the data. No matter how good the error computation is,
the decision of removal greatly depends on this threshold which is application depend in
order to handle unexpected cases often met in Scientific Visualization. In contrast, topo-
logical tools guaranty the integrity of the data after simplification without integrating
global information or any metric between elements. Combinatorial Topology criteria
are general to any application domain that uses meshes.

1.2 Electromagnetic Simulation

Electromagnetism is a wide field used in many applications such as electromagnetic
compatibility, furtivity, or the modeling of new absorbing media. Stealth technology
relies on the conception and simulation of new absorbing materials in order to decrease
the signals reflected from the target to the radar receiver. This ability to reflect radar sig-
nals is characterized through Radar Cross Section (RCS) represented as a single scalar.
However, to minimize this value, designers need to fully understand the electromag-
netic field behavior on the object surface and in its interior. Numerical simulations of
this phenomenon often use volumetric finite element methods coupled with a domain
decomposition.

The main challenges when simplifying these data for multiresolution visualization
come from the complex topology of the embedded structures and the large amount
of data. Material boundaries (e.g. interfaces) and various substructures of different di-
mensions (possibly point sources and polylines) that exist in specific layers introduce
a complex topology. The multiple crossing interfaces can be represented as one non-
manifold surface embedded in the volume mesh. The union of all polylines can also be
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seen as a unique linear structure which intersects the non-manifold surface. Fig. 1 and
3 illustrate such data.

Also, due to the high frequency of the incident electromagnetic field, the mesh needs
to be subdivided to the scale of the wave length leading to millions of cells. Because of
the thin domain decomposition required by the numerical simulation and the design of
specific objects, current tetrahedral meshes have only a few tetrahedra in the thickness
of a layer (see Fig. 7) even though the entire mesh may be composed of a hundred of
millions of cells.

Fig. 3. (le f t) Polyline emerging from an orthogonal base plan. The mesh is subdivided
around this structure. (center) Linear structure with multiple self intersections twisted
around a cylindrical mass with orthogonal interfaces. (right) Multiple crossing inter-
faces of thin material layers and polylines of the structure.

Although we introduced our method on electromagnetism simulations, the exact
same topological test can be applied to any domain where the topology of embedded
structures needs to be preserved through simplification of the tetrahedral mesh (geology,
medical imaging ...).

2 Related Work

Multiresolution approaches provide techniques to efficiently and accurately explore
large unstructured polygonal and volume data in Computer Graphics and Scientific
Visualization. In order to create a multiresolution representation, many mesh simpli-
fication algorithms have been proposed over the last decade ranging from surface to
volume based methods. As we focus on topology criteria, we will only survey these
criteria used in previous algorithms and omit geometry/attribute error metrics and sur-
face/volume mesh simplification algorithms [2, 10]. In fact any error metrics can be
combined with our algorithm without any side effect in order to improve the attribute
or geometric quality of the simplified mesh.

Among the wide range of simplification methods, only a few of them introduce
specific topological tests and almost none of them tackle the problem of linear/surface
features in a volume mesh. Early work on topological criteria has been done on surface
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simplification in [13] where the vertices candidate to the removal are classified by ana-
lyzing their local neighborhood.

With the notions from computational topology, [8] has proven that the topology of
a triangular mesh can be preserved, through simplification, if the 3 tests introduced in
the paper are fulfilled. Later, in the PM method [7], these tests are completed with local
heuristics in order to preserve the topology of discontinuity curves defined on a surface.
The author proposes 6 rules based on an enumeration of the vertices around an edge
representing a linear feature.

[9] successfully simplifies non-convex tetrahedral meshes by triangulating the non
convex regions. The authors check for tetrahedron flipping avoiding topological and
geometrical problems only at the boundary. However, the authors point out that some
topological problems can still be undetected with their test during the simplification.
All these previous topological criteria are not general enough to preserve the topology
of both 1D and 2D structures in a 3D mesh.

[4] is the groundbreaking paper on topology preservation. It has introduced the link
conditions to robustly check if an edge collapse preserves the topology of a 3-complex.
Our paper makes extensive use of these link conditions (reviewed in Section 3).

Intuitively, the link of a simplex u is the subset of simplicies being in contact with
all adjacent simplicies of u and the rest of the mesh. In a 3-complex without boundary,
[4] has proven that an edge collapse uv preserves the topology of the complex if the
intersection of the vertex links is equal to the edge link. This condition is known as
the link condition. For general 3-complexes, this link condition has to be evaluated in
a succession of complexes built by iteratively filtering the simplicies having a simpler
topological neighborhood.

Extending the multiresolution representation of [3], [1] first integrates the link con-
ditions to preserve the topology of both the interior cells and the boundary of the mesh.
[12] also uses the link conditions but simplifies them by assuming that the tetrahedral
mesh is manifold. The link condition is computed for a 3-complex without boundary
for the interior tetrahedra and if a boundary tetrahedron is encountered a second link
condition for the 2-complex at the boundary is added.

Because none of these papers fullfil our needs we introduced a new algorithm which
successfuly simplifies general simplicical 3-complex in preserving both the topology of
this complex and the topology of sub-complexes embedded into it. The strength of this
new algorithm comes from: (i) its locality, (It only uses the direct neighborhood of the
simplicies) (ii) its unicity, (It can handle any complicated topological neighborhood re-
gardless of its dimension lower than 3.) and (iii) its exactness (It is based on theoretical
results taken from combinatorial topology rather than local heuristics).

3 Topology preserving edge collapse in an extended 3-complex

3.1 Link conditions in a 3-complex

The link conditions introduced in [4] can be used in a tetrahedral mesh to test if an edge
e between two vertices u and v can be collapsed without modifying the topology of
the mesh. The mesh is modeled as a simplicial complex K. The link conditions are ex-
pressed using basic operators from algebraic topology. We assume the reader is familiar
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with elementary notions in this field. Precise definitions of the link Lk T , the star St T
and the closure T of a set T of simplices can be found in [11] and illustrated in [14].

If K is a manifold 3-complex, the link conditions reduces to:

Lk u∩Lk v = Lk e (1)

If the 3-complex is non-manifold, the condition (1) has to be tested in three succes-
sive smaller complexes of dimensions 3, 2 and 1. This is detailed in Section 3.3.

3.2 Extending the mesh with the substructures

In order to use this link condition in our setting, the embedded structures need to be
visible from the surrounding mesh. To do so, we increase the neighborhood complexity
of simplicies defining the sub-structures as follow. The tetrahedral mesh is modeled as
a simplicial complex K. The 2D (resp. 1D) substructures are defined as a set Lf (resp.
Le) of faces (resp. edges) in K. We define an extended complex K̃ by adding to K the
cones from a dummy vertex ω to each simplex in the closure of the substructures, as
illustrated in Fig. 4.The key idea is to consistently encode the topology of the mesh and

ω

ω ω. .

τ

τf

LLKK = ef

τe

τe = 2ordf = 1ord

ω

Fig. 4. Construction of the extended complex. The red simplicies correspond to the
substructures Lf and Le. The yellow simplicies represent the elements added to the
original complex K (shown in blue) in order to extend K to K̃.

its substructures in a single extended complex.

3.3 Link conditions in the extended complex

To preserve the topology of the mesh and its substructures, we apply the link conditions
in the extended complex defined in Section 3.2. Even if the original mesh is manifold,
the extended complex is non manifold. Thus, the link condition (1) must be evaluated
respectively in the following complexes:

K̃ω = K̃ ∪ (ω ·Bd1 K̃)
G̃ω = Bd1 K̃ ∪ (ω ·Bd2 K̃)
H̃ω = Bd2 K̃ ∪ (ω ·Bd3 K̃)

(2)
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where Bdi K̃ is the set of all simplicies of order i or less in K̃. The link of a simplex in
K̃ω , G̃ω and H̃ω is respectively noted as Lkω0 , Lkω1 and Lkω2 . The precise definition
of the order of a simplex is given in [4]. Simplicies of dimension k in a 3-complex have
an order not greater than 3− k. Therefore K̃ω is a 3-complex, while G̃ω contains only
edges and H̃ω only vertices.

Note that our algorithm can deal with non-manifold tetrahedral meshes. However
for clarity reasons, the following discussion is restricted to the case where the tetrahe-
dral mesh is a manifold with boundary.

In this case, Bd1 K̃ contains the boundary faces of K and the faces of Lf . It con-
tains also the edges and vertices of these faces. Bd2 K̃ contains the edges of Le and
the edges adjacent to exactly one, or else three or more faces of Lf (i.e., the boundary
and the non-manifold edges of Lf ). It contains also the vertices of these edges. Finally
Bd3 K̃ contains the vertices adjacent to one or else three or more edges of Bd2 K̃ (i.e.
the boundary and non-manifold vertices of Bd2 K̃). This includes vertices at the inter-
sections created when a polyline in Le crosses a surface in Lf .

By experience, the simplicies of high order correspond to regions of interest that
the user visualizes in detail. Important features in the mesh (detected by cells marked
as simplices of high order) are usually correlated with high variations in the data. This
point is clearly illustrated in the electromagnetic simulations where the field greatly
varies around the linear structure or the points of contact in between this element and a
mass plan.

4 Implementation of the Topology Preservation Test

4.1 Datastructure of the embedded simplices

The implementation of the link condition requires to iterate through all adjacent sim-
plicies around a vertex and an edge. For memory requirement and efficiency we do not
store explicitly all simplicies (faces, edges and vertices) of our substructures. Instead,
as both the substructures and the link simplicies are embedded in cells of the original
tetrahedral mesh, all of them are encoded as relative element indices in a tetrahedron.
For each tetrahedron 4 bits (resp. 6 bits) are used to indicate which faces (resp. edges)
support a 2D (resp 1D) substructure. Both the triangle mesh connectivity of the 2D sub-
structures and the linear mesh connectivity of the 1D substructures are retrieved through
the tetrahedron mesh connectivity without using additional memory. Moreover, during
the simplification process, such a data structure eases and optimizes the updates of the
substructures after an edge collapse. A modification on the tetrahedral mesh will be
directly passed on to the substructures, without any additional treatment.

4.2 Algorithmic implementation

Algorithm 1 describes the evaluation of the link conditions in order to detect if the
collapse of the edge e = uv preserves both the topology of the mesh and the topology
of any embedded structure. The extraction of the link of a simplex is the most repeated
operation when evaluating the link conditions. It is also time consuming as the star of
the reference simplex has to be exhaustively visited.
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Therefore, the links are directly obtained without explicitly building the extended
complex.

u

ω

fu
eu

u

ω

e

ω

fe

Fig. 5. Contribution to the links from the extended simplicies around a reference sim-
plex (u or e shown in green). ω represents the dummy vertex. The substructures are
shown in red and the simplicies to insert into the links in yellow.

In order to understand this optimized implementation, one has to associate the dif-
ferent members of equation (2) to the algorithm steps. For example, starting at line 5
and illustrated in Fig. 5 le f t, if fu is a face of a substructure then the dummy tetrahe-
dron Tω increases the order of fu to 1. Thus, fu is included in Bd1 K̃ and contributes to
Lkω0 but also to Lkω1 because of the member ω ·Bd1 K̃ of G̃ω (line 8). The simplices
represented in yellow on the figure 5 middle are the contribution of the triangle tω de-
fined on line 13 to Lkω0 and Lkω1 . This extension increases the order of the edge eu to 2
making it visible in Bd2 K̃. Thus, line 15 of the algorithm implements the contribution
of the simplicies present in the member Bd2 K̃ of H̃ω . A last example, shown on figure
5 right, illustrates the contribution of the dummy tetrahedron Tω introduced on line 28.
In this case only the opposite edge (yellow) to e (green) is inserted to the link of Lkω0 e
as no face can be present in the link of an edge.

One has to note that due to the strong theoretical background, the topological criteria
is insensitive to the complexity of the neighborhood of the collapse (multiple surfaces
and polylines).

5 Applications

5.1 Volumetric Simplification

This section presents various applications of the topology preserving visualization sys-
tem introduced in the present paper.

The example on figure 6 shows the simplification of a mesh used in electromag-
netism simulation. The object is composed of approximatively twenty thin layers of
materials encapsulated in each others. The geometry is meshed with about two mil-
lions of tetrahedra. In order to study the circulation of the electromagnetic field at the
boundary of each material, all interfaces are explicitely described as embedded surfaces.
Additional linear structures with self intersections are inserted in the model. Fig. 6(b)



Substructure Topology Preserving Simplification of Tetrahedral Meshes 63

Algorithm 1 IsEdgeCollapsePreservingTopology(K, u, v, e)
1: # Lines 2 to 21: Compute Lkω0 u, Lkω1 u and Lkω2 u
2: for all T in St(u) do
3: Add to Lkω0 u the 2-face of T opposite to u, its 3 edges and its 3 vertices
4: for all adjacent face fu to u in T do
5: if fu is a face of a substructure then
6: A dummy tetrahedron is defined as Tω = ω · fu

7: Add to Lkω0 u the face of Tω opposite to u, its 3 edges and its 3 vertices
8: Add to Lkω1 u the edge of fu opposite to u and its 2 vertices
9: end if

10: end for
11: for all adjacent edge eu to u in T do
12: if eu is an edge of a polyline then
13: A dummy triangle is defined as tω = ω · eu

14: Add to Lkω0 u and Lkω1 u the edge of tω opposite to u and its 2 vertices
15: Add to Lkω2 u the vertex of eu opposite to u
16: end if
17: end for
18: if u is an order 3 vertex then
19: Add ω to Lkω2 u
20: end if
21: end for
22: # To compute Lkω0 v, Lkω1 v and Lkω2 v apply lines 2 to 21 after changing u in v.
23: # Lines 25 to 37: Compute Lkω0 e and Lkω1 e (Lkω2 e is alway empty)
24: for all Te in St(e) do
25: Add to Lkω0 e the edge of Te opposite to e and its 2 vertices
26: for all f of Te adjacent to e do
27: if f is a face of a substructure then
28: A dummy tetrahedron is defined as Tω = ω · f
29: Add to Lkω1 e the edge of Tω opposite to e and its 2 vertices
30: Add to Lkω1 e the vertex of f opposite to e
31: end if
32: end for
33: if e is an edge of a polyline then
34: Add to Lkω0 e and Lkω1 e the vertex ω
35: end if
36: end for
37: # Lines 39 to 41: Evaluate the link conditions
38: if Lkω0 u∩Lkω0 v 
= Lkω0 e then return FALSE
39: if Lkω1 u∩Lkω1 v 
= Lkω1 e then return FALSE
40: if Lkω2 u∩Lkω2 v 
= /0 then return FALSE
41: return TRUE



64 Vivodtzev, Bonneau, Hahmann, and Hagen

(a) Original mesh (b) After 90% of simplification

Fig. 6. Volumetric simplification of a model with multiple substructures. A few material
layers are shown as opaque triangle mesh and all interfaces as semi-transparent surfaces.
The linear features are in red and their self intersections marked by yellow spheres.

shows the simplified mesh after removing 90% of the vertices with edge collapses. This
example illustrates the strength of the algorithm on data composed of a large amount of
substructures of different dimension with multiple self intersections (e.g. increasing the
topological complexity).

Achieving aggressive simplification rates becomes challenging when dealing with
large volumetric meshes organised in thin material layers. Fig. 7 shows a detail of such

(a) Original mesh (b) After 98% of simplification

Fig. 7. Aggressive simplification of a volume mesh composed of thin material layers.
The topological criteria preserve both the thickness of the layers and the topology of
the substructures while allowing collapses of edges on the substructures.

data where the material layers have no more than 5 tetrahedra in their thickness. Lin-
ear features are also defined on specific boundaries. Fig. 7(b) shows the result after a
massive simplification where 98% of the vertices have been removed by edge collapses.
In this example the simplification stopped when all candidate edges are rejected due to
the topological criteria. It is important to note that the topological constraints on the 2D
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interfaces ensure the preservation of the volume of each layer (at least 1 tetrahedron
in the thickness and usually no more). Another interesting aspect of this example is
the fact that strong constraints on the substructure topology do not disturb or prevent
an high simplification rate of the substructures. The arrow drawn along a linear fea-
ture living on an interface covers about 16 edges on the initial mesh but only 4 edges
after simplification. Thus many edges of the interface and of the polyline have been
collapsed.

5.2 Multiresolution Visualization

Fig. 8. (le f t) Variable resolution visualization of a volume mesh with multiple linear
features. The topology of the substructures is guaranteed to be preserved. (right) Snap-
shot of the multiresolution visualization tool to explore simulation data with embedded
structures on a desktop PC.

In order to provide a visualization system taking advantage of the substructure
topology preserving criteria, the algorithm has been integrated into an existing mul-
tiresolution framework. The MT library [5], freely available and based on the formal
approach of [6], provides the tools to build and exploit a multiresolution representation
from a sequence of valid transformation on a mesh. MT stores a partial order amongst
the modifications into a DAG which can then be querried with static or dynamic crite-
ria to produce various resolutions. Global or local extractors allow the user to extract
meshes at variable resolution centered around a volume of interest (VOI). Fig. 8 and 1
show a multiresolution mesh at high resolution only inside a VOI interactively moved
by a user. The mesh at low resolution reduces the use of the graphic processor allowing
the application to maintain an interactive frame rate even with an original mesh of sev-
eral millions of cells. As the substructure preserving topology criteria have been used to
build this representation, the topology of the substructures is guaranteed to be preserved
on the multiresolution visualizations.
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6 Conclusion

This paper has introduced new results for simplifying tetrahedral meshes with 2D and
1D substructures. As a specific application our system can simplify multi-material tetra-
hedral meshes while accurately preserving the topology of the material parts. To the
best of our knowledge, this is the first paper that deals with the simplification of multi-
material tetrahedral meshes. Our system can also handle more general 2D and 1D sub-
structures. An application in the field of electromagnetism simulation, from which the
system originates, has been shown. This application and the technology explained (mul-
tiresolution) are part of the strategy of the CEA in order to visualize large data computed
on a remote super-computer. While focusing on topology preservation, our system can
accommodate any geometric and numeric error measures as well.
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Abstract. The Morse-Smale complex is an effective topology-based representa-
tion for identifying, ordering, and selectively removing features in scalar-valued
data. Several algorithms are known for its effective computation, however, com-
mon problems pose practical challenges for any feature-finding approach using
the Morse-Smale complex. We identify these problems and present practical so-
lutions: (1) we identify the cause of spurious critical points due to simulation of
simplicity, and present a general technique for solving it; (2) we improve sim-
plification performance by reordering critical point cancellation operations and
introducing an efficient data structure for storing the arcs of the complex; (3) we
present a practical approach for handling boundary conditions.

1 Introduction

Scientific data is becoming increasingly complex, and sophisticated techniques are re-
quired for its effective analysis and visualization. The Morse-Smale (MS) complex is
an efficient data structure that represents the complete gradient flow behavior of a scalar
function, and can be used to identify, order, and selectively remove features. Although
several algorithms are known for its computation, achieving an efficient implementa-
tion is still a challenge. Key optimizations remain un-addressed in the literature without
which computation of the complex might have a memory footprint that grows past
practical limits, simplification times that take days instead of seconds, and undesirable
artifacts on the boundaries. We examine the causes of such problems and present the
necessary techniques for overcoming them.

2 Related Work

The MS complex is a topological data structure that provides an abstract representation
of the gradient flow behavior of a scalar field [12, 13]. Edelsbrunner et al. [3] defined
the MS complex for piecewise-linear 2-manifolds by considering the PL function as the
limit of a series of smooth functions, and used this interpretation to transfer ideas from
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the smooth case. They also provided an efficient algorithm to compute the MS complex,
restricted to edges of the input triangulation, and construct a hierarchical representation
by repeated cancellation of pairs of critical points. Bremer et al. [1] improved the algo-
rithm and described a multi-resolution representation of a scalar field. Both algorithms
trace paths of steepest ascent and descent beginning at saddle points. These paths con-
stitute boundaries of two-dimensional cells of the MS complex.

Cells in the MS complex of a trivariate scalar field can be of dimension zero, one,
two, or three. Tracing boundaries of the three-dimensional cells while maintaining a
combinatorial valid complex is a difficult task and a practical implementation of such
an algorithm remains a challenge [2]. Nevertheless, the MS complex has been com-
puted for trivariate scalar field data and successfully used to identify features through
repeated application of atomic cancellation operations [7]. Computation of the complex
in this manner makes necessary a preprocessing step that subdivides every voxel by
inserting “dummy” critical points, and therefore has a large computational overhead.
This approach was improved by using a sweeping plane [8], but data size and compu-
tational overhead still turned out to be a limiting factor. An algorithm based on region-
growing [9] was introduced for simplicial meshes of three dimensions, with a tenfold
improvement in efficiency, however, the need to store the ascending and descending
manifold membership information at each cell of the input, and the requirement to rep-
resent the entire output explicitly limits the scalability of this approach.

Discrete Morse theory, as presented by Forman [5], has also been used to com-
pute the MS complex. Lewiner et al. [11] showed how a discrete gradient field can be
constructed and used to identify the MS complex, however, this construction requires
modification of the input mesh and an explicit representation of gradient paths, restrict-
ing the applicability of the method. King et al. [10] presented a method for constructing
a discrete gradient field that agrees with the large-scale flow behavior of the data defined
at vertices of the input mesh. Gyulassy et al. [6] presented an algorithm to compute the
MS complex for data of any dimension in a memory-efficient manner by subdividing
the data into parcels, computing the discrete gradient and complex on each parcel, and
gluing the complex of each parcel back together using the discrete gradient flow across
the boundaries. This method was the first scalable algorithm published for constructing
MS complexes for large data. We use the slicing version of this algorithm to generate
memory and run-time statistics is this paper.

3 Background

We present some basic definitions and an explanation of cancellations in the Morse-
Smale complex.

3.1 Morse Functions and the Morse-Smale Complex

A real-valued smooth map f : M → R defined over a compact d-manifold M is a Morse
function if all its critical points are non-degenerate (i.e., the Hessian matrix is non-
singular for all critical points) and no two critical points have the same function value.
An integral line of f is a maximal path in M whose tangent vectors agree with the
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Fig. 1. The circled arc connects a saddle l to a maximum u (a). cancellation of (l,u)
removes all arcs attached to l or u, and creates new arcs from the lower neighbors of u
to the upper neighbors of l (b).

gradient of f at every point of the path. Each integral line has a natural origin and
destination at critical points of f where the gradient becomes zero. Ascending and de-
scending manifolds are obtained as clusters of integral lines having common origin and
destination respectively. The Morse-Smale (MS) complex, denoted Γ , is a partition of
M into regions clustering integral lines that share common origin and destination. In
Morse-Smale functions, the integral lines only connect critical points of different in-
dices.

Each critical point of index n is the origin of a set of integral lines that forms
an ascending d − n-manifold. Symmetrically, it is the destination of a set of integral
lines that forms a descending n-manifold. All ascending and descending manifolds of a
Morse-Smale function intersect transversely. Therefore, given two critical points a and
b, where the index of a is one less than the index of b, the intersection of the ascend-
ing manifold of a and the descending manifold of b is either empty or a 1-manifold.
The critical points and these 1-manifolds are called nodes and arcs. The one-skeleton
formed by the nodes and arcs forms the combinatorial structure of the MS complex.
The combinatorial structure contains much of the semantic information of f , and is
useful for simplification and feature identification. The neighborhood of a node a of an
MS complex Γ is the set of nodes Na that are connected to a by an arc in Γ .

3.2 Cancellations

A function f is simplified by repeated cancellation of pairs of critical points. The local
change in the MS complex leads to a smoothing of the gradient vector field and hence
of the function f . A cancellation operation is valid (i.e., it can be realized by a local
perturbation of the gradient vector field) for a pair of critical points if and only if there
exists exactly one arc connecting them in the complex. Therefore, the indices of the
two critical points must differ by one. Also, any critical point pair that is connected by
multiple arcs represents a configuration known as a strangulation or a pouch, for which
there is no direct perturbation of the gradient that removes the critical point pair. The
atomic cancellation operations that are the basis for simplifying an MS complex were
characterized in Gyulassy et al. [6] for complexes of general dimensions:

Cancellation: Let Γ be an MS complex for a scalar function defined on a closed d-
manifold M. Let l and u be the lower and upper nodes of an arc a in Γ , with indices i
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and i+ 1, respectively. Let Al be the set of arcs that have l as one end point, Au the set
of arcs that have u as one end point, Nl the set of nodes in the neighborhood of l, and
Nu the set of nodes in the neighborhood of u.

The combinatorial cancellation of (l,u) changes the combinatorial structure of the
MS complex and is based on these two steps:

1. Creation of a new arc connecting every critical point of indices i+ 1 in Nl to every
critical point of index i in Nu, and adding them to Γ .

2. Removal of arcs in Al and Au, and removal of l and u from the complex.

Figure 1 shows this operation for a two-dimensional MS complex. The cancellation
operation creates and destroys several arcs in the MS complex, and therefore an efficient
data structure representing the nodes and arcs is necessary to handle the operations
involved. Let a = (l,u) be an arc that is canceled, n be the number of critical points of
index i+1 in Nl , and m be the number of critical points of index i in Nu. In the fist step
of canceling a, n×m new arcs are added to the MS complex. Each arc that is created
must be inserted into the set of arcs of the nodes at its endpoints, resulting in O(n×m)
INSERT operations. In the second step, the arcs connecting with the canceled nodes are
removed from the complex. Each arc that is removed from the complex must be deleted
from the set of arcs of the nodes at its endpoints, resulting in O(|Al|+ |Au|) DELETE

operations. Therefore, a data structure for storing the arcs at each node must support
efficient INSERT and DELETE operations.

In previous implementations [6, 7, 9], all arcs connected to a node were stored in a
linked list. INSERT operations were performed in constant time, however, the DELETE

operations were linear time in the number of arcs |An| connected to a node n. Therefore,
the total running time for a cancellation was O((n×m)+((|Al|+ |Au|)×Am)) where m
is the node with the largest number |Am| of connected arcs in Nu ∪Nl .

The first term in this running time can lead to a quadratic increase in the number of
arcs in the complex: not only does it create n×m new arcs, but every index-i node in Nu

has m arcs added to its set of connected nodes, and every index-(i+1) node in Nl has n
arcs added. Therefore, future cancellations between pairs of these nodes become more
costly. Therefore, performing k cancellations in a naive ordering can therefore lead to
an actual kn× km cost. Such situations often arise when large flat regions have many
adjacent 0-persistence arcs, as is the case in most integer-valued data. The second term
in the running time can also be prohibitive, as nodes with a large number of connected
arcs (high valence) slow the cancellation of every node that is connected to it. In fact,
a linear-time DELETE operation in the number of arcs connected to a node leads to
quadratic-time cancellations in the number of arcs connected to each endpoint.

3.3 Data Sets

The timing and memory performance statistics presented throughout this paper were
generated on an off-the-shelf 2.21GHz AMD Athlon processor with 2.0Gb memory.
Data sets were chosen to stress particular aspects of the MS complex construction algo-
rithm. The data sets used and the particular challenge posed by each are summarized in
table 1.
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Name Size Values Description Challenge
Artificial 64×64×64 Byte An artificially generated data set No implicit ordering of

where every cell is critical and all arcs for cancellation
arcs have zero persistence

Hydrogen 128×128×128 Byte The spatial probability distribution Large flat regions with
of an electron around a hydrogen simple persistent features
atom in a strong magnetic field

Aneurism 256×256×256 Byte A rotational X-ray Flat regions interspersed
scan of an aneurism with noise

Porous 230×230×325 Float Distance to an interface surface Noisy floating-point data
in a simulated porous solid with flat ridge lines

Table 1. The data sets used for the generation of the timing data presented in this paper
were selected to examine particular aspects of performance.

4 Improved Simulation of Simplicity

An interpolated function derived from real-life data is not necessarily Morse-Smale.
One particular property necessary for algorithms computing the MS complex is differ-
entiability, i.e., vertices have pairwise distinct value, and hence no “flat” regions exist.
Edelsbrunner and Mücke [4] introduced simulation of simplicity to resolve degenerate
conditions where the input function is not a Morse function. Differentiability is simu-
lated by assigning a strictly increasing ordering to vertices. Typically this is achieved
with a pre-sort of the data, and vertex a has lower value than a vertex b if and only if
it has lower index in the sorted array. In this manner, the order given by distinct data
values is preserved, and an ordering for same-valued vertices is created. This sorting
can be done implicitly, as shown in figure 2.

While this simple simulation of simplicity breaks ties and provides a complete or-
dering of the vertices of a data set, it introduces critical points that only exist due to
index comparison. Figure 2 illustrates a scalar function with flat regions, where such
an ordering produces spurious critical points at the boundaries of the flat regions. Al-
though such critical points can be detected as noise and removed through simplification,
they introduce a significant processing and data size overhead when computing the MS
complex.

We improve the standard simulation of simplicity by introducing a new sorting or-
der for the vertices that uses a greedy region-growing approach to eliminate the extra
critical points due to flat regions. Our technique uses two priority queues to create a
sorting order: the first, simpleOrder, returns the lowest unprocessed element ordered
by function value and index in the data structure; the second, b f sOrder, has the same
ordering, but only contains unprocessed vertices that are neighboring previously pro-
cessed vertices. When a query asks for the lowest unprocessed vertex, the top elements
of simpleOrder and b f sOrder are compared, and the one with lower function value is
returned. If they have the same function value, the top element of b f sOrder is returned.
When a vertex is processed, all of its unprocessed neighbors are added to b f sOrder.

In this manner, the ordering corresponds to the insertion time of a vertex in a flood-
fill of the ascending manifolds of a function. It is a greedy technique that crosses flat
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(a) (b) (c)

Fig. 2. Let the index of a vertex v = (x,y) be x+(y∗xdim). Using standard simulation of
simplicity, minima are identified at the boundaries of flat regions (a). When constructing
an MS complex, these minima further generate the necessary separating saddles and
maxima (b), far more than the actual three persistent critical points (c).

regions in a breadth-first search, and therefore prevents extra minima from appearing.
Note that it is not necessary to build the sorting order explicitly when using an algorithm
based on region growing, since often these algorithms only use the ordering to extract
the lowest unprocessed element. This same ordering is particularly effective for order-
ing cells in the computation of a discrete gradient field. For example, in the algorithm
presented by Gyulassy et al. [6], cells of each dimension d are iterated, and local min-
ima correspond to critical cells of index d. The performance of this algorithm, number
of critical points found, and memory footprint are summarized in Table 5. Although this
method was primarily designed to help overcome the flat regions in integer-valued data,
a large improvement was also seen in the porous data set, a floating-point data set. This
behavior indicates that discretizing a function makes it very sensitive to the ordering of
cells, even when the original values are reasonably distinct floating-point numbers.

5 Efficient Cancellations

We use the description of the atomic cancellation operations provided in Gyulassy et
al. [6] as a basis for examining the necessary major improvements to enable simpli-
fication of the MS complex in practice. We increase the performance of cancellations
by introducing a data structure for constant-time DELETE operations, and also present
several strategies for preventing a dramatic increase in the number of arcs due to the
potential kn× km new arcs created in a saddle-saddle cancellation.

5.1 Efficient Data Structure

We use a double-linked list to store the set of arcs An connected to a node n. The IN-
SERT operation can be done in constant time, since new arcs are always inserted at the
beginning of the list. A DELETE operation in a linked list requires finding the element
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Fig. 3. The nodes and arcs of the complex are stored as fixed-size elements in an array
(a) with the arcs containing the link information of the arc lists of their lower and upper
nodes. ALN and ALP are the indices of the next and previous arcs in the double-linked
arc list of the lower node, and AUN and AUP are the indices of the next and previous
arcs in the list of the upper node. Each arc additionally has a pointer to its lower and up-
per nodes, and a pointer to the geometry of the arc. (b) shows a sample two-dimensional
complex with the pointers at each node and arc.

Data set Artificial Hydrogen Aneurism Porous
(a) 620 951 638 3224
(b) 5130 5426 5006 5510

Table 2. A chart showing the sustained cancellation rate to cancel arcs 20% of maxi-
mum persistence for various data sets. (a) lists the number of cancellations per second
using a standard linked list, and (b) shows the cancellations/second using a double-
linked list. Note that the porous data set has a high rate of cancellations even when
using a linked list, because it has very few high-valence nodes.

to remove, the previous element, and the next element, and reconnecting to remove the
element. Finding an element is linear in the size of the list, while reconnecting is con-
stant. A key observation is that in a cancellation operation, finding an arc in An is done
in constant time, since the arc element is previously identified during an iteration of the
arcs of its other endpoint. The previous and next elements must still be found, and in a
double-linked list this is done in constant time. Therefore, the entire DELETE of an arc
takes constant time in a cancellation operation. This behavior represents an improve-
ment over the linear time for the linked list used in previous implementations [6].

Figure 3 illustrates the data structure used to store the nodes and arcs of the MS
complex. Although this data structure is 1.4 times larger than a single-linked list, the
majority of the memory footprint of a complex is taken up by the geometry components,
such as storing the set of line segments that define an arc. In fact, for a typical complex,
the additional space required by the arcs to store the double-linked list is only 0.1%.
Table 2 compares the performance of using a standard linked list versus a double-linked
list.

5.2 Cancellation Strategy

simplification of a function is achieved by repeated cancellation of critical point pairs.
The ordering of critical point pairs is defined by persistence, which quantifies the im-
portance of the topological feature associated with a pair. The persistence of a critical
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point pair is the absolute difference in value of f between the two points. Typically,
in this ordering, the arc with the lowest persistence is canceled first. However, such
an ordering can lead to a memory footprint that grows past practical limits, due to the
creation of kn×km new arcs. Instead, we design a strategy to determine when a cancel-
lation can be delayed, based on conditions imposed on the neighborhood of the critical
points to be canceled. We still maintain the property that all cancellations must be valid,
i.e., the pair of nodes is connected by exactly one arc, and the arc to be canceled has
the lowest persistence of any in the neighborhood around the two nodes. Note that we
do not follow a strict global persistence ordering, since there are small features that will
not be removed until a later point in the simplification.

Limit n×m A straightforward technique to prevent the dramatic increase in memory
is to delay a cancellation until the number of new arcs it would create, n×m, is below
some threshold t. Arcs are initially ordered by persistence. However, if canceling the
arc with lowest persistence were to create more than t new arcs, the arc can be removed
from the ordering and put in a delayed list, and the next arc in the ordering is selected
for cancellation. cancellation of arcs in the neighborhood of delayed arcs can reduce
the number of arcs incident at the nodes at either endpoint. Delayed arcs are canceled
as soon as they create fewer than t new arcs. Table 3 shows the memory footprint and
running times for several data sets as a function of t. While lower t values generally
improve performance, they can lead to artifacts in the form of low persistence arcs that
are perpetually delayed. When t is too high, the memory cost and run time increases,
sometimes preventing the termination of the algorithm. However, t should be chosen as
high as possible to keep the number of artifacts small.

Global Valence Control The valence of a node is the number of arcs that have it as
an endpoint. Nodes with a high valence are expensive to cancel, and tend to generate
many new arcs, leading to more high-valence nodes. We present a strategy to prevent
the creation of high-valence nodes by delaying the cancellation of arcs that lead to
the creation of a high-valence node. When an arc is canceled, the valence of nodes
in a neighborhood around the canceled pair changes. Let n be the number of index-
(i + 1) nodes in the neighborhood Nl of the lower node, m be the number of index-i
nodes in the neighborhood Nu of the upper node. Let ai ∈ Nl be a node in the neigh-
borhood of the lower node, and bi ∈ Nu be a node in the neighborhood of the upper
node, and define V (a) to return the valence of node a. We define the weight of an arc as
W (a) = max(max(V (ai)+m|ai ∈ Nl),max(V (bi)+n|bi ∈ Nu)). Intuitively this value is
the largest valence that canceling a would create. A cancellation is delayed if the weight
of the arc is greater than a threshold t. Table 4 shows the memory footprint and running
times for several datasets as a function of t. As with the new arc limiting method, lower
t values correspond to higher performance and an increased number of artifacts. Com-
puting V (ai) requires storage of the valence at each node, and an update of it whenever
the neighborhood changes.
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Data Set t=20 t=40 t=80 t=160 t=360 t=720

Artificial-Time – 6m 34s 12m 40s 11m 51s 25m 31s –
Artificial-#Arc – 13,054,772 14,392,886 14,398,002 25,652,629 –
Artificial-Atf. – 887,281 145,332 24,045 10,244 –

Hydrogen-Time 0.86s 1.20s 2.03s 2.45s 2.63 3.30s
Hydrogen-#Arc 34,997 35,670 42,005 42,325 45,860 52,483
Hydrogen-Atf. 186 4 0 0 0 0

Aneurism-Time – 1m 35s 4m 59s 8m 10s 16m 45s 47m 32s
Aneurism-#Arc – 1,971,735 2,450,350 4,508,327 7,616,923 12,320,101
Aneurism-Atf. – 23,320 1,625 122 34 6

Porous-Time 6m 25s 7m 04s 9m 32s 15m 45s 17m 16s 34m 47
Porous-#Arc 6,202,863 6,402,892 8,300,210 9,224,373 12,535,309 35,541,770
Porous-Atf. 352 202 54 17 6 5

Table 3. For each data set, we provide as a function of t: the time required to cancel up to
20% persistence, the maximum number of arcs in the complex, and the number of low-
persistence artifacts that could not be cancelled, delaying arcs whose cancellation would
generate more than n×m new arcs. In general, a higher threshold results in longer run
times, a larger memory footprint, but fewer artifacts. Blanks indicate non-termination.
The MS complexes were generated using the improved simulation of simplicity from
Sect. 5.

Data Set t=10 t=20 t=40 t=60 t=80

Artificial-Time 5m 20s 7m 35s 12m 40s 11m 51s 30m 52s
Artificial-#Arc 12,409,860 13,003,472 15,492,382 16,255,012 25,652,629
Artificial-Atf. 724,381 45,351 15,045 1,244

Hydrogen-Time 1.06s 1.25s 2.18s 3.06s 3.54s
Hydrogen-#Arc 35,206 37,288 43,110 47,757 52,123
Hydrogen-Atf. 72 0 0 0 0

Aneurism-Time 1m 32s 2m 15s 10m 21s 17m 45s 25m 26s
Aneurism-#Arc 1,870,930 1,930,945 4,603,157 8,142,825 11,242,050
Aneurism-Atf. 26,076 18,450 102 3 2

Porous-Time 6m 05s 8m 36s 12m 29s 15m 54s 19m 24s
Porous-#Arc 5,730,043 7,404,100 10,004,540 13,224,373 15,853,612
Porous-Atf. 266 65 23 6 4

Table 4. For each data set, we provide as a function of t: the time required to cancel up
to 20% persistence, the maximum number of arcs in the complex, and the number of
low-persistence artifacts that could not be cancelled, delaying arcs whose cancellation
would produce a node of valence greater than t.

Data set Hydrogen Aneurism Porous

Standard Simp. 846,784 2,661,251 13,172,740
BFS Simplicity 3571 180,267 1,074,734

Table 5. The total number of critical points identified using a slice-by-slice computation
of the discrete gradient. The top row lists the numbers of critical points found when
the standard simulation of simplicity is used to order cells. The bottom row shows the
numbers of critical points identified with the on-the-fly ordering.
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6 Boundary Conditions

The MS complex is well-defined for scalar functions on manifolds without boundary.
Boundaries of a manifold present problems in computation of the MS complex, since
they require special rules for the identification and simplification of critical points and
cells. In practice, it is much easier to simulate the domain being a manifold without
boundary, avoiding the special boundary cases. When the data is periodic, the under-
lying manifold has no boundary, and the MS complex is well-defined. When the data
is not periodic, some other interpretation of the manifold must be used. Two standard
techniques for removing the boundary of a manifold are one-point compactification and
mirroring. Figure 4 illustrates how each boundary condition implies a different under-
lying space.

In one-point compactification, a vertex with infinite persistence is added for every
boundary component, with every boundary cell attached to its corresponding vertex.
While this can be simulated in practice, it can lead to artifacts, such as minima on the
boundary disappearing and 1-saddles on the interior have arcs that connect outside the
data. Additionally, the simulated vertices will necessarily have high valence, leading to
slower execution times, and often require special data structures.

In mirrored boundary conditions, a copy of the underlying manifold is attached
to itself along its boundary cells. This technique has the advantage of not introducing
high-valence nodes, and small features near the boundary are preserved. However, it is
often impractical to keep a redundant copy of the “mirrored” complex due to memory
limitations. One solution is to modify the data structure of cells crossing the boundary,
since differences between the MS complex on the original manifold and the complex
on the mirrored manifold will be restricted to a neighborhood around the boundary. The
biggest problem with this technique is that cancellation operations (in particular saddle-
saddle cancellations) are not necessarily symmetric, therefore, canceling a node on the
boundary with a node in the interior can lead to inconsistencies between the complex
of the original manifold and the mirrored complex, and the technique loses its intuitive
appeal.

A simple solution is possible in practice. We avoid picking a particular technique to
remove the boundary by enforcing the condition that gradient flow not cross the bound-
ary. This is done by computing the discrete gradient first on the boundary, then the
interior of the domain. Additionally, when canceling critical points, boundary nodes are
only canceled with other boundary nodes, and interior nodes with interior nodes. There-
fore, the flow touching the boundary from the interior will always end at a critical point
on the boundary, and flow touching the boundary from “outside” will end at a boundary
critical point, effectively isolating the interior of the data. One major advantage of this
technique is that it requires no special conditions for finding critical points and cells
of the MS complex. The disadvantage is that small features on the boundary are often
preserved, since they cannot be canceled with interior critical points. In practice, this is
an effective technique that works for most cases. Any boundary artifacts can usually be
removed from consideration by careful filtering of the MS complex.
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(a) (b) (c) (d)

Fig. 4. A 2-manifold with interior (blue) and boundary (green) cells (a). Periodic bound-
ary conditions (b) attach the boundary on opposing sides. One-point compactification
(c) attaches the boundary to a point with infinite persistence. Mirrored boundary (d)
duplicates the interior and attaches it along the boundary.

7 Conclusions

We present techniques that make computing and simplifying MS complexes possible
in practice. Using the improved simulation of simplicity results in a more efficient im-
plementation, especially in data sets with large flat regions, since it reduces the initial
number of critical points found. In the case of the hydrogen dataset, the improved sim-
ulation of simplicity generated 200 times fewer critical cells than the standard simu-
lation of simplicity. While particularly designed for computing MS complexes using a
discrete approach, this simulation of simplicity can be applied to any topology-based
technique to reduce the initial number of low-persistence critical points found. The
techniques presented for reordering cancellations make it possible to simplify an MS
complex without entering a situation where unregulated cancellations lead to memory
usage that exceeds practical capabilities. The double-linked list we use to store the con-
nectivity of the 1-skeleton of the MS complex further provides a decrease in run-time
complexity of cancellation operations. Finally, we present a simple solution to enable a
simple implementation when boundaries are present.

The techniques we have presented make possible computation and simplification of
the MS complex. For example, without the improved simulation of simplicity, the MS
complex of the hydrogen data set has almost one million low-persistence critical points.
simplification of this large complex does not terminate without using a re-ordering strat-
egy for cancellations. The hydrogen data set is a small data set with fewer than 100 per-
sistent critical points, and the MS complex can be computed and simplified in under a
minute when using the techniques discussed in this paper. These techniques are simple
solutions to practical problems in designing efficient implementations of algorithms to
compute and simplify the MS complex.
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Abstract. Ascending and descending Morse complexes, defined by a scalar
function f over a manifold domain M, decompose M into regions of influence
of the critical points of f , thus representing the morphology of the scalar function
f over M in a compact way. Here, we introduce two simplification operators on
Morse complexes which work in arbitrary dimensions and we discuss their inter-
pretation as n-dimensional Euler operators. We consider a dual representation of
the two Morse complexes in terms of an incidence graph and we describe how
our simplification operators affect the graph representation. This provides the ba-
sis for defining a multi-scale graph-based model of Morse complexes in arbitrary
dimensions.

1 Introduction

The problem of representing morphological information extracted from discrete scalar
fields is a relevant issue in several applications, such as terrain modeling and volume
data analysis and visualization. The increasing availability of time-varying volume data
sets and the need of extracting knowledge from such data sets makes it important to
have a morphological representation of such fields. Time-varying volume data sets are
often viewed as four-dimensional scalar fields and 4D models of such data sets based
on hypercubic or simplicial meshes have been developed in the literature [3,27]. Morse
theory offers a natural and intuitive way of analyzing the structure of a scalar field
as well as of compactly representing a decomposition of its domain into meaningful
regions associated with critical points of the field.

Discrete scalar fields are defined by a finite set of points in a domain D in R
n. At

each of these points a value of a scalar function f is given. Traditionally, discrete scalar
fields are described by decomposing their domain into cells, on which an interpolating
function is defined based on discrete function values given at the vertices of the cells.
This geometry-based description provides an accurate representation of a scalar field,
but it fails in capturing the morphological structure of the field, which is defined by its
critical points and integral lines.

Based on Morse theory, subdivisions of a manifold M, induced by a function f de-
fined over it, have been defined as suitable representations for analyzing the topology
of M and the behavior of f over M. The ascending and descending Morse complexes
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are defined by considering the integral lines emanating from, or converging to, the crit-
ical points of f . The Morse-Smale complex describes the subdivision of M into parts,
characterized by uniform flow of the gradient between two critical points of f . Here, we
consider a representation, the incidence graph, that encodes both the ascending and de-
scending Morse complexes which is dimension-independent, is based on encoding the
incidence relations of the cells of the two complexes, and exploits the duality between
the two complexes. The incidence graph can be effectively combined with a represen-
tation of the simplicial decomposition of the underlying domain M, in the discrete case.

Structural problems in Morse and Morse-Smale complexes, like over-segmentation
in the presence of noise, or efficiency issues arising due to the very large size of the
input data sets, can be faced and solved by defining simplification operators on those
complexes and on their morphological representations. Morse and Morse-Smale com-
plexes can be simplified by applying an operator called (general) cancellation of critical
points, which eliminates pairs of critical points of f with consecutive index. A cancel-
lation which does not involve a maximum or a minimum of f increases the number
of pairs of cells in the Morse complexes which become incident to each other, and,
counter-intuitively, it introduces new cells in the Morse-Smale complex. This moti-
vated us to introduce two simplification operators on n-dimensional Morse complexes
by imposing some constraints on a general cancellation. These operators do not enlarge
the incidence relation on the Morse complexes, they do not introduce new cells in the
Morse-Smale complex, and can be viewed as merging of cells in the Morse complexes.
We show that the two simplification operators can be interpreted as Euler operators,
and we show through an example how the general cancellation operator can be realized
as a sequence of our elementary simplification operators. We discuss the effect of the
two simplification operators on the incidence-based representation of the two Morse
complexes. These simplification operators, together with their inverse refinement oper-
ators, are the basis for generating a dimension-independent multi-scale representation
of Morse complexes, based on a hierarchy of incidence graphs. The inverse operators
are not discussed here for brevity.

The remainder of the paper is organized as follows. In Section 2, we review some
basic notions on Morse theory. In Section 3, we discuss some related work. In Section
4, we briefly describe the dual representation of the two Morse complexes. In Section
5, we define two simplification operators on Morse complexes, and in Section 6, we
describe the effect of these operators on their incidence-based representation. Finally,
in Section 7, we draw some concluding remarks.

2 Morse Theory

We review here some basic notions of Morse theory. For more details, see [20].
Let f be a C2 real-valued function defined over a closed compact n-manifold M. A

point p is a critical point of f if and only if the gradient ∇ f = ( ∂ f
∂x1

, ..., ∂ f
∂xn

) (in some
local coordinate system around p) of f vanishes at p. Function f is a Morse function
if all its critical points are non-degenerate (the Hessian matrix Hessp f of the second
derivatives of f at p is non-singular). The number of negative eigenvalues of Hessp f
is called the index of critical point p, and p is called an i-saddle. A 0-saddle, or an
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n-saddle, is also called a minimum, or a maximum, respectively. An integral line of f
is a maximal path which is everywhere tangent to the gradient of f . Each integral line
connects two critical points of f , called its origin and destination. If mi is the number
of i-saddles of a Morse function f , and χ(M) is the Euler characteristic of M, then

χ(M) =
n
∑

i=0
(−1)imi.

(a) (b) (c)

Fig. 1. (a) A 2D ascending Morse complex. The ascending cell of minimum p is shaded.
(b) A dual descending Morse complex. The descending cell of maximum q is shaded.
(c) Morse-Smale complex. 2-cells related to minimum p and maximum q are shaded.

Integral lines that converge to (originate from) a critical point p of index i form an
i-cell ((n− i)-cell) called a descending (ascending) cell of p. The descending (ascend-
ing) cells decompose M into a Euclidean cell complex, called a descending (ascend-
ing) Morse complex, denoted as Γd (Γa). A Morse function f is called a Morse-Smale
function if and only if the descending and the ascending cells intersect transversally.
The connected components of the intersection of descending and ascending cells of
a Morse-Smale function f decompose M into a Morse-Smale complex. We illustrate
the correspondence between Morse and Morse-Smale complexes in Figure 1. If f is a
Morse-Smale function, then the ascending complexΓa of f and the descending complex
Γd of f are dual to each other. In this work, we restrict our consideration to Morse-Smale
functions satisfying an additional condition: in the descending (and ascending) Morse
complexes, each i-cell is bounded by at least one (i−1)-cell, 1 ≤ i ≤ n, and each i-cell
bounds at least one (i+ 1)-cell, 0 ≤ i ≤ n−1.

3 Related Work

In this Section, we review the state of the art on morphological representation of scalar
fields, focusing on algorithms which assume a discretization of the domain of the field
as a manifold simplicial complex.

There have been two attempts in the literature to discretize Morse theory, either by
developing its discrete version, called Forman theory [13], by considering functions
defined on all cells, and not only on vertices, of a cell complex Γ , or by representing
the combinatorial structure of Morse-Smale complexes in 2D and 3D by quasi-Morse
complexes [11, 12]. This latter has been the basis for algorithms for computing discrete
counterparts of the Morse-Smale complex.
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The extraction of critical points of a scalar field f defined on a simplicial mesh
has been investigated in 2D [2, 21], and in 3D [11, 14, 24–26], as a basis for comput-
ing Morse and Morse-Smale complexes. Algorithms for decomposing the domain D
of f into an approximation of a Morse, or of a Morse-Smale complex in 2D can be
classified as boundary-based [1, 5, 12, 22, 23], or region-based [6, 8, 18]. In [11], an al-
gorithm for extracting the Morse-Smale complex from a tetrahedral mesh is proposed.
In [8], a region-based dimension-independent algorithm is proposed, which subdivides
the domain of f into an approximation of Morse complexes, by processing the points
according to sorted function values. For a review of the work in this area, see [4].

One of the major issues that arise when computing a representation of a scalar field
as a Morse, or as a Morse-Smale complex is the over-segmentation due to the pres-
ence of noise in the data sets. Simplification algorithms have been developed in order
to eliminate less significant features from the Morse-Smale complex. Simplification is
achieved by applying an operator, called cancellation of critical points. In 2D Morse-
Smale complexes, cancellation operator has been investigated in [5,12,23,28]. Cancel-
lation operators on Morse and Morse-Smale complexes of a 3D scalar field have been
investigated in [7, 15].

4 A Dual Representation for Morse Complexes

In this Section, we briefly describe a dual combinatorial representation for both the
ascending and descending Morse complexes based on the incidence graph G = (N,A)
[10]. The nodes of G are in one-to-one correspondence with the critical points of f . We
call a node of G representing an i-saddle of f a node at level i. Thus an i-level node in
G represents an i-cell of the descending Morse complex Γd and an (n− i)-cell of the
ascending Morse complex Γa. Values of the scalar field are attached to the nodes of the
incidence graph as well as the level of the node. The direct incidence relations between
cells in Γd (and thus also in Γa) are encoded as arcs. Arcs connect pairs of nodes which
differ in level by 1 and represent integral lines connecting the corresponding critical
points. An arc exists between an i-level node p and an (i+ 1)-level node q if and only
if i-cell p is on the boundary of (i + 1)-cell q in the descending complex Γd (and thus
(n− i)-cell p is bounded by (n− i− 1)-cell q in the ascending complex Γa). Each arc
connecting an i-level node p to an (i + 1)-level node q is labeled by the number of
times the corresponding i-cell p and (i+ 1)-cell q in Γd are incident to each other [17].
Note that incidence graph can also be seen as a combinatorial representation of (the
1-skeleton of) a Morse-Smale complex.

In the discrete case, the underlying domain of the field is decomposed into a sim-
plicial mesh, and for this a very compact representation is an indexed data structure
with adjacencies, as shown in [9], which encodes only the vertices and the n-simplexes
in the n-dimensional simplicial complex and each n-simplex is encoded as the list of
the indexes of its n + 1 vertices. Thus, the storage requirement is equal to n floats for
each vertex of the mesh and n + 1 integers for each n-simplex. We can obtain a com-
bined morphological and geometrical representation by attaching to each n-level node
p of the incidence graph, which corresponds to a maximum and to an n-cell p in the
descending Morse complex, the set of n-simplexes whose union gives the n-cell p, and,
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symmetrically, to each 0-level node q of the incidence graph, which corresponds to a
minimum and to an n-cell q in the ascending Morse complex, the set of n-simplexes
whose union gives the n-cell q. A data structure for 3D Morse-Smale complexes de-
scribed in [16] represents the connectivity of the complex as an incidence graph, and
attaches geometrical information referring to the underlying simplicial decomposition
to all nodes of the complex, thus encoding the geometry of 1- 2- and 3-cells in both
the ascending and descending Morse complexes. This representation supports efficient
traversal, but it is dimension-specific.

5 Removal and Contraction on Morse Complexes

The effect of a cancellation of a pair of critical points, as defined in Morse theory, has
been investigated in 3D on Morse-Smale [15] and on Morse complexes [7]. An i-saddle
p and an (i + 1)-saddle q can be cancelled if there is a unique integral line connect-
ing them. After a cancellation, each cell r which was on the boundary of (i + 1)-cell
q in Γd becomes incident to each cell t which was in the co-boundary of i-cell p in
Γd . If a cancellation does not involve an extremum, the number of pairs of cells in the
Morse complexes which become incident to each other increases, although the num-
ber of cells decreases by two, and the number of cells in the Morse-Smale complex
increases, although the number of vertices decreases by two. In the current approaches,
after a cancellation of a 1-saddle and a 2-saddle in 3D, additional cancellations of max-
ima and 2-saddles, or minima and 1-saddles, are applied to eliminate the new cells in
the Morse-Smale complexes created by the cancellation [15].

Here, we define two operators, which we call removal and contraction. They are
defined in arbitrary dimensions, and are obtained by imposing additional constraints
on a cancellation. They do not enlarge the incidence relation on the Morse complexes,
they do not introduce new cells in the Morse-Smale complex, and they can be viewed
as merging of cells in the Morse complexes.

A removal (of index i) of an i-saddle σi and an (i+1)-saddle σi+1 is defined if σi is
connected by a unique integral line to

– (i+ 1)-saddle σi+1 and exactly one (i+ 1)-saddle σ ′
i+1 different from σi+1, or

– exactly one (i+ 1)-saddle σi+1.

In the first case, a removal of σi and σi+1 is denoted as rem(σi+1, σi,σ ′
i+1), and in

the second case as rem(σi+1,σi, /0). In both cases, a removal is specified only by σi and
σi+1. We include σ ′

i+1 in the notation to emphasize the condition for the feasibility of
the operator, and to highlight the cells merged by it.

After a removal rem(σi+1,σi,σ ′
i+1) of an i-saddle σi and an (i + 1)-saddle σi+1, i-

cell σi is deleted in Γd , and (i + 1)-cell σi+1 is merged into (i + 1)-cell σ ′
i+1. All cells

which were on the boundary of (i+ 1)-cell σi+1 before a removal (except i-cell σi) are
on the boundary of (i + 1)-cell σ ′

i+1 after the removal. An example of the effect of a
removal rem(γ,β ,γ ′) on a 3D descending Morse complex is illustrated in Figure 2 (a).
After the removal, 1-cell β is deleted, and 2-cell γ is merged with the unique 2-cell γ ′
incident in β and different from γ .
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(a) (b)

Fig. 2. Part of a 3D descending Morse complex before and after a removal (a)
rem(γ,β ,γ ′), and (b) rem(γ,β , /0).

After a removal rem(σi+1,σi, /0), i-cell σi and (i + 1)-cell σi+1 are deleted in Γd .
An example of the effect of a removal rem(γ,β , /0) on a 3D descending Morse complex
is illustrated in Figure 2 (b). 1-cell β is incident to exactly one 2-cell γ . 2-cell γ is
bounded by 1-cells β and β1. 3-cell δ is the only 3-cell in the co-boundary of γ . After
the removal, cells β and γ are deleted, and the boundary and the co-boundary of all
other cells remain unchanged.

Dually, a contraction (of index i+ 1) of an (i+ 1)-saddle σi+1 and an i-saddle σi is
defined if σi+1 is connected by a unique integral line to

– i-saddle σi, and exactly one i-saddle σ ′
i different from σi, or

– exactly one i-saddle σi.

In the first case, a contraction of σi and σi+1 is denoted as con(σi,σi+1,σ ′
i ), and in

the second case as con(σi,σi+1, /0).
The effect of a contraction of index i on Γd (Γa) is the same as the effect of a removal

of index n− i on Γa (Γd). After a contraction con(σi,σi+1,σ ′
i ), (i+ 1)-cell σi+1 in Γd is

deleted, i-cell σi is merged into i-cell σ ′
i and all cells which were in the co-boundary of

i-cell σi before a contraction (except (i + 1)-cell σi+1) are in the co-boundary of i-cell
σ ′

i after the contraction (i-cell σi is deleted, and each (i + 1)-cell in the co-boundary
of σi is extended to include a copy of (i + 1)-cell σi+1). An example of the effect of a
contraction con(β ,γ,β ′) on a 3D descending Morse complex is illustrated in Figure 3
(a). The two 1-cells β and β ′ are merged, and 2-cell γ is deleted.

(a) (b)

Fig. 3. Part of a 3D descending Morse complex before and after a contraction
con(β ,γ,β ′) (a), and con(β ,γ, /0) (b).

After a contraction con(σi,σi+1, /0), (i + 1)-cell σi+1 and i-cell σi are deleted in
Γd . An example of the effect of a contraction con(β ,γ, /0) on a 3D descending Morse
complex is illustrated in Figure 3 (b). 1-cell β is the only 1-cell on the boundary of
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2-cell γ . The only 3-cell in the co-boundary of 2-cell γ is δ . After the contraction, 1-cell
β and 2-cell γ are deleted.

It is possible to give a unifying definition of the two operators as a special case
of a cancellation when one of the two canceled critical points satisfies certain valence
conditions in the incidence graph. We define the two operators separately, due to the
different (dual) geometric effect they have on the Morse complexes.

When i = 0 (and dually when i = n), a removal rem(σ1,σ0,σ ′
1), which is defined

when a 0-cell σ0 is incident once to exactly two different 1-cells σ1 and σ ′
1 in Γd , has

the same geometric effect as a contraction con(σ0,σ1,σ ′
0), where σ ′

0 is the other 0-cell
on the boundary of 1-cell σ1. For example, removal rem(β ,α,β ′) illustrated in Figure
4 (a) can also be viewed as contraction con(α,β ,α ′). Note that the result of a removal
or contraction may be a complex which does not satisfy the condition stated in Section
2, as illustrated in Figure 4 (b).

(a) (b)

Fig. 4. Part of a 3D descending Morse complex before and after a removal rem(β ,α,β ′)
(or a contraction con(α,β ,α ′)). γ3 is a bubble-like 2-cell bounded by one 1-cell. (a)
Operator is allowed. (b) Operator is not allowed.

Both removal and contraction can be interpreted as Euler operators, since they can-
cel a pair of cells of consecutive dimension in the two Morse complexes. Thus, Eu-
ler formula is satisfied after each simplification. The two operators are instances of
the same Euler operator Kill i-Cell and (i+ 1)-Cell in the descending complex, and to
Kill (n− i)-Cell and (n− (i+ 1))-Cell in the ascending complex.

We can show that the two operators form a basis of the set of operators for updating
Morse complexes using the approach in [19]. Each operator c which simplifies Morse
complexes in a topologically consistent manner maintains the Euler formula, and thus
can be expressed as a vector c = (c0,c1, ..,cn) with positive integer coordinates ci, 0 ≤
i ≤ n, in an n-dimensional discrete subspace V of an (n+1)-dimensional discrete space,
defined by c0 − c1 + ..+(−1)ncn = 0. The ith coordinate ci corresponds to the number
of i-cells removed by operator c. A removal (and a contraction) bi of an i-cell p and
an (i + 1)-cell q, 0 ≤ i ≤ n − 1, can be expressed as a vector bi = (a0,a1, ..,an) in V,
where ai = ai+1 = 1, and a j = 0, j 
= i, i + 1. The set of all such vectors obviously
forms a basis of subspace V . The above argument does not provide an algorithm for
expressing an arbitrary operator c as a sequence of basis operators. As pointed out
in [19], if c = k0b0 + k1b1 + .. + kn−1bn−1 then c may be expressed through Ki ≥ ki

simplifications bi and Ki − ki refinements inverse to bi. Moreover, the entities (cells in
Morse complexes, or critical points of f ) which are introduced by inverse operations
are not restricted to belong to a fixed set of entities of the initial full-resolution model.
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Fig. 5. A sequence of cancellations (top), and of removals and contractions (bottom) on
a 3D descending Morse complex, which produce the same simplified Morse complex.

We illustrate the above argument on a simple example. After a cancellation of a
1-cell β and a 2-cell γ in a 3D descending Morse complex Γd shown in Figure 5 (top),
each 1-cell βi (and each 0-cell α j) in Γd on the boundary of γ becomes incident to each
2-cell γk (and to each 3-cell δl) in the co-boundary of β . Each such pair of incident cells
(e.g. δ1 and α1) induces a new cell in the Morse-Smale complex, which is eliminated
by subsequent cancellations of 1-cells and 0-cells (e.g. α1 and β1), and of 2-cells and
3-cells (e.g. δ1 and γ1) [15]. Such a sequence of cancellations can be expressed as a
(simpler) sequence of contractions (of 1-cells and 0-cells) and removals (of 2-cells and
3-cells), which do not have a side-effect of introducing new cells in the Morse-Smale
complex, as illustrated in Figure 5 (bottom).

6 Removal and Contraction on the Incidence Graph

In this Section, we illustrate the effect of removals and contractions on the incidence
graph and on the corresponding incidence-based representation.

(a) (b)

Fig. 6. Effect of a removal rem(γ,β ,γ ′) on a 3D descending Morse complex (a), and
on a part of the corresponding incidence graph (b).
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Before a removal rem(σi+1,σi,σ ′
i+1), node σi in the incidence graph G = (N,A) is

connected through an arc in A to exactly two different nodes σi+1 and σ ′
i+1 at level i+1

(the label of those arcs is 1), and to an arbitrary number of nodes at level i − 1. The
number of arcs incident to nodes σi+1 or σ ′

i+1 may be arbitrary. For example, before a
removal rem(γ,β ,γ ′) illustrated in Figure 6, node β at level 1 is connected to exactly
two different nodes γ and γ ′ at level 2.

In terms of the incidence graph G = (N,A), a removal rem(σi+1,σi,σ ′
i+1) can be

expressed as the deletion of the arcs connecting σi to lower-level nodes and of arcs
connecting σi+1 to higher-level nodes, and merging of nodes σi and σi+1 into node
σ ′

i+1 by contraction of arcs connecting σi to σi+1 and to σ ′
i+1. For each arc connecting

(i + 1)-level node σi+1 to an i-level node τ 
= σi, such that σ ′
i+1 and τ are connected

through an arc in A, the label of the arc connecting σ ′
i+1 and τ is increased by the label

of the arc connecting σi+1 and τ .
In Figure 6, after a removal rem(γ,β ,γ ′), arcs connecting node β to 0-level nodes

α1 and α2 (not illustrated in the Figure) and arcs connecting γ to 3-level nodes δ1 and
δ2 (not illustrated in the Figure) are deleted. Nodes β and γ are merged into node γ ′, by
contracting arcs connecting β to γ and γ ′, i.e., arcs connecting γ to β1, β2 and β3 are
replaced by arcs connecting γ ′ to β1, β2 and β3.

In the example shown in Figure 7, before a removal rem(γ,β ,γ ′), 1-cell β1 is inci-
dent to 2-cells γ and γ ′ once. After the removal, β1 is incident twice to γ ′.

(a) (b)

Fig. 7. Effect of a removal rem(γ,β ,γ ′) on a 2D descending Morse complex (a), and
on a part of the incidence graph (b). The label of the arc connecting nodes β1 and γ ′ is
increased after the removal.

(a) (b)

Fig. 8. Effect of a removal rem(γ,β , /0) on a 3D descending Morse complex (a), and on
a part of the corresponding incidence graph (b).
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Before a removal rem(σi+1,σi, /0) of the second kind, node σi at level i in the inci-
dence graph is connected through an arc in A to exactly one node σi+1 at level i + 1.
After the removal, nodes σi and σi+1 together with all arcs incident in them are deleted,
as illustrated in Figure 8.

A contraction con(σi,σi+1,σ ′
i ) is expressed in terms of the graph in a completely

dual fashion. Its description is omitted here for brevity.
The effect on the incidence-based representation, that is on the combination of the

incidence graph with the underlying simplicial decomposition of the domain, is re-
stricted to the incidence graph when a simplification operator does not involve an ex-
tremum. When we perform a removal rem(σn,σn−1,σ ′

n), then the partition of the n-
simplexes of the underlying mesh into descending cells of maxima is updated by merg-
ing the set of n-simplexes forming the descending cell of σn into set of n-simplexes
forming the descending cell of σ ′

n. Dually, a contraction con(σ0,σ1,σ ′
0) merges n-

simplexes of the ascending cell of σ0 with n-simplexes of the ascending cell of σ ′
0.

7 Concluding Remarks

We have defined removal and contraction operators for simplifying n-dimensional
Morse complexes. We have expressed them as Euler operators, thus providing a mini-
mal set of atomic operators for updating Morse complexes. We have shown the effect
of such simplification operators on the incidence graph representation of the two Morse
complexes.

We are currently working on the definition of a multi-scale representation for Morse
complexes, which will provide a combinatorial description of the ascending and de-
scending Morse complexes at different levels of abstraction. This will be obtained by
defining the inverse operators of removal and contraction operators, a dependency rela-
tion between such operators, and by using an incidence graph representation for the
complexes. We are also planning to implement the simplification operators and the
multi-scale model for 3D scalar fields. Our future work would be in the direction
of combining a multi-scale morphological representation with a mesh-based multi-
resolution representation of the field.
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Abstract. The Jacobi set of two Morse functions defined on a 2-manifold is the
collection of points where the gradients of the functions align with each other or
where one of the gradients vanish. It describes the relationship between functions
defined on the same domain, and hence plays an important role in multi-field vi-
sualization. The Jacobi set of two piecewise linear functions may contain several
components indicative of noisy or a feature-rich dataset. We pose the problem of
simplification as the extraction of level sets and offset contours and describe an
algorithm to compute and simplify Jacobi sets in a robust manner.

1 Introduction

Motivation. The Jacobi set extends the notion of critical points to multiple functions
and helps describe the relationship between multiple scalar functions. Edelsbrunner et
al. [5] have shown that the Jacobi sets can be used to compute a comparison measure
between two scalar functions. Bennett et al.[1] have used the Jacobi set to represent
tunnels and the silhouette of a mesh, both of which are subsequently used to compute
a cross parameterization. Jacobi sets have also been used to track features of time-
varying events such as molecular interactions, combustion simulation, etc. [2]. All the
above applications face a common challenge, namely the presence of degenerate re-
gions and noise in the data. The number of components of the Jacobi set is often more
than what can be visually comprehended. So, it is necessary to simplify the Jacobi set.
The simplification can be accomplished either using the notion of persistence [6], or
otherwise.

Prior work and our approach. In their paper, Bremer et al. [2] have described a
method to remove noise in the Jacobi set for time varying data. The persistence of a
component of the Jacobi set is the time interval between its birth and death. This mea-
sure has been used to remove components that are either noise in the data or unimportant
features. Extending this for general functions is nontrivial and hence a more complete
approach with guaranteed error bounds is required. We pose the problem of computing
Jacobi sets as the computation of a level set of a function defined on the input manifold.
Jacobi set simplification now simplifies the level set. We also ensure that the change in
relationship between the functions due to simplification does not exceed a given input
threshold.
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2 Background

Morse Theory. Morse theory studies the relationship between functions and domains.
Let M be a smooth Riemannian 2-manifold. Let f be a smooth function defined on M

and (x1,x2) be a local coordinate system such that the unit tangent vectors ( ∂
∂x1

, ∂
∂x2

)
form an orthonormal basis with respect to a Riemannian metric. The gradient of f at x
is defined as the vector ∇ f (x) = ( ∂ f

∂x1
(x), ∂ f

∂x2
(x))

A point x is a critical point of f if ∇ f (x) is the zero vector. The function f is called
a Morse function if the Hessian

H f (x) =

⎡
⎣

∂ 2 f
∂x2

1
(x) ∂ 2 f

∂x2∂x1
(x)

∂ 2 f
∂x1∂x2

(x) ∂ 2 f
∂x2

2
(x)

⎤
⎦

is non-singular at all critical points.

Level sets and Reeb graphs. The level set at c is defined as the set of all points where
f attains the value c : f−1(c) = {x ∈ M | f (x) = c}. The Reeb graph of f is obtained by
contracting connected level set components to points. Nodes in a Reeb graph correspond
to critical points of f , see Fig.1. The level sets sweep the domain as we increase c over
the range of the function f . During a sweep over the domain, the topology of the level
set changes at critical points of f . If the sweep is in the direction of increasing function
value, level set components are created at minima, they merge or split at saddles, and
are destroyed at maxima. Given a sweep direction, saddles may be classified as split or
merge saddles depending on the change in the topology of level sets at these points.

Jacobi Sets. The Jacobi set of two Morse functions f and g defined on a 2- manifold
M is the collection of points or where the gradients of the functions align with each
other or one of the gradients vanish. Alternately, the Jacobi set can be described as the
collection of critical points of the family of functions f +λg,λ ∈ R:

J = {x ∈ M | x is a critical point of f +λg or of λ f + g}
Note that the Jacobi set contains critical points of f and g. Edelsbrunner and Harer
[4] used this alternate description to compute Jacobi sets of piecewise linear functions.
They also showed that the Jacobi set of two Morse functions is a smoothly embedded
1-manifold in M.

3 Simplification

We prefer to use the description of the Jacobi set as the level set of a gradient-based
comparison measure [5] because it leads us to a natural algorithm for computing Jacobi
sets. Let M be a 2-manifold smoothly embedded in R

3. The comparison measure at
a point x ∈ M for two Morse functions f and g is defined as κx = ‖∇ f (x)×∇g(x)‖.
Assuming M is orientable, we define the sign extended comparison measure, κs

x , at the
point x with unit normal n̂ as κs

x ( f ,g) = (∇ f ×∇g) · n̂. The sign extended comparison
measure is a function defined on the manifold M and the Jacobi set can be described
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Fig. 1. Left: A two-holed 2-manifold
and the height function defined on it.
Points in blue, green, and red corre-
spond to minima, saddle, and maxima
of the function, respectively. Right:
The Reeb graph of the height function.
Loops in the Reeb graph correspond to
holes in the manifold.

Fig. 2. Offsetting a level set compo-
nent. Left: Level set components on
the manifold. Right: Offsetting a level
set component (blue) to another com-
ponent (red) along an edge of the Reeb
graph.

as the set of points where κs
x equals zero, i.e. the zero level set of κs

x , J = κ−1
x (0) =

κs−1

x (0).
The Jacobi set contains spurious loops because of noise and degeneracies in the

data. Simplification of the Jacobi set refers to the reduction in number of components
of J with minimal change to the relationship between the two input functions.

The relationship between the functions is quantified by the global comparison mea-
sure κ , which is equal to the comparison measure integrated over the manifold and
normalized by the total area [5].

κ =
1

Area(M)

∫

x∈M

κxdAx,

where dAx is the area element at x.

Offsetting components. The Jacobi set components are altered by computing offset
level set components. Let p and p′ be two level set components such that their corre-
sponding points on the Reeb graph are connected by a monotone path. The level set
component p is said to be offset to p′ if it is replaced by the component p′. The cost of
an offset operation is given by the hypervolume, which is computed as an integral over
the swept region R of the domain:

H =
1

Area(M)

∫

x∈R

κxdAx. (1)

Figure 2 shows a level set component offset upwards by a hypervolume δ . The direction
of offset is upward if the function value increases and downward otherwise. We simplify
the Jacobi set by computing offsets in an appropriate direction.

The following basic offset operations are used in the simplification process.
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Merge : Two components whose edges share a common saddle are offset to the sad-
dle so that they merge. The merged component is further offset by a small value
resulting in a single component.

Split : A component is offset to a saddle and is further offset by a small value
resulting in a split.

Purge : A component is offset to a local maximum or minimum. A further offset by
a small value removes the component.

Create : A component is created at a local maximum or minimum and offset by a
small value.

Figure 3 illustrates the basic offset operations, using the Reeb graph. The Reeb graph is
naturally suited to represent the offsets because it traces the connected components of
the level sets. Only two operations result in a reduction in the number of components.
Temporary splits may be required to obtain a small number of components. We ensure
that the number of splitting operations is lower than the number of component merging
operations. We show in the next section that twice the total hypervolume swept dur-
ing the operations is an upper bound over the total change in relationship between the
functions.

The first step in the simplification procedure is the computation of the Reeb graph
for κs

x . Arcs in the Reeb graph that contain the zero level set are also identified.

(a) Merge (b) Split

(c) Purge (d) Create

Fig. 3. Different offset operations used during simplification. All offsets are shown
against the Reeb graph of κs

x .

Algorithm. The required simplification is specified as a percentage of the global com-
parison measure. The corresponding hypervolume threshold, i.e., the total hypervolume
allowed for the operations is calculated next. Since each simplification operation in-
volves exactly one critical point, we can represent an offset by a critical point. We first
augment the Reeb graph by adding dummy nodes at level zero. This augmented graph
is transformed into a directed graph by replacing each arc uv with a directed arc uv (arc
from u towards v), if |κs

v | > |κs
u |, see Fig. 4 . Each vertex is then assigned a profit P(v)
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given by

P(v) =

{
1 if v is a dummy vertex

in(v)−out(v) otherwise,

where in(v) and out(v) represent the indegree and outdegree of v in the directed graph.
The profit for a non dummy node signifies the reduction in number of Jacobi set compo-
nents if the operation corresponding to the node is chosen. The optimal simplification
can now be formulated as an integer linear program (ILP) that maximizes profit. The
variables in the ILP correspond to nodes of the directed Reeb graph.

max∑P(v)xv

subject to constraints

∑C(v)xv ≤ T

xv − xu ≤ 0 for a directed arc uv

xu + xv ≤ 1 u,v adjacent to a common dummy node

xu,xv ∈ {0,1}
The cost C(v) for each simplification operation is the sum of hypervolumes of the in-
coming arcs. T is the threshold given as input. A simplification operation is performed
on a node if the corresponding variable in the ILP is set to one. The first constraint
bounds the total hypervolume for the simplification. The second constraint enforces
a dependency between variables corresponding to a directed arc uv. This dependency
captures the fact that a simplification operation at v can be performed only after a level
set component has been offset through the node u. At dummy vertices, there is a choice
to perform an offset in either of the directions but not both. This choice is modeled in
the third constraint. The ILP is a variant of the knapsack problem with dependencies
among objects. Though a solution to the above ILP corresponds to the optimal sim-
plification, the computation is slow in practice. So, we resort to a greedy strategy that
chooses the least cost offset operation at every step until the threshold is reached. The
greedy strategy has an additional advantage-it enables the creation of a multi-resolution
representation of the Jacobi set.

The greedy algorithm requires all nodes to be stored in a priority queue. The priority
queue is initialized with all possible simplification operations and updated with new
operations that may become valid after an offset is performed. We define a node of the
directed Reeb graph as unreachable if it cannot be reached by a path from a dummy
node and reachable otherwise. Unreachable nodes may become obstacles that prevent
offset operations. For example, a saddle with an incoming arc from an unreachable
node prevents a merge operation, see Fig.5. Let G denote the directed Reeb graph and
H denote the subgraph of G containing all unreachable vertices. A component J of
H is a connected component in the undirected version of H. The cost of removing J
is the sum of the cost of all edges of G that have at least one end point in J. If the
algorithm is not able to proceed due to some obstacles, then least cost components of
unreachable vertices are removed from G until a valid operation is identified. Finally,
we extract offset components using seed sets stored in the Reeb graph [7]. We also
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Fig. 4. Directed Reeb graph. The
dotted line in the figure shows level
0. The dummy vertices are shown
in black on the zero line. The profit
for each node is also shown.

Fig. 5. A Section of a Reeb graph
with unreachable vertices shown in
the boxed rectangle. The unreach-
able component prevents the algo-
rithm to proceed beyond the merge
saddle v.

ensure that the number of simplification operations with negative profits is smaller than
a constant fraction of the operations with positive profits. This ensures that the number
of components decreases as a result of simplification.

4 Analysis

In this section we show that twice the hypervolume swept during a simplification oper-
ation is an upper bound over the change in the relationship between the input functions.

Simplifying the input function. We do not change the function values in our experi-
ments. However, we now compute changes to the function f caused by a small offset in
order to obtain the upper bound. Figures 6a and 6b depict the changes to the function
f after offsets in the up and down directions respectively. An upward offset introduces
critical points at E and F of f restricted to level set I of g. To accomplish this, the
function values at E and F can be interchanged to become f (F) and f (E) respectively.
Within level set II of g, the critical points of f move from B and C to A and D re-
spectively. The function f restricted to level set II between A and D is made monotone
to achieve this movement of critical points. The function values at A and D do not
change and therefore the new pair have a reduced persistence. Downward offset de-
stroys the critical point pair E and F and the restricted function f between E and F is
made monotone. The function values at E and F are interchanged to become f (F) and
f (E) respectively. Within level set II of g, critical points move from A and D to B and
C respectively.

Effect on global comparison measure. As shown by Edelsbrunner et al. [5], the global
comparison measure is given by

κ =
2

Area(M)

∫

v∈J

sign(v) f (v)dg,
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(a) Upward Offset

(b) Downward Offset

Fig. 6. Simplifying the input function. The left column shows a Jacobi set component
Ji and its offset version J

′
i . The dashed lines are level sets of the function g. The cen-

ter column shows f restricted to the level sets I and II. The right column shows the
simplified function f∗ that corresponds to the offset Jacobi set component J

′
i.

where sign(v) is defined as

sign(v) =

{
+1 if v is a maximum of f|g−1(g(v))

−1 otherwise.

Let Ji denote the ith component of the Jacobi set. Define

κi =
2

Area(M)

∫

v∈Ji

sign(v) f (v)dg.

κi can be interpreted as the contribution of Ji to the global comparison measure, κ =
∑i κi.

Since the change to the function f corresponding to an offset is local to the region
of the component, we will now compute the change in κi corresponding to an upward
offset. If f∗ is the modified function, the change in κi is given by

|δκi| = 2
Area(M)

∣∣∣
∫

v∈J′i

sign(v) f∗(v)dg−
∫

v∈Ji

sign(v) f (v)dg
∣∣∣.

Let R be the region of M swept during the offset and R1 be the region where the level sets
of g do not intersect Ji (shaded region in Fig.6a). The integral over J

′
i can be rewritten

as a sum of integrals over two regions:

|δκi| = 2
Area(M)

∣∣∣
∫

v∈J
′
i∩R1

sign(v) f∗(v)dg−
∫

v∈Ji

sign(v) f (v)dg

+
∫

v∈J′i∩(R−R1)

sign(v) f∗(v)dg
∣∣∣.

(2)
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Consider the level sets I in Fig.6a. The difference between function values at E and F
can be written as

f∗(F)− f∗(E) = f (E)− f (F) =
E∫

F

‖∇ ft(x)‖dl.

Here, ∇ ft(x) represents the tangential component of ∇ f (x) along the level sets and dl
is the length element along the level set. The integral of sign(v) f∗(v) over J

′
i ∩R1 can

be rewritten as an integral over R1 using the above expression,∫

v∈J′i∩R1

sign(v) f∗(v)dg =
∫∫

x∈R1

‖∇ ft(x)‖dldg.

Let du be the length element orthogonal to the level set. The area element is given by
dldu. Using the fact that dg = ‖∇g(x)‖du,∫

v∈J′i∩R1

sign(v) f∗(v)dg =
∫∫

x∈R1

‖∇ ft(x)‖‖∇g(x)‖dldu =
∫

x∈R1

‖∇ f (x)×∇g(x)‖dAx

=
∫

x∈R1

κxdAx. (3)

Consider the level set II of g in Fig.6a:

f∗(A) = f (A) = f (B)+
A∫

B

‖∇ ft(x)‖dl

and

f∗(D) = f (D) = f (C)−
C∫

D

‖∇ ft(x)‖dl.

Combining the above two equations,

( f (C)− f (B))− ( f∗(D)− f∗(A)) =( f∗(A)− f (B))+ ( f (C)− f∗(D))

=
A∫

B

‖∇ ft(x)‖dl +
C∫

D

‖∇ ft(x)‖dl.

All pairs of points A,D ∈ J
′
i∩(R−R1) have a corresponding pair B,C ∈ Ji. So, we have∣∣∣

∫

v∈J′i∩(R−R1)

sign(v) f∗(v)dg −
∫

v∈Ji

sign(v) f (v)dg
∣∣∣

=
∫∫

x∈(R−R1)

‖∇ ft (x)‖‖∇g(x)‖dldu

=
∫

x∈(R−R1)

κxdAx. (4)
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Fig. 7. Consider the vertex v and its adjacent vertices as a point set. The neighborhood
R of a vertex v on a piecewise linear surface is represented by the Voronoi region of v.

Substituting (4) and (3) in (2) and using the triangle inequality,

|δki| ≤ 2
Area(M)

∫

R

κxdAx = 2H.

The above inequality can be similarly derived for the downward offset. Thus, the hyper-
volume is a conservative estimate of the change in relationship between f and g caused
by an offset.

5 Implementation for Piecewise Linear Functions

Scalar scientific data is typically represented by piecewise linear functions on triangle
meshes, where the gradient and hence κs

x is not defined at vertices of the mesh. Given
a vertex v of the triangle mesh, its neighborhood is the Voronoi region as shown in
Fig. 7. Meyer et al. [9] used the Voronoi region to define discrete differential operators
with minimal numerical error for triangulated surfaces. Let T1,T2, · · · ,Tt be triangles
that intersect the neighborhood R of v. The sign extended comparison measure κs is
constant within each of the regions Ti ∩R. We follow Meyer et al. to define κs

v as the
average value of the sign extended measure over R;

κs
v =

1
Area(R)

t

∑
i=1

κs
i Area(Ti ∩R),

where κs
i is the value of the sign extended comparison measure at a point that lies in the

interior of Ti. Note that the gradients of f and g are constant in the interior of a triangle
and hence κs

x is also constant within a triangle. The sign extended comparison measure
is stored at vertices and a linear approximation is used within the edges and triangles.
This approximation does not introduce significant artifacts in practice. The zero level
set can be extracted using a marching triangles algorithm or from seed sets computed
using a Reeb graph of κs

x .

6 Applications

We demonstrate the usefulness of the simplified Jacobi set using two different appli-
cations. Our approach to the definition and simplification of Jacobi sets is particularly
useful when studying the relationship between two functions using their gradients.
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(a)

(b) (c)

Fig. 8. Silhouettes. (a) Model of a hand in its original orientation. (b) Silhouette when
viewed from a different angle. (c) Simplified silhouette.

Visualizing Silhouettes. Given a view direction d in R
3 and a 2-manifold M embedded

smoothly in R
3, the silhouette is the set of points in M where the tangent plane is paral-

lel to d. Consider a Cartesian coordinate system with the z-axis along the view direction
d. The Jacobi set of the two scalar fields f (x,y,z) = x and g(x,y,z) = y is the required
silhouette.The silhouette of a model of the hand is shown in Fig.8(c). The model is
shown in the original orientation in Fig.8(a). The view direction is perpendicular to the
plane of paper. The orientation of the model has been changed for a better view of the
computed silhouette in Figs.8(b) and 8(c). As seen from the figure, the silhouette has
many components that are unimportant and the silhouette itself appears to contain noise.
The simplification process removes small components because their removal does not
adversely affect the relationship between the fields f and g used to compute the silhou-
ette. We found that simplification using 2% threshold removed all noise. The Jacobi set
was simplified using the greedy algorithm.

Combustion. We apply our algorithm to study a time varying dataset from the simu-
lation of a combustion process. This application demonstrates the use of simplification
when handling degenerate data. Degeneracies occur when κx is zero within a region,
resulting in the Jacobi set containing higher dimensional parts. During simplification,
Jacobi set components within degenerate regions are automatically removed because
they do not contribute to κ .

The dataset consists of the concentrations of H2(fuel) and O2(air) defined on a
600x600 grid for 67 time steps. We compute and simplify the Jacobi set for H2 and
O2 at different time steps to identify the front of combustion. Combustion begins at
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(a) (b) (c)

Fig. 9. Combustion. (a) Jacobi set of H2 and O2 in the 64th time step. (b) Simplified
Jacobi set. (c) Concentration of O2.

regions where the fuel-air mixture is appropriate for ignition. The data is degenerate
away from the front, thereby introducing noise in the Jacobi set.
Figure 9 shows the results for the 64th time step when the combustion is in its final
stage. The simplified Jacobi set again appears at the front. Figure 9(c) shows the O2

concentration. Blue signifies a low function value and red signifies a high function
value.The front consists of the boundary of red regions, which is also traced by the
simplified Jacobi set.

7 Conclusions

We have described a robust algorithm for simplifying the Jacobi set of two Morse func-
tions. Our algorithm ensures minimal change to the relationship between the two func-
tions. Future work includes extending the algorithm to multiple functions and higher
dimensions.
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Summary: This paper investigates a combinatorial approach to vector field topol-
ogy. The theoretical basis is given by Robin Forman’s work on a combinatorial Morse
theory for dynamical systems defined on general simplicial complexes. We formulate
Forman’s theory in a graph theoretic setting and provide a simple algorithm for the con-
struction and topological simplification of combinatorial vector fields on 2D manifolds.
Given a combinatorial vector field we are able to extract its topological skeleton includ-
ing all periodic orbits. Due to the solid theoretical foundation we know that the resulting
structure is always topologically consistent. We explore the applicability and limitations
of this combinatorial approach with several examples and determine its robustness with
respect to noise.

1 Introduction

Topological methods have developed into an integral part in data analysis and visu-
alization, for scalar as well as for vector valued data. While the results of scalar and
vector field topology coincide when dealing with gradient vector fields, the respective
mathematical approach originated in different fields.

Vector field topology is usually motivated and defined as a clustering of streamlines
of the flow generated by the vector field. This clustering has a theoretical sound founda-
tion in dynamical systems theory. One first defines limit sets of the streamlines. Features
of the vector field are then defined as intersections of these limit sets. The extracted
structure of the vector field is therefore connected to the equivalence classes generated
by the flow and is called topology of the vector field. The extraction of the topological
skeleton builds on a continuously defined vector field using numerical methods.

Scalar field topology on the other hand is usually defined through Morse theory.
Given a non degenerate function f : M → R this theory defines a structure M∗, called
Morse complex. This structure consists of minima, maxima, saddle points and their
connectivity. A main result of Morse theory is that M∗ is isomorphic to the singular
homology of the domain of the function M. As the singular homology is a rather fine
grained topological invariant of the domain M, this structure is also called the topology
of the scalar function f . In general the topology is extracted using a combinatorial ap-
proach building on the data given in discrete points.

In this paper we approach vector field topology from a Morse theoretic viewpoint.
Forman describes a discrete Morse theory for general vector fields in [4], our theoret-
ical foundation. Lewiner has successfully applied Forman’s discrete Morse theory for
gradient vector fields [5] in [11] which motivated our investigation.
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Forman’s definitions lead to a structure M∗ that contains all critical points, their
connectivity and all closed streamlines. If M∗ contains no closed streamlines, then this
structure is isomorphic to the singular homology of the domain M. Morse theoretic
vector field topology therefore degenerates to scalar field topology when dealing with
gradient vector fields. Should M∗ contain closed streamlines, then there are still many
topological invariants of M that are contained in M∗, e.g. there are the strong Morse
inequalities which guarantee that the topological complexity of M is bounded by the
complexity of M∗.

The proof of these inequalities provides a certain inherent consistency to this vec-
tor field topology. For example, a vector field on a sphere always contains at least one
critical point, a vector field on a torus with no critical points contains at least two peri-
odic orbits. These kinds of topological constraints are always reflected in M∗. Note that
this consistency is preserved in practice, as we can compute M∗ exactly because of the
combinatorial nature of the definitions.

2 Related Work

The use of topological methods for scalar and vector field visualization developed al-
most independently over the last two decades. Both areas build on solid mathematical
foundations. While methods for vector fields mostly refer back to Poincaré Index The-
ory, topological scalar field analysis is based on Morse Theory. For a basic overview
over these theories and their relation we refer to [13].

Vector field topology was introduced to visualization by Helman and Hesselink [8].
They defined the concept of a topological skeleton consisting of critical points and
connecting separatrices to segment the field into regions of topologically equivalent
streamline behavior. An algorithm to extract periodic orbits, completing the topolog-
ical structure, was first proposed by Wischgoll et al. [19] based on the analysis of
cell cycles. Later Theisel et al. [15] suggested an algorithm to detect isolated closed
streamlines in 2D vector fields by intersecting certain stream surfaces in 3D. Following
this work the use of topological methods has been further advanced according to many
aspects like topology tracking, extraction of boundary topology and extensions to 3D.

In the following we only point out some specific publications dealing with topolog-
ical simplification, which is also a central question in our work. For a more complete
overview we refer to the survey paper [10] and the references therein.

A major obstacle in the application of vector field topology is the high feature den-
sity in complex data sets. Therefore much attention has been payed to scaling and sim-
plification of the topological skeleton. Solutions have been proposed by Tricoche et
al. following two different strategies. A scaling approach determines groups of close
singularities according to a given measure. These are replaced consistently by fewer
structures consisting of higher order singularities [17]. The main target of this method
is the removal of visual clutter - the structural influence of singularities is ignored allow-
ing for possibly important flow features to be removed. The second approach focuses
on pair annihilations leading to a progressive simplification of the topological graph.
The pairs are sorted according to a relevance measure, e.g. the Euclidean distance of
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the critical points [16]. In both cases the vector field is changed to fit the simplified
structure.

Similar to the scaling approach Weinkauf et al. [18] cluster close critical points in
3D fields and replace them by one critical point of higher order represented by a specific
icon. Klein et al. [9] apply a scale space technique to track critical points over multiple
spatial scales in order to assess the importance of a critical point to the overall behav-
ior of the underlying flow field using Gaussian filter kernels. All this work is based on
numerical analysis of continuous vector fields resulting from interpolated data values
given at single vertices.

Scalar field topology developed mostly independently from vector field topology.
The main application areas in visualization include segmentation, transfer function de-
sign, and ridge extraction. A variety of algorithms for its extraction have been intro-
duced, some using the corresponding gradient vector field, others suggesting combina-
torial approaches using Morse-Smale theory. The Morse-Smale complex is a topolog-
ical structure partitioning the domain into regions of uniform gradient flow. We would
like to point out a few publications here, which motivated our work. Edelsbrunner et
al. [3] define Morse-Smale complexes for piecewise linear data resulting in a com-
binatorial algorithm for its extraction. To reduce the often very complex structure a
controlled simplification is suggested based on the general concept of persistence intro-
duced in [2]. These ideas have been applied for visualization of 3D data in [7].

Forman has chosen a slightly different approach by developing a discrete Morse
theory [6] for scalar fields defined on cell complexes. Rather than choosing a suitable
class of continuous functions on the space, he assigns a single number to each cell of
the complex and all further steps are combinatorial. Lewiner et al. [12] has applied this
theory successfully to scalar fields on triangulated manifolds.

Motivated by the success of these combinatorial algorithms for scalar field topol-
ogy, recently first steps have been taken towards a combinatorial vector field topology.
Chen [1] et al. have developed a combinatorial topology extraction method based on
Conley Index Theory. Contrary to our approach they however make use of continuous
numerical methods for the subsequent simplification.

3 Basic Ideas and Definitions

In this section we present Forman’s combinatorial Morse theory for vector fields [4] in
graph theoretic terms. For simplicity we restrict ourselves to triangulated 2D manifolds
while Forman’s theory is defined in a far more general setting. We refer to graph edges
as links to avoid confusion with the edges of the triangulation.

Given a triangulation of a manifold M we first define its simplicial graph (see Figure
1a). The nodes of the graph consist of the vertices, edges and triangles of the triangula-
tion and each node α p is labeled with the dimension p of the geometric simplex it rep-
resents. The links of the graph encode the neighborhood relation of the triangulation: If
the simplex represented by the node α p is in the boundary of the simplex represented by
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Fig. 1. Basic definitions, from left to right: a) simplicial graph of a single triangle; b)
combinatorial vector field (dashed); c) critical point of index 2 (red); d) attracting peri-
odic orbit (red)

the node β p+1 then {α p,β p+1} is a link in the graph. Note that only simplices whose
dimension differs by one are linkable.

A matching of a graph is defined as a subset of links such that no two links are
adjacent. We are now ready for the central definition of this paper: A combinatorial
vector field V is a matching of a simplicial graph (see Figure 1b).

The nodes of the graph that are not covered by V are called critical points (see
Figure 1c). If α p is a critical point of V we say that α p has index p. A critical point of
index p is called sink (p = 0), saddle (p = 1) or source (p = 2). Because of the matching
property non critical nodes always appear in pairs whose associated dimension p differs
by exactly one. Therefore one can immediately conclude the combinatorial Poincaré-
Hopf formula (see [4])

χ(M) =
2

∑
p=0

(−1)p{number of p-simplices}

=
2

∑
p=0

(−1)p{number of critical points with index p},
(1)

which already hints at the inherent topological consistency provided by Forman’s com-
binatorial approach.

A combinatorial p-streamline is a path in the graph whose links alternate between V
and the complement of V and the dimension of the nodes of the path alternates between
p and p + 1. A p-streamline connecting two critical points is called a separatrix. If a
p-streamline is closed we call it either an attracting periodic orbit (p = 0) (see Figure
1d) or a repelling periodic orbit (p = 1). When a combinatorial vector field contains no
periodic orbits we call it a discrete gradient vector field (see Lewiner).

As the relation of the critical points to the topology of the manifold is quite hard
to state in general combinatorial vector fields, we restrict ourselves to combinatorial
Morse-Smale vector fields, i.e. combinatorial vector fields whose periodic orbits are
pairwise disjoint. Note that combinatorial vector fields of simplicial graphs of 2D mani-
folds are always of type Morse-Smale due to the simple graph structure: Each 1-simplex
has exactly two 0-simplices in its boundary and is itself in the boundary of at most two
2-simplices. Therefore p-streamlines can merge but not split, which implies that peri-
odic orbits are pairwise disjoint.
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Fig. 2. Algorithmic pipeline, from left to right: a) input triangulation with vectors on
vertices; b) link weighted simplicial graph; c) computed combinatorial vector field (red)
with a sink in the center (blue).

Let cp denote the number of critical points with index p, Ap the number of closed
p-streamlines and bp the p-th Betti number of M. Forman has proven in [4] that for any
k there holds the strong Morse inequality

Ak + ck − ck−1 + ...± c0 ≥ bk −bk−1 + ...±b0. (2)

This result shows that the critical points and periodic orbits carry the topology of
the triangulated manifold. As the topological features (critical points, separatrices and
periodic orbits) can be computed exactly in a combinatorial vector field due to the finite
nature of the definitions we always get a skeleton which is consistent with the topology
of the underlying manifold.

Note that the separatrices do not take part in (2). However, there is an intricate
topological invariant, called Reidemeister torsion, whose computation involves the sep-
aratrices (see [4]). Therefore we consider the separatrices to be part of the topological
skeleton of a vector field.

4 Algorithm

In this section we present the algorithm we developed to construct a combinatorial
vector field and extract its topological skeleton. Furthermore we show how the same
algorithm that is used for the construction of the field can be employed to consistently
simplify its topological skeleton. The input of the algorithmic pipeline is assumed to
consist of a triangulation with vectors given on the vertices (see Figure 2).

We begin by constructing the simplicial graph G = (S,L) (see Section 3) of the
given triangulation. We add all simplices (vertices, edges and triangles) to the graph
and then encode the connectivity information by adding the corresponding links to the
graph (see Figure 1a).

To represent the given vector field data we compute link weights w : L → R in the
simplicial graph. Let c : S →R

3 denote the coordinates of the midpoints of the simplices
represented in the graph. To calculate the auxiliary data values f : S → R

3 on the nodes
of the graph we average the data values given on the vertices of the triangulation. The
weight of a link e = {np+1

1 ,np
2} ∈ L is then given by
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w(e) =
1
2

(
f (np+1

1 )+ f
(
np

2

)) ·
(

c(np+1
1 )− c(np

2)
)

, (3)

where the dot denotes the scalar product. This term corresponds to the tangential
component of the given data value scaled with the geometric length of the link. Note
that the link weighted graph contains enough information to reconstruct the tangential
vector field induced by the given data.

Let M denote the set of all matchings of the simplicial graph G and let w(M) =
∑e∈M w(e) denote the weight of the matching M. Then a combinatorial vector field V
representing the given data can be constructed by computing

V = arg max
M∈M

w(M), (4)

i.e. by finding the heaviest matching of the link weighted simplicial graph.
Note that the graph G = (S,L) is bipartite, as the links only connect odd with even

dimensional simplices. This greatly simplifies the algorithm needed to solve (4). The
graph problem (4) has been thoroughly studied, usually called maximum weighted bi-
partite matching. For this work we chose an exact approach based on the Hungarian
method with a computational complexity of O(|S|2 log(|S|)). This approach iteratively
calculates the sequence of matchings

Mk := arg max
M∈M ,|M|=k

w(M). (5)

As this sequence does not contain several isolated maxima we can stop the com-
putation once w(Mk+1) < w(Mk) and return the combinatorial vector field V := Mk

satisfying (4). For more details, a correctness proof and the computational complexity
analysis we refer to [14].

Let s(Mk) ⊂ S denote the critical points of the combinatorial vector field Mk. Then
s(Mk+1) ⊂ s(Mk) and |s(Mk)|− |s(Mk+1)| = 2. The vector fields Mk+� can therefore be
interpreted as topologically simplified versions of the vector field V = Mk.

Given a combinatorial vector field we can easily extract its topological skeleton,
i.e. its critical points, separatrices and periodic orbits. To find the critical points of the
vector field we only have to find the nodes of the graph that are not covered by the
matching. For the classification into sinks, sources and saddles we just have to look at
the label p. Overall all critical points can be found and classified in O(|S|).

To extract all periodic orbits we make use of a depth first search through the graph
with the side constraints of a p-streamline. Because p-streamlines of simplicial graphs
of 2D manifolds can merge but not split (see section 3) we can extract all periodic
orbits in O(|S|). The classification into attracting and repelling orbits is again given by
the label p of the participating nodes.

The separatrices can be found analogously with the constrained depth first search
mentioned above with a computational complexity O(|S|) for the extraction of all sep-
aratrices.
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5 Results

The goal of this section is to explore the properties of the combinatorial vector fields
constructed in Section 4. The robustness of the algorithm when dealing with noisy data
is analyzed in the first example. The second example verifies the topological consistency
guaranteed in Section 3. Finally we present a real world data set to examine the potential
of this method for multi-scale topological vector field analysis.

Fig. 3. Top-left: height field of unperturbed data set; top-right: height field of perturbed
data set with simplified topological skeleton; bottom-left: sources (red), sinks (blue),
and saddles (yellow) of initial combinatorial vector field on planar LIC of the gradient
vector field; bottom-right: critical points of simplified topological skeleton - the blue
circles represent tiny attracting periodic orbits.

Example 1 The purpose of this data set is to show the connection of our simplifica-
tion algorithm with the concept of persistency from scalar field topology. To do this, we
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analyzed the gradient field of the scalar function

f (x,y) = sin(10x)sin(10y)exp−3(x2+y2)

on the domain [−1,1]2 (see Figure 3 top-left) discretized with a uniform triangulation
consisting of 16,000 vertices. To determine the robustness of our algorithm with respect
to noise we added random numbers in the range of [−0.1,0.1] to the scalar values of
the mesh before taking the gradient (see Figure 3 top-right). This results in a perturbed
gradient vector field containing many critical points (see Figure 3 bottom-left). Our
topological simplification behaves like a persistence based approach: the extrema of
the gradient field are generally canceled in the order given by the absolute value of the
difference of the corresponding scalar values (see Figure 3 bottom-right). The data set
is designed such that this order is reflected in the distance to the origin.

Our simplification algorithm recovers the topology of the original unperturbed field.
The presence of noise is indicated by the graph shown in Figure 4. The x-axis represents
the simplification threshold, i.e. we stop the simplification process when w(Mk+�)−
w(Mk+�+1) is larger than the given threshold. The y-axis represents the number of the
critical points of the corresponding combinatorial vector field. The sharp drop in the red
graph at a simplification threshold of 0.1 indicates the presence of noise in the range of
[−0.1,0.1]. The symmetry of the unperturbed data f can be seen in the blue graph as
there are eight cancellations with the same simplification threshold of about 0.47.

Note that the combinatorial vector fields computed in this example are not always
discrete gradient vector fields, i.e. they may contain periodic orbits. The gradient field
property is not representable by the point set of vectors that is given for the construction
of the vector field. However, most of the time when we sample a gradient vector field
on the nodes of a triangulation and compute the combinatorial vector field, we get a
discrete gradient vector field containing no periodic orbits.

Example 2 This data set consists of a random vector field defined on a torus. We
created a random vector field on a 5× 5× 5 grid and then sampled the trilinear inter-
polant on the triangulation of a torus with 16,000 vertices (see Figure 5). As we know
the Betti numbers of a torus (b0 = 1,b1 = 2,b2 = 1) we can verify that the initial and
all simplified topological skeletons satisfy the strong Morse inequalities (2) as expected
(see Table 1).

Fig. 4. Simplification graph of example 1. The sharp drop of the red graph at 0.1 indi-
cates the presence of noise in the range of [−0.1,0.1]
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Fig. 5. Random vector field on a torus with three levels of topological simplification.

Example 3 This real world example depicts the surface velocity field of a simulation
of blood flow through a cerebral aneurysm done by the Biofluid Mechanics Lab of the
Charité - Universitätsmedizin Berlin. The simplicial graph of the triangulation consists
of 60,000 nodes. The computation time for the construction, simplification and topol-
ogy extraction is 29 minutes on a 3 GHz CPU with our current implementation. Almost
all time is spent in the maximum weighted bipartite matching code that solves (4).

The critical points in this vector field are stagnation points and thus of interest for
the flow analysis. While standard vector field topology is able to reliably extract these
critical points too, our algorithm delivers a hierarchy of topological skeletons which
captures the dominant nature of the flow (see Figure 6 bottom-left). The blood enters
the aneurysm at the bottom, and leaves it horizontally. This behavior is found by our
algorithm and the global separation on the surface is extracted. This reduced flow struc-
ture may serve as a basis when comparing different cerebral aneurysms.

6 Discussion and Future Work

This first approach to combinatorial vector field topology based on Forman’s discrete
Morse theory looks promising. The extracted topological skeleton is always consistent,
the multi scale applicability has been demonstrated, and our algorithm is able to reliably
deal with noisy data (see Section 4). We have identified three areas where the algorithm
could be further improved:

� sinks saddles sources repelling orbits attracting orbits
0 2 7 5 0 0
1 2 6 4 0 0
2 2 5 3 0 0
3 1 4 3 0 0
4 1 3 2 0 0
5 1 2 1 0 1
6 0 1 1 1 1
7 0 0 0 1 1

Table 1. Topological signature of a sequence of combinatorial vector fields Mk+� on the
torus, see Example 2. The strong Morse inequalities (2) hold in each case.
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Fig. 6. Top-left: topological skeleton of a vector field on a cerebral aneurysm given by a
blood flow simulation; top-right: zoom in of an area exhibiting recurrent flow behavior
indicated by attracting periodic orbits (red) and repelling periodic orbits (blue); bottom-
left: simplified topological skeleton with 1 saddle, 2 sinks and 1 source; bottom-right:
simplified topological skeleton with 2 sinks and 1 repelling orbit.

The quadratic runtime stemming from the maximum weighted matching problem
(4) reduces the applicability of our algorithm to real world data sets. A greedy approxi-
mation algorithm for (4) should alleviate this problem. Note that the consistency of the
topological skeleton would not be affected by such an approximation as it is induced by
the matching property.

While continuous vector field topology is able to compute the position of the sep-
aratrices accurately, the separatrices computed by our combinatorial approach do not
coincide with the exact separatrices of a given continuous vector field - regardless of
the resolution of the mesh employed used to sample the continuous vector field (see
Figure 6 top-right). The same problem is exhibited by periodic orbits. This behavior
might be corrected by a more sophisticated definition of link weights of the graph (3).

Consider a vector field on a torus with two attracting and two repelling orbits. In
principle it is possible to simplify this topology. However, our algorithm is unable to do
so. The simplification is based on matchings and always cancels pairs of critical points.
If there are no critical points in the vector field, then the algorithm cannot simplify its
topology.

In conclusion, the presented algorithm delivers a completely combinatorial appro-
ach to vector field topology on triangulated manifolds that is always consistent. The
formulation of the algorithm in standard graph terminology allows for a straight forward
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implementation using a graph library and the only parameter present is the level of
topological detail we want to extract.
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on this topic and Christian Löwen for his great implementational efforts. This work
was funded by the DFG Emmy-Noether research programm. All visualizations in this
paper have been created using AMIRA - a system for advanced visual data analysis (see
http://amira.zib.de/).

References

1. G. Chen, K. Mischaikow, R.S. Laramee, P. Pilarczyk, and E. Zhang. Vector field editing and
periodic orbit extraction using morse decomposition. IEEE Transactions in Visualization
and Computer Graphics, 13:769–785, 2007.

2. Herbert Edelsbrunner and J. Harer. Persistent homology — a survey. In J. E. Goodman,
J. Pach, and R. Pollack, editors, Surveys on Discrete and Computational Geometry: Twenty
Years Later, volume 458, pages 257–282. AMS Bookstore, 2008.

3. Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci. Morse-smale com-
plexes for piecewise linear 3-manifolds. In SCG ’03: Proceedings of the nineteenth annual
symposium on Computational geometry, pages 361–370, New York, NY, USA, 2003. ACM.

4. Robin Forman. Combinatorial vector fields and dynamical systems. Mathematische
Zeitschrift, 228:629–681, 1998.

5. Robin Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90–145,
1998.

6. Robin Forman. A user’s guide to discrete morse theory. In Proceedings of the 2001 In-
ternat. Conf. on Formal Power Series and Algebraic Combinatorics, Advances in Applied
Mathematics, 2001.

7. Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo Bremer, and Bernd Hamann.
A topological approach to simplification of three-dimensional scalar functions. IEEE Trans-
actions on Visualization and Computer Graphics, 12(4):474–484, 2006.

8. J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow
data sets. Computer, 22(8):27–36, August 1989.

9. Thomas Klein and Thomas Ertl. Scale-space tracking of critical points in 3d vector fields.
In Hans Hagen Helwig Hauser and Holger Theisel, editors, Topology-based Methods in Vi-
sualization, Mathematics and Visualization, pages 35–49. Springer Berlin Heidelberg, May
2007.

10. Robert S. Laramee, Helwig Hauser, Lingxiao Zhao, and Frits H. Post. Topology-based flow
visualization, the state of the art. In Hans Hagen Helwig Hauser and Holger Theisel, edi-
tors, Topology-based Methods in Visualization, Mathematics and Visualization, pages 1–19.
Springer Berlin Heidelberg, May 2007.

11. Thomas Lewiner. Geometric discrete Morse complexes. PhD thesis, Department of Mathe-
matics, PUC-Rio, 2005. Advised by Hlio Lopes and Geovan Tavares.

12. Thomas Lewiner, Helio Lopes, and Geovan Tavares. Applications of forman’s discrete morse
theory to topology visualization and mesh compression. IEEE Transactions on Visualization
and Computer Graphics, 10(5):499–508, 2004.



114 Reininghaus and Hotz

13. J.J. Sanchez-Gabites. Dynamical systems and shapes. RACSAM: Geometry and Topology,
102:127–159, 2008.

14. Alexander Schrijver. Combinatorial Optimization. Springer, 2003.
15. Holger Theisel, Tino Weinkauf, Hans-Christian Hege, and Hans-Peter Seidel. Grid-

independent detection of closed stream lines in 2d vector fields. In Proceedings of the VMV
Conference 2004, page 665, Stanford, USA, November 2004.

16. Xavier Tricoche, Gerik Scheuermann, and Hans Hagen. Continuous topology simplification
of planar vector fields. In VIS ’01: Proceedings of the conference on Visualization ’01, pages
159–166, Washington, DC, USA, 2001. IEEE Computer Society.

17. Xavier Tricoche, Gerik Scheuermann, Hans Hagen, and Stefan Clauss. Vector and tensor
field topology simplification on irregular grids. In D. Ebert, J. M. Favre, and R. Peikert,
editors, VisSym ’01: Proceedings of the symposium on Data Visualization 2001, pages 107–
116, Wien, Austria, May 28–30 2001. Springer-Verlag.

18. Tino Weinkauf, Holger Theisel, K. Shi, Hans-Christian Hege, and Hans-Peter Seidel. Ex-
tracting higher order critical points and topological simplification of 3D vector fields. In
Proc. IEEE Visualization 2005, pages 559–566, Minneapolis, U.S.A., October 2005.

19. Thomas Wischgoll and Gerik Scheuermann. Detection and visualization of closed stream-
lines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–
172, 2001.



On the Extraction of Long-living Features
in Unsteady Fluid Flows

Jens Kasten1, Ingrid Hotz1, Bernd R. Noack2, and Hans-Christian Hege1

1 Zuse Institute Berlin (ZIB), {kasten;hotz;hege}@zib.de
2 Berlin Institute of Technology MB1, Bernd.R.Noack@tu-berlin.de

Abstract. This paper proposes a Galilean invariant generalization of critical
points of vector field topology for 2D time-dependent flows. The approach is
based upon a Lagrangian consideration of fluid particle motion. It extracts long-
living features, like saddles and centers, and filters out short-living local struc-
tures. This is well suited for analysis of turbulent flow, where standard snapshot
topology yields an unmanageable large number of topological structures that are
barely related to the few main long-living features employed in conceptual fluid
mechanics models. Results are shown for periodic and chaotic vortex motion.

1 Introduction

With increasing computational power and advancement in experimental techniques, the
focus in flow visualization has moved from steady to unsteady fields. The demands for
analysis and visualization tools have changed accordingly. Many successful methods
for steady fields, such as extraction of vector field topology, only provide an incomplete
view on unsteady phenomena.

There are two viewpoints for describing a flow, dependent on the choice of in-
dependent variables. The Eulerian view assigns dynamic properties to fixed points in
space, while the Lagrangian view assigns these to moving fluid parcels; the dynamic
equations describe changes that occur to a fluid particle along its trajectory. This view
corresponds to a natural extension of particle mechanics. Both views can be transformed
into each other and offer different perspectives onto the flow behavior; for more details
see [1]. Especially for unsteady flows, it is important to provide analysis tools offering
both perspectives.

Vector field topology has permeated fluid dynamics since entering the scientific
field [2]. It has significantly supported the development of conceptual flow models for
steady flows or snapshots of time dependent flows. Standard vector field topology is
based on streamline behavior and thus is appropriate to capture snapshot features. Path-
line or streakline related features are not represented. Furthermore, topological features
are not invariant under Galilean transformations. These are transformations between
two frames of reference that differ by a constant relative motion. The distinguished
points in vector field topology are fixed points that exhibit zero velocity. Thus, choos-
ing a suitable Galilean transformation any location can be turned into a feature point.
Additional practical limitations result from the complexity of the topological skeleton
and its high feature density. Distinguishing long-living structures from short-living in-
coherent structures is not easy.
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Fig. 1. Correspondences between critical points from standard vector field topology and
Lagrangian equilibrium points. Displayed are the respective distinguished points with
streamlines providing context.

Some of these problems have been tackled by the introduction of Lagrangian co-
herent structures. These long-living features can be extracted in a number of ways,
for example by analysis of the Finite Time Lyapunov Exponent field [3]. This measure
characterizes the separation of particles over time, providing a Galilean invariant La-
grangian view. Coherent features are depicted as ridges of high separation. Center or
vortex-like features are not considered by this approach, since nearly no separation can
be observed here.

This paper follows a different approach to Lagrangian coherent structures, moti-
vated by two points: 1) The concept of critical points is successful, but its applicability
to unsteady flow fields is limited. We introduce an unsteady analogon to the zero ve-
locity definition of critical points. In the steady case, particles at fixed points have zero
acceleration, which is a Galilean invariant property. Generalizing this behavior to un-
steady fields, particles with low acceleration compared to their neighbors become par-
ticles of interest. We call these features Lagrangian equilibrium points (LEP). 2) Fluid
flow researchers are mainly interested in the dominant structures that mainly influence
the flow behavior. These interesting and influential features usually exist over some pe-
riod of time. The time a particle exhibits a given property becomes a basic component
of the analysis. In the proposed approach short-living structures are filtered out by a
lifetime parameter leaving only salient features. We consider the extracted features to
be a first building block of a Finite Time Topology (FTT). We verify the significance
of this approach by applying it to basic well-known flow structures such as a mix of
Oseen vortices (Sec. 4). We limit our considerations to unsteady 2D fields and leave an
extension to 3D fields for future work.

2 Related Work

Streamline topology was introduced by Tobak and Peake [2] to the flow community and
by Helman and Hesselink [4,5] to the visualization community a few years later. In this
early work, they define the concept of fixed points and integral curves connecting these,
thereby building a topological skeleton. Afterwards, many extensions like simplifica-
tions and tracking algorithms have been published. We refer to the survey paper [6] and
the references therein.
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Appropriate vortex definitions and extraction methods are crucial for the under-
standing of complex flows. A variety of scalar quantities have been introduced to ex-
tract vortex regions. Two of the most commonly used vortex identifiers are Q [7] and
λ2 [8]. Both measures are based on the Jacobian matrix of the flow field and are there-
fore Galilean invariant. Geometrical approaches using streamline curvature for locating
vortices [9] are not Galilean invariant. Other methods employ the parallel vectors oper-
ator [10] for computing global line-like features, such as vortex cores.

Most of the methods mentioned above are based either on streamlines or the Jaco-
bian matrix. They are well suited for analysis of single time-slices but not for charac-
teristics of unsteady flow fields. Thus, more attention has been paid to methods based
on pathline analysis, representing the Lagrangian point of view. Theisel et al. [11] have
presented an extension of streamline topology to pathlines. Weinkauf et al. [12] have
generalized the parallel vectors method to detect cores of swirling motion. Fuchs et
al. [13] accumulate Eulerian quantities along pathlines to add a Lagrangian view. Sim-
ilarly, Shi et al. [14] explore the dynamical process of a flow by averaging the kinetic
energy and momentum along pathlines.

Other features have also been identified as interesting by fluid flow researchers and
have subsequently found their way into flow visualization. Haller, for instance, has
introduced an analytical criterion for finite-time attracting and repelling material sur-
faces [15]. A further advancement has been the introduction of the Finite Time Lya-
punov Exponent (FTLE) [3], which is a scalar quantity indicating the separation rate
of infinitesimal close particles. Using ridge extraction [16], Lagrangian coherent struc-
tures can be captured. Garth et al. [17] have presented a computational less expensive,
adaptive method to extract FTLE ridges.

3 Motivation

3.1 Acceleration and Lagrangian Equilibrium Points

The goal of this section is to explain the considerations that finally leads to the definition
of Lagrangian equilibrium points. Vector field topology defines critical points as fixed
points, as shown on the left hand side of Fig. 1. This definition does not satisfy the
requirement of Galilean invariance. This fact motivates the investigation of alternative
concepts for “distinguished points”. In the following, let v be a flow field. As a technical
requirement it is assumed that its spatial and time derivatives are bounded. Our starting
point is the observation that for steady fields the particle acceleration at fixed points
is equal to zero. Furthermore, particle acceleration is a Galilean invariant entity, see
Appendix. The particle acceleration a is the material derivative of the field v, i.e. the
acceleration in a space-time point (x,t) is given by

a(x,t) = Dv/Dt = ∂tv(x,t)+ (v(x,t) ·∇)v(x,t), (1)

where ∂t is the partial derivative with respect to t and ∇ the spatial gradient, i.e. (∂x,∂y)
for the two-dimensional case. The squared magnitude of the acceleration a defines a
scalar field in the space-time domain by

‖a‖2 = ‖∂tv‖2 + 2∂tv · ((v ·∇)v)+‖(v ·∇)v‖2. (2)
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(a) (b)

acceleration magnitude:

Fig. 2. Visualization of two co-rotating Oseen vortices in two dimensions (a) The accel-
eration magnitude of one time-slice is shown as a color-coded heightfield. The extracted
points are the acceleration minima – which include fixed points. (b) The pathline of a
particle seeded in one time-slice is displayed. The time is depicted as third dimension.
The relative behavior of the flow field in the neighborhood of this particle at a later
point in time is displayed on a surrounding circular disk. The acceleration magnitude is
color coded in the line integral convolution (LIC) images of the flow field.

For steady fields the partial time derivative vanishes, ∂tv(x,t) = 0, resulting in

a(x) = Dv/Dt = (v(x) ·∇)v(x), (3)

where (v(x) ·∇) = ∑d
i=1 vi

∂
∂xi

. It follows that at fixed points, where v is zero, the accel-
eration also equals zero and its magnitude ‖a‖ takes its minimum value 0, cf. Fig. 2(a).
Thus, the set of fixed points is a subset of the zeros of the acceleration field.

The next step is to look at time-dependent vector fields. It turns out that for unsteady
fields it is not sufficient to consider points where the acceleration of a fluid particle is
equal to zero. In general unsteady flow fields, structures like centers and saddles evolve
over time, and thus the acceleration does not vanish. This fact also follows from Eq. (2),
since at fixed points the squared magnitude of the particle acceleration equals ‖∂tv‖2,
which does not vanish in general. However, the acceleration at fixed points is not zero
but is still small compared to its neighborhood for time-dependent fields. This allows
us to relax the condition of a vanishing acceleration to a less strong requirement, the
minimality of ‖a‖2.

As an illustrating example, Fig. 3 shows a steady and a convecting version of the
Stuart vortex. For a detailed discussion on Stuart vortices see Panton [1]. Note that con-
vection adds a non-stationary component to the steady field due to the moving frame of
reference. For both fields the same acceleration minima are detected, while the location
of fixed points are different.

As a result, acceleration and its minima are used as key features for unsteady flow
fields. In the following, space-time points (x0,t0) where ‖a(x0,t0)‖ takes a local mini-
mum in space are called Lagrangian equilibrium points.
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(a) (b)

magnitude of acceleration:

Fig. 3. Stuart vortices in two inertial frames of references: (a) vortices at rest, (b) con-
vecting vortices such that the velocity at the bottom becomes zero. Heightfield and
color represent the absolute value of the particle acceleration. The acceleration field is
the same in both cases, while the streamline patterns, observed from different inertial
systems, differ.

3.2 Feature Lifetime and Long-Living Flow Structures

In real-world datasets the high density of features often complicates a proper analy-
sis. An appropriate filter mechanism differentiating between important and unimportant
structures can ease this problem. Since fluid flow researchers are mainly interested in
long-living structures, the lifetime of features is a meaningful filter criterion. Thus, spe-
cial attention is paid to particles that carry the minimality property of ‖a‖ for at least a
small period of time. The proposed feature identifier makes use of the ‘feature lifetime’
in two ways: (i) Considering and averaging the acceleration magnitude along pathlines
over a lifetime interval reinforces the Lagrangian perspective of the approach. (ii) An
explicit feature lifetime filter selecting particles that stay in a feature state a certain time
period enables the extraction of long-living features.

4 Proposed Feature Extraction Technique

4.1 Method

The center of a Lagrangian point of view is the behavior of particles, represented by
pathlines and the evolution of flow properties along these lines. Each pathline is iden-
tified by its initial position x0 at time t0 and the corresponding trajectory s(t,x0,t0) = s
depending on the time parameter t. The contribution of a pathline to a certain feature
F is measured using a feature importance IF ; it is defined as the average of a scalar
feature identifier f (x,t) over some feature time span [tmin(x0,t0),tmax(x0,t0)]

IF (x0,t0) =
1

tmax(x0,t0)− tmin(x0,t0)

tmax(x0,t0)∫

tmin(x0,t0)

f (s(t,x0,t0),t)
2 dt. (4)

The choice of the parameters tmax(x0,t0) and tmin(x0,t0) is crucial, since they determine
the time range of influence to the local value. They are determined by the time a pathline
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Fig. 4. (a) The minimality of the acceleration can be measured by the Laplacian of
the scalar field ‖a‖, which can be computed by central differences. (b) Definition of a
feature’s lifetime along a pathline. The parameter tmin is determined by the acceleration
threshold and tmax by the maximum lifetime window.

exhibits a certain feature state. Thus, they depend on the feature considered and are
derived for each pathline segment. The feature lifetime is defined as

TF (x0,t0) = tmax(x0,t0)− tmin(x0,t0). (5)

More specifically, for Lagrangian equilibrium points the feature identifier is the acceler-
ation magnitude a(x,t) = ‖a(x,t)‖. The lifetime parameters tmin(x0,t0) and tmax(x0,t0)
are based on three quantities: acceleration magnitude a, a minimality measure of the
acceleration Ca, and a maximum lifetime window τ . To measure the minimality the
differences of a(x0,t0) at neighboring points are averaged in the four main directions:
Ca = 1/4∑4

i=1Δi, where Δi, i = 1, ..,4 are defined in Figure 4(a). Ca >Cthreshold indicates
that a particle has low acceleration compared to its neighbors.

A maximum lifetime window [t0 − τ,t0 + τ] restricts the values of tmax and tmin.
Since saddle and vortex regions exhibit different characteristic behavior, the parameter
τ can be chosen for each of these structures separately. Possible criteria to distinguish
saddle and vortex regions can be based on the instantaneous Jacobian matrix and its
characteristics, Q, λ2 or the Lagrangian approach of Haller [18]. In the following the
Jacobian matrix is used.
Finally, the lifetime parameters are defined as (cf. Figure 4(b))

tmin(x0,t0) = min(t ′ ∈ [t0 − τ,t0] | ∀t ∈ [t ′,t0] :

a(s(t,x0,t0),t) ≤ athreshold and (6)

Ca(s(t,x0,t0),t0) ≥ Cthreshold),

and

tmax(x0,t0) = max(t ′ ∈ [t0,t0 + τ] | ∀t ∈ [t0,t ′] :

a(s(t,x0,t0),t) ≤ athreshold and (7)

Ca(s(t,x0,t0),t0) ≥ Cthreshold),

If one of the criteria is not fulfilled at particle position x0 and time t0, the feature lifetime
is defined as zero and tmax(x0,t0) = tmin(x0,t0) = t0; furthermore, the acceleration is not
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(a) (b)

spheres (lifetime): heightfields:

Fig. 5. Illustration of the Lagrangian equilibrium point concept for two co-rotating Os-
een vortices. The color-coded heightfield represents: (a) integrated acceleration, (b) and
lifetime for the last time step.

averaged over the lifetime and the resulting importance value is set to the square of the
local acceleration magnitude.

Subsequently, feature candidates are extracted by searching minima in the resulting
scalar importance field IF . Finally, a filtering with the extracted lifetime distinguishes
important and unimportant features.

4.2 Implementation

The input to the algorithm is a 2D vector field defined on a sample grid. The algorithm
consists of three main steps: integration of the acceleration values, extraction of the
minimum points and filtering of these points with the lifetime.

Integration. The first step is the determination of the lifetime parameters, according
to Eqs. (5), (6) and (7). A suitable threshold value for a is extracted by analyzing the
acceleration characteristics of the first time-slice of the dataset. In this exploratory work
it is simply set to ten percent of the maximum value. The threshold Ca has to be set a
little above zero, to avoid setting a long lifetime for regions with low acceleration at
all. For each discrete point (x0,t0), a backward search in time on the trajectory s deter-
mines tmin(x0,t0). The lifetime criteria at each sample step on s is tested until either one
of the thresholds is violated, or the maximum time window or the domain boundary is
reached. Then, the feature importance is computed according to Eq. (4). For numerical
integration, a Runge-Kutta integrator RK4(3) with adaptive step-size control is used.
After the starting point tmin for the forward integration is found, the accumulation of
the acceleration magnitude along s is started. The integration is terminated if one of the
lifetime criteria is not fulfilled. Then, the resulting values are normalized by the fac-
tor 1/TF (x0,t0) and both lifetime TF (x0,t0) and importance measure IF are stored as
scalar fields.
Extraction. Feature candidates are extracted by searching local minima in the impor-
tance field I using a discrete neighbor analysis. Alternatively, other methods like the
watershed transformation [19] could be used for locating local minima.
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(a) (b)

spheres (lifetime): heightfield (||a||):

Fig. 6. (a) Extraction of features for a motion of six Oseen vortices. Since particles
leave the saddle regions quickly, the saddles do not emerge as prominently as the vor-
tex cores. The integration windows of 0.3 in each direction are too large for particles
passing through the saddle in the center. In comparison, all other long-living struc-
tures such as the vortex cores are extracted effectively. The heightfield represents the
integrated acceleration. (b) Visualization of the feature lifetime. The illuminated path-
line segments show the interval of the lifetime used for the integration of the accelera-
tion. Pathlines seeded in vortex-like feature points are long centerlines, while pathlines
seeded in saddle-like feature points diverge rapidly.

Filtering. After these initial feature candidates are found, the lifetime filter is applied.
Using a threshold for lifetime, it is now possible to emphasize long-living structures.
The threshold can be chosen separately for saddles and centers to account for the dif-
ferent lifetime characteristics.

5 Visualization

All results in this paper are visualized in a volume spanned by two spatial coordinates
and time. The extracted feature points are illustrated using spheres. The spheres are
scaled and colored according to the associated lifetime, choosing a color table where
high lifetime values are marked red, see Fig. 5 and 6(a). In some images, illuminated
pathline segments are seeded in the extracted feature points to get a more intuitive no-
tion of the lifetime. The pathlines are terminated after exceeding their feature lifetime,
as shown in Fig. 6(b). Color-coding is the same as for the spheres. The scalar fields used
for the feature extraction can be added as heightfield for one time step.

To understand the local flow structure, it is helpful to observe not only single path-
lines but also the behavior of bundles. Such an exploratory analysis is facilitated by the
possibility to select a point of interest in the LIC image. For this location, the pathline
is displayed together with a moving disk depicting the flow relative to this pathline, see
Fig. 2(b).
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(a) (b)
Q or λ2:

Fig. 7. Comparison of (a) λ2 and (b) Q with the proposed Lagrangian equilibrium
points. The extracted feature points include the vortex cores marked by high values
of Q or low values of λ2. In addition the saddle between the two vortices is detected.

6 Results

To evaluate its effectiveness, the proposed method has been applied to two different
datasets. The first dataset represents a pair of co-rotating Oseen vortices, see Fig. 5.
The Oseen vortex models a line vortex that decays due to viscosity. The velocity VΘ in
the circumferential direction θ is given by

VΘ (r) =
Γ
2π

1− e−( r
rc

)2

r
,

where r is the current radius, rc the core radius and Γ the circulation contained in the
vortex. For further information, we refer to Rom-Kedar et al. [20] or Noack et al. [21].
A more complicated flow field is generated by the interplay of six moving Oseen vor-
tices, see Fig. 6. Both datasets are given for a temporal bounding box of [−1.0,1.0].
The maximum lifetime window τ for integration is set to 0.3 in each direction. The
extraction process takes a couple of minutes on standard hardware using non-optimized
software.

For both datasets, it can be seen in Fig. 5(a) and Fig. 6(a) that the integrated ac-
celeration is low at vortex centers and saddle points. While the lifetime is high for all
features of interest in the co-rotating case, the lifetime only marks centers clearly in the
complicated field. The structures extracted are displayed as spheres, using the lifetime
to define color and size. Due to the finite time window, the lifetime is low at the begin-
ning, grows and then drops off to the end. After applying the lifetime filter, vortices are
marked as important, but interesting saddles are also removed. This is a consequence
of the fact that particles stay longer in the vicinity of centers than in the vicinity of
saddles. The illuminated pathline segments in Fig. 6(b) indicate the interval used for
the integration. Pathlines seeded in vortex-like features form long centerlines due to the
strong rotation within the vortex. In contrast, pathline segments seeded in saddle-like
structures diverge. This is consistent with the observation that interesting saddles are
removed.

Since vortex cores are extracted, Fig. 7 shows a comparison with standard vortex
indicators such as λ2 and Q. The values of λ2 and Q are color-coded in the LIC tex-
ture and in the spheres. The minima of λ2 or the maxima of Q reveal nearly the same
structures as our approach. With λ2 or Q, however, separating structures such as saddles
cannot be extracted.
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(a) (b) (c)

lifetime - spheres:

Fig. 8. Motion of six Oseen vortices: (a) All features before filtering; (b) Applying the
lifetime filter filters the short-living out. (c) Employing a shorter life-time window also
saddles are extracted.

The ability of our approach to filter out short-living features is illustrated in Fig. 8.
The chosen time window determines the maximal lifetime. All features with higher
lifetime cannot be differentiated. Choosing a time window of length 1.0, only three
long-living vortices remain.

Distinguishing between saddle and vortex regions by using the Jacobian leads to the
results depicted in Fig. 8(c). In the example the lifetime for vortex-like regions is 0.6
and for saddle-like regions 0.1. With this differentiation all salient features including
saddles are visible.

7 Conclusions

The proposed method enables a Galilean invariant extraction of long-living structures,
based on the concept of Lagrangian equilibrium points. The method features the fol-
lowing characteristics, which demonstrate that the concept is a first step to overcome
the limitations of standard vector field topology. The Lagrangian viewpoint helps to
analyze time-dependent structures. The filtering of the extracted points by lifetime en-
ables to mark salient structures. It provides a generalization of critical points of standard
vector field topology since fixed points are also Lagrangian equilibrium points for the
steady case.

In the current state, the method is still based upon two major thresholds athreshold

and τ . While the first parameter determines whether a particle carries a feature, the
second parameter represents a characteristic feature lifetime and depends on the scale
of feature lifetimes in the given dataset. Currently, the acceleration threshold is chosen
heuristically. We leave it to future work to identify the relevant scale.

The application to datasets that are well understood proves the effectiveness of the
proposed extraction scheme for salient structures in time-dependent flow fields. The
next steps will be to improve the efficiency of the algorithm, to apply it to real world
datasets, which also includes three-dimensional data, and to find ways to select appro-
priate parameter values automatically.
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Appendix

A transformation from one inertial frame F to another F ′, moving with a relative
velocity u, i.e., a Galilean transformation, is defined in space-time by x ≡ (t,x) ⇒
x′ ≡ (t ′,x′) = (t,x − ut). The corresponding transformation for the four-velocity then
is v ≡ (1,v) ⇒ v′ ≡ (1,v′) = (1,v − u). The differential operators ∂t ≡ ∂/∂ t and
∂k ≡ ∂/∂xk (∂k′ ≡ ∂/∂x′k) are transformed according to ∂t ⇒ ∂t′ − (u ·∇′), where
∇≡ (∂1,∂2,∂3) and ∇′ ≡ (∂1′ ,∂2′ ,∂3′) From this it is easy to see that the material deriva-
tive Dt ≡ ∂t +(v ·∇) is invariant under Galilean transformations:

∂t +(v ·∇) = ∂t′ +(v′ ·∇′).

A specific consequence is that the total acceleration a flow particle experiences is
Galilean invariant, a ≡ Dtv = Dt′v′ ≡ a′, i.e. independent of the frame of reference.
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Abstract. We present a novel algorithm for the geometric extraction of stream
volume segmentation for visualization of grid-less flow simulations. Our goal
is the segmentation of different paths through a mixing tube where the flow is
represented by scattered point sets approximated with moving least squares. The
key challenges are the watertight construction of boundary representations from
separatrices. These are obtained by integrating and intersecting stream surfaces
starting at separation and attachment lines at boundaries of flow obstacles. A
major challenge is the robust integration of stream lines at boundaries with no-
slip condition such that closed volume segments are obtained. Our results show
the segmentation of volumes taking consistent paths through a mixing tube with
six partitioning blades. Slicing these volumes provides valuable insight into the
quality of the mixing process.

1 Motivation

Topological features of flow fields such as separatrices are of specific interest in vector
field visualization, since they partition the domain into connected segments with consis-
tent limit behavior of stream lines, classifying (stationary) flow regions based on their
sources and targets. In planar vector fields, critical points often determine these flow
targets besides cycles and boundary segments [5]. In three-dimensional incompressible
flow critical points are rather rare. Sinks and sources do not exist, due to conservation of
mass, and only saddles of different types may occur. Thus, separatrices mostly emerge
from separation and attachment lines on boundary surfaces from where they may be
integrated with sophisticated stream surface extraction.

Fig. 1. Cylindrical mixing tube with six blades.
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In the present work we contribute a novel algorithm for the extraction of watertight
boundary representations for stream volumes. The algorithm is used to analyze a three-
dimensional vector field describing a mixing process simulated by the Finite Pointset
Method (FPM) [14]. The underlying application is concerned with flow of liquid glass
at high temperature through a cylindrical mixing tube (see Fig. 1). Six twisted blades
located sequentially inside the tube partition the flow into 64 different paths, each asso-
ciated with a stream volume composed of all stream lines taking the same path. Both,
the granularity and the geometric shape of these separating structures are indicators of
the quality of the mixing process, i.e. maintaining homogeneous optical properties of
the glass before it is cast into its final shape.
Our application data set describes a stationary velocity field of viscous incompressible
flow, represented by a finite point set with associated field attributes. Due to the ab-
sence of a computational grid, the data needs to be approximated with a local method
like Moving Least Squares (MLS) which is also used in the simulation code. A major
challenge is the integration of stream lines along surfaces with no-slip boundary, since
the approximated vector field may not get exactly zero on the boundary and may even
reverse its direction. To obtain a valid segmentation, stream lines on boundaries are
projected on the surface and released on intersection with a separation line. The frame-
work composed of such separating boundary stream lines, separation, and attachment
lines connects the material boundaries to the complex of inner separatrices that need to
be constructed carefully by adaptive integration due to varying complexity of the vector
field.
We present a novel algorithm for the adaptive construction of watertight stream volumes
by mutual intersection of separatrices in three-dimensional flow, used for quality anal-
ysis of mixing processes. These are the main challenges arising during stream-volume
construction:

– No neighborhood relation between data points. The vector field is approximated
by a mesh-free approximation technique called ”Moving Least Squares”. For each
evaluation, a local point set is defined using weighting and visibility queries.

– No-slip boundary and flow obstacles. To create watertight stream volumes, one
needs to be capable of integrating stream lines along geometry. Additionally, flow
obstacles have an impact on the construction of stream surfaces due to their splitting
behavior.

– Intersection of separatrices. Intersected stream surfaces generated by separation
or attachment lines on flow obstacles yield parts of separatrices, that are recombined
to define boundaries of stream volumes.

In Sect. 2 we summarize fundamentals and refer to related work that has been done
in the field of vector field approximation and stream surface construction. Sect. 3 de-
scribes our approaches to stream volume construction and visualization. We provide
numerical examples of stream volume visualizations in Sect. 4, which as well contains
an analysis of the test data set and an outlook on future work.
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2 Fundamentals and Related Work

2.1 Moving Least Squares Approximation

Let S be a field of scattered points xi ∈ Ω ⊆ R
n with function values fi ∈ Π ⊆ R

m. A
method suitable to approximate such grid-less data is the MLS approach [8,9]. MLS is a
weighted, local generalization of the well-known ”Least Squares” technique, which fits
a polynomial of given degree to a set of points while minimizing the squared distance
to corresponding field values.
For a large set of points, it is not feasible to find a globally defined polynomial f that still
provides a fairly small minimum overall error, as obtained by a standard Least Squares
approximation. To construct a locally supported function fx′ for arbitrary fixed x′ ∈Ω ,
the standard LS equation is altered by introducing a compactly supported weighing
function. The approximating polynomial fx′ must then satisfy (1).

∑
i
ω(x′,xi) || fi − fx′ ||2 → min with ω(x′,xi) = e−α ||x′−xi||2

r2 − e−α (1)

where r is given by the simulation and defines the radius of influence or ”smoothing
length”. Only points whose distance to x′ does not exceed r are used for evaluation.
MLS uses (1) to construct an approximating function f by moving x′ over the domain
of S. Therefore f is not defined by a single fixed x′ ∈ Ω , but needs to be evaluated at
every x′ = x ∈ Ω separately. This construction creates f as a composition of multiple
fx′ . Let m = 1 and fx′ be a polynomial of the general form fx′(x) = aT

x′ · v(x) with ax′
an unknown vector of coefficients and v(x) a given polynomial base vector of degree d.
For n = 2, m = 1, and d = 1, (2) needs to be solved for a to obtain an approximating
polynomial.

∑
i
ω(x′,xi)

⎛
⎝1 x y

x x2 xy
y xy y2

⎞
⎠a =∑

i
ω(x′,xi)

⎛
⎝1

x
y

⎞
⎠ fi (2)

2.2 Line, Surface, and Volume Integration

Stream lines provide a simple way of visualizing particle traces in stationary fields [12].
Their computational complexity depends on the method used for vector field evaluation
as well as on the integration method and adaptivity scheme. When integrating stream
lines, appropriate measures have to be taken to guarantee a given accuracy. We use an
embedded Runge-Kutta integration scheme of 4th/5th order [10] to generate adaptive
stream lines. Hereby a comparison of the two different results with respect to angular
deviation is used to scale the step size for a fifth order Runge-Kutta integration.
Stream surfaces represent a generalization of the uni-variate stream lines. They are of
special importance to the analysis of mixing processes as they provide the basis for
constructing three-dimensional separatrices. The introduction of stream surfaces neces-
sitates new concepts of adaptivity. Such a concept was presented by Hultquist et al. [6]
and has been refined in the context of grid-based data sets by different authors such
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as Scheuermann et al. [11] and Garth et al. [4]. The underlying stream surface genera-
tion algorithm used in this paper is based on an extended version of this ribbon-based
approach. Stream surfaces generated by methods discussed in this paper represent sep-
arating structures as proposed by Wiebel et al. [15].
Traditional approaches of stream volume generation use a closed polygon as rake for
stream surfaces and are hardly more than an adapted version of the stream surface al-
gorithm introduced by Hultquist. However, there are more sophisticated methods based
on scalar field generation [16] or tetrahedral volumes [2]. This work introduces a novel
surface-based algorithm to create watertight stream volumes from parts of separatrices,
making knowledge about the starting and ending position of the volume unnecessary.

3 Algorithm

3.1 Outline

These are the basic steps of our algorithm:

1. Compute separation and attachment lines on flow obstacles.
2. Generate three-dimensional separatrices by construction of stream surfaces starting

at separation and attachment lines (forwards and backwards, resp.).
3. Intersect separatrices and split them into multiple surface segments.
4. Compose stream volumes of parts of separatrices.

In the following sections, these steps are explained in detail.

3.2 Methods

Computation of Separation Lines. Separation and attachment lines define locations
in the two-dimensional projection of the vector field onto the boundary object where
flow separates from an object, or attaches to it. In the following separation line will be
used to denote both types.
For the given mixing simulation we assume, that all significant separation lines are
located on the triangulation of obstacles. Such triangles separate incoming flow in one
of two ways:

Points with Flow Parallel to Eigenvectors. A method proposed by Kenwright et al. [7]
finds points of separation lines on edges of triangles. This is done by eigenvector analy-
sis of the Jacobian of the two-dimensional projected vector field. Points on a separation
line are classified by flow parallel to the direction of one of the Jacobian’s real eigen-
vectors. If this eigenvector corresponds to the smallest real eigenvalue, the point is on
an attachment line. If it corresponds to the greatest eigenvalue, a point on a separation
line was found.
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Separating Edges. Convex edges between triangles of obstacles may have separating
properties. The two variables listed in the following determine, whether a point p on
the edge between two adjacent triangles Δi and Δ j separates the flow.

d1 = ((Δi.p1 − p)×Δi.n) · f (p)
d2 = ((Δ j.p1 − p)×Δ j.n) · f (p)

If d1 and d2 do have the same sign as illustrated by Fig. 2, point p has the desired
separating properties. This examination allows classification of edges by the separating
behavior of their adjacent corner vectors.

The separation lines of our test data are located near the sharp edges of the mixing

Fig. 2. Flow separation at convex edge. Regions, where d1 and d2 have matching signs
are marked in gray.

blades. These lines will be used as rakes for stream surfaces representing three-
dimensional separatrices. As our data does not include saddles, cycles or conventional
sinks and sources, separatrices originate from separation lines only.

Integration of Stream Lines. Stream line integration to construct surfaces in grid-less
flow simulations yields certain challenges:

Visibility of Data Points. To avoid inclusion of points during MLS approximation of
the vector field that are not visible from the position of evaluation, a visibility check
needs to be implemented. Grid-based approaches to vector field visualization avoid such
calculations, as the boundary is integrated into computational meshes. Figure 3 shows
the effects of visibility on line integration. To check for a visibility block between points
x and x′, we find intersections of the line x-x′ with triangles of the boundary. We restrict
triangle search to a local neighborhood by insertion of triangles into a regular grid, thus
reducing performance impact on distant inner lines to virtually zero.

Integration along Boundary Geometry. Stream lines may start on geometry or cause
intersections with it due to numerical inaccuracies of the MLS approximation. Both
cases require the ability to integrate stream lines on geometry.
To guarantee watertight surface construction, stream lines that are integrated on the
boundary object are forced to stay on geometry until they meet with a separation line.
A basic approach to stream line integration on triangulated geometry assumes, that
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Fig. 3. Impact of visibility on stream lines.

every position on a stream line is located on exactly one triangle t. A new triangle is
entered as soon as the stream line leaves its current triangle i.e. the stream line crosses
one of the edges of t. The appropriate neighboring triangle is chosen as new plane of
projection. While this simple method works in most common cases, it however ignores
some of the more complex situations illustrated in Fig. 4. Stream line integration on

Fig. 4. Situations a) and b) show tangential behavior at triangle edges. In situation c), a
stream line crosses one of the corners of a triangle, continuing on only one of multiple
neighboring triangles. Situation d) depicts a stream line leaving its current triangle,
being released on a convex edge. There are numerous similar situations, where the
simple approach mentioned above falls short and oscillation might occur.

triangles of two-dimensional linear vector fields has been presented before by Battke
et al. [1] in 1997. Our projective approach with focus on edge cases is presented in the
following. Let p be the position of a stream line on geometry, with a list T = {ti} of
triangles directly adjacent to this position. This method repeats the following steps:

1. Evaluation of the vector field. The field is evaluated at point p, being located
on at least one triangle. Due to the approximating properties of MLS, the no-slip
condition is weakened and the field is therefore not evaluated to zero at its boundary,
but is aligned with neighboring velocity vectors.

2. Projection. The resulting vector v is projected onto all triangles ti ∈ T .
3. Choice of Next Point and Determining Triangles. There are three possible cases.

Either p is located on exactly one triangle, on an edge between two triangles, or
on multiple triangles. p is advanced to p + vi for the appropriate triangle ti or the
intersection of this line with any of the edges of ti and appended to the stream line.
T is updated accordingly.

Degree reduction. If a stream line reaches a point where the number of neighboring data
points is not sufficient to provide a uniquely solvable LSE for the evaluation of MLS,
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the polynomial degree of the approximating polynomial is reduced step by step, as
lower degrees require fewer non-coplanar data points. These situations occur especially
close to boundaries of the data set. When integrating on or near geometry, extrapolation
may flip the vector field’s orientation, which can be avoided by decreasing the degree
of integration to zero. With geometric integration being unsteady and restricted to a low
order due to the low number of available points in the neighborhood, this represents a
valid and fast alternative to complex point-in-volume checks.

Construction of Stream Surfaces. One special case that arises when constructing
stream surfaces in fields with obstacles is the event of surface splitting. If neighboring
stream lines diverge to different sides of an obstacle, triangulation of this stream line
pair is canceled. This results in two different fronts of the stream surface. To take ad-
vantage of caching strategies, those two fronts are advanced separately and sequentially
(see Fig. 5). If at least one of the two affected stream lines is not integrated on the
boundary object, a new stream line is inserted on the boundary geometry to maintain a
closed representation of the stream surface.
For volume creation, stream surfaces are generated at every separation line of the data
set. Resulting separatrices are combined to stream volumes as explained in the follow-
ing.

Fig. 5. Obstacle splitting a stream surface. Resulting fronts are advanced separately. The
mesh is colored according to normal directions.

Intersecting Separatrices. An overall look at the division of space is provided by the
generation of separatrices. To observe one distinct volume at a time, these separatrices
are split and reorganized to form closed boundaries of stream volumes. As illustrated
in Fig. 6, in directed vector fields such as the mixing process considered in this work,
intersections resulting in the splitting of stream surfaces can be of two different types:
Intersections caused by separatrices of opposing directions are crossings of separatri-
ces, which cannot occur between separatrices of identical direction3, as stream surfaces
are not able to cross each other if their rakes do not.
The remaining intersections are T-intersections rather than x-crossings. They occur
whenever an outer stream line of a separatrix, that is integrated along the boundary
geometry meets with the rake of a separatrix of the same direction.

3backwards or forwards in the vector field
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Surface Crossings. If two surfaces are crossing, so do their triangulations. Hence it
is possible to operate on their triangulations when determining cuts of surfaces, rather
than generating and inserting new stream lines into both surfaces to represent the cut.
While the former method is less accurate than the latter, intersection of triangulations
is computationally far less expensive than according stream line integration and inser-
tion into the complex structure of stream surfaces. In this paper, former method was
chosen to create cuts between surfaces of opposing directions. As soon as the triangle-
based intersection is computed and affected surfaces are retriangulated, they are split
into multiple parts along the trace of their cut. Surface crossings generally divide two
surfaces into a total of four parts (see Fig. 7).

T-Intersections The second type of cut is produced between two surfaces of the same
direction, where the left- or rightmost stream line souter of a surface S1 leaves geometry
at the rake of another surface S2, whose rake represents a separation line.
This type of intersection cannot be handled by a straightforward cutting of the two
triangulations. One reason for this is that the roots of S2 do not yield a one-to-one rep-
resentation of the original separation line due to rake discretization during the process
of surface creation. As the starting points of souter and stream lines of S2 usually differ,
it is impossible to guarantee a continuous intersection.
An advantage over the crossing situation is the knowledge about the meeting point of
souter with the rake of S2. This point is identical to the position, where souter leaves ge-
ometry. Insertion of a stream line starting at this point that directly represents the cutting
trace on S2 becomes feasible in this case. This newly generated stream line keeps all
data about the surface intersection that is needed for retriangulation and splitting of the
affected surface.

Fig. 6. Crossing behavior of stream surfaces (a), and t-intersection (b) between outer
stream line and red surface. Stream volume composed of parts of three separatrices (c).
Retriangulation during surface splitting guarantees a closed volume.

Composition of Stream Volumes. Previous work on stream volumes is not suitable to
create the volumes desired in the context of this work, as no data about the starting or
ending regions of volumes is available. Therefore a new approach of volume composi-
tion is introduced in the following.



Stream Volume Segmentation 135

Surface parts that originate from a common intersection yield a certain relation. As
shown in Fig. 7, this relationship is governed by the normals of two adjacent triangles
that are part of the intersection. These normals allow classification of the newly created
surfaces (in this case four) by orientation of their normals, resulting in a neighborhood
structure. A back-back neighborhood between two surfaces s1 and s2 with triangles Δ1

and Δ2 is for example indicated by:

d1 = Δ1.n · (Δ2.o−Δ1.o) < 0

d2 = Δ2.n · (Δ2.o−Δ1.o) > 0

Where Δ1.o and Δ2.o denote triangle centers. Assembling of a stream volume fol-
lows these steps:

1. Choose an arbitrary stream surface.
2. Choose whether the surface faces the inside or the outside of the volume to be

generated. Therefore indicating, whether the normal points into the volume or not.
3. Save a list of all relevant intersections of this surface.
4. Add all surfaces to the volume that share any of the relevant stored intersections

and face in the correct direction as defined by d1 and d2. Intersections of the new
surface are processed and added to the list of intersections.

5. Repeat steps 3-4 until no more surfaces are added.

After all five steps are completed, every surface contributing to the volume is assigned
at most two volume indices.

Fig. 7. Neighboring triangles of different surfaces (left) and composition with inter-
sected surfaces (right).

Constructing Slicing Planes. Slicing planes are traditionally used in volume visual-
ization of scalar data sets. Such textured planes cut through a data set and are colored
by the scalar values associated with the data. A visualization of the volume is obtained
by placing parallel, transparent planes throughout the data set. A similar method is used
in this work to avoid occlusion when visualizing stream volumes. The boundary and
surface intersections with slicing planes are found and projected onto the plane. While
the boundary object of the test data set may produce multiple outlines on the plane,
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intersections between the slicing plane and volumes consist of cuts with all surfaces of
a certain stream volume, resulting in closed area representations.
During visualization slicing planes are rendered as RGBA textured quads with outlines
and cuts mapped and plotted using Bresenham’s line algorithm [3]. This produces a
slicing plane displaying all intersections with geometry. To avoid ambiguity, the inte-
rior area of a volume cut is colored in a distinct color.

4 Results

4.1 Application

As expected due to the number of obstacles, 26 = 64 volumes are created in our data
set. These volumes consist of a total of 264 surfaces, implying that every separatrix was
on average divided into 12 parts.
Figure 9 depicts visualizations of a single stream volume and the complete set of 64
volumes. Inspection of multiple volumes, as depicted in Fig. 8 provides more gen-
eral information on the segmentation of flow. Figure 10 displays slicing planes through
volumes of the data set. Figure 11 illustrates the use of transparent slicing planes for
volume visualization. All slicing planes are aligned perpendicular to the main direction
of flow.

4.2 Discussion

Stream volumes provide a general overview of the quality of a mixing process, as their
form and start/end positions contain information about sets of particle traces. Slicing
planes simplify analysis by extracting local information about stream volumes. This
way multiple observations can be made using the visualization techniques presented
in this paper: The simulation has a symmetrical rotating behavior, incoming groups of
stream lines are rotated by at least 90◦. The cuts in Fig. 10 reveal a shuffling or squeez-
ing motion caused by the vector field, resulting in volume deformations. Additionally, a
comparison between cuts through either end of the simulation suggests a mixing prop-
erty, as neighboring stream volumes describe differing paths. These results suggest, that
the mixing process is of good quality. As is seen by analysis of flow obstacles, the mix-
ing character is directly influenced by the number of obstacles. The desired number of
obstacles depends on the concrete application of the mixing process.

Future work in this direction may include parallelization of intersection operations,
analysis of volume divergence and extension of the work to non-stationary fields.
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Fig. 8. Visualization of several stream volumes. A stretching, rotating and diverging
motion between adjacent volumes can be observed.

Fig. 9. Visualizations of a single twisted and stretched volume and all volumes of the
data set. Colors identify adjacent stream volumes. Occlusion of volumes hides impor-
tant information about the mixing process, which can be visualized by slicing.

Fig. 10. Slicing planes through five (left) and all volumes of the data set (right) at po-
sitions t = 0.3,0.6,1.0,0,0.5,1.0. It is clearly visible, how neighboring volumes take
different paths through the data set. Comparison between individual slices allows obser-
vation of stretching, rotational, and mixing behavior. The distribution of volume colors
indicate a good mixing process.

Fig. 11. Volume visualization of a selection of stream volumes by slicing planes (a) and
volume visualization of two stream volumes (b). This type of visualization lessens the
effect of volume occlusion by the use of transparency.
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Abstract. We propose a topology-based segmentation of 2D symmetric ten-
sor fields, which results in cells bounded by tensorlines. We are particularly
interested in the influence of the interpolation scheme on the topology, consid-
ering eigenvector-based and component-wise linear interpolation. When using
eigenvector-based interpolation the most significant modification to the standard
topology extraction algorithm is the insertion of additional vertices at degener-
ate points. A subsequent Delaunay re-triangulation leads to connections between
close degenerate points. These new connections create degenerate edges and tri-
angles. When comparing the resulting topology per triangle with the one obtained
by component-wise linear interpolation the results are qualitatively similar, but
our approach leads to a less “cluttered” segmentation.

1 Introduction

Generally tensor fields are not easy to understand owing to their complexity. Segmen-
tation into regions of similar directional behavior offers a way to extract the essential
structure of the field. A segmentation based on tensor field topology guarantees that all
significant structural irregularities are captured. We build on the basic work by Delmar-
celle et al. [5], which introduces tensor field topology to visualization, and the further
advancement by Tricoche et al. [17], with the goal of a more complete segmentation.
In contrast to previous work we consider the topological structure of both eigenvector
fields as a whole. As both eigenvector fields are orthogonal the topological graphs de-
liver a descriptive cell structure bounded by tensorlines. The field in the neighborhood
of degenerate points of the combined topology is characterized by “half-sectors” instead
of “sectors” and allows a more general structure. The second focus of our work is the in-
fluence of the chosen interpolation. Dealing mostly with discrete data interpolation is an
essential step in the visualization process. In order to keep our method simple, we con-
sider only piecewise linear methods defined in a triangulated domain. Besides using the
standard component-wise interpolation, we introduce an eigenvector-based approach.
This method minimizes the number of eigen-analysis by restricting it to mesh vertices
and supports an exact integration of tensorlines. By decoupling “shape” and “direction”
we achieve a shape-preserving interpolation. Introducing new vertices at degenerate
points and re-triangulating the domain leads to a simplified global topological structure
without any modifications to the initial tensor field.
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Our algorithm is designed to be simple and to follow clear rules. The algorithm con-
sists of the following major steps: Eigenvector analysis at the vertices; edge labeling to
ensure consistent direction interpolation; localization of degenerate points in each trian-
gle and insertion of new vertices; determination of radial directions for both eigenvector
fields; classification of the half-sectors defined by radial lines; integration of separatri-
ces, and finally generation of a segmentation as intersection of the dual tensor field
topologies.

2 Related Work

Most existing tensor field visualization methods are either specific to diffusion tensor
fields or mechanical engineering applications, the latter being the focus of our work.
The needs of domain experts in the area of diffusion tensor fields are well-defined as
opposed to the lack of specific questions with respect to the tensors used in mechani-
cal engineering. This difference in the driving force strongly reflects on their respective
tensor field visualization techniques. Direct tensor visualization approaches focus on
displaying tensor values in selected points. In this context research issues usually deal
with the definition and placement of glyphs. Commonly used glyphs are, e.g., ellip-
soids, Haber glyphs [7], or superquadrics [9], with improved perceptional properties.
Different placement strategies are used to maximize the information displayed per im-
age [6, 11]. While glyphs are appropriate for displaying single tensors, they are limited
to low resolution and fail to give insight into the structure of the entire field. A more
continuous view of 2D fields can be obtained by using tensor splats [3] or textures based
on line integral convolution [8,19]. The idea of using topological methods to analyze the
structures of tensor fields goes back to Delmarcelle [5] and Lavin et al. [12]. Tricoche et
al. [17] improvised these ideas for applications of complex 2D tensor fields, by develop-
ing algorithms to simplify the tensor topology and to track it over time. Alliez et al. [2]
proposed an application to curvature tensors for polygonal remeshing of surfaces. First
analysis of tensor field topology 3D tensor fields shows that in 3D degenerate features
form lines [20].

In a similar vein, we investigate the influence of different interpolation methods
on the topology extraction process and the resulting topological structure. Tradition-
ally the component-wise linear interpolation has been used on tensor fields. However,
this interpolation generates artifacts, e.g., the swelling effect. In an effort to alleviate
these artifacts, methods separating direction and shape interpolation have gained more
attention lately. In context of diffusion MRI data some direction-based interpolation
methods based have been proposed for tracing anatomical fibers, [4, 10, 13]. Several
other advanced interpolation methods based on components have been developed to
achieve noise reduction or feature preservation [1,14,18]. The emphasis of our interpo-
lation method is to provide a simple and consistent method, based on eigenvectors and
eigenvalues, with a focus on the behavior in the neighborhood of degenerate points.
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3 Basics and Notations

3.1 Tensors and Tensor Fields

In the rest of the paper, we will refer to symmetric 2D tensors of second order, defined
on a triangulated 2D domain, as tensor field. Using a fixed coordinate basis, each tensor
T can be expressed as a symmetric 2×2 matrix, given by three independent scalars. We
use the following notation

T =
(

d +Δ F
F d −Δ

)
. (1)

T is fully represented by its eigenvalues λ and μ and corresponding eigenvectors
↔
v

and
↔
w. Since the multiplication of an eigenvector by any non-zero scalar yields an addi-

tional eigenvector, eigenvectors should be considered without norm and orientation. For
symmetric tensors, the eigenvalues are real and the eigenvectors are mutually orthogo-
nal. Integrating the eigenvector fields results in two orthogonal families of continuous
curves. These curves are called major (red) and minor (blue) tensorlines according to
the eigenvector field integrated.

Usually the tensor data-sets represent a discretized tensor field, whose geometry is
represented by a triangulated mesh. Inside a triangle with vertices P1, P2, and P3 we use
barycentric coordinates β = (β1,β2,β3). The edge opposite vertex Pi is named ei, for

i = 1,2,3. We use
↔
v and

↔
w when referring to eigenvectors to allude to the fact that the

eigenvectors are bidirectional. We use v and w when referring to vectors representing
normalized eigenvectors with an arbitrarily but fixed direction, e.g., when using the
results of the numerical computation. The direction of w is defined in such a way that
v and w form a right-handed system. We assign the names λ and μ , such that always
λ ≥ μ .

3.2 Tensor Field Topology

Similar to vector fields, the structure of eigenvector fields is represented by its topol-
ogy. It defines a skeleton consisting of distinguished points, so called degenerate points,
and connecting edges, the separatrices. This skeleton segments the domain into regions
with characteristic tensorline behavior. In contrast to previous work we do not look
at the topology of each eigenvector field separately but consider both topologies as a
whole. In the following we resume the basics of tensor field topology, concentrating on
the aspects that we need later on. For a more detailed discussion we refer the reader
to [5, 16].

Degenerate points - Degenerate points are points where the two eigenvalues are iden-
tical λ =μ , and the eigenvectors are no longer defined uniquely. The tensor is propor-
tional to the identity matrix and all vectors are eigenvectors. Degenerate points in tensor
fields correspond to critical points in vector fields. Due to orientation indeterminacy of
tensorlines, these points exhibit structures different from those seen in vector fields. A
condition for degeneracy of a point is Δ =0∧F =0. Independent of the eigenvalues, an
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isolated degenerate point can be categorized by the number of windings an eigenvec-
tor performs when encompassing it on a closed curve. The undirected eigenvector field
allows winding-numbers to be multiples of one half. Only simple degenerate points
(winding-number of ± 1

2 ) can exist in a tensor field, defined by linear interpolation of
its components.

Separatrices - The behavior of the tensorlines in the vicinity of degenerate points
follows certain characteristic patterns, with respect to a characteristic composition of
basic sectors, explained further in Section 5.4. These sectors are separated by distin-
guished tensorlines, which enter the degenerate point radially. Radial tensorlines bound-
ing hyperbolic sectors are called separatrices and constitute the edges of the topological
graph.

4 Eigenvector-based Interpolation

The definition of tensor field topology is based on continuous data and hence we rely
on an interpolation of the available discrete data. The standard interpolation is linear in
tensor components. Instead we propose the use of an interpolation based on eigenvec-
tors and eigenvalues, see Figure 1. This method minimizes the number of eigenvector
computations. The interpolation is defined such that the resulting topology per triangle
is qualitatively the same as for component-wise interpolation, see Figure 3. The main
steps of this interpolation are: edge labeling, location and insertion of degenerate points,
subdivision of triangles, and vector interpolation.

Assignment of directions to eigenvectors - edge labeling
Using vectors for the interpolation we first have to assign orientations to the eigenvec-
tors to specify the interpolation uniquely. Doing so we have to consider the fact that not
all structures occurring in tensor fields can be simulated by global vector fields, e.g.,
winding numbers of half integers. Thus a consistent global orientation of the eigen-
vector field is not possible. Therefore we keep the arbitrarily directed eigenvectors at
vertices as generated by numerical computations and only encode relative directions
between neighboring vertices using edge labels. For the label definition we follow the
eigenvector behavior given by the component-wise interpolation. When moving from
point Pi to Pj the absolute value of the rotation angle of the eigenvectors is limited to
π/2. The direction of the rotation is given by the value FjΔi −FiΔ j. If the value is equal
to zero, then either both eigenvectors are the same or they encompass an angle of π/2
and the rotation direction is undetermined. Then there exists a degenerate point on the

Fig. 1. Comparison of interpolation methods: left: eigenvector-based (shape preserv-
ing), right: component-based.
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Fig. 2. Triangle (a) without and (b) with degenerate point, edge labels indicate whether
two adjacent eigendirections match. (c) The location of a D is well-defined if the three
lines connecting the vertices and their opposite points intersect in one point.

edge. The edge label of an edge ek with endpoints Pi and Pj is defined as:

l(ek) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if the directions of vi and v j match the direction propagation,
meaning vi ·v j > 0,

−1 if the directions of vi and v j do not match the direction propaga-
tion, meaning vi ·v j < 0,

0 if there exists a degenerate point on the edge, vi ·v j = 0.

The existence of a degenerate point inside a triangle Pi,Pj,Pk with edges ei, e j, ek, is
directly related to the product of its edge labels, see Figure 2. It is:

3

∏
i=1

l(ei) =

⎧⎨
⎩

1 no degenerate point in triangle,
-1 one isolated degenerate point in triangle,
0 there is a degenerate point on at least one of the edges.

(2)

If there exist two edges with degenerated points, we have a degenerate line. If there are
three degenerate edges, the entire triangle is degenerate.

Interpolation in triangles without degenerate point
The tensor in point P(β ), β = (β1,β2,β3), which are the barycentric coordinates of
point P inside a triangle P1, P2, P3 is defined by its eigenvectors v and w, which are not
normalized, and eigenvalues λ and μ given by

v(β) = β1v1 +β2l(e3)v2 +β3l(e2)v3,
w(β ) = β1w1 +β2l(e3)w2 +β3l(e2)w3,

λ (β ) =
3
∑

i=1
βiλi, and μ(β ) =

3
∑

i=1
βiμi.

(3)

Interpolation in triangles with degenerate point
In such triangles it is not possible to define a continuous vector field representing the
tensor field structure. However, we can resolve this problem by inserting an additional
vertex D at the degenerate point and subdividing the triangle to triangles without inte-
rior degenerate point. To determine the eigenvalue at D we linearly interpolate the mean
eigenvalue d = (λi + μi)/2 in the original triangle and set the deviator Δ = (λi − μi)/2
to zero. Thus we can reconstruct the triangular domain by using piecewise linear inter-
polation in the subdivided domains. The tensor at point D is defined as a multiple of
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the unit tensor. The eigenvectors at D are set to zero, in correspondence to vector field
singularities. Each new triangle with vertices Pi, Pj, D is interpolated separately. With
P(β ) := βiPi + β jPj + βkD, (cyclic indices) eigenvalues and eigenvectors are interpo-
lated using Equation 3. The resulting eigenvectors are independent from the coordinate
βk.

5 Topology Extraction

The basic steps for extracting topology are: location and classification of degenerate
points, determination of separatrix directions, and their integration. We restrict this sec-
tion to eigenvector-based interpolation; we refer readers to [5, 16] for further details on
linear component-wise interpolation. The main difference between the two interpola-
tion schemes is caused by the triangle subdivision. All degenerate points lie on vertices
with piecewise linear behavior in the vicinity and can exhibit structures different from
trisector and wedge points.

5.1 Location of Degenerate Points

Since degenerate points at vertices can be detected easily, this section is restricted to tri-
angles without degenerate vertices. Initially, we also assume that there is no degenerate
point along edges, and thus from Equation 2, the edge label product has to be -1. We de-
fine the location of the degenerate point exclusively dependent on the eigenvector field.
Starting with a linearly interpolated eigenvector field on the edges ei with endpoints Pk

and Pj, i, j,k ∈ {1,2,3} cyclic, we compute

v(t) = (1− t) ·v j + t · l(ei) ·vk, t ∈]0,1[. (4)

Even though the resulting vector field v on the boundary may not be continuous at
all vertices, the corresponding un-oriented direction field

↔
v is. It defines a continuous

rotation angle varying from zero to ±π . The intermediate value theorem implies that
for each vertex a parameter ti ∈]0,1[, i=1,2,3, exists such that vi ·v(ti)=0. Thus, for every
vertex there exists a point on the opposite edge, called opposite point of the vertex, with

Fig. 3. Interpolation comparison in one triangle: Degenerate points D1 from component-
wise, D2 from eigenvector-based interpolation, in the case of (a) trisector, and (b) wedge
point. (c) Radial tensorline entering degenerate point D.
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rotation angle ±π/2 with degenerate point on its connection. The parameters ti are given
by

vi · ( (1− ti)v j + l(ei)tivk ) = 0, (5)

where i, j,k ∈ {1,2,3} are cyclic indices. This leads to the following definition: The
location of the degenerate point is defined as the intersection of the connections of tri-
angle vertices to their opposite points, see Figure 2(c)
It can easily be seen that the point D is well-defined. From the definition of ti in Equa-
tion 5, it follows t1t2t3 = (1− t1)(1− t2)(1− t3), which is the condition that three lines
connecting the vertices to points on the opposite edge, defined by parameters ti, inter-
sect in one point. For degenerate points on edges the three connecting lines degenerate
to a line. In this case we use the eigenvalues at the vertices to determine the degenerate
point.

5.2 Non-isolated Degenerate Points

Two degenerate vertices connected by an edge gives a degenerate line. The resulting
eigenvector field inside adjacent triangles is constant and does not contribute to the
final structure. Similarly a degenerate triangle, where all vertices are degenerate points,
is enclosed by three triangles with constant eigenvector field. Thus from a structural
point of view it is enough to consider the vertices of the degenerate entity and ignore
the connecting edges. It is not uncommon to see degenerate polylines when applying a
subsequent Delaunay re-triangulation.

5.3 Determination of Radial Directions

The neighborhood of the degenerate point is characterized by segments separated by
radial tensorlines. For linear eigenvector interpolation, radial tensorlines are straight
lines and are determined by their intersection P(tr) with the edges of adjacent triangles,
see Figure 3. For each edge of the triangle,

v(trv)× (P(trv)−D) = 0, w(trw)× (P(trw)−D) = 0, trv,trw ∈ [0,1]. (6)

trv and trw specify the radial directions for the eigenvector fields v and w respectively.
In contrast to component-wise interpolation, where radial directions are given by one
cubic equation, we obtain one quadratic equation per edge and per eigenvector field. If
not trivially fulfilled this leads to a maximum of two solutions per edge and eigenvector.

5.4 Sector Classification

For the skeleton computation only radial lines, which are boundaries of hyperbolic sec-
tors, are relevant. In the case of component-wise interpolation a point classification into
trisector or wedge points serves as basis for the classification. To cover all possible
cases of degenerate points, for piecewise linear behavior, we built on an immediate sec-
tor analysis similar to [17]. In contrast we classify “half-sectors”, as we consider the
topology of both eigenvector fields together. These are radial segments enclosed by two
neighboring radial directions, independent of the eigenvector field, either red or blue,
see Figure 4.
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Fig. 4. The neighborhood of a degenerate points is characterized by a number of half-
sectors with specific behavior.

Hyperbolic sector - bounded by one red and one blue radial line: tensorlines approach,
sweep past the degenerate point and leave the sector through one bounding radial
line.

Parabolic sector - bounded by two radial lines of same color: all tensorlines, of this
color, start from the degenerate point and then diverge. The tensorlines of the other
color enter and leave the sector through bounding lines.

Elliptic sector - bounded by one red and one blue radial line: the tensorlines start from
the degenerate point, and leave the sector through one of the bounding lines.

Fig. 5. A close-up of sector classification for the one-point load data-set using linear
interpolation of eigenvectors, with (left) and without (right) subsequent re-triangulation.
Shaded regions show the sectors: green and yellow for non-hyperbolic and hyperbolic,
respectively; red and blue lines show radial lines, which are not integrated; black points
and lines are the degenerate points and lines.
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To classify the sectors the rotation angle of the eigenvectors Δα is compared to the
opening angle of a half-sector ΔΘ as shown in Figure 4

Δα = ΔΘ radial, concentric,
Δα = ΔΘ −π/2 hyperbolic,
Δα = ΔΘ +π/2 elliptic.

The same sector classification can also be used for degenerate lines and triangles. In
this case all radial lines entering one of the participating vertices have to be considered.
An example from a real data-set is shown in Figure 5.

5.5 Separatrix Computation

To complete the topological skeleton we integrate all radial tensorlines bounding the
hyperbolic sectors using Runge-Kutta 4th-order integration scheme with adaptive step
size. Alternatively, an exact tensorline integration for the linear eigenvector field can
be used [15]. Direction consistency is not an issue in our approach, as in the case for
component-wise interpolation, since eigenvector interpolation gives directed eigenvec-
tors. We implemented the following termination conditions, to obtain a clean integration
of tensorlines.

1. A separatrix leaves the domain, a trivial condition.
2. A separatrix gets close to a degenerate point, line or triangle. It is terminated at its

intersection with the degenerated entity, see Figure 6a.
3. A separatrix describes a circle or spiral and passes itself closely in parallel integra-

tion direction , see Figure 6b and 6c. Circulating separatrices overload the topo-
logical graph without adding structural information for the final segmentation. We
delete circulating tensorlines in a clean up process, which starts at the end of the
separatrix and continues as long as the separatrix has a neighboring separatrix of
the same color. The cleanup process ends in a point of intersection with a separatrix
of the other color.

6 Segmentation

After computing the topological skeleton for both eigenvector fields, we find the inter-
sections of the red and blue tensorlines. The properties of the resulting segmentation as
can be seen in Figure 4 are (a) Cells without degenerate point are quadrangular with

(a) (b) (c) (d) (e)

Fig. 6. Close-up from one-point load data-set: (a) tensorline runs into a degenerate line
(black line); circulating tensorline (a) before and (b) after clean up; (d,e) comparison of
separatrix integration for component-wise and eigenvector-based interpolation.
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two red and two blue tensorlines as boundary, in an alternating order. All red tensor-
lines passing through this segment enter at one of the blue boundaries and leaves the
cell at the opposite boundary and vice versa. All angles are orthogonal. (b) Cells with
one degenerate vertex lying in a hyperbolic sector are quadrangular. The angle at the
degenerate point is in general not orthogonal. (c) Cells having a degenerate point in one
vertex, lying in a parabolic segment, degenerate to a triangular shape. (d) In elliptic sec-
tors, cells with either two or three vertices are possible. (e) Cells containing degenerate
lines as edges can exhibit more complicated structures.

7 Results

We tested our method on 2D slices of three different data-sets simulating stress behavior
in a solid block: one and two forces applied to the top of a solid block and multiple
forces applied to a notched block. Since the results for the eigenvector- and component-
wise interpolation schemas are qualitatively similar we focus in the results in close-up
views showing the major and typical differences. In Figure 6(d,e) a section of the one-
point load containing three degenerate points is shown. While the basic structure is the
same, the changes of the eigenvector directions is smoother for the eigenvector-based
interpolation, resulting in less curved tensorlines in the vicinity of degenerate points. As
a consequence, a proper step size adaption is especially important for component-wise
interpolation to obtain tensorlines of the same quality. The calculation of the topological
skeleton using eigenvector-based interpolation is in general faster than the one based on
the component-based interpolation. This speed gain is a result of restricting the eigen-
analysis to the vertices. For the component-wise interpolation it has to be performed for
each integration step.

The effect of the re-triangulation on the complexity of the resulting topological
structure is shown in Figure 5. These images are close-up views of the one-point
load data-set, both using eigenvector-based interpolation. The left image was computed
using a Delaunay re-triangulation after vertex insertion combining seven degenerate
points in one degenerate line, which nicely represents the dominant radial structure of
the red tensorlines. The number of separatrices that have to be integrated is reduced
from 35 to 14. Details of the local topological structure are often not features of the
data-set, but instead are by-products of the chosen interpolation schema. This is an in-
centive to keep the resulting topological structure simple while still being consistent
with the data.

We have applied our method to data-sets representing the simulation of different
force combinations acting on a solid block. Figure 7 shows complete segmentations
of a slice of each data-set. In the top right image the cells are randomly colored. The
other images displays the blue and red tensorlines bounding the segments. Black dots,
lines and triangles show the degenerate entities. The one- and two-point load data-
sets are simulated with very low resolution resulting in artifacts that are reflected in
the complicated topological structure. An adaptive finite element method was used in
the third dataset which results in a much clearer structure, even though the physical
configuration is more complex.
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Fig. 7. Full segmentation: left: two-point load, right top: one-point load with randomly
colored segments, right bottom: slice of strain simulation of forces on notched block.

8 Conclusions

We have presented a method that delivers a segmentation that capture the eigenvector
behavior in a 2D tensor field. With the classification of the sectors we are able to extract
separatrices that build the topological structure. Simultaneously the insertion of the de-
generated points in the Delaunay triangulation decreases the number of separatrices and
therefore the number of segments. The resulting degenerated lines and triangles capture
the invariants in the field in a simplified way, without changing the given tensor values.
Though the results for the topology extraction of the component-wise interpolation and
our eigenvector-based method are qualitatively similar, the latter is faster. Albeit slight
differences in the segmentation obtained using both the methods, the quality of the seg-
ments is the same. Future work includes a further clean up to simplify the segmentation
by combining similar elements and a further refinement of large cells, using the bound-
ary topology.
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Abstract. Lagrangian coherent structures play an important role in the analy-
sis of unsteady vector fields because they represent the time-dependent analog to
vector field topology. Nowadays, they are often obtained as ridges in the finite-
time Lyapunov exponent of the vector field. However, one drawback of this quan-
tity is its very high computational cost because a trajectory needs to be computed
for every sample in the space-time domain. A focus of this paper are Lagrangian
coherent structures that are related to predefined regions such as boundaries,
i.e. related to flow attachment and flow separation phenomena. It presents an
efficient method for computing the finite-time Lyapunov exponent and its height
ridges only in these regions, and in particular, grid advection for the efficient com-
putation of time series of the finite-time Lyapunov exponent, exploiting temporal
coherence.

1 Introduction

One of the major challenges in scientific visualization is the visualization of time-
dependent velocity fields represented by hundreds of time steps, each given as a large
numerical dataset. Velocity fields are among the most important results of computa-
tional fluid dynamics (CFD) simulations, and therefore visualization of such data has
been extensively studied. It is quite commonly agreed that, due to the complexity of
the data, a single visualization technique is in general not able to reveal all the relevant
structures in the flow. Structures can not only appear at many different spatial and tem-
poral scales, but their recognition may also depend on the correct frame of observation.

The higher resolution of today’s simulation results leads to more and more intricate
flow details which are to be captured by appropriate visualization techniques. Methods
for such structural visualization can be divided into feature-based and topological ap-
proaches. The latter have, until recently, largely been seen as synonymous to vector field
topology [1,8]. Because of its rigorous foundation on the theory of dynamical systems,
vector field topology is very popular in the visualization community. One of its most
powerful concepts is the separatrix which separates two regions of qualitatively differ-
ent flow behavior. Vector field topology can also be applied to the wall shear stress field
on no-slip boundaries where the velocity vanishes. By combining it with the topology
of the velocity field in the interior, Surana et al. were able to give exact definitions of
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separation and attachment surfaces, and they showed that for Navier-Stokes flows, the
separation slope and angle formulas depend on on-wall quantities only [19, 20].

In a strict sense, vector field topology is only applicable to steady or instantaneous
velocity fields. But the lack of alternatives, the simple concepts, and the availability in
visualization systems led to the frequent use of vector field topology also for the visual-
ization of unsteady fields. Even if most researchers were probably aware that such a vi-
sualization based only on snapshots cannot be correct, this was mostly seen as a theoret-
ical blemish only. Shadden et al. [17] demonstrated with their simple two-dimensional
“double gyre” example that the separatrix can be clearly dislocated from the actual flow
separation. As a reaction, there is currently a growing interest in the search for time-
dependent variants or extensions of vector field topology. Theisel et al. [21] and Shi et
al. [18] presented such concepts for aperiodic and periodic velocity fields, respectively.
As a more radical approach, visualization researchers started to look into the theory of
Lagrangian coherent structures (LCS) as a replacement for vector field topology. In the
original sense, an LCS was defined as a region of coherent flow behavior. In Hussain’s
definition [9] flow behavior is expressed by vorticity alone, while Robinson [14] defined
coherent motion as “a region over which at least one fundamental flow variable exhibits
significant correlation with itself or with another variable over a range of space and/or
time that is significantly larger than the smallest local scales”. In a more modern sense,
LCS are understood as the boundaries of such regions. As Haller showed [7], they can
be computed as ridges of the (maximal) finite-time Lyapunov exponent (FTLE). These
ridges are lower-dimensional structures, which can be classified into attracting and re-
pelling LCS, correspond to the unstable and stable manifolds (separatrices) in vector
field topology.

Since the Lyapunov exponent is constant along a trajectory, this holds approxi-
mately for its finite-time version if the integration time is chosen to be sufficiently long.
Therefore, LCS computed numerically from this quantity are close to material surfaces,
i.e. they are essentially advected with the flow. Ideal LCS are material surfaces [7]. For
that reason, these structures are of interest for the study of transport and mixing pro-
cesses in fluid dynamics. In visualization, LCS have been used only recently. Garth et
al. [5, 6] visualized the underlying FTLE (scalar) field with slicing and direct volume
rendering techniques, using appropriate transfer functions to make LCS recognizable
as the ridges of the field. Sadlo et al. [16] compared visualizations based on vector field
topology and on LCS, and introduced visualization of the latter by explicit extraction
of height ridges of the FTLE field [15]. Bürger et al. [3] computed LCS for the purpose
of controlling the seeding in particle based visualizations.

In this paper, we present an efficient method for computing the finite-time Lyapunov
exponent and its height ridges as time series. The method maintains a sampling grid
that grows and shrinks with the ridges that it contains and that is advected with the flow
between the steps of the time series. The grid is initialized by the user in a region of
interest which can be located anywhere in the domain. By initializing the grid near a
solid boundary, flow separation and attachment surfaces are obtained. An advantage of
this visualization method is that it does not rely mainly on the data next to the boundary,
and in particular does not need the computation of derivatives in cells adjacent to the
boundary.
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2 Background

In this section we give a short introduction to the two concepts which are central for this
paper, the finite-time Lyapunov exponent and the height ridge, and we briefly discuss
practical aspects of their computation from discrete data.

2.1 Finite-Time Lyapunov Exponents

Given a time dependent velocity field v(x,t) on a domain D ⊆ R
n, a trajectory (or path

line) x(t;t0,x0) starting at point x0 at time t0 is a solution of the initial value problem

ẋ(t;t0,x0) = v(x(t;t0,x0),t), x(t0;t0,x0) = x0. (1)

For fixed times t0 and t, the trajectories give rise to the flow map

φ t
t0 : D → D, x0 
→ x(t;t0,x0). (2)

The gradient ∇φ t
t0 of the flow map describes the deviation of infinitesimally close tra-

jectories started at the same time t0, and the tensor

Δ t
t0 =

(
∇φ t

t0(x0)
)�∇φ t

t0(x0) (3)

expresses the deformation of the neighborhood of x0 under the flow map. This symmet-
ric tensor has real eigenvalues λi based on which the i-th Lyapunov exponent is defined
as follows:

σi = lim
T→∞

1
T

ln
√
λi(Δ t0+T

t0 ). (4)

The spectrum of Lyapunov exponents is a property of an entire trajectory, i.e. it
does not depend on the choice of t0 on that trajectory. By replacing the limit with a fixed
integration time T , the finite-time Lyapunov exponent (FTLE) is obtained. Usually, only
the maximum FTLE is of interest, which is given by:

σ t0+T
t0 =

1
T

ln
√
λmax(Δ t0+T

t0 ). (5)

Unlike the Lyapunov exponent, the FTLE depends on both the starting time t0 and the
integration time T .

For the numerical computation of either Lyapunov exponents or FTLE, one has to
estimate the flow map gradient by using trajectories started very close to the reference
trajectory. However, trajectories may separate at an exponential rate from the reference
trajectory. In fact, detecting this behavior is the main motivation behind these concepts.
Therefore, trajectories must undergo frequent renormalization [2], which is equivalent
to breaking up the integration in pieces and computing the flow map gradient as the
product of the piece-wise obtained gradients.

The FTLE, and even more the Lyapunov exponents, can exhibit finely detailed struc-
tures with a spatial variation that can far exceed that of v(x,t). Therefore, it is often not
the goal to do an accurate computation of an FTLE at a given point in the domain,
but rather to compute a spatial average at a resolution defined by a discretization grid.
This leads to a discrete version of the FTLE [7] where the flow map is sampled on the
nodes of a grid and gradients are then estimated by finite differences (rather than using
trajectories in close vicinity and applying renormalization).
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2.2 Height Ridges

The notion of a local maximum of a scalar field s : R
n → R is unambiguously defined

by a vanishing gradient and negative second derivatives in all possible directions. In
contrast to this, there are several ways of relaxing this definition in order to obtain k-
dimensional maxima or minima. The height ridge [4] is the most straightforward and the
most widely used such definition. For a point on a k-dimensional ridge it requires van-
ishing first derivatives and negative second derivatives only in a n− k-dimensional sub-
space. Formally, if H denotes the Hessian of s, H =

(
∂ 2s
/
∂xi∂x j

)
i j , and y1, · · ·yn are

the unit eigenvectors of H ordered by the associated eigenvalues λ1 � · · · � λn, then the
two conditions for a point on a k-dimensional height ridge are ∂ s

/
∂y1 = · · ·∂ s

/
∂yn−k =

0 and λn−k < 0. Valleys of s are obtained by applying the height ridge definition to the
negative field −s.

While the height ridge definition is elegant, practice has shown that the generated
features need to be filtered. The purpose of filtering is to remove false positives as well
as “weak” features. For the case of 1-dimensional ridges, several such filters are known
which can be used alone or in combination [13].

One natural criterion for the filtering of raw ridge features is to prescribe a minimum
height of the ridge:

s ≥ smin. (6)

In the case of FTLE ridges, the effect of this filter is to suppress ridges with low sepa-
ration property. The reader is referred to [16] for further details on the influence of this
filtering criterion.

A related filtering criterion would be to prescribe a maximum for the second deriva-
tive λn across the ridge, which results in suppressing regions with too “flat” ridge prop-
erty:

λn ≤ λmax. (7)

In the case of FTLE ridges this filter is relevant, since the “sharpness” of an FTLE ridge
was shown [17] to be a measure for the flux across an LCS, i.e. the quality of an LCS
as a flow barrier.

For a reliable and temporally coherent visualization, it is important that criteria such
as (6) or (7) are not implemented as binary “pass/fail” filters. By allowing for a certain
ratio of exceptions per neighborhood, holes and popping artifacts can be avoided to a
large extent. But there is also the problem of noisy ridge extraction results containing
many small ridges. These are not necessarily removed by (6) or (7) because the ridge
might be sharp and at a high field value. Furthermore, the application of filters can
generate additional small ridges. Therefore it is important to filter the ridges also by
their size, which requires a connected component labeling of the set of ridges.

3 Motivation

This paper, i.e. the adaptation of the uniform sampling grid to the regions containing
ridges, is motivated by the work by Sadlo et al. [15]. The goal is to optimize the compu-
tation of time series of FTLE ridges to make the method more applicable in every-day
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applications in research and engineering. The increase in efficiency is achieved by re-
stricting the computation to regions that contain the LCS of interest, and, in particular,
by exploiting the temporal coherence of unsteady vector fields for the computation of
time series of FTLE by advection of the sampling grid.

One of the application goals of this paper is to offer a method for the analysis of
unsteady flow separation and attachment. Separation phenomena are the cause of many
undesired effects in engineering, such as development of recirculation zones, reduced
throughput, reduced lift, vortex generation, lowered mixing, and reduced flow control
in general. Flow separation exhibits diverging trajectories in backward time and flow
attachment exhibits diverging trajectories in forward time (see Figure 1a). This fact is
the reason why separation and attachment lines (or points) are usually accompanied
by corresponding LCS and why these processes are amenable to an analysis by FTLE
ridges. Shadden et al. [17] have already demonstrated the utility of those ridges for the
analysis of unsteady flow separation in their example of flow separation over an airfoil.
We also believe that an analysis based on LCS provides a deeper and more precise
insight into these unsteady phenomena compared to standard techniques such as stream
surface integration or particle tracing.

(a) (b)

Fig. 1. (a) Flow separation and flow attachment. The unstable manifold (blue) attracts
the fluid along the boundary and guides it into the interior of the domain whereas the
stable manifold (red) guides the fluid in opposite direction. (b) Intake dataset. Compar-
ison of ridge from advected grid (red) and uniform grid (blue) together with ridge from
advected grid color-coded by distance to ridge from uniform grid (colored).

4 Method

The proposed method can be subdivided into two parts: one that constrains the sampling
grid to filtered ridges of interest at a given time step (or the only time step in case of
steady vector fields), described in Sections 4.1 and 4.2, and one that exploits temporal
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coherence to speed up the computation of time series of quantities computed from tra-
jectories, such as the FTLE, in the case of unsteady vector fields (Section 4.3). The time
series are obtained by variation of the t0 parameter of the FTLE (compare Section 2.1).

Algorithm 2 describes the methods presented in Sections 4.1 to 4.3 for the case
of FTLE ridge extraction. However, it also holds for ridges of other quantities based
on trajectories and could be easily modified for the scalar quantity itself instead of its
ridges. If the quantity is not computed using local operators such as gradients, larger
distortions may be acceptable and hence longer advection times could be used, leading
to a further increase in speedup.

4.1 Grid Initialization

In the filtered AMR ridge extraction method [15] the complete domain (or region of
interest) is sampled at low resolution and the sampling is adaptively refined in regions
containing filtered ridges. Although this results in a speedup compared to a uniform
sampling at the finest subdivision level, the method suffers from several drawbacks
when applied to quantities that can not be evaluated in a point-wise manner but that are
computed using local operators, such as gradients in the case of FTLE ridges. The main
problem here is that the value is inherently sampling dependent because the gradient
can be underestimated if the sampling is too coarse. Together with a restrictive thresh-
old for the ridge filtering this sometimes results in missed ridges, because they are not
detected in the coarse sampling and hence the corresponding regions are not refined
which would capture the ridges later on. The remedy is either to use a finer initial sam-
pling, a lower threshold for filtering, or to increase the look-ahead count (Section 3.1 of
[15]), all leading to an increased number of samples and hence lowered speedup. See
also Section 3.2 of [15] for further information on the implications for quantities based
on local operators.

In the present approach one typically avoids sampling the whole domain (or region
of interest). Instead, we require initial sampling regions that already capture part of
the ridges (cf. Figures 4a and 5a) and adapt the sampling regions to the present ridges
(Figures 4b and 5b). This allows to use initial samplings of sufficient resolution and
avoids the need for lowered filtering thresholds. In the case of FTLE analysis of flow
separation and attachment, possible ways for choosing the initial regions include:

– Definition from special regions of the simulation mesh, e.g. the complete boundary
of the domain, or a subset thereof such as the blades of a turbine. These regions are
often explicitly available from the simulation file formats.

– Automatic definition by quantities such as “surface divergence” or its local maxima
as presented by Tricoche et al. [22].

– Automatic definition by features. A possibility is to extract separation and attach-
ment lines according to Kenwright [11] or Tricoche et al. [22] and to place initial
sampling regions around (part of) those.

– Manual identification and definition by preceding interactive exploration using stan-
dard techniques such as path line integration or (AMR) ridge extraction [15] of the
FTLE in regions of interest. It might seem cumbersome to extract FTLE ridges in a
first step with a standard technique, but this can be afforded if the goal is to compute
time series of FTLE (Section 4.3).
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Algorithm 2 Grid Advection for FTLE Ridges
1: steps: number of steps for the FTLE ridge time series
2: range: topological neighborhood range around ridges
3: tolerance: tolerance for RMS of FTLE
4:
5: place initial sampling grid
6: compute all trajectories and compute FTLE
7: R ← detect ridge cells from FTLE
8: N ← cells in range around R // N may contain existing cells and cells to add
9:

10: // compute frames of FTLE time series
11: r ← 2 // number of advection steps
12: lastResampleStep ← 0
13: for step=1 to steps do
14: // grid growing
15: while first iteration at step or grid changed do
16: // add cells in neighborhood range around R
17: for all cells c ∈ N and not yet in sampling grid do
18: add c directly if grid regular, or by advection or meshing
19: end for
20: compute (or reuse) trajectories and compute FTLE
21: R ← detect ridge cells from FTLE
22: N ← cells in range around R
23: end while
24:
25: // grid shrinking
26: for all cells c of sampling grid do
27: if c outside domain or c /∈ (R∪N ) then
28: remove c
29: end if
30: end for
31:
32: // grid advection
33: if step < steps then
34: advect grid nodes to next time step
35: compute (or reuse) trajectories and compute FTLE
36: // resampling
37: if step − lastResampleStep > r then
38: resample uniformly, recompute all trajectories and compute new FTLE
39: RMS ← measure RMS between old FTLE and FTLE on resampled grid
40: r ← max(1, �r∗ tolerance / RMS )
41: lastResampleStep ← step
42: end if
43: R ← detect ridge cells from FTLE
44: N ← cells in range around R
45: end if
46: end for
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We require the initial sampling regions and resampled regions (Section 4.3) to be parts
of a virtual uniform grid that covers the complete domain. This makes sure that sepa-
rated grids are consistently sampled and hence can merge (even after advection) when
cells are added by the procedure described in Section 4.2.

4.2 Grid Adaptation

This section describes how the initial sampling grid from Section 4.1 is adapted to the
filtered ridges (cf. Figures 4b, 4d, 5b, and 5d). To prevent long extraction times in cases
where the ridges extend into regions that are of no interest to the user, a region of interest
can be defined which restricts the adaptation, possibly leading to truncated ridges.

Grid Growing The first adaptation step is to add new cells to the boundary of the
sampling grid where necessary. We define a ridge cell to be a cell that has an edge
intersected by a filtered ridge according to (6) or (7). Because we aim at results that are
identical to those from a uniform sampling, the support range of the Hessian, which is
needed for the height ridge extraction, has to be taken into account. If the underlying
scalar quantity is computed using a local operator (as in the case of FTLE), its support
radius has to be added to that of the Hessian as well. Having the total support range,
one needs to add all cells to the grid that are within that topological neighborhood of
any ridge cell.

In cases of steady vector fields, where the grid advection from Section 4.3 does not
apply, the sampling grid is uniform and adding cells is a trivial procedure. However,
if the grid is advected, adding cells is a challenging problem due to the distortion of
the grid. Nevertheless, the initial grid is uniform and the grid gets uniformly resampled
from time to time. If we need to add a cell to the distorted grid, we simply go back to
the last time step where the grid was uniform, add the nodes of the corresponding cell
there and advect the added nodes to the actual time step. This makes the cell fit to the
desired position. Additionally, the computed trajectories for the advection of the nodes
can be reused for computing the quantity (FTLE), resulting in little overhead.

However, if a node of the cell in the uniform grid is located outside of the domain,
there is no vector field that could be used to advect it to the desired timestep and posi-
tion. In this case the cell can be constructed by extrapolation of the grid or any standard
meshing technique. The grid growing procedure is iterated until convergence, meaning
that each added cell and its neighbors are tested for being a ridge cell and if this is
the case, it is attempted to add the cells inside the neighborhood range. This way, the
sampling grid grows to the necessary extent.

Grid Shrinking The next step is to remove unnecessary cells from the grid. These are
cells that are neither ridge cells nor in the relevant neighborhood of any ridge cell, or
cells where one or more nodes are outside of the domain.

4.3 Grid Advection

Lagrangian coherent structures are material lines or material surfaces [7], in other
words, they get advected with the flow, such as streak lines (surfaces) and time lines
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(surfaces). This would allow to exploit temporal coherence for the generation of time
series of FTLE ridges by advection of the extracted ridges. One could compute the
ridges only after every n time steps and advect them with the flow in between. How-
ever, this would not account for changes of the FTLE during advection. New ridges can
originate and existing ones can grow, shrink, or disappear, especially if the ridges are
filtered by the FTLE value as in our case. Therefore we propose a different approach:
the advection of the sampling grid itself during the advection intervals. This results in a
generic method for quantities based on trajectories, not only FTLE.

During advection, a short trajectory has to be computed for each node of the sam-
pling grid to advance it to the next position. The striking advantage is that these short
trajectories can be appended to the existing trajectories needed for the computation of
the FTLE, making it possible to reuse large parts of the trajectories and hence improving
efficiency, see Figures 4c and 5c.

As already mentioned, advection of the sampling grid tends to distort its cells and
this in turn tends to affect the computation of derivatives, which are needed for FTLE
computation and ridge extraction. Additionally, the FTLE tends to be sampling depen-
dent. All in all this generally leads to artifacts in the extracted FTLE ridges such as
deformation, false negatives, and even false positives.

To restrict the artifacts to an acceptable level, the FTLE is periodically resampled
on a subset of the virtual uniform grid spanning the whole domain: only those cells of
the grid are generated (and the corresponding trajectories are computed) which overlap
with the advected grid or which are contained in the region of the initial sampling.
An additional strategy is to place the sampling grid outside regions producing high
distortion such as wakes and vortices. Although this looks like a compromise, it is often
a natural choice to analyze LCS away from disturbing phenomena since they would also
distort them, even when uniformly sampled, and hence complicate their interpretation.

Because the flow map is computed by integrating trajectories in numerical vector
fields and because of the intricacy of gradient computation on unstructured grids, aside
from the difficulty to provide an error measure between the ridges extracted from the
distorted grid and those extracted from a corresponding uniform grid, it is generally not
possible to provide error bounds regarding the distortion of the grid. Garth et al. [5]
measure the error for their subdivision scheme in the flow map. Similarly, we propose
to measure the error based on the FTLE, not its ridges, and to use it for triggering the
resampling procedure.

The grid is uniformly resampled (recomputing the trajectories and the FTLE) after
every r advection steps with an initial value of r = 2. After the FTLE has been com-
puted on the resampled grid, the FTLE of the advected grid is interpolated at the node
positions of the new grid and the root mean square (RMS) of the difference over all
nodes is computed. The RMS is then compared to a user-defined tolerance and a new
r is estimated from the RMS and from the tolerance by linearization of the RMS over
the advection steps (line 40 of the algorithm). The algorithm then proceeds to the next
advection phase. However, the linearization of the error can fail in the sense that r is
chosen too large such that after the next r advection steps the RMS exceeds the pre-
scribed tolerance. One solution to this problem is to enforce the tolerance by reducing r
(and hence taking back advection steps) until the RMS tolerance is fulfilled. However,
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experiments have shown that it is usually sufficient not to enforce the tolerance and
instead to prescribe a reduced tolerance, e.g. by 15 percent, to satisfy the intended pre-
cision.

To support the user in an appropriate choice of the RMS tolerance and the sampling
region, we allow visualization of both sets of ridges, those before and after resampling,
or color-coding the former ones by their distance to the latter ones as in Figure 1b,
serving as uncertainty information. Another approach is to judge the popping artifacts
visually when moving from a time step based on an advected grid to a subsequent time
step where the grid was uniformly resampled.

Note that for the analysis of separation, time series of FTLE ridges have to get gener-
ated by advecting the grid in positive time direction (Figure 4), whereas for attachment
the grid has to get advected in negative-time direction (Figure 5). This is necessary since
the ridges are captured at the regions of interest (at the boundaries) and FTLE ridges for
attachment approach the boundary in positive time. Hence it is necessary to start with
the last time step and to compute them in negative time direction in order to capture
all of them at the boundary, even those that separate from the boundary. So finally, all
ridges (LCS) that come in contact with the boundary (or region of interest) at any time
will get captured.

5 Results

In this section the presented method is applied to two unsteady CFD simulations. The
first one examines the flow around a cuboid, exhibiting flow similar to a von Kármán
vortex street, but in this case the vortices become tilted soon after they detach from the
cube. This leads to flow separation behavior that differs from the standard von Kármán
vortex street. Secondly, the method is applied to a simulation of an intake of a river
power plant. The scope there is a construct that prevents salmon from getting into the
runner of the turbine.

5.1 Flow around a Cuboid

This example produces a kind of a von Kármán vortex street. The unsteady flow comes
from the right back and follows to the left front (Figure 2a). The main difference to a
common von Kármán vortex street is that there is also flow over the “top” face of the
cuboid. The flow separation at the cuboid is the subject of analysis in this case. The
resulting FTLE ridge (Figure 2c) shows that flow separation is in progress on both sides
and on the top of the cuboid. It can be seen that the FTLE ridge separates the vortex
street region from the outer flow. However, further downstream the FTLE ridge does
not exhibit this property anymore: it crosses the vortices. Time series of FTLE ridges
reveal that the separation zones are oscillating consistently with the von Kármán vortex
street.

Table 1 shows some performance details for this example. The achieved speedup in
this case is only about 2.3. This is due to the relatively short trajectories. The prescribed
RMS tolerance was 15.0 and at step 33 this was exceeded by 0.88 percent. There have
been 12 advection phases, each performed 5 advection steps in average. Because of the



Time-Dependent Visualization of Lagrangian Coherent Structures 161

(a) (b) (c)

Fig. 2. Flow around a cuboid. (a) Geometry. (b) Sampling grid adapted to ridge region
and advected. (c) Resulting FTLE ridge with some upstream trajectories (colored) from
uniform grid, and their seeds (white spheres).

uniform grid
advection

grid [nodes] 16399 14220
(step 33)

flow map [s] 13704.87 2944.88
total [s] 13707.92 5800.31
speedup 1 2.36
Figure 2b

Table 1. Performance analysis for
the cuboid dataset. 60 steps of
grid advection compared to 61 di-
rect evaluations on uniform grid.
See also Figure 2b.

uniform direct on grid
adapted grid advection

grid [nodes] 8800 5007 3913
(step 39)

flow map [s] 15369.17 9062.73 355.62
total [s] 15374.22 9489.96 1026.81
speedup 1 1.62 14.97
Figure 3a 3b

Table 2. Performance analysis for the turbine in-
take dataset. 100 steps of grid advection compared
to 101 direct evaluations (on uniform grid and
adapted grid). See also Figures 3a and 3b.

shape of the FTLE ridge and because the initial sampling grid is already well adapted
to the FTLE ridge, the expected speedup from the grid adaptation is small and was
therefore not measured.

5.2 Intake of a Power Plant

The underlying data of this section is an existing run-of-river plant in the US. All de-
vices shown are installed in the intake of the plant in order to protect juvenile salmon
from passing through the runner. The water flow of the unsteady CFD simulation comes
from the right back and follows to the left front where it enters the turbine (Figure 3).

The horizontal rods at the right hand side of the image lead the salmon into the
vertical channels at the top in the installation. However, these rods produce a noticeable
wake in the upper part of the main channel (see path lines in Figure 3a). Additionally,
the backflow from the salmon channel (the opening at the top downstream from the
rods) also is involved in a recirculation zone at the top wall, located above the sampling
grid of Figure 3a. On the one hand, a FTLE ridge was extracted using a regular grid
at the confluence of the three main channels (Figure 3a), on the other it was extracted
using the presented grid advection method (Figures 3b and 3c). The obtained FTLE
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(a) (b) (c)

Fig. 3. Intake of a water turbine. (a) Uniform grid with some of the upstream trajectories
(colored) used for FTLE computation, and their seeds (white spheres). (b) Sampling
grid adapted to ridge region and advected. (c) Resulting FTLE ridge.

(a) (b)

(c) (d)

Fig. 4. Grid advection for flow separation. (a) Initial sampling grid. Ridge cells (dark
gray) and their neighboring cells (light gray). Cell edge intersected by negative-time
FTLE ridge (blue point). Neighborhood range is 1 for illustration purposes. (b) After
grid adaptation. (c) After one step of grid advection. (d) After grid adaptation of ad-
vected grid.

ridge separates well the fast flow at the bottom of the channel from the slower flow in
the upper half of the channel.

Table 2 shows some performance measurements of the presented case. The speedup
from the grid adaptation is quite low (1.62) because of the relatively low resolution
of the sampling grid and because the sampling region was already quite well adapted
to the ridge. The speedup from including grid advection is significantly higher (about
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(a) (b) (c) (d)

Fig. 5. Grid advection for flow attachment. (a) Initial sampling grid. Ridge cells (dark
gray) and their neighboring cells (light gray). Cell edge intersected by positive-time
FTLE ridge (red point). Neighborhood range is 1 for illustration purposes. (b) After grid
adaptation. (c) After one step of grid advection. (d) After grid adaptation of advected
grid.

15) and would further increase with increasing the integration time for the trajectories.
The RMS tolerance was set to 0.012 and at step 39 this was exceeded by 14.2 percent,
which was the maximum during the 13 advection phases. Figure 1b shows the corre-
sponding distance error of the ridge. On average, 7.7 advection steps were performed
per advection phase.

6 Conclusion

We presented a generic method for accelerating the computation (of time series) of
quantities based on trajectories, such as FTLE. On the one hand the efficiency is im-
proved by restricting the sampling grid to the phenomena of interest, on the other hand
and more important, the computation is accelerated by reusing part of the trajectories,
which is made possible by advection of the sampling grid. In the case of gradient-based
visualizations, such as FTLE ridges, the quality tends to suffer if the distortion caused
by the advection of the grid is high. Therefore, the obtained quality is inferior to evalu-
ations on regular grids or that by Sadlo et al. in terms of quality, but superior in terms of
speed if time series of FTLE ridges are computed. A comparison to the approximative
method by Garth et al. deduces from a comparison of that method to FTLE samplings
on a regular grid. All in all we propopse to use the method at least as a fast preview
technique and to use low RMS error thresholds (leading to low acceleration) or even
exact methods, such as direct computation on uniform grids or that by Sadlo et al. [15],
if exact time series are required. Future work could include local strategies for reduc-
ing the distortion of the grid and thus lowering the frequency at which resampling is
needed. We would like to thank Sulzer Innotec for the cuboid dataset and VATECH Hy-
dro for the intake dataset. This work was funded by Swiss Commission for Technology
and Innovation grant 7338.2 ESPP-ES.
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Abstract. Interfaces between materials with different mechanical properties play
an important role in technical applications. Nowadays molecular dynamics simu-
lations are used to observe the behavior of such compound materials at the atomic
level. Due to different atom crystal sizes, dislocations in the atom crystal structure
occur once external forces are applied, and it has been observed that studying the
change of these dislocations can provide further understanding of macroscopic
attributes like elasticity and plasticity. Standard visualization techniques such as
the rendering of individual atoms work for 2D data or sectional views; however,
visualizing dislocations in 3D using such methods usually fail due to occlusion
and clutter. In this work we propose to extract and visualize the structure of dislo-
cations, which summarizes the commonly employed filtered atomistic renderings
into a concise representation. The benefits of our approach are clearer images
while retaining relevant data and easier visual tracking of topological changes
over time.

1 Introduction

Compound materials are used in several applications, and it is of uttermost importance
to understand their properties and how they react under external forces. An important
aspect to consider is the appearance of defects in their atomic structure[4], which have
a direct relation to material properties such as resistance, strength, etc. For this pur-
pose, Molecular Dynamics (MD) simulations are used, which reproduce the behavior
of atoms and molecules for a period of time. MD generates a great number of com-
ponents which require complex analysis, and often only statistical measurements are
evaluated.

However, the analysis of defects can be restricted to a subset of this data. Defects
are local changes in symmetry or regularity of the crystal lattice. Because the atomic
structure of compound materials in normal conditions corresponds to crystal lattice
structures, it suffices to consider those atoms whose neighborhoods deviate from the
regularity established by this lattice. Common lattices include the body-centered cubic
(BCC), face-centered cubic (FCC) or hexagonal-closed packed (HCP). The atoms of
irregular lattice structures form defects called dislocations (a 1-D defect) and stacking
faults (a 2-D defect). There are special properties from the application domain on which
we can rely. Dislocations always form cycles or networks, and never have open, uncon-
nected endpoints. Stacking faults are always bordered by dislocations, which makes it
easy to define where they end or start. For FCC lattices, atoms which participate in
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(a) (b) (c)

(d) (e) (f) (g) (h)

Fig. 1. Upper row: (a) original atom data, (b) after segmentation, (c) extracted defects.
Lower row: Detail views - (d) original atom data, (e) relative neighborhood graph, (f)
graph after simplification, (g) segmented atom data, (h) extracted defects.

these defects can be identified by testing the geometric properties of a 12-atom neigh-
borhood, which has already been done successfully by domain scientists. For the other
crystal types (BCC or HCP) such a classification is not yet known. Therefore, in the
remainder of this paper we will only handle FCC crystals.

The topological structure induced by such defects and their interplay helps evaluate
the material properties. The identification of dislocations and stacking fault structures
from atomistic simulations is similar to techniques for skeleton extraction from dis-
crete data, since only particle positions are given. In this paper we present an approach
that extracts the topological structure of dislocations and stacking faults from atom
positions, and tracks them throughout the simulation. Our proposal is composed of a
segmentation algorithm based on simplification of a neighborhood graph that allows
defects to be identified and tracked over time. In particular, we identify the formation
of junctions among dislocations and stacking faults. In Figure 1 we show different steps
of our algorithm using a MD simulation of a block of compound material underlying a
stretching force. The two basic materials are Ni and Ni3Al. The data set originally con-
tains about 1,200,000 atoms. Since the data is filtered, which is described in section 3,
the loaded files only contain between 13,000 and 87,000 atoms, depending on the scene
complexity.

2 Background Material and Related Work

Several works in MD discuss the evaluation of material properties under external forces
(see Bulatov et al. [4] for a good introductory book on the subject). Since the atomic
structure of many solid materials in normal conditions corresponds to crystal lattice
structure, defects are observed when changes to the lattice structure occur. Changes
in the regularity, symmetry, or ordering of this 12-atom neighborhood create topolog-
ical defects on the atomic structure[18]. Atoms with irregular neighborhood align in
1-D dislocations surrounding 2-D stacking faults. Geometric measures give one way to
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evaluate these defects, such as the Burgers vector [4] that represents the magnitude and
direction of the lattice distortion of a given dislocation. Several papers discuss how such
geometric measures can be used to track the motion of dislocations. For instance, Schall
et al. [16, 17] discuss ways to track dislocation in colloidal crystals, and techniques to
visualize the distribution of Burgers vectors (called Nye tensors). Hartley et al. [11]
also discusses a similar approach that measures Nye tensor distributions. Topological
analysis of the interplay of dislocations is more elaborate if done at the atomistic level,
and therefore meso-scale representations are often used. Dislocation dynamics is an ex-
ample of such a meso-scale simulation. The work by Lipowsky et al. [13] discusses a
way to track and visualize dislocation directly in grain-boundary scars. Bulatov et al.
[3, 5] suggests tracking topological features of dislocations, such as junctions or multi-
junctions (three or more dislocations in one place). They observe in [6]: “In large-scale
dislocation dynamics simulations, multi-junctions present very strong, nearly indestruc-
tible, obstacles to dislocation motion and (...) thereby playing an essential role in the
evolution of dislocation microstructure and strength of deforming crystals simulations”.

Our proposal is based on extracting a skeleton-like structure from the atomistic data,
which identifies features like dislocations and junctions between them. There is a vast
literature on skeletonization algorithms, and a good introductory survey can be found
in [8]. In this survey there are four classes of skeletonization algorithms: thinning and
boundary propagation, distance-field based, geometric methods, and general-field func-
tions. In our work no implicit boundary is formed, but a neighborhood graph [1,19] that
defines atom proximity and allows thinning contraction operations. This is similar to
thinning algorithms in distance-field methods, with respect to the approach, but dif-
ferent since no distance field is used. Several possibilities for controlling contraction
operations can be defined, and smoothing procedures are often employed [2]. We use a
simple mass-spring approach (see Section 3.1). Geometric methods are based on prox-
imity structures, such as the Voronoi Diagram, or structures derived from Morse Theory,
such as Reeb Graphs or Contour Trees [7,9,10]. General field methods such as potential
field functions are used in a similar application described in [14]. In their work, crystal
dislocation data is given as a potential field function, and a Morse-Smale complex is
used to evaluate the structure of dislocations. Since we do not have such a field, we can
not employ these methods.

3 Structure Defects Extraction

Visualizations for dislocation dynamics simulations can use the meso-scale data to con-
struct concise representations of the dislocations, which allow easy tracking over time.
In atomistic simulations there is no such data description. To generate an analogous vi-
sualization, extraction of dislocations from the atomistic data is necessary. We propose
an algorithm with the following steps:

1. Reconstruction of the neighborhood graph
2. Extraction of dislocations

2.1. Contraction of the graph using a simple mass-spring system
2.2. Edge collapse
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2.3. Dislocation junction identification
2.4. Atom data segmentation

3. Extraction of stacking faults
4. Tracking over time

The input data consists of a list of atoms A, each storing its position, a unique ID
and a lattice classification ca, for the atom a ∈ A, based on the nearest neighbors of
the atom according to [12]. We will use this classification to identify atoms creating
defects. We assume that the undistorted crystal of our material forms an FCC lattice.
Atoms with such a neighborhood are classified ca = 0. The atoms which form a HCP
lattice have ca = 1. Atoms which have 12 closest neighbors but neither form a FCC
lattice nor a HCP lattice have ca = 2. All remaining atoms have ca = 3. Since we are
interested in only visualizing the crystal defects, we can completely omit the more
than 90 percent of the atoms in class ca = 0. Changes from FCC to HCP (ca = 1)
indicate planar displacements and hence stacking faults while the other two classes
form dislocations (the classification can be seen in all images showing the original data,
e. g. figure 1 a & d: red atoms are ca = 1, green ca = 2, and yellow ca = 3). Using
this lattice classification for identifying crystal defects is much easier to compute than
Burgers vectors for all atoms.

To extract the topological structure, we first need to define neighborhood informa-
tion between atoms. We create a neighborhood graph using a cutoff radius automatically
chosen, based on the domain knowledge that atom distances are uniform within narrow
bounds as shown in figure 2. This is a graph similar to the one used by the MD simula-
tion. We have to recreate this graph since the simulation graph was not stored with the
MD data due to data file size considerations.We propose to simplify this graph using a
very simple mass-spring system. We define N to be the list of all nodes in the graph,
where each node n ∈ N stores a set of atom indices ai ∈ n for all atoms which are repre-
sented by this node. Initially we create one node for each atom ni = {ai} and place the
node at the position of that atom p(ni) = p(ai). We create edges between nodes of atoms
which are within the neighborhood radius. These edges are stored in three lists Ed , Es,
and Eb, depending on the atom classifications ca, since these edges will be used by dif-
ferent parts of our algorithm. Ed holds edges connecting two nodes which are initialized
with two atoms a1,a2 with ca1 > 1∧ca2 > 1 (shown in green). These edges form dislo-
cations and will be used by the graph contraction in the dislocation extraction described
in section 3.1. Es holds edges connecting a3,a4 with ca3 = 1∧ca4 = 1 (shown in gray).
These edges form stacking faults and will be used in our region growing approach de-
scribed in section 3.4. Eb (border) holds all remaining edges of the neighborhood graph
(shown in red). These edges separate dislocations and stacking faults. They will ensure
that the graph contraction does not destroy small stacking faults and they will be used
to terminate the region growing.

3.1 Graph Contraction

The first step of the graph simplification is a contraction implemented using a simple
mass-spring system. Each node ni manages a speed vector vi, which is initialized to
zero. However, only nodes connected to at least one edge e ∈ Ed can be moved, while
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other nodes are fixed. All edges of Ed and Eb are treated as springs. Edges e ∈ Ed try to
collapse to length of zero and edges f ∈ Eb try to keep their initial length. These edges f
will keep the subgraph of the edges e out of the stacking fault regions and will prevent
our method from collapsing small stacking fault regions. This is why we are using a
mass-spring approach instead of simple clustering (e. g. shortest-edge-first). This way
we can collapse edges of various lengths and still be sure not to loose small features.

In addition to simply moving the nodes in the graph we collapse small edges. The
corresponding threshold is based on the neighborhood radius which was used at initial-
ization to build the graph. In our examples we obtained good results using a collapsing
threshold which is half of the neighborhood radius. However, this value might be ad-
justed by the user. When collapsing the edge ei ∈ Ed we combine all attributes of the two
original nodes nei,1 and nei,2 weighted by the relative number of atoms assigned to each
node: nei,1 = nei,1

⋃
nei,2, p(nei,1) = (|nei,1|+ |nei,2|)−1(|nei,1|p(nei,1) + |nei,2|p(nei,2))

(and all other attributes, e. g. speed vector, accordingly). Note that the position of the
node p(nei,1) is no longer directly related to the positions of the atoms it contains. We
iterate this procedure until the graph reaches a stable status, which is measured by the
maximum overall speed of all nodes (usually after 50 to 80 iterations). A result can be
seen in figure 3.

Fig. 2. Construction of the neighbor-
hood graph (bottom) from the original
atom data (top). Edges are color-coded:
green/blue edges are from Ed , red/orange
from Eb, and gray from Es.

Fig. 3. Top image: initial neighborhood
graph (only edges from Ed are shown);
bottom: graph after contraction of the
mass-spring system (50 iterations). Note
the unclean, thicker regions near junc-
tions.
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d

Fig. 4. The mass-spring system contracts
the relative neighborhood graph to the
lower image. When the distance d be-
tween atoms is large, edges do not col-
lapse and the three-edge cycles become
stable.

Fig. 5. Four nodes and edges in the graph
forming a diamond which represents a
single dislocation. Yellow and red atoms
are incorrectly separated.

3.2 Graph Simplification

Although the resulting graph visually seems to be the structure we want to extract,
it is still too complex for the upcoming segmentation of the atom data. We need to
separate nodes in the graph which represent dislocations from nodes which represent
junctions of dislocations. We propose two different approaches to classify nodes in the
graph as junctions or non-junctions: based on the degree of the node or based on the
positions of the direct neighboring nodes. The first approach is trivial (using only the
list of edges). All nodes connected to more than two edges can be considered junc-
tions. However, the graph data created by the mass-spring system still contains struc-
tures that are too complex for this method to work as intended, such as unclean and
thicker junction regions (see upper-right region of lower image in figure 3). There-
fore we use a second method where we check the directions of the edges connected to
the node. When classifying the node ni, we define Ei to be the set of connected edges
Ei = {e j ∈ Ed |ni = nej ,1 ∨ni = nej ,2} and Ni the set of nodes directly connected by these
edges Ni = {nk ∈ N|∃e j ∈ Ei : nk = nej ,1 ∨nk = nej ,2}\{ni}. Given Vi a set of normalized
vectors representing the edges of Ei formed between the positions p(nk) and a support-
ing position p′(ni) = (|Ni|)−1∑nk∈Ni

p(nk), where nk is the second node connected to
the edge apart from ni. The supporting position is the mean of all neighbor positions. It
is used to compensate for small curvature in the dislocations. If the dot product between
all pairs of vectors in Vi is 1 or −1 (within a small threshold) the vectors form a linear
structure and the node ni is classified as a non-junction.

Using this classification we continue the simplification of the graph by again em-
ploying a mass-spring system, similar to the one presented in section 3.1, but without
considering edges from Eb. In addition, we increase the collapsing threshold, but only
collapse edges between nodes which are both junctions or both non-junctions. The clas-
sification is recalculated after each iteration. We terminate this phase of our algorithm
when the graph stabilizes (no more edge collapsing). The left image of figure 6 shows
the result from the graph in the bottom image of figure 3.

Figure 4 shows a simplified situation in which the graph can reach a stable state, thus
preserving cycles inside one linear structure, when all edges of this cycle are too large
for the collapsing threshold. There is also a very rare case where cycles of four edges are
formed within a single dislocation. This happens due to the varying size of the original
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Fig. 6. Left: the graph after all simplification steps; Each edge connects a junction to
a non-junction node. All atoms are associated with non-junction nodes. Right: the fi-
nal result; Junctions are represented by cyan spheres, dislocations by blue tubes, and
stacking faults by orange planes.

atom data, and thus the varying size of the neighborhood graph near this location. The
four edges form a diamond structure connecting two junctions and two non-junctions,
where the two non-junctions only hold very few atoms in their sets (figure 5). We use
heuristics to identify these situations and collapse these cycles into single nodes.

3.3 Atom Data Segmentation

The simplified graph represents the topology of the original data set and can be used
to segment it into individual dislocations. To use this graph directly for segmentation
we further simplify its structure, by collapsing all edges connecting nodes of the same
classification (junction or non-junction). We remove all atoms a j ∈ n j from the sets
of junction nodes n j ∈ N, by reassigning these atoms to the set of the connected non-
junction node which contains the atom which is closest to the atom to be reassigned
ni ∈ N with minai∈ni |ai −a j|. After this operation all junction nodes have empty atom
sets. However their position is calculated using the atoms which they contained before
reassignment.

After this operation is finished, each edge in the graph connects a junction node to a
non-junction node, and all atoms are assigned to non-junction nodes. The segmentation
of the atom data is now done by assigning all atoms in the set of each non-junction
node the same ID value. For the final representation of dislocations we fit a tube into
each atoms segment. Since the junction nodes define the end points of each dislocation,
a simple linear distance threshold based fitting of spline tubes can be used. Our final
results (figure 6) also show junctions as spheres. These are placed at the positions of the
junctions nodes and use a radius depending on the radii of the connected segments.

3.4 Stacking Fault Extraction

After we extracted the dislocation structures and created a concise representation using
tubes, we can now focus on creating a similar visualization on the stacking faults. Since
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Fig. 7. Shows a problematic situation for the stacking fault segmentation using region
growing, from left to right: The original data set; In the relative neighborhood graph
atoms from different stacking fault segments are connected; the final segmentation.

stacking faults are always aligned to a crystal plane we can use a flat polygon as rep-
resentation. Furthermore stacking faults are always bordered by dislocations. Since we
already extracted the dislocations as tubes, we can just connect them with a polygon.

The main idea of segmenting the atom data for the stacking faults is to perform
a region growing on the neighborhood graph using edges gi ∈ Es. However, the data
we used have crystal planes meeting under sharp angles (60 degree), which results in
neighboring stacking faults meeting at one dislocation and being connected in the graph
(figure 7). Simply ignoring edges from Eb is not possible, since some stacking faults
are only one atom layer thick and therefore do not have edges from Es. To fix this, we
define a border region of atoms NB to be a set of all atoms connected by at least one
edge gi ∈ Es and at least on edge e j ∈ Eb. We define NG to be the set of atoms connected
only to edges gi ∈ Es, and grow a region outwards from a seeding point chosen from
NG. We assign a new segment ID for this region and repeat this method until all atoms
from NG are segmented. However, atoms from NB are not guaranteed to be assigned
to a segment. To assign these atoms to a segment we look at all neighbor atoms of NB

which are ai ∈ NB
⋃

NG and have already a segment ID. We save the segment ID which
is assigned to most neighbors for the atom we want to segment, and we assign these
IDs all at the same time at the end of an iteration step. By doing so, all segments grow
with the same speed (one atom per iteration). Since the border area is equally thick (one
atom) we get clean results in the problematic scenarios described above.

In our second step we collapse all edges gi ∈ Es which connect nodes with the same
segment ID by merging atom sets, similar to the approach of the dislocation extrac-
tion. Edges fi ∈ Eb are used to determine correspondences between the stacking fault
segments and the dislocation segments. We sort the list of dislocation segments based
on the junction nodes they use to form a cycle surrounding the stacking fault. We then
simply fit a polygon into the atom set and stitch it to the surrounding dislocation cycle
(e. g. figures 6 and 9). Rendering these polygons using transparency also reduces the
occlusion problem compared to the original atomistic representation.

3.5 Segment Tracking

The last remaining feature of our visualization is the tracking of the extracted features
(dislocations and stacking faults) over time. There have been many publications on
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feature tracking in general (e. g. by Samtaney et al. [15]). However, we can use a simple
approach by utilizing the fact that all of our features still know the atoms they were
created from. Using the unique atom IDs we can easily trace the atoms over time. We
perform the segmentation of the atom data independently for each time step. The actual
tracking is done by relabeling the extracted segments with IDs from the last time step.
We compute the overlap of the atom sets of the segments in one time step with the sets
from the previous time step and pair those segments with the largest overlap. Although
we handle dislocations and stacking faults independently in this tracking process, we
apply the same method to both feature types. Due to our graph simplification, our results
are a bit unsteady at the junction regions, but the tracking shows that even in these
regions the main segments are quite stable.

4 Results and Future Work

(a) Data set with two layers (upper one Ni3Al;
lower one Ni) pulled apart.

(b) Data set with only Ni3Al pulled in one
direction.

(c) Data set with Ni atoms pulled in one direction.

Fig. 8. Visualization examples. Each sequence shows the original data set with the lat-
tice classification (left) and the results of the atom data segmentation (right; center in
figure 8(c)). Right image in figure 8(c) shows the results of the structure extraction.

We presented an approach for generating simplified representations of MD data
sets containing crystal structure defects, especially dislocations and stacking faults. We
thereby created a connection between visualizations of atomistic data and data from
dislocation dynamics. The proposed feature extraction and tracking is performed in a
preprocessing step. On a common desktop computer (Intel Core2Duo 6600@2.40 GHz,
2 GB RAM, NVidia GeForce 7900 GT) these calculations take an average time of about
20 seconds per time step (depending on the complexity of the structure of the crystal
lattice defect to be extracted) for the Ni-Ni3Al data set mainly used in this paper. These
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Fig. 9. Extracted crystal defects of time steps 10, 250, 350, 400, 500 and 595.

preprocessing results can then be visualized and explored interactively on the same ma-
chine. The rendering of the atoms is done using point-sprites, so we have no problems
interactively rendering (more than 10 FPS) up to millions of atoms. However, we only
have this many atoms in artificial test data sets. The real world data sets we worked with
contained between 13,000 and 87,000 atoms, and can be rendered with far more than
60 FPS. The structure extracted is stored as a triangle mesh. Our data sets resulted in
meshes containing between 28,000 and 93,000 triangles. Interactive exploration of the
time-dependent data set can be done employing an out-of-core streaming approach.

In addition to the Ni-Ni3Al data set, we tested our approach with several other data
sets, all from MD simulations and all containing crystal structure defects (Figure 8).
Figure 8(a) shows a simulation of a probe consisting of one layer of Ni3Al and one
layer of Ni. The two layers are pulled apart. However, the feature extraction cannot be
performed because the lower layer has a BCC lattice (see discussion below). The other
two of these data sets are simulations of clean materials (Ni3Al in figure 8(b) and Ni
in figure 8(c), each pulled in one direction). In the Ni3Al data set the stacking faults
group together in big blocks, thus making our approach of using single flat polygons
inapplicable. Nevertheless, just segmenting the atoms allows a clearer view of the crys-
tal planes in complex regions of the material. The Ni data set shown in figure 8(c) also
works with our feature extraction (right image). However, our current implementation
misses some of the features due to some problems with tracking the atom segments
over the periodic boundary conditions of the simulation area (truncated octahedron).
Figure 9 shows the crystal structure evolution of the Ni-Ni3Al data set in six relevant
time steps. The data sets does not change significantly until about time step 300. Then
dislocations start to split up and change their form and position (e. g. in the lower left
area, in front) and large stacking faults emerge (e. g. in the upper right area).

Our approach still has room for improvements. In particular, the heuristics applied
to simplify the neighborhood graph are not completely robust, although they work very
well on all data sets we used and they are based on knowledge from the application
domain. We want to enhance their quality by taking the coherence between different
time steps into account. The result of the atom data segmentation could be used in a
following time step as starting point. Our initial tests are encouraging.

Another problem already mentioned earlier is that our approach currently only
works for FCC crystals, because we rely on the atom neighborhood classification in
the input data for identifying atoms forming dislocations and junctions (see [12]). We
want to extend our approach based on a similar classification to BCC crystals. However,
it is not clear at the moment how such classification can be made.
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Domain scientist partners in this project gave us very positive feedback on our vi-
sualization. The clear representation of the crystal planes is really beneficial, as well as
the tracking of the dislocation. The visualization aids them in perceiving the structure
of the data and its evolution over time. The semi transparent rendering of the stacking
faults not only makes the occlusion less problematic, it also allows the user to identify
the crystal planes more easily on which they occur. Since all features and the track-
ing method rely only on the original atom data, they believe that this visualization is
valid. There is currently no visualization tool available which is capable of representing
atomistic data sets from MD simulations in the described manner. For future work we
want to optimize our approach, and integrate our visualization in a framework allowing
better user interaction, making our tool more usable for the domain experts.
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Abstract. We present a user-assisted approach to extracting and visualizing
structural features from point clouds obtained by terrestrial and airborne laser
scanning devices. We apply a multi-scale approach to express the membership
of local point environments to corresponding geometric shape classes in terms of
probability. This information is filtered and combined to establish feature graphs
which can be visualized in combination with the color-encoded feature and struc-
tural probability estimates of the measured raw point data. Our method can be
used, for example, for exploring geological point data scanned from multiple
viewpoints.

1 Introduction

Exploration of environmental point data sets is a challenging problem of recent interest.
The LiDaR (Light Detection and Ranging) technology makes it possible to capture fast
and accurate point data over large regions. As a consequence, LiDaR data sets are typ-
ically very large, containing diverse and highly complicated objects. Occlusion, semi-
transparent and reflecting objects, structures with small fractured and under-sampled
surface components like trees, as well as scanning error due to motion of cars, humans,
animals, etc. make the data difficult to interpret. While the raw data contains scientif-
ically relevant structural information, this information, unless proper filtering and pre-
processing methods are applied to the raw data, remains ”hidden” in most direct visual
representation due to data over-load and noise.

A possible way to explore point data is based on surface reconstruction [4, 9, 10].
Building consistent triangular meshes from such data is a difficult and often ambigu-
ous task. Point-based approaches [1, 24] operate directly on the sample points without
requiring the computation of mesh-based connectivity information. These approaches
often use surface elements (surfels), assuming that point sets define smooth surfaces
with well-defined normal vectors. For LiDaR data sets, this assumption may not always
hold and the surfel-based approach may also hide topological ambiguities and, as a
consequence of smooth interpolation schemes, eliminate structural artifacts, due to dis-
continuities in the original scanned geometry, that might be important. To avoid these
drawbacks, we use a probability-based classification of the point cloud into subsets
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having different structural characteristics. Depending on this classification and a user’s
choices of parameter values we perform the extraction of feature graphs describing the
structural composition of the point cloud. We obtain an explicit structural description
of the whole data which can be used for further processing (e.g., identification and
classification of objects in environmental data) or for exploration and visualization.

For geologists, our approach is of special interest since it makes possible the de-
tection and visualization of features like creases in structures caused by earthquakes or
rapid and automatic identification of key features in environmental data such as ridge
lines, stream beds, and edges of terraces. When combining data from multiple scans,
registration errors make feature detection and visualization even more challenging. Our
goal is to provide a user with effective tools for the identification and interactive explo-
ration of structural features in LiDaR data sets.

In section 2, we review related work on point set rendering and surface reconstruc-
tion. Section 3 discusses the specific problems of analyzing LiDaR data and proposes
a classification of features used in our algorithm. The construction of feature graphs is
discussed in section 4.

2 Related Work

The potential of point-based methods has been demonstrated in different applications
[2]. However, algorithms to process point sets are still in their infancy when compared
with algorithms for common mesh-based approaches. In computer-aided design (CAD),
point sets may be used as underlying representation for surface editing [24] (like the
Pointshop 3D framework proposed by Zwicker et al. [28]). Several authors based their
segmentation and surface recognition algorithms directly on point sets, [6],[7]. Con-
cerning surface reconstruction from laser-scanned point sets, much research has been
done following the approach by Eck and Hoppe [13].

In the context of complex geology-driven applications, besides the problem of cor-
rectly recovering surface topology, sharp feature lines like ridges/ravines or crest lines
[17], [27], [25] need to be identified. Concerning point sets, there have been several
efforts for robust feature detection [15][5][8]. Neal [23] provided an instructive survey
of such techniques. However, these approaches do not differentiate between the struc-
tural types a feature might belong to, which makes them inappropriate for data sets of
arbitrary topology, especially point clouds resulting from environmental scans. Some
of these methods perform feature extraction based on the estimation of curvature values
obtained from surfaces that are approximated based on a local point neighborhood via
methods like moving least squares (MLS) [20]. The principal curvatures and curvature
directions carry important information about local surface behavior, but their estimation
is numerically sensitive to noise present in the data, and many estimation methods have
been proposed [11], [16], [18]. Hamann [12] [16] approximated principal curvature
values based on considering a local, triangulated point neighborhood and determining a
least-squares quadratic bivariate polynomial. Feature lines also produce important land-
marks for constructing meshes [14], [21] or for recognizing shapes like buildings [3].
Regarding the post-processing of laser range data, a variety of techniques improving
the quality can be applied [22], [26].
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3 Feature Detection in LiDaR Data

Our work represents a first step toward the over-arching scientific goal of identifying
and extracting regions in LiDaR data sets matching individual structural characteristics.
One long-term goal was to be able to automatically differentiate from natural and man-
made objects (e.g., trees and buildings). Detecting and joining objects corresponding to
similar structural classes is another task we wish to accomplish. To reach these goals, it
is necessary to provide methods for detecting and extracting special structural features
like corners, border-, crease- or ridge-lines in the form of a feature graph which can
be used to perform further processing. In general, feature detection in environmental
LiDaR data is a complicated task due to the nature of this kind of data. LiDaR data
are generally collected either on the ground, using tripod-mounted scanners, from the
air, using airplane mounted scanners or from satellites. These acquisition methods pro-
duce data sets typically exhibiting substantial noise levels since the measurement is
taken from great distance. Under-sampling, occlusion and movements in the scanned
environment are just a few more problems to mention.

Hence, we must assume that the resulting point cloud data in general does not pro-
vide a reliable base to directly perform feature extraction. We introduce a method that
classifies points by considering whether they are part of a surface, a curve or a junc-
tion of either one. This approach allows us to adapt the feature graph extraction to the
proper point class. By using stochastic and multi-scale-based means when processing
the raw point cloud (especially for processing huge data sets) we introduce a rather sta-
ble approach capable of handling robustly relatively high noise levels in a data set. Our
method combines the following steps:

1. Pre-processing of the 3D point cloud (sec. 3.1). This step includes an hierarchical
decomposition of the point cloud into an octree-based voxel grid, as well as the
elimination of outlier points (sec 3.1).

2. Likelihood-based point classification depending on the characteristics of the local
point neighborhood as well as computation of feature-specific values based on mul-
tiple scales (sec. 3.2).

3. Post-processing by smoothing the obtained feature values (sec. 3.4 ).
4. Feature graph construction (sec. 4).

3.1 Pre-processing

Hierarchical Point Cloud Decomposition: Since we are primarily dealing with envi-
ronmental LiDaR data sets that are typically the result of several high-resolution scans
(several million or even billion points) efficient data handling is important. Organizing
the points into an octree-based voxel structure allows us to speed up frequently used
operations like k-nearest neighbor search. To be able to visualize large-scale data, we
follow an additional level-of-detail (LOD) approach. We modify point sets of each oc-
tree level to match a level-specific resolution and store them on disc. This approach
allows us to dynamically reload point sets of a certain resolution if necessary.
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Outlier Removal: Environmental LiDaR scans do not distinguish between the signif-
icant or irrelevant components; everything is scanned e.g., trees and other vegetation.
Weyrich et al. [26] proposed a method assuming that potential outliers draw their local
neighborhood from a larger vicinity than points within a well-sampled environment.
Instead of using a graph-based approach we compute the mean distance of a point to
its k-nearest neighbors and filter out all points whose mean distance exceeds a given
threshold. To avoid loosing important structural information this threshold is chosen
interactively by the user.

3.2 Stochastic Point Classification

The goal of point classification is to decompose the point cloud P into subsets of points
having different structural properties. We determine whether a point p ∈ P is part of a
curve- or a surface-like structure or is treated as a so-called critical point. We call those
points critical points that are not part of a surface or a curve. This point type represents
junctions of feature lines (e.g., at corners) or borders/intersections between surfaces
and/or curves. In general they are meant to represent discontinuities not associated with
these structures. Hence, critical points are not suitable for directly performing methods
of feature-line extraction but are used in the context of graph extraction (sec. 4) to
represent underlying discontinuities.

In order to identify the type of a point p we determine the “shape“ of the local point
neighborhood Nr(p) of p using principal component analysis (PCA). Let Nr(p) denote
the point neighborhood within a sphere of radius r centered at p. The radius is specified
by the user and depends on the features being focused on. Determining the shape of
Nr(p) is accomplished by comparing the distribution of Nr(p) in each dimension. The
distribution is measured by using the eigenvalues of the covariance matrix C of Nr(p).
Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of C. It is a well-known fact that Nr(p) has a
spherical shape if λ0 ≈ λ1 ≈ λ2, a disc-like shape if λ0 � λ1 ∧λ1 ≈ λ2 or a cylindrical
shape if λ0 ≈ λ1 ∧λ1 � λ2. Using this information allows us to establish three point
classes by defining the following sets:

Pcp = {p ∈ P|λ0/λ2 ≥ ε} (1)

Pc = {p ∈ P|λ1/λ2 < ε} (2)

Pd = {p ∈ P|λ0/λ2 < ε} (3)

Here, Pcp,Pc,Pd define the points with spherical, cylindrical and disc-like neigh-
borhood (with Pcp ∩Pc = /0, Pcp ∩Pd = /0 and Pc ⊆ Pd ). The variable ε is a
feature-specific value and determines when a point becomes a critical point. Usually
ε is chosen to be 1

2 but it can be adapted to meet a user’s needs. For example, reduc-
ing ε increases the sensitivity of a point for being classified as a critical point, causing
some points of Pc and Pd to migrate to Pcp. This effect can be geometrically inter-
preted as extending the boundaries around a discontinuity (e.g., an intersection). This
form of point differentiation implies Pc ⊆ Pd , since in some cases surfaces collapse
to line-like structures. However, this characterization heavily depends on the size of the
local neighborhood Nr(p) and would not lead to reliable shape evaluation results in
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presence of noise. Thus, we allow the neighborhood Nr(p) to vary in size by a given
percentage of its original magnitude. We compute probability estimates by measuring
the number of times Nr(p) can be assigned to one of the classes defined by (1), (2), (3)
by evaluating

Lcp,c,d(p) =
1

n + 1

n

∑
j=0

ϕrmin+ jδ
cp,c,d (p), (4)

ϕs
cp(p) =

{
1 if λ s

0 ≥ ελ s
2

0 else
,ϕs

c(p) =
{

1 if λ s
1 < ελ s

2
0 else

,

ϕs
d(p) =

{
1 if λ s

0 < ελ s
2

0 else

Here rmin (rmax) denotes the minimum (maximum) radius and n represents the num-
ber of considered neighborhoods. Hence, δ = (rmax−rmin)/n and λ s

i being the eigenval-
ues of Cs of Ns(p). Lcp,Lc and Ld define the likelihood of a point p corresponding to
the shape classes defined by Pcp,Pc and Pd . We now divide the original point cloud
based on the likelihood values into subsets of different character. For graph extraction
we use additional feature values capturing the strength of an underlying feature. The
feature values Icp, Ic and Id for the points of the classes Pcp,Pc and Pd are defined by

Icp,c,d(p) =
1

n + 1

n

∑
j=0

f rmin+ jδ
cp,c,d , (5)

f s
cp = λ s

0λ
s
1/(λ s

2)
2 (6)

f s
c = (λ s

2 −λ s
1)λ

s
0/(λ s

2λ
s
1) (7)

f s
d = κ s (8)

where κ s denotes the maximum absolute curvature of polynomial patches fitted to
Ns(p). Since we are also interested in feature extraction from surface-related struc-
tures, using curvature is an obvious approach. The feature values Icp, Ic and Id express
the strength of a feature associated with a point p by a value averaged over multiple
scales. The values f s

cp, f s
c increase when the shape of Ns(p) approaches the ideal form

of a sphere or a line, and decrease otherwise. f s
d increases as the curvature increases.

3.3 Estimating Curvature

There are several approaches concerning the approximation of curvature estimates from
point clouds [11], [16], [18]. Our curvature estimation process is based on computing
curvature values from polynomials fitted via MLS to the point neighborhoods Nr(p).
We use the root mean squared (RMS) curvature

κ =

√
1
2
(κ2

1 +κ2
2), (9)

where κ1 and κ1 are the two principal curvature values, to approximate the “feature
strength“. There are several other curvature measures like mean, Gaussian or maximal



184 Keller, Kreylos, Vanco, Hering-Bertram, Cowgill, Kellogg, Hamann, and Hagen

curvature we have considered and tested. For our purposes the RMS curvature was most
appropriate and produced best results.

3.4 Post-processing

We are interested in strengthening feature values corresponding to selected features
and smoothing out remaining feature values. A Gaussian-like filter applied on the local
point neighborhood Nr(p) ensures that noise caused by small artifacts is eliminated.

4 Generating the Feature Graph

The structural features are detected and extracted following the idea of [8], [29] and [25]
of identifying initial seed nodes and performing an edge-growing approach to connect
related nodes. The seed nodes for a graph are represented by all points having a minimal
type probability. It remains difficult to define connections between seed nodes such
that the resulting graph reflects the underlying feature-lines. Most methods start by
connecting seed nodes by proximity. However, this can cause a variety of branches
inducing perturbations in further propagation. Therefore, controlling the propagation
direction plays an important role.

Several extraction methods determine the derivatives of extracted feature values,
like curvature, to identify and follow the direction of its minimal descend. Since these
values vary considerably due to noise this differential approach would lead to poor
results. Instead, we propose defining the propagation direction of a node by applying
PCA to a set of surrounding nodes. This approach is more stable assuming that the
local environment of the actual node is of sufficient size. In contrast, critical points
are not subject to this graph extraction procedure since they represent discontinuities.
These points are used to establish critical nodes to recover junctions of feature lines.
The final step consists of graph simplification aiming at a simpler visual representation.
We summarize the basic principles of our method.

4.1 Selecting Seed Nodes

The seed nodes defining the basis of the individual graphs are identified by using the
probability values computed according to the equations in sec. 3.2. A graph G = (V,E)
formally consists of a set of nodes V and set of edges E ⊆ V ×V connecting the nodes
of V . The initial graph for representing curve-related features is defined by G 0

c = (Vc, /0)
with

Vc = {p ∈ P|Lc(p) = max(Lcp(p),Lc(p),Ld(p))}. (10)

Figure 1(a) shows an example for identified seed nodes for a simple test data set. The
graph for representing surface-related features is set up differently. The user specifies
curvature-related thresholds σmin and σmax restricting the strength of the features to be
extracted, balancing critical and feature-specific nodes among the points of Pd . For
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(a) (b) (c)

Fig. 1. Principle of graph extraction for a simple test cube data set (3000 points): (a)
Initial seed nodes (blue), (b) corresponding critical nodes (black), (c) extracted edges
after propagation.

(a) (b) (c)

Fig. 2. Principle of graph extraction for surface-related features using a curved sheet
data set (10000 points): (a) Initial seed nodes (orange) of the underlying surface (blue),
(b) seed nodes with corresponding critical nodes (black), (c) critical nodes together with
the extracted edges after propagation.

example, σmin separate features like creases and non-creases appearing on a surface.
The parameter σmax controls the transition between creases and corners. The initial
graph representing surface-related features is G 0

d = (Vd , /0) with

Vd = {p ∈ P|Ld(p) = max(Lcp(p),Lc(p),Ld(p))∧σmin < Id(p) ≤ σmax}. (11)

Fig. 2(a) shows an example concerning surface-related features. The critical nodes
corresponding to G 0

c and G 0
d are defined as

CVc = {p ∈ P|Lcp(p) = max(Lcp(p),Lc(p),Ld(p))} (12)

CVd = CVc ∪{p ∈Vd |σmax < Id(p)} (13)

with Lcp(p),Lc(p),Ld(p) determined according to (4). Figures 1(b) and 2(b) show
an example of extracted critical nodes for the cube data set and the sheet test set. The
nodes of the graph G 0

c and G 0
d are not yet connected. A subsequent edge propagation

step, discussed in the next section, produces a first approximation of the underlying
features.

4.2 Edge Propagation

Edge propagation is performed sequentially starting from the nodes having the high-
est feature values. Propagation is the process of connecting two nodes of the graph
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G = (V,E) by an edge. Principally, each seed node v ∈ V is allowed to propagate into
two directions d and −d. We determine d by applying PCA to the local node neighbor-
hood

Mr(v) = {w ∈ V ∪CV |‖v−w‖ ≤ r}
with r being the user-specified neighborhood size. The vector d is the eigenvector with
the largest eigenvalue of the covariance matrix of Mr(v). Provided that no other node u
is connected to v with d · ( u−v

|u−v| ) > 0, v is connected to w ∈ Mr(v) whereas

w = argminw∈Mr,d(v) (‖pro jd(w− v) ·d + v−w‖/‖w− v‖) .

The nodes w ∈ Mr,d(v) ⊆ Mr(v) satisfy the inequality
(

w−v
‖w−v‖

)
· d > 0. Here, v and

w denote the coordinates of v and w in 3D space. To prevent unwanted edges all dis-
connected nodes w ∈ Mr(v) lying closer to v than the most distant connected neighbor
are forbidden to propagate. Moreover, connections establishing acute angles with d are
forbidden. Examples of resulting graphs are shown on Figs. 1(c) and 2(c). Rather than
using a minimal spanning graph as proposed by Pauly et al. [29], this approach provides
greater consistency between edges and feature directions.

4.3 Connecting Critical Nodes

We have to connect the critical nodes to the already established edges of G . Assume
CV to be the set of critical nodes defined by (12) and (13). To recover junctions the
nodes of CV have to be connected or merged with nodes of G . We start clustering the
nodes of CV by grouping neighbored critical nodes. The resulting clusters are defined
by D = {. . . ,Di, · · · } with cluster Di = {w ∈CV | v ∈ Di∧‖v−w‖< r} and Di∩D j = /0
for i 
= j. The initial cluster set is given by D0 = {· · · ,{v},{w}, · · ·} with v,w ∈ V and
v 
= w. We proceed by determining the nodes d ∈ Di of greatest feature values. These
nodes represent the centroids of Di ∈ D . Depending on the user-specified radius r and
the shape of Di a cluster can have several centroidal nodes d ∈ Di.

Next, we connect all nodes v ∈ V to surrounding critical nodes w ∈ CV with ‖v−
w‖ < r. This step is performed in a way forcing the graph not to develop unwanted
branches. In a subsequent step all nodes w ∈ Di connected to a node v ∈ V are merged
with the centroidal node d ∈ Di. Should there exist more than one centroidal node in a
cluster Di we force w to connect to the centroidal node closest to w. Finally, we delete
all unconnected critical nodes producing the final graph representation. Fig. 2(c) shows
an example with the critical node cluster shown in black. The remaining connected
critical/centroidal nodes are shown in Fig. 3(c).

4.4 Graph Simplification

We note that Gc and Gd possess certain unwanted structures like short branches, loops
etc. To get rid of these artifacts we have developed the following framework.
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(a) (b) (c) (d)

Fig. 3. Results of graph extraction for the cube data set (a) without and (b) with 5%
noise. Images (c) and (d) show the resulting graphs for the curved sheet data set without
and with 5% noise.

Graph Simplification: In our context, simplification refers to the process of collapsing
nodes that are close to each other in order to reduce complexity of an extracted graph.
We collapse nodes v and w of a graph G if the following criteria are fulfilled:

a) ‖v−w‖ ≤ r
b) (v,w) ∈ E and ν(v) > 1 and ν(w) > 1

Here, ν(v) defines the number of edges incident to v. Since Gc and Gd are intended to
reflect structural features we force the position of the resulting graph node to agree with
the position of the node possessing the highest feature value. In case of participation
of critical nodes the rules are adapted to preserve critical nodes. The entire collapse
procedure is performed sequentially in accordance with ascending distance between
the node pairs.

Additional Pruning: The remaining graph still exhibits features irrelevant or unwanted
for visual exploration. To reduce visual clutter and direct the user to the regions of
interest we prune small branches by cutting off all edges e = (v,w) of v,w ∈ G with
‖v−w‖ < r and valence ν(v) = 1∧ν(w) 
= 2 which are not of immediate interest.

Smoothing: Finally, we enhance the visual appearance of the final graph set G by ap-
plying common graph smoothing.

5 Results

Our method provides a highly effective means for exploring the underlying structural
characteristics in environmental LiDaR point data sets. The graph-based approach rep-
resents user-specified features of two different types in an efficient and reliable way,
driven by a few pre-defined input values. Most important are the radius r of the feature
size and the values σmin and σmax confining the type of the considered surface-related
features. The radius r has to be chosen in a way that noise does not interfere with
the classification process but also that the extraction of structural information is main-
tained. Generally, σmin and σmax are less crucial to determine. Once the radius is found
the remaining feature extraction can be performed rather fast in an interactive way. Our
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method distinguishes features of three different types and allows classification of points
in terms of probability. Moreover, we are able to identify junctions of feature lines not
only by means of graph processing but using implicit information inherited from the ini-
tial point cloud. Structural discontinuities are represented in the final graph by critical
nodes.

Our multi-scale approach also reduces the influence of noise. It produces reliable
results up to a noise level of 5-8%. Fig. 3 shows the resulting graph related to curve-like
structures without and with 5% noise relative to the diagonal of the smallest bounding
box containing the given point cloud. The examples show that all resulting graphs of
the test data set reflect the correct underlying topology. Since determining likelihood
and feature values is computationally expensive we de-couple this step from the graph
extraction process and perform it in a pre-processing step. This allows the user to extract
feature graphs in an nearly interactive manner.

We have applied our method to several other environmental data sets. The data were
collected using a LiDaR scanner mounted on a tripod, a method that enables fully three-
dimensional scans of engineered structures. For example, Fig. 4(a) through Fig. 4(c)
show the results of processing a more complex structure. In Fig. 4(a) we see the orig-
inal point cloud of a water tower consisting of approximately 1.7 million points. Fig.
4(b) shows the computed feature values regarding curve-related features for each point.
The extracted feature graph is presented in Fig. 4(c). More detailed parts of the graph
are presented in Fig. 5. Fig. 5(a) shows a relative complex under-sampled object which
is part of the tower. In this example the underlying feature lines and junctions were al-
most completely recovered. The second object shown in Fig. 5(b) is a crosspiece of the
main pole of the lower part of the tower having mounted stiffeners. The extracted fea-

(a) (b) (c)

Fig. 4. (a) original point cloud of a water tower consisting of 1.7 million points; (b)
color coded feature values of each point regarding curve-related features( blue rep-
resents low, red high feature values); (c) corresponding feature graph (blue lines) for
ε = 0.5 and r ≈ 0.038% of the bounding box diagonal.
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(a) (b)

Fig. 5. Closeup of selected parts of the extracted graph of Fig. 5(c).

(a) (b)

Fig. 6. Scan of San Andreas fault in California, USA, on a length of 6 kilometers. (a)
presents the corresponding feature/curvature values (blue means low, red equals high
curvature value). (b) shows the corresponding surface-related feature graph with feature
lines depicted in red, and critical nodes as green points.

ture graph exhibits critical nodes colored in green representing discontinuities between
surface- and curve-like structures.

The environmental point cloud shown in Fig. 6 is a part of the San Andreas Fault
in California, USA. Since the scan was performed airborne the resulting point cloud
contains a relatively higher level of noise. The edges of the extracted surface-related
graph depicted in red represent the underlying ridges of the landscape. The critical
nodes depicted as green points represent either underlying discontinuities or features
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having curvature values which exceed the user-specified limit σmax. In this example
the parameter values were chosen to capture ridges associated with relatively high
feature/curvature values. Those parts of the landscape with high curvature values (ta-
pered ridges or acute hills) are represented by critical nodes. For this example we chose
σmin = 0.2,σmax = 1.5 and r ≈ 0.0046% of the length of the data set diagonal of the
smallest bounding box containing P.

In order to allow the user to perform the feature extraction interactively we have
divided the whole approach into two steps. We provide a computational expensive pre-
processing step concerning the point classification and the actual graph extraction step.
The time complexity for the point classification is estimated to be O(k2 · n · log(n))
(with n number of input points, k the average neighborhood size). The complexity of
the graph extraction is assumed to be O(m ·log(m)·n) (with m being the number of iden-
tified seed nodes). This has been validated by our observations. For example, the point
classification performed at the finest resolution for the water tower point cloud (see Fig.
4(a)) having about 1.7 million points has last 3h29m. The subsequent graph extraction
was performed in approximately 116 secs. Computing the point classification for the
geographic data set in Fig. 6 was completed after 72 minutes. The final graph was con-
structed after 29 secs. These results confirm that our approach holds great promise for
feature detection and extraction for LiDaR data processing, analysis and understanding.

6 Conclusions

We have introduced a novel approach for extracting and visualizing features from Li-
DaR data sets. Our examples demonstrate the benefits of this method for extracting fea-
ture graphs from point clouds representing surface components like ridges and creases
as well as curve-like components. As our method was designed as an interactive, user-
controlled method offering also a high degree of automation, one specific strength is the
ability for a user to influence the analysis process and obtain instant visual feedback.
This work is fundamental for future research, for example to detect and measure defor-
mation of environmental structures such as buildings and bridges exposed to terrestrial
influences. Future work will be directed at feature-based segmentation of terrestrial data
classifying objects of different type, such as trees, buildings, streets, etc. One next goal
is to be able to extract topological information from landscapes by extracting and com-
paring ridge lines from multiple scans taken at different times to identify deformations
by a comparative visualization method.
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Abstract. In this paper we apply vector field topology methods to a mathemati-
cal model for the fluid dynamics of reaggregation processes in tissue engineering.
The experimental background are dispersed embryonic retinal cells, which reag-
gregate in a rotation culture on a gyratory shaker, according to defined rotation
and culture conditions. Under optimal conditions, finally complex 3D spheres re-
sult. In order to optimize high throughput drug testing systems of biological cell
and tissue models, a major aim is to understand the role which the fluid dynam-
ics plays in this process. To allow for a mathematical analysis, an experimental
model system was set up, using micro-beads instead of spheres within the culture
dish. The qualitative behavior of this artificial model was monitored in time by
using a camera. For this experimental setup a mathematical model for the bead-
fluid dynamics was derived, analyzed and simulated. The simulations showed that
the beads form distinctive clusters in a layer close to the bottom of the petri dish.
To analyze these patterns further, we perform a topological analysis of the veloc-
ity field within this layer of the fluid. We find that traditional two-dimensional
visualization techniques like path lines, streak lines and current time-dependent
topology approaches are not able to answer the posed questions, for example they
do not allow to find the location of clusters. We discuss the problems of these
techniques and develop a new approach that measures the density of advected
particles in the flow to find the moving point of particle aggregation. Using the
density field the path of the moving aggregation point is extracted.
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1 Introduction

The topology of two-dimensional time-dependent vector fields has been an active field
of research in recent years [7,17,18]. In this paper we investigate the features of a mathe-
matical model for the fluid flow of a mixture of beads and growth medium in a layer
close to the bottom of a petri dish, which rotates on a gyratory shaker. A moving zero
in the instantaneous vector field is the most striking feature of the flow. This suggests
the application of topological methods for the desired analysis. To provide the basis for
the discussion of the vector field we will first describe the experiment, the mathematical
model and its simulation, which leads to the vector field.

2 The Experiment, the Mathematical Model and its Simulation

The biological experiment, which builds the background for the mathematical model,
its simulation, visualization and visualization techniques, investigates rotational tissue
cultures, which are relevant for high throughput drug testing systems in regenerative
medicine. A petri dish, which contains growth medium and dispersed embryonic cells,
is located on a gyratory shaker. The specificities of the rotation affect the fluid flow in
the petri dish and thus the motion of the cells. Without any movement of the petri dish,
the cells generally form a mono-layer at the bottom and grow in a disorganized manner.
However, under a specific rotation of the petri dish, the cells finally form several 3D
spheroids. Details about these methods and further results can be found in [8–10].

To understand the role the fluid dynamics play in this reaggregation and structure
forming process, an experimental model system was set up. Microscopic beads were
put into the culture dish and rotated under the same conditions as the cell systems. This
system is assumed to serve well as a model system for the cell-based fluid dynamics un-
der consideration. In the experiment clustering of the beads was observed for a rotation
speed of 70RPM but not for a rotation speed of 60RPM. Further interesting patterns
and phase transitions occurred. To confirm the hypothesis that mechanical aggregation
plays a key role in the initial clustering of the beads, a mathematical model for the
fluid dynamics was derived and numerically analyzed. The basis of the mathematical
model are the incompressible Navier-Stokes Equations, which are solved in a domain
representing the petri dish. Fictitious body forces, acting on the fluid, are added. These
result from the rotation of the petri dish. A dimensional analysis was performed and by
regular perturbation techniques the model was reduced to a shallow water type of pro-
blem. The main assumption is, that the Reynolds number in horizontal direction is much
larger than the Reynolds number in vertical direction. For the numerical discretization
a finite volume method was employed, which takes into account that the flow is mainly
laminar. The qualitative behavior of the mathematical model compares well to the ag-
gregation behavior of the beads observed in the experiment. Clusters of particles are
found to rotate around the center of the petri dish. Further details on the mathematical
model, its simulation and first visualizations are given in [3]. The simulations of this
model provide the data, which are analyzed in the following.

To justify our use of two-dimensional visualization techniques it should be noted
that the beads (in the rest of the paper often called the particles) are expected to stay
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in a layer close to the bottom of the petri dish. The particles are only expected to leave
this layer at singular points in the flow.

3 Related Work in Vector Field Topology Visualization

As mentioned, topological methods seem to be a good choice for the visualization of
the presented application. Of particular relevance for the present work are techniques
that permit to track the continuous evolution of the topology as it evolves over time. Im-
proving on a scheme introduced by Helman and Hesselink [7], which graphically recon-
nects the topological skeletons extracted in successive time steps, Tricoche et al. [18]
proposed a scheme that computes the continuous path followed by two-dimensional
singularities (where the flow velocity vanishes) across the space-time domain. Their
approach explicitly characterizes bifurcations, which correspond to critical changes af-
fecting the structure of the topological skeleton. An alternative method that extracts the
topological evolution by means of numerical integration over the space-time contin-
uum was introduced by Theisel et al. [16]. Extensions to three-dimensional transient
flows have been presented for both methods [5, 15]. Just recently Wiebel et al. [19]
introduced a technique allowing to track singularities on curved surfaces by using pa-
rameterizations in combination with the existing two-dimensional techniques.

A first approach to time-dependent topology not using streamlines, called path line
oriented topology, was undertaken by Theisel et al. [17]. They distinguish sectors of
attracting, repelling and saddle-like behavior of the path lines. This is different from
the usual concept of topology, which is to observe how trajectories behave under an
integration until infinity while their method only considers local properties of the path
lines. They call this approach topological because it also aims at segmenting the domain
into areas of different flow behavior. To be able to apply an asymptotic analysis for path
lines Shi et al. [14] restrict themselves to periodic fields and present a path line oriented
topology for periodic 2D time-dependent vector fields. Unfortunately, this approach is
not applicable in our case as the flow considered in this paper is not periodic.

4 Application of Common Visualization Techniques

In this section we describe the application of a number of standard visualization tech-
niques to the petri dish flow field. We describe the different viewpoints taken by these
techniques and show their deficiency to illustrate certain features of the flow. This will
promote the need for the new technique developed in Section 5.

4.1 Streamlines

Streamlines and their dense counterpart the line integral convolution [2] (LIC) are the
most frequently used visualization techniques for flow fields. As they only illustrate the
momentary direction of a flow, animations are often used for time-dependent fields. For
the current application such an animation only shows the overall rotation behavior and
the existence of an attracting singularity in the flow (see Figure 1(a)). The information
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(a)
LIC of
instantaneous
vector field for
t = 37. Note the
sink in the right
part.

(b)
Path line from
outer area.

(c)
Path line from
center.

(d)
Streak lines started
at t = 2 shown for
t ∈ {25,37,79}.

Fig. 1. Application of different standard visualization techniques for vector fields.

about the long-term behavior of particles given by this visualization is very small. A
more detailed discussion of the attracting singularity will be given in the section about
streamline oriented topology (Section 4.4).

4.2 Path Lines

As path lines reflect the path of a particles they should be better suited for finding
the path of the moving agglomeration. Indeed, the path lines shown in Figures 1(b)
and 1(c) (coming from the border respectively the center of the domain) show that the
particles approach a kind of common cyclic structure. A naive interpretation of this
cyclic structure could be that the particles are distributed around the circle and form a
kind of ring. It does not become clear that the particles tend to agglomerate around one
position and that this agglomeration moves on the displayed circle (see Figures 2(b)
and 2(c)).

(a) (b) (c)

Fig. 2. Particles traced in the rotating flow show that the point attracting the particles is
not the singularity moving through the flow. (a) Particles (white) at t = 1. (b) Particles
after advection until t = 37 with attracting singularity (blue) at t = 37. Compare the
position of the singularity to LIC in Figure 1(a). (c) Particles after advection until t = 40
with attracting singularity at t = 40.
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4.3 Streak Lines

Well known from physical flow experiments, streak lines seem to be a good standard
choice to investigate the two-dimensional flow field. Most images produced by streak
lines seem to yield a good representation of the underlying flow. Good examples can
be found in a paper by Sheard et al. [13] and many other papers in the same journal as
well as in a book by Batchelor [1]. However, it is also known that care has to be taken
with the interpretation of streak lines [6]. Representative streak lines for our example
are shown in Figure 1(d). The image is only able to illustrate the fact that the particles
come closer to the center of the dataset with longer advection time. An animation over a
certain time interval shows the general rotation but does not reveal any salient features
either.

4.4 Streamline Oriented Topology

The best candidates for showing the aggregation of the particles seem to be topological
methods as they can track the path of attracting singularities (also known as sinks)
through time. Naively, one would expect that the particles at a certain point of time tend
to agglomerate at the momentary position of the sinks. In our example we have exactly
one such sink and thus would expect the particles to converge to this point.

To inspect these presumptions we traced the particles shown in Figure 2(a) a certain
amount of time t and computed the singularity of the instantaneous vector field at time
t. Figures 2(b) and 2(c) show the resulting images. The images clearly contradict the
presumptions. The particle agglomeration is not located around the singularity, it rather
lags approximately one third of a rotation period behind the zero of the vector field. A
possible explanation for the difference between the point of aggregation and the singu-
larity might be that the singularity lies in a large area with nearly zero vectors. Thus the
concentration process can not (or only very slowly) appear there. It is probably much
stronger in areas with vectors of large magnitude. Additionally, even a significantly
moving and strongly attracting singularity would not be able to drag the agglomera-
tion along its path because vectors on opposite sides of the singularity point in opposite
directions. The particles thus are moved in one direction before the singularity passes
(close to) their position and in the opposite direction thereafter.

As our example shows, there are probably only few cases for which a singularity in
time-dependent flow has an interesting meaning. One of these few cases is a singularity
on a surface that indicates separation of the flow from the surface (see e.g. [19]).

4.5 Path Line Oriented Topology

As discussed in Section 4.2, path lines are more effective for illustrating the time-
dependent nature of the flow than streamlines. Thus it is worth looking at the visu-
alization yielded by the so-called path line oriented topology as introduced by Theisel
et al. [17]. Although, this approach does not really compute path lines and analyze their
behavior it still classifies the local time-dependent behavior as saddle-like, attracting
(converging) or repelling (diverging).

The application of path line oriented topology to our data reveals no areas of saddle-
like behavior. The domain is only divided into attracting and repelling parts. Figure 3(a)
shows the attracting parts enclosed by an isosurface. It is apparent that not only specific
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(a)
Path line oriented topology in complete
time-dependent field. Third dimension used to
stack time steps (60 < t < 80 visible).
Isosurface encloses attracting behavior.

(b)
Path line oriented topology (left)
compared to divergence (right) for
t = 70. Colormap and zero isolines
divide the field into areas with
converging (negative values) and
diverging behavior (positive values)

Fig. 3. Path line oriented topology.

points are marked as attracting but large areas. Thus, the approach does not identify the
features we are searching for, i.e. points of particle attraction. It only illustrates that the
attracting and repelling parts revolve around the center of the dish over time.

Figure 3(b) shows a comparison of one of the characteristic fields of the path line
oriented topology (here sum of eigenvalues) and the divergence of the instantaneous
vector field. Both images illustrate the behavior at t = 70. The comparison makes a
strong statement about the meaning of the path line oriented topology for our data. It
seems that the areas marked as attracting or repelling closely correspond to areas of
negative or positive divergence. This is interesting because the computation of path line
oriented topology is much more time consuming than the computation of divergence.

4.6 FTLE

Fig. 4. FTLE− with particle cluster for t = 70. Integration for 1 (left) and 20 time units
(right). Very high magnitude of FTLE− marked yellow. Note the small (enlarged) yel-
low point fairly close to the particles.

As we are searching for converging particles, one might suggest to use FTLE (Finite-
Time Lyapunov Exponent) fields for visualization (see e.g. [4, 11]). Our experiments,
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however, showed that while FTLE is able to characterize the time-dependent conver-
gence better than path line oriented topology does, it does not identify the point of
attraction either. Figure 4 shows a color mapping of FTLE− (i.e. FTLE using backward
integration) for t = 70 together with a particle cluster at the same instant. The left image
results from a very short integration and does not help us, as the FTLE is dominated by
interpolation artifacts resulting from the coarse grid. This influence vanishes for longer
integration times (right image). But even in this image the center of the particles can not
be determined correctly as strong FTLE− can be found in a large area around the parti-
cles. Taking the maximum does not help as there are several very large values (marked
yellow), none of which represents the center correctly. The relatively “noisy” FTLE
field (right image) results from the fact that many particles leave the domain during
long-time backward integration.

5 Detection of Point of Attraction

In the previous section we have shown that popular existing visualization techniques
for unsteady two-dimensional flow fields, while being able to give hints as to where
particles converge, are not capable of finding the point of aggregation of the particles.
In the rest of the current section we will describe a new approach specially designed to
find and track the point of particle aggregation.

(a) (b)

Fig. 5. Particle advection for density computation. (a) Regular grid for starting particles.
(b) Particles started at earlier time steps lie in convex hull of particles from later times
(except points started and remaining exactly on the boundary). Points color coded by
starting time.

5.1 Idea

The basis for the presented technique is the following observation: Particles started at
earlier times, in general, can be found in the convex hull of particles started at later
time steps (see Figure 5(b)). This means that the point of the largest particle density is
the point that is attracting particles. So the main procedure of the proposed technique
is the following: We trace particles from a grid at a number of time steps before the
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observation time. We then compute the density of the particles and extract maxima
of this density. The maxima show us the positions of the points of particle attraction.
As these points move over time we repeat the procedure for several observation times.
Connecting the points of the different observation times yields the path of a point of
attraction.

5.2 Seeding of Particles

The first step of the technique is seeding the particles for the advection. Care has to be
taken because the initial distribution influences the density of the particles after advec-
tion. As can be seen from the initial particle positions in Figure 2(a), the grid of the
simulation is a structured radial grid. Particles seeded on this grid have a non-uniform
density, i.e. a higher density near the center. Figure 2(b) shows that the non-uniformity
of the initial distribution is still visible after particle advection. This can cause the exis-
tence of density maxima (resulting from initially high density) at points where advection
has not increased density. This, again, can make finding the correct point of attraction
impossible.

Consequently, we need a uniform density at the beginning. A simple distribution
fulfilling this constraint can be obtained by seeding the particles at the points of regular
grid as shown in Figure 5(a). For starting particles at different time steps we choose the
seeding grids to be equidistant in time.

5.3 Density Computation

We store the density on a second regular grid. It may have a different resolution than the
one used for seeding the particles. For every point of the density grid we simply count
the particles that are closer to this point than to any other. This is equivalent to counting
the particles in all cells of the dual of the density grid. Since the grid is regular, each
cell of the dual grid is defined by two intervals on the two coordinate axes. Knowing
the resolution and the bounding box of the grid, it is easy to compute the intervals and
thus the grid position each particle position belongs to. We increment the particle count
of the density grid position we have found a particle to be closest to and repeat this for
all particles and starting times to obtain the desired density field. Examples of density
fields for our data set are shown in Figure 6.

5.4 Extraction of Density Maxima

The density field computed in the previous step is given on the points of the density
grid. Usually one introduces a certain interpolation scheme to have continuous data
over the whole domain. If the underlying grid consists of simplices, i.e. triangles in the
two-dimensional case, one often uses a linear interpolation. Inside quadrangular cells
bilinear interpolation is commonly used. For both interpolation schemes maxima and
minima can only exist at vertices. Thus, their detection is straight forward. Using the
connectivity induced by the grid we simply compare the value at each vertex with all
directly adjacent vertices. If all adjacent vertices have smaller values than the considered
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(a)
Density of particles traced from one grid
at t = 50.

(b)
Density of particles traced from ten grids
at t = 50,52, . . . ,68.

Fig. 6. Color coded density distribution for time t = 70 and resolution of 100× 100.
The length and width of the square are two times the radius of the petri dish.

(a)
Attraction path consisting of 50
observations with density field resolution
100×100 and seeding resolution 30×30

(b)
Attraction path consisting of 30
observations with density field resolution
40×40 and seeding resolution 10×10.

Fig. 7. Attraction path for 72 < t < 80 extracted by tracing from t − 20. Smoothness
of path depends on resolution of density field and number of observations. Different
colored particles for different observation times t (traced from t −15) provide context.

vertex a maximum has been found. If only the global maximum is of interest we simply
run through all positions and store the position of the largest value. In order to eliminate
insignificant maxima and merge very close maxima, a low pass filter can be applied.
This was not necessary for the presented data set. The only significant maximum in the
petri dish flow at t = 70 is clearly visible in Figure 6.

5.5 Tracking of Density Maxima

So far only the positions of the maxima in the different time steps have been deter-
mined. These are the positions of the point of attraction at different times. To extract
the complete path of the moving point we have to connect the positions of correspond-
ing maxima between the time steps. In our case, where we have only one important
maximum, we simply connect the positions by straight lines. Images of the tracked
maximum are shown in Figure 7. As the maxima can only appear at vertices of the grid
underlying the density field, the smoothness of extracted paths strongly depends on the
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resolution of this grid. A second influencing factor is the distance of the density fields in
time. This is why the paths in the figure are relatively jaggy. The paths in Figure 7 cover
only relatively short time spans to avoid visual clutter by crossing and overlapping.

Multiple Maxima As mentioned, we connect the single maximum in our data from
one time step to the next. When aiming at tracking several maxima in one density field
over time, more elaborate techniques are needed. Several methods for tracking features
in scalar fields can be found in the literature, see e.g. [12].

5.6 Performance, Discussion and Acceleration

The computation times for the paths strongly depend on the resolution of the seeding
grid, the number of observations and the number of grids used to seed the particles for
each observation. In Figure 7 they range from 4 minutes for the path in Figure 7(b) to
one hour for the path in Figure 7(a).

Increasing the resolution of the density grid increases the computation time only
marginally. This is why we chose the density resolution to be different from the seeding
resolution. It allows us to increase the precision of the detected maximum position at
nearly no cost. However, it is important to note that the density resolution can not be
chosen completely independent from the seeding resolution. If the resolution difference
becomes to large, the number of particles becomes insufficient to produce a reasonable
density field. The result are many positions with one or two particles closest to them and
no position being a significant maximum. This renders the extracted paths meaningless.
We found density resolutions below 5 times the seeding resolution to yield good results.

The large number of particle advections is the dominating factor of the computa-
tion time. There is a large potential for acceleration. The most obvious acceleration
is parallelizing the particle advection. This yields a computation time nearly inverse
proportional to the number of tasks processable in parallel.

A second idea, more specific to the presented approach, is to reuse previously traced
particles. This idea is applicable if we do not only compute the position for a single time
but perform a tracking of the position through a number of time steps. Let ta

0 < ta
1 <

.. . < ta
n be equidistant times for which particles have been traced until ta = ta

n . Define
tb
0 < tb

1 < .. . < tb
n analogously. Let ta < tb. If we now store all positions of all particles

traced for ta in groups depending on their start time ta
i we can reuse the particles of all

but one group (ta
0 ) for computing the positions of the particles for tb

i . Let the distance
between two times be Δ t. Then the positions of the particles starting at tb

0 , . . . ,tb
n−1 and

being observed at tb can be computed by tracing the particles of the groups ta
1 , . . . ,ta

n for
Δ t. Obviously, this saves a large amount of computation time, as nearly all particles6

observed at tb need only to be traced for the relatively short time span Δ t. Without
this acceleration the mean time span traced is nΔ t

2 . Thus, reusing the previous particle
positions we achieve an acceleration by a factor of approximately n

2 .

6The particles of group tb
n do not need to be traced. They are already at time tb.
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6 Conclusion

We have discussed the application of several visualization techniques that are com-
monly used to illustrate two-dimensional time-dependent flow at a biofluid dynamic
model. It turned out that all these existing techniques are not able to show the desired
information or features of the vector field, i.e. the location of the point where particles
tend to aggregate. Hence, a new technique computing the density of particles started
at regularly distributed points at regularly spaced time steps is introduced. The density
field obtained with this technique is then used to compute the desired location for any
time step of interest. Thus, a curve representing the moving particle aggregation center
can be defined. It is important to note that this curve is different from the path of the
zero in the instantaneous velocity field.

We plan to improve our acceleration techniques to be able to extend our method to
unsteady 3D vector fields where the computation time becomes even more crucial. Fur-
thermore, we recommend the usage of our method only if the existence of an interesting
point of aggregation is known, as otherwise a large number of false positives might cor-
rupt the visualization. A method for detecting the existence of points of aggregation is
needed.
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Abstract. Contour, split and join trees can be defined as functors acting on the
category of scalar fields, whose morphisms are value-preserving functions. The
categorical definition provides a natural way to efficiently compute a variety of
topological properties of all contours, sublevel or superlevel components in a
scalar field. The result is a labeling of the contour, split or join tree and can be
used to find all contours, sublevel or superlevel sets with desired properties.
We describe an algorithm for airway segmentation from Computed Tomography
(CT) scans based on this paradigm. It computes all sublevel components in thick
slices of the input image that have simple topology and branching structure. The
output is a connected component of the union of all such sublevel components.
This procedure can be viewed as a local thresholding approach, where the local
thresholds are determined based on topological analysis of sublevel sets.

1 Introduction

Category theory has been extensively used in mathematics to relate structures of differ-
ent types. In particular, it is widely used in algebraic topology as a convenient language
allowing one to translate topological problems or properties into, often much simpler,
algebraic ones.

In this work, we apply the categorical approach to commonly used combinatorial
descriptions of the topology of scalar fields: contour, join and split trees. We show that
each of the trees can be seen as a functor from the category of scalar fields (whose
morphisms are value-preserving mappings) into itself. The functors introduced in this
paper do not change the form of the input, since the domain and the range categories
are the same. However, in practice, they highly reduce complexity: they transform any
scalar field into one whose domain has a finite tree structure, with the number of vertices
related to the topological complexity of the input scalar field, i.e. its number of critical
points.

The categorical approach can be used to define mappings between the trees (for
example, inclusion-induced mappings introduced in our earlier work [2]). We also in-
troduce a label transfer operation, based on the approach of [11, 12] and generalizing
the subdomain-aware labels of [2]. The labels can be designed to capture a variety of
geometric or topological properties of contours, sublevel or superlevel sets while being
computable in an efficient manner.
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2 Prior work

Contour trees are an important tool allowing one to concisely describe the structure of
isosurfaces of a scalar field as well as the way they evolve and interact as the isovalue
is varied. They have been used as a tool to enhance scalar field visualization [1], speed
up certain types of queries in geographical information systems [8] and facilitate iso-
surface extraction from volume datasets by helping to compute small seed sets [16,17].
These applications motivated efforts to develop increasingly simpler, faster and more
general algorithms for computing contour trees. An O(n logn) algorithm for computing
the contour tree in two dimensions was given in [8]. A simpler version of the 2D al-
gorithm and an O(n2) algorithm for higher dimensions is given in [17]. An O(n logn)
algorithm that works in three dimensions was proposed in [15]. A simplified and gen-
eralized (to any dimension) algorithm is introduced in [4]. This algorithm computes
the contour tree by combining the split and join trees. The split and join trees are of
independent interest since they capture the properties of sublevel and superlevel com-
ponents of the scalar field, naturally related to thresholding algorithms (we exploit this
in the airway segmentation application discussed in Section 7). In [5], the authors de-
scribe an O(n+ t log t) algorithm for computing a contour tree in any dimension for any
type of grid, where t is the number of critical points. Algorithms for computing the Reeb
graph, a generalization of the contour tree to domains that are not simply connected,
are described in [6,7,13]. The work [11,12] introduces a method for labeling the edges
of the contour tree with Betti numbers of the corresponding contours in O(n logn) time
as well as a parallelizable divide and conquer algorithm that runs in O(n + t logn) time
for regular grids, where n is the size of the domain of the input scalar field. Similar
technique is used in [2] to obtain a labeling of the tree with the number of isosurface
boundary components or, more generally, the number of connected components of the
intersection of a contour with a simply connected subdomain.

The goal of this work is to extend the results of [2] to enable one to build labellings
of contour, join or split tree edges with labels that describe more sophisticated proper-
ties of contours or sublevel or superlevel components. As an application, we discuss a
procedure for computing local thresholds for airway segmentation from Computed To-
mography (CT) scans based on topological analysis of sublevel components. An early
variant of this algorithm, with less robust results, is described in [14].

3 Scalar fields and related trees: categorical definitions

Let f : X → R be a continuous function (scalar field), where X is a compact and simply
connected topological space. Several definitions given in this section are standard and
are stated only for the sake of completeness.

Definition 1. By a sublevel set we mean the set f −1((−∞,c]) for a real number c. Sim-
ilarly, a superlevel set is the set f−1([c,∞)) where c is any real number. A sublevel
component is a connected component of a sublevel set. Analogously, a superlevel com-
ponent is a connected component of a superlevel set.

Sublevel and superlevel sets and components naturally arise when applying a thresh-
old to an image, which is perhaps the simplest possible approach to image segmentation.
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Definition 2. By a level set of f we mean the set f −1({c}), where c is a real number. A
contour is a connected component of a level set.

Level sets are typically used to represent boundaries of a region with a certain prop-
erty defined by the scalar field. For example, this could be the boundary of a certain
type of tissue in a medical image. The goal of the next two definitions is to build a
framework for representing the structure of contours.

Definition 3. The category of scalar fields denoted by S is defined as follows.

(i) Its objects are continuous scalar fields, i.e. continuous functions f : X → R where
X is a compact topological space.

(ii) Its morphisms are value-preserving continuous mappings. More precisely, for two
objects f : X → R and g : Y → R, α is a morphism of f into g if and only if α is a
continuous mapping of X into Y such that g ◦α = f .

Definition 4. The contour tree functor CT : S → S is defined as follows.

(i) For an object f : X → R in S , CT ( f ) is the scalar field f̂ induced by f defined on
the quotient space X/ ≡ f , where ≡ f is the equivalence relation on X defined by

x1 ≡ f x2 ⇔ f (x1) and f (x2) belong to the same contour.

Thus, f̂ ([x]≡ f ) = f (x) for any element x ∈ X.
(ii) For a morphism α : f → g in S , where f : X → R and g : Y → R, CT (α) is the

map of CT ( f ) into C T (g) induced by α defined by

CT (α)[x]≡ f := [α(x)]≡g .

The points of the quotient space X/ ≡ f (the domain of CT ( f )) are in one-to-one
correspondence with the contours of f . To a point of X/ ≡ f corresponding to a contour
C, the induced function f̂ assigns the value of f at any point of C.

The mapping CT (α) in the above definition is well defined and value-preserving
because α is value-preserving and therefore maps contours into contours corresponding
to the same scalar value. Its continuity follows from the continuity of α . Points of the
domain of the scalar field CT ( f ) are in one-to-one correspondence with contours of
the scalar field f .

Now, we turn to definition of the split tree functor. Points of the split tree are in one
to one correspondence with the sublevel components. We first introduce a few useful
operations on sublevel components that will allow us to specify the topology of the split
tree.

Definition 5. Let f : X → R be a continuous function with X a compact topological
space.

(i) For a sublevel component C let υ(C) be the maximum value of f in C,
(ii) For a compact set K let %K& f be the smallest sublevel component of f containing

K,
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(iii) For a real number s, let L f (s) be the family of all sublevel components C with
υ(C) > s,

(iv) For a sublevel component C, let Uf (C) be the family of all sublevel components of
f contained in but not equal to C.

With the notation introduced above, we can define the split tree functor.

Definition 6. The split tree functor S T : S → S is defined as follows.

(i) For an object f : X → R, define the domain Split(f) of S T ( f ) as the family of all
sublevel components of f . The subbasis of the topology on Split(f) consists of the
sets L f (s) and Uf (C) for all real numbers s and all sublevel components C. The
scalar function S T ( f ) : Split(f) → R is induced by f , i.e. defined by

S T ( f )(C) := υ(C).

(ii) For a morphism α : f → g in S , where f : X → R and g : Y → R, S T (α) is the
map of S T ( f ) into S T (g) induced by α , i.e. given by

S T (α)(C) := %α(C)&g.

The join tree functor J T : S →S can be defined in analogous manner. The only
difference is that it is based on superlevel rather than sublevel sets.

In what follows by the contour, split or join tree of a scalar field f we shall mean
respectively the scalar functions CT ( f ), S T ( f ) or J T ( f ) or their domains.

4 Labels

We use integer labels assigned to points of the contour, split or join trees to represent
topological properties of the corresponding contours, sublevel or superlevel sets. The
labels are constant along the edges of the trees and therefore finitely representable.
They can be used to find contours or sublevel or superlevel components with desired
user-specified topological properties.

It is convenient to think about labelings as functions that assign an integer to an
element of a set (in our case, the set consists of points of one of the trees). The la-
bel transfer operation that can be used to build complex labelings is described by the
following definition (see Figure 2 for an example)

Definition 7. Let A and B be two sets and α : A → Z be a labeling of the set A. A
function f : A → B is called summable if and only if the pre-image of every point b ∈ B
is finite. The labeling β of the set B defined by

β (b) := ∑
a∈ f−1({b})

α(a)

is called the transfer of α with f and denoted f#(α).
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Other operations on labels can be performed. Labelings of the same set can be point-
wise added or subtracted from each other. Also, one can apply an integer function to a
labeling (by applying it to the label of each element).

There are at least two elementary contour, split or join tree labelings that could
be used to build more sophisticated ones. The simpler one assigns the label of 1 to
every point of the tree. We shall denote this labeling by 1CT ( f ), 1S T ( f ) and 1J T ( f )
(respectively), where f : X → R is the underlying scalar field. Clearly, this labeling is
not of interest by itself, but it can be used to build more interesting ones by means of
label transfer or other operations.

The other labeling, introduced in [11], assigns the Euler characteristic of the cor-
responding contour, sublevel or superlevel set (respectively) to every point of the tree.
This labeling will be denoted by χCT ( f ), χS T ( f ) or χJ T ( f ) (respectively).

The above described labelings (together with the contour, join or split trees) can be
computed in O(n logn) time, where n is the size of the input scalar field (i.e. number of
simplices if f is piecewise linear or number of samples for a regularly sampled volume
dataset) using the algorithms of [4, 5, 11, 12, 15].

5 Finite representability

Contour, split or join trees may display pathologies for general continuous scalar fields
but, in most practical cases, they are finite trees. In particular, this is true for piecewise
linear scalar fields or regularly sampled scalar fields in any dimension (based on either
multilinear or nearest neighbor interpolation), provided the domain is simply connected.
Using nearest neighbor interpolation directly does not lead to continuous functions,
but still leads to well-defined trees if the algorithm of [3] is used to extract contours,
sublevel and superlevel sets. In this case, any sublevel set or component has the same
homotopy type as union of voxels corresponding to the samples inside it.

For the purpose of this work, contour, join and split trees are represented as finite
trees. We store a real value (the value of the induced function on the tree which we refer
to as height) at every vertex of the tree. A labeling of any type of tree is represented as
an assignment ᾱ of an integer to any tree element, i.e. vertex or edge. The process of
building the element of S from the combinatorial tree representation is straighforward
and basically boils down to drawing the graph – a special case of geometric realization
of a simplicial complex [10]. The scalar function is obtained by interpolating the heights
from the vertices to edges in any monotone manner. The label of a vertex v is ᾱ(v) and
labels of all points in the interior of an edge e are ᾱ(e).

The finite representation of a tree described above is not unique. One can subdivide
edges of the tree to represent an isomorphic object in S . This process is called aug-
mentation in [11]. Augmentation is useful when dealing with label transfer: Whenever
we want to transfer labels from a tree T1 to a tree T2 with a mapping g, we add images
of all vertices of T1 under g to the set of vertices of T2. This enables us to represent the
mapping g as a mapping of vertices of T1 into vertices of T2. Note that not all height-
preserving maps of vertices of T1 into vertices of T2 define a valid morphism in S
between the two trees: this is true only if, for every edge of T1, there exists a monotone
path in T2 connecting the images of the endpoints of that edge (Figure 1). In practice,
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Fig. 1. Left: a mapping of vertices of T1 into vertices of T2 that does not define a height-
preserving continuous map between trees (i.e. a morphism in S). There is no monotone
path between the images of vertices a and b in T2. Right: a mapping that does define a
morphism in S. For every edge of T1 there is a monotone path connecting the images of
the endpoints in T2.

Fig. 2. An example of a label transfer operation. The map between the trees is height-
preserving and is defined by the mapping of the vertices (dashed arrows). The labels are
transferred from the left tree to the right tree.

this is not an issue since the contour, split or join tree functors always produce valid
height-preserving maps between the trees, so their combinatorial representations have
the above property. An example of a label transfer operation for a height-preserving
map of two trees is shown in Figure 2.

6 Efficient label transfer

Labels can be transferred between trees in linear time using a generalization of the
procedures described in [2, 11]. Based on the discussion of Section 5, we define the
input to our procedure as:

(i) Two finite trees G1 and G2 with real values (heights) given at the vertices, repre-
senting two objects T1 and T2 in S .

(ii) A representation of a labeling α of T1: a function ᾱ assigning an integer to any
edge or vertex of G1.

(iii) A mapping ι that assigns a vertex of G2 to every vertex of G1, representing a
morphism f : T1 → T2. ι is required to preserve the vertex heights.
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Fig. 3. Two vertices a and b of the tree T1 are mapped into the vertex c of T2. The labels
β̄ (l) and β̄ (m) are not uniquely determined from the given information, but ∂+β̄(c) is.
To see that, take two points on edges l and m just barely above c (intersections of the
solid horizontal line and the edges l and m in the figure). Pre-image of these two points
under f contains exactly one points on each edge in N+(a)∪N+(b) (intersections of
the blue line with the edges e, f and h in T1). There may be other points in the pre-image
(in this example, a point on edge k). The pre-image of c consists of a, b and a point on
k. Now, a simple calculation based on the above observations and Definition 7 shows
that ∂+β̄ (c) = (β̄ (l)+ β̄(m))− β̄(c) = (ᾱ(e)+ ᾱ( f )+ ᾱ(h)+ ᾱ(k))− (ᾱ(a)+ ᾱ(b)+
ᾱ(k)) = ∂+ᾱ(a)+ ∂+ᾱ(b) = δ+(c).

The output is the function β̄ assigning an integer to every vertex or edge of G2 that
represents the labeling β = f#(α).

In what follows, for a vertex v of a tree by N+(v) (respectively, N−(v)) we shall
denote the set of all edges connecting v with a vertex of a higher (respectively, lower)
height. If γ̄ is a function assigning an integer to every vertex and edge of the tree,
we define ∂+γ̄(v) := ∑e∈N+(v) γ̄(e)− γ̄(v) and ∂−γ̄(v) := ∑e∈N−(v) γ̄(e)− γ̄(v) for each
vertex v.

The algorithm will use two variables per vertex v of the tree G2, δ+(v) and δ−(v).
Their initial values are given by the following formula.

δ±(v) = ∑
w:ι(w)=v

∂±ᾱ(w).

To initialize them in linear time, start by setting δ+(v) and δ−(v) to zero. Then, for
every vertex w of G1, add ∂±ᾱ(w) to δ±(ι(w)). It is not hard to see that β̄ , representing
f#(α), satisfies

∂±β̄ (v) = δ±(v) (1)

for every vertex v of G2 (Figure 3). The rest of this section is focused on computing β̄
that satisfies (1).

Pick a leaf vertex (i.e. vertex of degree 1) v of G2. Let e be its incident edge and v′
be the vertex of e other than v. There is a simple way to compute β̄ (v) and β̄(e) from
values of δ±(v). To see this, consider two cases.

Case A: v is above v′ (i.e. its height is larger). Since there are no edges having v as the
lower endpoint and the only edge having v as the upper endpoint is e, ∂+β̄ (v) =
−β̄(v) and ∂−β̄ (v) = β̄ (e)− β̄(v). Since we are looking for β̄ satisfying Equation
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Fig. 4. Slices through one of the input CT scans. Airway sections appear as dark, usually
regularly shaped blobs. Inside the lung area, they are surrounded by higher intensity
border. The images suffer from the typical medical image artifacts, including variations
of intensity inside the airways.

(1), −β̄ (v) = δ+(v) and β̄ (e)− β̄(v) = δ−(v). Hence β̄ (v) = −δ+(v) and β̄ (e) =
δ−(v)− δ+(v).

Case B: v is below v′. By an analogous argument, β̄ (v) = −δ−(v) and β̄ (e) = δ+(v)−
δ−(v).

In order to compute β̄ satisfying Equation (1), we select any leaf vertex v from G2.
Let v′ and e be as described in the previous paragraph. We compute β̄(v) and β̄ (e) as
described above and remove v and e from G2. Removal of the edge e affects ∂+β̄ (v′)
(in case A – since e disappears from N+(v′)) or ∂−β̄(v′) (in case B). We make up for
the removal as follows.

In case A: We subtract β̄(e) (i.e. δ−(v)− δ+(v)) from δ+(v′)
In case B: We subtract β̄ (e) (i.e. δ+(v)− δ−(v)) from δ−(v′)

This process is repeated until no leaf vertices exist. Since G2 is a tree, this reduces G2

to a single isolated vertex, call it v0. We finish by setting β̄ (v0) := −δ+(v0).
To determine the next leaf vertex to be processed efficiently, we maintain a list

containing all leaf edges of the current tree G2. At startup, all leaf vertices of the input
graph G2 are inserted into the list. Whenever a leaf vertex v is removed from G2 together
with its incident edge e, we test if the other vertex v′ of e becomes a leaf vertex. If it
does, we insert it into the list.

It is not hard to see that the label transfer algorithm runs in linear time in the size of
input (total sizes of trees G1 and G2).

7 Application to airway segmentation

The categorical approach is a convenient tool allowing one to detect features in scalar
fields. In this section, we describe a procedure for computing local thresholds for airway
segmentation from CT (Computed Tomography) scans. It is based on the expectation
that good local thresholds should lead to locally topologically simple and structurally
stable sets and hence can be seen as a local variant of the contour spectrum method of
[1]. Slices through one of our test datasets are shown in Figure 4.

A CT scan is a 3D image of resolution Nx ×Ny ×Nz. We will ignore any anisotropy
of the image and assume that the spacing between samples is 1 along every dimension.
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Fig. 5. Comparison between our local thresholding approach and global thresholding.
The airway obtained with a global threshold is shown in the right image in each box.

Using nearest-neighbor interpolation, one can obtain a scalar field f : D → R, where
D = [0,Nx −1]× [0,Ny −1]× [0,Nz −1] and the voxels of the CT scans correspond to
the integer lattice points in D.

In what follows, we will consider slices and thick slices of the input CT scan. For
integers i, j such that 0 ≤ i ≤ j < Nz, let Di, j = {(x,y,z) ∈ D|i ≤ z ≤ j }. We shall
write Di instead of Di,i. Slices and thick slices are defined as the restrictions of f to
the above defined sets: fi = f|Di

and fi, j = f|Di, j
. By ηk→i, j (i ≤ k ≤ j) we define the

inclusion-induced morphism fk → fi, j .
Our procedure uses a number of labelings of the edges of the tree S T ( fi,i+T ) for

i ∈ {0,1, . . . ,Nz −T − 1} where T is a user-selected constant. In order to measure the
total one-dimensional Betti number of the slices we use the labeling

L :=
i+T

∑
j=i

[η j→i,i+T ]#(1S T ( f j) − χS T ( f j)).

Note that f j in the above formula is a 2D section of f . Its sublevel components are two-
dimensional polygons. The Euler characteristics of a 2D polygon A is equal to 1−C,
where C is the number of holes in A. Hence the labels that are summed in the above
formula for L are all nonnegative.

To count the number of components in the intersection with each slice perpendicular
the the z-axis we use labels

I j := [ηi+ j→i,i+T ]#(1S T ( fi+ j))

for j ∈ {0,1, . . . ,T}. We are also going to measure the Euler characteristics of the entire
component using the labeling

T := χS T ( fi,i+T ).

The airway reconstruction is obtained as follows. We set a conservative but small
upper bound M on the intensity of a voxel inside the airway tree. We compute the label-
ings described above. Then, we mark all edges of S T ( fi,i+T ) with labels satisfying the
following conditions: (i) T = 1, (ii) L = 0 and (iii) 0 < I j ≤ 5 for j ∈ {0,1, . . . ,T}. The
conditions (i)-(iii) essentially enforce simplicity of the topology of the sections of the
sublevel component, its global topology as well as cleanness of the branching structure.
In particular, conditions (i) and (ii) force any marked component to have one and two-
dimensional Betti numbers equal to zero. Condition (iii) constraints the sublevel set to
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Fig. 6. Reconstructions for a high quality dataset for τ equal to (left to right) 0.0025,
0.005, 0.01, 0.02 and 0.04. Note that the results for τ = 0.01 contains considerably
more detail than the default value. However, decreasing τ below 0.01 causes leaks.

intersect any section, but at only a small number (at most 5) of connected components,
all of which need to be simply connected by condition (ii). We use the upper bound of
5 since more than 4 airway bifurcations typically do not exist in a thick slice of width
10 (which is the width of a thick slice used here).

The number of marked edges is typically quite high. A standard approach to elimi-
nate features that do not correspond to the structure of interest is to reject the ones that
are not stable enough. Here, we essentially use the edge length as the stability measure.
It works well for airway trees since the sublevel components that define the airway area
are typically significantly darker than their surrounding wall, so one can expect few crit-
ical points near the wall. Thus, we go over all marked edges. If its vertices are at heights
h1 < h2 we define its strength as min(h2,M)−min(h1,M). For each edge stronger than
a threshold τ , we compute the sublevel component (union of voxels) corresponding to
the point on the edge with value just below min(h2,M). We then union of all these
components over i ∈ {0,1, . . . ,Nz −1−T}.

The above procedure operates on slices and thick slices parallel to the xy-plane. We
repeat the same process for slices parallel to the other two coordinate planes and union
the results, obtaining a voxel set V . Now, we compute the connected component of V
containing a user-specified voxel inside the trachea. This is the output of our algorithm
shown in Figure 5.

We used T = 10 to obtain results shown in this section. For each test scan, the
voxel intensities were normalized before running the algorithm: for each axial slice, we
scaled the original intensities to make the mean intensity of the slice equal to 1. For
the normalized images, we set the conservative bound on intensity of a voxel inside an
airway M to 0.5 and the bound on edge strength τ to 0.04.

We compared the output of the local thresholding procedure described in this section
to segmentations obtained using the best possible global threshold (determined using
the algorithm of [9]). Results for four of our test datasets are shown in Figure 5. Local
thresholding generally yields more detail and has few artifacts such as leaks to the
lung area. We also noticed that for higher quality input datasets decreasing τ below the
default value of 0.04 may yield more detailed results (Figure 6). In practice, we expect
τ to play the role of a regularization parameter, i.e. help one avoid local thresholds
leading to noisy and structurally unstable local results. Ideally, this parameter should be
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Fig. 7. Manually specified points (black) shown with the airway tree computed using
our algorithm (blue transparent surface) for τ = 0.01 (left), τ = 0.02 (center) and τ =
0.04. The algorithm is able to correctly identify the major airways, but, on average, is
about 1 airway generation behind the human observer. There are a few small airway
branches that were identified by the algorithm and were not originally marked by the
observer. They were confirmed to be correct upon close examination of the image.

adjusted based on the quality of the input dataset. Figure 7 compares our output to a set
of manually extracted points near the centerline of the airway tree.

8 Conclusion

We described a general framework for designing and computing topological descriptors
for contours, sublevel and superlevel sets. The descriptors are represented as labelings
of the contour, split or join trees and obtained by combining and transferring labels be-
tween trees. To transfer the labels, we take advantage of maps between the trees induced
by value-preserving maps of scalar fields. We described a method for computing local
thresholds for airway segmentation from CT scans using this framework.

It would be interesting to explore extensions of the framework to maps that are not
value preserving or to general Reeb graphs. We would also like to work on decreasing
the sizes of the trees arising in applications such as the airway tree segmentation de-
scribed in Section 7 using ideas based on topology simplification algorithms. This may
speed up the algorithm so that interactive or automatic search for the optimal parameter
values (in particular, τ) becomes practical.
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Fig. 1. Visualizations of the hemoglobin molecule undergoing dynamic deformation as
oxygen binds to it. (a) A primal space visualization of the first time step with the heme
group identified. (b) Visualization of the complementary space of the first time step
shows the geometry of the interior. The surface has been made transparent, revealing a
large tunnel through the surface (yellow) with many mouths (red). (c) Zooming in on
the heme group reveals the structure of space around it while oxygen is bound. (d-f)
The corresponding images of (a-c) for the final time step. Complementary space has
changed dramatically both in the interior volume and near the heme group, though this
is not evident from the primal space visualizations. Comparing (c) and (f), we observe
that the connectivity of the mouth of the tunnel near the heme group has changed,
illustrating the time-dependency of the topological features of complementary space.
We quantify and discuss this example further in Section 3.5.

1 Introduction

Many computational modeling pipelines for geometry processing and visualization fo-
cus on topologically and geometrically accurate shape reconstruction of “primal” space,
meaning the surface of interest and the volume it contains. Certain features of a surface
such as pockets, tunnels, and voids (small, closed components) often represent impor-
tant properties of the model and yet are difficult to detect or visualize in a model of
primal space alone. It is natural, then, to consider what information can be gained from
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a model and visualization of complementary space, i.e. the space exterior to but still
“near” the surface in question. In this paper, we show how complementary space can be
used as a tool for both uncertainty and dynamics visualizations and analysis.

Uncertainty visualizations aim to elucidate the accuracy of a model by visibly iden-
tifying and subsequently quantifying potential errors in the model. For surface and vol-
ume models, drawing attention to topological errors is of particular importance as they
represent a more fundamental inaccuracy in shape than geometrical errors. Topological
errors include the presence of an unwanted tunnel in a surface, the absence of a desired
tunnel, and the existence of small extraneous components. We also consider errors re-
lated to the existence or absence of “pockets” in a surface as topological errors; pockets
on a primal space surface correspond to components in complementary space and the
number of components of a space is a basic topological property. As we will discuss,
it is important to determine if topologically distinct models occur within the inherent
uncertainty bounds of a model and complementary space provides a natural means for
visualizing uncertainty in topological structure.

Dynamics visualizations bring shape models to life by showing conformational
changes the model may undergo in the application context. In this case, there is un-
certainty not only in the particularities of the shape at any time step of the dynamics,
but also in the plausibility of the simulated movement as a whole. The creation of a
tunnel, the collapse of a pocket into a void, or the changing geometry of the interior
of a tunnel may be highly relevant to understanding a dynamic situation and assessing
its likelihood of simulating reality. By visualizing and as necessary quantifying comple-
mentary space at each stage, we better understand how our models need to be refined. In
Figure 1 and the included videos, we show an example of a dynamical situation where
complementary space visualization and quantification aids in understanding.

The specific problems we address in this paper touch on a variety of situations where
modeling is sensitive to topological errors in primal or complementary space. In each
case, we discuss how complementary space modeling provides a natural method for
processing, visualizing, and managing such errors. Our methods are inspired by chal-
lenges encountered in our work with biological models and hence most of our illustrated
examples use actual biological data from public sources and our academic collabora-
tors. Nevertheless, the computational techniques we describe here are useful in a variety
of settings including creation of exploded assembly images and videos, quantification
of complementary space features in CAD models, and visualization of potential errors
in any image-based modeling scheme.

We conclude this section with a brief review of related work in complementary
space modeling. In Section 2 we explain the relevant theory behind our two approaches
to complementary space modeling and fix notation. In Section 3 we describe particular
approaches to complementary space solutions we have implemented in our lab and
show some results. In Section 4 we conclude and discuss future work.

Related Work We discuss three approaches to complementary space modeling: alpha
shapes, surface propagation, and Morse theory for distance functions.

The notion of alpha shapes was developed by Edelsbrunner et al. [10] in the context
of molecular modeling with the aim of pocket detection. The method uses the Delau-
nay diagram on the atomic centers of a molecule and decomposes space into Delaunay
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tetrahedra near the molecule and into unbounded regions away from it. By assigning
a flow across Delaunay faces based on the radius of nearby atoms, the authors distin-
guish between those finite tetrahedra belonging to the alpha shape (i.e. the molecule)
and those belonging to a pocket. This method has been implemented and applied to a
number of proteins with some success [16]. In instances of broad pocket mouths, how-
ever, it is difficult for this method to detect the pocket and its coarse treatment of the
molecular model leaves geometrical refinement to be desired. It is also unclear how this
approach could be applied to non-molecular models.

The method of surface propagation represents a surface implicitly as the zero level
set of a distance function. The surface is subjected to an evolution equation first intro-
duced by Osher and Sethian [18]. To turn this from an analytical theory to a computable
implementation, Sethian developed a fast level set marching method [19] for propagat-
ing the given surface in the outward normal direction. Zhang and Bajaj [22] have used
this method to propagate a molecular surface outward until the surface has the topology
of a sphere and then back inward for an equal length of time. Pockets are then defined as
those points exterior to the initial surface and interior to the final surface. This method
has been implemented in our publicly available software package TexMol [7].

A more general approach to complementary space modeling uses the Morse com-
plex for distance functions. The Morse complex canonically decomposes a space rel-
ative to its features, as identified by the critical points of a chosen function. Cazals,
Chazal and Lewiner have computed the Morse complex for the Connolly function on
2-manifolds [4] which has shown some promise as a primal space method for shape
analysis. Natarajan and Pascucci have used the Morse complex for aid in visualization
of cryo-EM data [17]. The Morse complex for a distance function can be approximated
by inducing a flow on the Voronoi diagram of a point sample of the surface, as was char-
acterized by Edelsbrunner [9] and Giesen and John [12]. The distance function has been
used in a variety of applications, including image feature identification [5, 21], stable
medial axis construction [6], object segmentation and matching [8], annotation of flat
and tubular features [13], and detection of secondary structural motifs in proteins [2].
In previous work, we have shown how the distance function can also be used to detect
tunnels and pockets [1] for the purpose of surface curation. In this paper, we show how
these techniques can be used for the much broader purpose of uncertainty and dynamics
visualizations.

2 Background and Notation

We have implemented two complementary space modeling techniques: an out-and-back
surface propagation method and a Morse complex based method. We describe each in
detail below and compare them at the end of this section.

For out-and-back surface propagation, we begin with a meshed geometry of the
initial surface Σ and set M to be a large, contractible, compact subset of R

3 containing
Σ (e.g. a filled bounding box). We define the distance function hΣ by

hΣ : M → R, x 
→ ± inf
p∈Σ

||x− p|| (1)
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where the sign of the output is determined by the location of the input x relative to Σ
(inside or outside). We represent Σ implicitly as the zero level set {x ∈ R

3 : hΣ (x) = 0}.
The evolution equation for the surface is given by{

φt + F|∇φ | = 0,
φ(x,0) = hΣ (x).

Here, F is a speed function in the normal direction, usually chosen to depend on the
curvature. To define pockets, we use this method to propagate a molecular surface out-
ward with constant speed (F ≡ 1) until some time t when the surface has the topology
of a sphere. This surface is then propagated with speed F ≡−1 also for time t, creating
a final surface Σ ′. Pockets are then defined as those points exterior to Σ and interior
to Σ ′. This method has been implemented in our publicly available software package
TexMol [7].

The second approach we use for complementary space modeling employs the tools
of Morse theory on the distance function hΣ . We define

hP : M → R, x 
→ ±min
p∈P

||x− p||,

where Σ is the Delaunay diagram of a point sample P. The function hP is easy to com-
pute as opposed to hΣ which has no closed form in the general case. The critical points
of hP correspond to the intersection of Voronoi objects of Vor P with their dual Delau-
nay objects in Del P.

This explicit description of the critical point structure of hP allows for the creation of
a quickly computed discrete approximation of the Morse complex. The complex is used
to construct a geometry of complementary space by an algorithm we call COMPSPACE.
We described the details of this approach in detail in a previous issue of this series [1]
and do not repeat them here. Once we have the geometry output by this method, we clas-
sify components with one mouth as pockets and components with two or more mouths
as tunnels. We can then tag the mouth, pocket interior, and tunnel interior simplicies
different colors for visualization or compute their areas and volumes for quantification.

Comparison of the Methods We have implemented both methods described above
and find that they are each useful in different circumstances. The surface propagation
method is ideal for detecting wide, shallow depressions on surfaces as the method de-
tects regions of inward curvature. In molecular modeling, such depressions occur at the
active site for the binding of of a protein; in neuronal cell modeling, such depressions
occur at synapses, the intracellular region between two adjacent cells across which a
voltage signal is passed. The Morse complex method excels in detecting deeper pockets
and distinguishing tunnels from pockets as the Morse complex is laden with connectiv-
ity information. We next look at a number of such examples using this approach.

3 Applications

Complementary space visualization can be used for model checking, error analysis, de-
tection of topologically uncertain regions, topological preservation in model reduction,
and dynamic deformation visualization, as we outline in the following subsections.
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3.1 Ion channel models

Fig. 2. Visualizations of the acetylcholine receptor molecule. (a) The molecule is shown
as it would sit embedded in a bilipid cell membrane (grey) with the five identical subunit
colored for identification. (b) A cut-away view of the same model showing where ions
may pass through the center. (c) A transparent view of the molecular surface. (d) Each
subunit contains a pocket where acetylcholine binds. A complementary space view of
the pocket interior (green) and its mouth (purple) are shown in a zoomed in view after
the surface has been made transparent. (e) A cut-away view of the surface with the
interior of the tunnel (yellow) and its mouths (red) identified. (f) The same view as (c)
with the tunnel geometry opaque, showing how it lies inside the surface. Visualizing
the complementary space tunnel reveals that the dimensions of the pore opening on the
extracellular side are much larger than on the intracellular side. This is less evident from
the primal space visualizations.

Ion channels are a cell’s mechanism for regulating the flow of ions into and out of
the cell. They usually have two main structural confirmations: the ‘open’ configuration,
in which the tunnel through its center is wide enough to allow passage of the ions,
and a ‘closed’ configuration in which it is not. We look at the acetylcholine receptor
(PDB ID 2BG9) as a particular example of an ion channel. This molecule is embedded
in a cell membrane, as shown in Figure 2a, and is a control mechanism for the flow
of sodium and potassium ions into the cell. It is made up of five homologous (in the
biological sense) subunits. A conformational change from closed to open occurs when
acetylcholine, a small neurotransmitter ligand, docks into the five small pockets on
the exterior of the molecule near the tunnel opening in the extracellular region. When
acetylcholine fills one of these pockets, it causes the attached chain subunit of 2BG9 to
twist slightly. The combined effect from rotations in all five chains is a widening of the
mouth of the tunnel, akin to the opening of a shutter on a camera.

From this description of the action of the acetylcholine receptor, the importance
of accurate complementary space topology becomes evident. First, an accurate model
of the channel must feature a tunnel passing completely through the length of the sur-
face. Put differently, the complementary space should include a connected component
running the length of the molecule with mouths at opposite ends. Such a requirement
can be quickly verified by a complementary space visualization as shown in Figure 2.
Furthermore, the diameter of this tunnel at its narrowest point should be within the
range of biological feasibility, i.e. it should be wide enough to accommodate sodium
and potassium ions in the open confirmation and narrow enough to block them in the
closed confirmation.
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To quantify properties of the tunnel, we use the geometries output by COMPSPACE.
The output of COMPSPACE is a mesh of the tunnel’s interior surface, closed off by
its mouths. We compute this mesh for two models of the molecule - one in its ‘open’
state and one in its ‘closed’ state. The enclosed volume in the open state is 86,657 Å

3

and 60,045 Å
3

in the closed state. The mouth area in the open state is 5716 Å
2

and
3290 Å

2
in the closed state. The minimum diameter in the open state is 5.9 Å and 8.0

Å in the closed state. As expected, all the measurements - minimum tunnel diameter,
mouth area, and enclosed volume - are all smaller in the closed state than in the open
state. We note that the change in the minimum diameter from the closed to open state is
reasonable for accommodating ions whose width is a few angstroms. We will augment
this model in the future by incorporating electrostatic calculations of ion attraction and
repulsion forces to further explain the gate-like ability of the channel.

An additional consideration for this model is its geometry at the ligand binding site.
In terms of complementary space, we expect a small pocket on each of the subunits such
that its volume and mouth diameter are of plausible size compared to the acetylcholine
molecule. We show a visualization of the pocket in one subunit in Figure 2 d. While
such features are difficult to visualize and measure with a model based primal space,
they much easier to detect and manipulate with a model based on complementary space.

3.2 Ribosome models

The ribosome molecule provides another example of natural structural questions best
answered with a complementary space model. Ribosomes live inside cells and are the
construction equipment for proteins made within the cell. Proteins are assembled in a
large tunnel that passes through the ribosome. A copy of DNA data called mRNA is fed
through the tunnel in steps. At each step, the portion of the mRNA in the tunnel dictates
which type of amino acid is allowed to enter the tunnel and bind to the nascent chain. As
the chain gets longer and eventually terminates, it folds into the protein coded for by the
mRNA. The ribosome molecule is itself composed of two main subunits - 50s and 30s
- which come together to form the tunnel where the proteins are assembled. We show
the ribosome in both primal and complementary space views in Figure 3. As we begin
to measure the complementary space model, we will be able to provide evidence for or
against various hypotheses about the protein construction process such as whether there
is enough room inside the tunnel for proteins to begin folding.

Complementary space also aids in answering the question of how the ribosome
comes into its assembled state. The larger subunit alone (PDB ID 1FFK) is made up of
a long, coiled RNA strand, a short RNA strand, and dozens of proteins various types,
as shown in Figures 3a-c. While all the proteins involved can and have been identified
and labelled, the order in which they come together to form the subunit is unknown as
video capture techniques do not exist for the requisite nanometer-resolution scale.

We have created a video of a plausible assembly sequence and analyze its accuracy
via a complementary space method as follows. The PDB entry 1PNY provides atom
locations for the assembled ribosome molecule with tags identifying those atoms be-
longing to the various docked proteins. We separate the atoms according to their tags
and create meshed surface representations of each of the proteins and the coiled RNA
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Fig. 3. Visualizations of the ribosome molecule. (a) The ribosome itself is made up of
three RNA chains (brown) and dozens of proteins (various colors). We define the con-
tact area of each protein to be any portion of its surface lying within 4 Å of an RNA
chain. We compute these areas and use them to predict the order in which the proteins
bind to the RNA chains. (b) Two of the RNA chains (green and brown) belong to the
50s subunit while the third (yellow) belongs to the 30s subunit. We compute the contact
area between these chains (red) to show how the subunits come together to form the
protein assembly tunnel. (c) A different view of the RNA chains gives a better view
of the contact region but makes it difficult to see where the tunnel lies. (d) We run
COMPSPACE on a surface model that includes all the attached proteins and visualize
the surface (transparent) along with the tunnel mouths (red) and interior (yellow). (e) A
cut-away view helps elucidate the intricate geometry surrounding the protein assembly
region. These types of complementary space visualizations and subsequent quantifica-
tions provide insight to open questions such as whether amino acid chains have room
to begin folding before they exit the ribosome.

strands; the resulting geometries are thus still fixed in space according to the PDB lo-
cation information. For each protein geometry, we search for vertices lying within four
angstroms of the RNA geometry using the distance function hP. Triangles incident to
these vertices are tagged as part of the “contact region.”

We sum the areas of the triangles in the contact region for each of the 32 proteins.

We found that the contact regions with RNA vary greatly in size - from 324 Å
2

to 7385

Å
2
. The proteins with larger contact areas bind to RNA first while the ones with smaller

areas bind later as their access to RNA is partially blocked by other proteins.

3.3 Virus models

Viruses rely heavily on their geometry to infect cells and replicate their genome. Since
the goal of a virus is rapid reproduction, many viruses are made of identical subunits
forming a highly symmetrical capsid shell, thereby minimizing the number of unique
parts that must be synthesized. Accordingly, an accurate model of a virus should have
the same symmetries as the virus itself and complementary space can aid in detecting
such symmetries.

The example we consider here is the nodavirus which infects certain types of fresh-
water fish. A simple volume rendering is shown in Figure 4a with the symmetry ev-
ident. Selecting an isosurface from the range of possible values, however, presents a
challenge as noise in the data often upsets the symmetry as is seen in Figure 4b. The
problem in this case is not the presence of a small tunnel but the absence of one, both
at the indicated area and elsewhere. We therefore need a new type of complementary
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Fig. 4. Identification of “thin” regions in the primal space for the nodavirus dataset.
(a) A volume rendering of the 3D image data. (b) Tunnels are detected for the initial
selection of the isosurface. Note that in some places of 5-fold symmetry, only 4 mouths
of the tunnel are present. (c) The thin regions (blue) are identified as subsets of the
unstable manifolds of the index 1 saddles identified on the interior medial axis. The
circles (red) in (b) and (c) indicate that places where the fifth mouth of the tunnel should
be open indeed have thin regions. (d) The final selected isosurface has complementary
space topology consistent with the inherent symmetry of the 3D density map.

space visualization indicating “thin regions” where the surface comes close to a self
intersection; these regions are candidates for a missing tunnel.

Remarkably, the distance function hP plays an important role here also. The idea is
to compute the interior medial axis of the surface and detect those portions lying very
close to the surface, i.e. where hP is below some threshold γ . For surfaces derived from
image data, γ should be set to the resolution of the imaging device as any smaller size
features are probably unreliable and should be eliminated. In practice, the medial axis
is often noisy resulting in many erroneous thin regions, so we use instead two subsets
of it (U1 and U2, described below) which are stable against small undulations on the
surface. The method works as follows.

1. We first approximate the interior medial axis using the Voronoi and Delaunay dia-
grams already computed for complementary space modeling. The method for this
is described in a previous paper [14].

2. Collect the point sets

C1,IM = {index 1 saddles of hP on int. med. axis of Σ}
C2,IM = {index 2 saddles of hP on int. med. axis of Σ}

3. Compute the unstable manifolds of each of point in these two sets. This results in a
piecewise planar subset U1 of the medial axis for points from C1,IM and a piecewise
linear subset U2 for points from C2,IM .

4. At each Voronoi vertex lying on U1 or U2, compute the value of hP. This is given
by the circumradius of the Delaunay tetrahedra dual to the Voronoi vertex. If hP is
smaller than γ , mark the region as “thin” and color differently for visualization.

5. Collect the interior maxima falling into the thin subsets of U1 and U2 and com-
pute their stable manifolds. The stable manifold creates a geometry for the missing
tunnel.

Figure 4 (c) shows the thin regions (blue patches) on the U1 stable manifold (green)
identified for the nodavirus model. These can be selectively replaced by tunnels to cap-
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ture the correct symmetry. Alternatively, the presence of thin regions suggests a differ-
ent isovalue may be more appropriate, such as the one shown in Figure 4 (d).

3.4 Topological Consistency of Reduced Models

Fig. 5. Visualizations of the Carter dataset. (a) A basic primal space visualization of
the mechanical part. (b-c) Complementary space features identified and visualized. (d)
A visualization of the dense mesh representing the surface reveals that at 106,708 tri-
angles, it is probably amenable to decimation. (e-f) Using QSlim [11], the mesh is
decimated to 1000 and then to 500 triangles. (g-j) After refinement and geometric im-
provement on the 500 triangle model, it appears from the primal space visualizations (g
and i) that some of the tunnels have collapsed, a topological change. Complementary
space visualizations (h and j) reveal that in fact the tunnels are still present but with
perturbed geometry. Therefore, this reduced model has consistent topology with the
original.

Model reduction or decimation is the process of removing geometrical information
from a model while attempting to keep sufficient data for maintenance of important fea-
tures. This is used, for example, in coarse-grained models of proteins for electrostatic
simulations [3]. Protein surfaces are often defined based on atomic positions and radii,
obtained from the PDB. For large proteins, a significant speed-up in computational
time can be achieved by grouping atoms into clusters and treating the clusters as sin-
gle atoms with an averaged radius. Model reduction is also common for point-sampled
surfaces such as CAD models and geometries acquired from three-dimensional scan-
ners. If points on the surface can be culled without dramatic effect on the shape of the
surface, subsequent visualization and simulation pipelines will have reduced computa-
tional cost.

Complementary space visualization aids in determining when, if ever, the original
topology is lost in progressive decimation. Consider the industrial part model shown in
Figure 5. We use the software QSlim [11] to decimate the model from 106,708 triangles
to only 1000 and then only 500. At 1000 triangles, the model has lost some geometrical
precision, but still appears to have the same number of tunnels (5 e). At 500 triangles,
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however, some of the tunnels appear to have collapsed (5 f). We improve the geometry
by refinement and smoothing but still cannot tell from primal space visualizations if the
topology is correct (5 g and i). Complementary space visualizations, however, quickly
show that all tunnels are indeed present, albeit somewhat distorted (5 h and j). From
a topological standpoint, therefore, this reduction is consistent; the application context
will determine if it is acceptable from a geometrical standpoint as well.

3.5 Dynamic Deformation Visualization

Complementary space aids in visualizing and quantifying dynamic deformations of
models in addition to its aid for static models previously discussed. The omnipresent
consideration in a computer generated simulation of real movement is always whether
the dynamics are realistically plausible. In the context of molecular modeling, such
considerations are especially difficult to formalize as current video technology cannot
capture a molecule in vivo for comparison. As a result, various techniques have been
developed for automated animation of molecular models, including the popular method
of Normal Mode Analysis (NMA) [15, 20].

To determine whether the fluctuations simulated by these means have any func-
tional significance to the molecule, we must be able to measure the extent of changes
in particular features of the surface. This is especially important in molecules which
perform specific actions by modifying their complementary space features, such as the
ribosome. With a model of complementary space, we can measure the area of the mouth
of a tunnel or pocket used in the various processes and compare the sizes before and
after a conformational change. This gives insight into the relative magnitude of differ-
ent aspects of the shape reconfiguration; a seemingly significant deformation may only
involve a small change in the size of a pocket mouth or vice versa.

To demonstrate the benefits of complementary space dynamics visualization, we
consider the hemoglobin molecule. Hemoglobin is the vehicle used to transport oxygen
through the bloodstream. A single hemoglobin molecule is made of four subunits, each
of which can hold one oxygen molecule at its heme group. This conformational change
has been simulated by interpolation of PDB data for the bound and unbound states
by our collaborators Drs. David Goodsell and Arthur Olson of the Molecular Graphics
Laboratory at the Scripps Research Institute. Using this sequence of time steps, we have
generated videos of primal and complementary space dynamics. We compare the visual
differences in primal and complementary space further in Figure 1. Interestingly, the
complementary space has dynamically changing geometry, both in the region of the
active site and deeper in the interior of the molecule.

We also quantify this data by measuring the volume of the two main complementary
space features of the molecule detected by COMPSPACE: a tunnel and a pocket. For each

feature, we compute the enclosed volume (in Å
3
) and total mouth surface area (in Å

2
).

We show the results in Figure 6. The tunnel data shows a dynamic change in enclosed

volume over the time scale, with a max of 1963 and a min of 1498 Å
3
. The total mouth

area also varies widely, with a max of 679 and a min of 190 Å
2
. The pocket data exhibits

similar fluctuations.
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Fig. 6. Quantification of the complementary space tunnel in the hemoglobin time step
data. The undulating nature of the two data series reflects the dynamic deformation
hemoglobin undergoes while binding to oxygen.

4 Conclusion

Visualization of the complementary space of a geometrical model has the immediate
impact of elucidating pockets, tunnels, and other subtle structural features. We have
shown in this paper that an explicit geometry of complementary space is often essential
to allow for the measurement of certain aspects of the model such as tunnel mouth area
or pocket volume. These quantities can characterize the feasibility of models in biology
or the precision of CAD-based models. As we have discussed with the hemoglobin ex-
ample, complementary space also plays a useful role in creating and analyzing dynamic
visualizations. Finally, as seen in the case of ribosome assembly, complementary space
measurements can also guide the creation of primal space dynamics visualizations.

It is in this last vein of questions regarding assembly pathways that we intend to
expand this work. To identify likely assembly paths, we construct a graph whose nodes
are the assembly parts in question; in the case of the ribosome, these are the RNA
chain and the individual proteins which bind to it. Edges exist between parts which are
adjacent and edge weights are given by contact surface area. Assembly order is based
on relative affinity between parts and affinity is a function of contact area. Hence, an
assembly path relates closely to a maximally weighted spanning tree of the nodes. We
plan to elucidate this further in future work.
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Abstract. We describe a combinatorial streaming algorithm to extract features
which identify regions of local intense rates of mixing in two terascale turbu-
lent combustion simulations. Our algorithm allows simulation data comprised
of scalar fields represented on 728x896x512 or 2025x1600x400 grids to be pro-
cessed on a single relatively lightweight machine. The turbulence-induced mixing
governs the rate of reaction and hence is of principal interest in these combustion
simulations. We use our feature extraction algorithm to compare two very differ-
ent simulations and find that in both the thickness of the extracted features grows
with decreasing turbulence intensity. Simultaneous consideration of results of ap-
plying the algorithm to the HO2 mass fraction field indicates that autoignition
kernels near the base of a lifted flame tend not to overlap with the high mixing
rate regions.

1 Introduction
The objective of this work is twofold: first, to develop a method to characterize the
mixing length scales in a turbulent flow simulation on an instantaneous and local basis.
Second, to explore the interaction between mixing and autoignition. To accomplish this
we extend a segmentation method previously used to identify instabilities in a mixing
layer to identify regions where the local rate of mixing is large and to collect statistics
on the size of the resulting features. We also apply the segmentation algorithm to a
scalar representative of autoignition and use the resulting overlap to investigate the
relationship between the mixing and autoignition process.

Generalizing scientific insight obtained from detailed turbulent combustion simu-
lations requires appropriate quantification of the parameters of the simulations. Typi-
cally, dimensionless quantities based on the expected value — in a statistical sense —
of relevant length scales are employed to characterize the simulation. These quantities
provide a characterization of local effects based on global expected values. For com-
bustion processes, which are highly local phenomena, it is advantageous to have a local
identification and measure of the length-scale.

In our approach, we extract features defined as isosurfaces of the scalar dissipa-
tion rate field χ surrounding a local maxima, where the isovalue is a percentage of the
magnitude of the local maxima. The scalar dissipation rate indicates the rate of mixing
and will be defined more precisely in Section 3. The thickness of these regions is a
direct measure of the local mixing length-scale: we will conduct the analysis for two
combustion simulation datasets.
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The remainder of this paper is organized as follows: first, we will describe the fea-
ture detection and extraction pipeline in Section 2.2 after a short review of prior work
in this area. Next, we will briefly review the combustion physics which motivate this
effort in Section 3. Finally, in Section 4, we will apply the method to two combus-
tion simulation datasets and generate thickness distributions to validate the expected
behaviour before exploring the mixing / autoignition relationship in the second dataset.
Specifically, our results are:

1. A topology based segmentation of the high χ regions.
2. A new hierarchical merge tree structure encoding segmentation for a wide range of

thresholds. In a single pass over the data we extract an adjustable pre-segmentation
which can be quickly adapted to any particular threshold in a post-processing step.

3. Statistics on the morphology of the high χ regions.
4. A local measure of the mixing length-scale necessary to characterize the combus-

tion regime.
5. A demonstration that the autoignition process is most likely to proceed in the ab-

sence of locally high mixing rates.

2 Segmentation Algorithm

Our analysis pipeline has three stages. In the first stage, we connect the regularly grid-
ded input data into a mesh and output a stream of edges sorted on function value at their
lower vertex. In the second stage, we use the streaming edges as input and compute a
segmentation and merge-tree of the data. Both these stages are described below. In the
third stage, we compute the morphological statistics for analyzing the data, as shown in
Section 4.

2.1 Prior work

We provide a brief review of related work in feature detection, and shape analysis with
an emphasis on topology based methods.

Recently, topology based segmentation and feature detection has become increas-
ingly popular. One of the most widely used topological structure is the contour tree [1,
21] which encodes the topology of all isosurfaces in a particular data set. The contour
tree is used, for example, to enhance isosurface rendering [7] and the automated design
of transfer functions [6,19]. Carr et al. [2] use the contour tree simplified by various ge-
ometric measures to identify isosurfaces of interest. The methods presented in this paper
are similar in that we use the merge tree a sub-structure of the contour tree to represent
regions of locally enhanced mixing rates. However, as discussed in Section 2.2 we use
a novel metric called relevance to simplify the merge tree and thus define features.

A closely related family of methods use the Morse-Smale complex or sub-sets
thereof to represent features. The Morse-Smale complex was first introduced for sur-
faces by Edelsbrunner et al. [4] and extensions to the three-dimensional case can be
found in [5, 10, 11].

Laney et al. [16] use the stable manifolds of the two dimensional Morse-Smale com-
plex to analyze the mixing layer in a Rayleigh-Taylor instability. Gyulassy et al. [9] use
the ascending one-manifolds of the three-dimensional complex to define and analyze
core lines in atomistic simulations of porous media.
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2.2 Current method

Feature Segmentation Our feature definition is based on the merge tree of a scalar
function. Given a smooth function f : R

n → R the level set of f at isovalue s is defined
as all points in R

n with function value s. A connected component of a level set is called
a contour. The merge tree of f records the merging behavior of the contours of f as the
isovalue is swept top-to-bottom through the function range; see Figure 1. Each time the
isovalue passes a maximum a new contour is born and a new leaf appears in the merge
tree. Each time two contours meet they merge into a single component represented in
the merge tree as a joining of two branches.

(a) (b)

(c) (d)

Fig. 1. Merge tree construction: Sweeping the isovalue top-to-bottom through the entire
function range one keeps track of those portions of space that lie above the isovalue.
(a)-(d) Show several snapshots with the colored regions indicating regions above the
current isovalue. The leaves of the tree are the local maxima at which contours are
born, the interior nodes saddles at which contours merge, and the root is the global
minimum.

Each branch of the merge tree can be used to represent the subset of R
n defined by

the union of all its contours, indicated by the colored regions in Figure 1. In this paper
we are interested in regions around high χ values and we define these regions starting
from the leaf branches of the merge tree.

However, not every leaf branch should be considered. For example, regions with
low absolute χ value should not be included. Furthermore, two neighboring regions
with similar χ values should count as a single region. We represent these adaptations
by cutting and simplifying the merge tree. Given a small absolute χ value under which
no region should be considered we cut the tree at this value by disregarding all merges
below the threshold and deleting all branches completely below the threshold; see Fig-
ure 2(a). The cutting operation transforms the tree into a forest in which only the roots
have a χ value below or equal to the threshold.

After disregarding low χ regions the resulting trees are simplified by removing
branches. The traditional approach in topological analysis is to pair nodes for cancella-
tion and compute their persistence, the difference in their function values, as importance
measure and remove pairs of nodes in order of increasing persistence. The problem
with this approach is that persistence ranks pairs of nodes relative to the global func-
tion range. Only branches with a large absolute span in function value will survive.
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However, for our analysis the relative change in χ with respect to the local maximum
is more important than its absolute value. Therefore, we define a new measure called
relevance to rank branches. The relevance of a branch b with maximum u and saddle v
is defined as rel(b) = ( f (u)− f (v))/( f (u)− fmin) where fmin is the global minimum of
f . By scaling the local function value difference by the local maximum the relevance
measures the differences in function value with respect to the local neighborhood rather
than the global function range. Similar to the persistence based algorithm we then re-
move branches in order of increasing relevance, see Figure 2(b). Whenever we remove
a branch we merge its corresponding region with its neighboring branch. Thus we com-
bine neighboring regions if their merge happens at a function value close to one of their
maxima.

(a) (b)

(c) (d)

Fig. 2. Merge tree adaptation: (a) The tree of Figure 1(d) cut at an absolute threshold of
20. The absolute function values are on the right of each figure and we assume a global
minimum at 0. The lowest saddle is ignored and split into two local nodes creating a
forest of two independent merge trees; (b) The tree of (a) simplified using a relevance of
0.25. The yellow branch and its corresponding region are merged with its neighbor; (c)
The simplified tree of (b) with split points at multiples of relevance 0.2 (function values
in red); (d) The tree of (c) adapted to a relevance of 0.4. All non-selected segments are
transparent.

Once the tree is cut and the resulting forest simplified each leaf branch represents
a region. However, we are not only interested in counting the regions but also in their
geometric properties. Unfortunately, the regions corresponding to a branch do not nec-
essarily represent its geometry well. Merge tree branches can span a very large range
in function value and their length can vary widely depending on local configurations.
Therefore, one branch might have a relevance of 0.1 thus representing contours from
its local maximum down to 90% of its value while another has a relevance of 0.5 rep-
resenting a much larger volume in space. To increase the flexibility of the segmentation
we split all branches at fixed relevance values creating segments of bounded length, see
Figure 2(c).

Finally, we create a particular segmentation by choosing a relevance threshold and
only consider segments at this relevance value or below, see Figure 2(d). Notice, that
this final parameter choice represents a simple selection of a root branch and its sub-tree
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all of whose branches have a lower relevance value. Denote this root as the leader of
the segment. Selecting segments can be performed in a post-processing step. Therefore,
the split merge forest represents a highly flexible pre-segmentation that can be stored
compactly and is easily adaptable.

Streaming Construction. We take as input a regular grid tetrahedralized as follows:
Each unit cube is decomposed into tetrahedra along the main diagonal and the scalar
function sampled at the vertices of the grid is extended throughout the domain by
piecewise-linear interpolation. We output the merge tree of the function and a label-
ing of each vertex in the grid to a branch in the merge tree. For a vertex p denote its
branch Id as S(p).

To construct the initial merge tree we use a variant of the standard algorithm de-
scribed in [1]. The aim is to maintain a set of contours as the isovalue is swept top-to-
bottom through the function range recording the birth, merge, and the final death event.
However, instead of finding all local maxima and using priority queues to represent the
contours we pre-sort the data. We sort all edges in our mesh based on the function value
of their lower vertex and stream them to the merge tree module in order of decreas-
ing function value. The advantage of this strategy is that the merge tree computation
becomes very simple and that we can easily attach finalization information [13] to the
vertices.

Each input edge is handled in one of three cases: a birth of a new contour, a merging
of contours, or a expansion of a contour. For a birth, we create a new branch and assign
its unique id to the vertices of the edge. For a merge, we also create a new branch and
assign it as parent of the two branches representing the two merging contours. For an
expansion, the edge connects a new vertex to an existing contour/branch. We find the
lowest current ancestor of this branch and assign its id to the new vertex. We main-
tain ancestor information in a standard union-find structure using shortcuts to improve
performance. By creating new contours/branches at merge events we label vertices by
branch rather than by highest local maximum as is done in the standard algorithm. As
discussed above this correspondence is a crucial part of our segmentation strategy. Once
all edges have been processed all branches without a lower node are “capped” with a
minimum. At any time we only hold the unfinalized vertices in memory which results
in a very low memory foot-print. As a vertex gets finalized we store its index on disk to
be used later.

The cutting of the tree is performed implicitly by excluding all edges completely be-
low the given threshold. This leaves all branches that would normally span the threshold
value to be capped with a minimum resulting in the desired cut. We then perform the
simplification and split of the merge tree recording the corresponding mapping. Finally,
we re-process the segmentation file: For each vertex we read its branch id during the
initial construction and determine whether it was affected by either a simplification
and/or a split and change the id if necessary. Finally, we store the simplified merge tree
on disk. Once the computation is completed we have labeled each vertex p above the
cut-off with its corresponding branch id S(p) in the simplified and split merge tree.
Furthermore, we can use the stored merge tree to further adapt the segmentation to
explore different parameter choices.
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3 Combustion Dataset
In turbulent non-premixed combustion, where the fuel and oxidizer reactant streams are
segregated, the reactant streams must be molecularly mixed before reaction can occur.
Therefore, the turbulent mixing rate is a key quantity in determining the overall burn-
ing rate and efficiency. In general, as the mixing rate increases, reaction rates increase
and the overall efficiency may increase. A non-premixed flame has a well-defined inter-
nal structure (see Figure 3). Beyond a critical rate of mixing reactions cannot keep up
with the mixing and the flame quenches locally. This undesirable situation can lead to
increased emissions. If quenching is pervasive, then global blow-out can occur, which
would be catastrophic, for example, in an aeronautical gas-turbine engine. In an au-
toignition situation, there is a similarly well-structured relationship between the species
concentrations but the relationship is in time instead of space as radical concentrations
build up to sufficient levels to establish a flame.

Turbulent mixing is characterized locally by the scalar dissipation rate, χ , which is
equal to twice the product of the molecular diffusivity and the square of the magnitude
of the mixture fraction gradients:

χ ≡ 2D
∂ξ
∂xi

∂ξ
∂xi

. (1)

and is connected to the rate at which scalar fluctuations decay due to diffusive processes.
The mixture fraction ξ is the mass fraction of atoms from the fuel stream in the reactant
mixture and varies between 0 in the oxidizer stream and unity in the fuel stream. The
optimal condition for combustion typically occurs at stoichiometric conditions where
the fuel and oxidizer are consumed in their entirety. The scalar dissipation rate is re-
quired in virtually every turbulent combustion model [15, 17, 18] and its dependencies
upon the turbulent strain rate and combustion heat release rate are highly sought after.
The presence of turbulent flow results in a highly complex and chaotic influence on the

H
H2
HCO
HO2
O
OH

Mixture Fraction

T

Fig. 3. Laminar flame profile illustrating highly structured ordering of key quantities in
physical space at left, and mixture fraction coordinates at right.

mixing process, which ultimately influences the combustion process. Hence, when we
discuss the influence of turbulence on combustion, we are largely referring to the influ-
ence of turbulence on mixing. The presence of combustion and associated heat release
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results in a complicated feedback mechanism where the combustion alters the turbulent
flow, further complicating the situation.

It is known from experiments (e.g., [14]) and previous analysis of DNS results
[8, 20] that regions of locally intense mixing resulting from turbulent strain in a non-
reactive jet or shear layer lead to ramp-cliff structures or intense mixing rates inclined
at ∼45 degrees to the jet axis, i.e. along the directions of principal strain rates. These
structures are characterized by relatively large dimensions in the plane tangential to the
most compressive principal strain rate eigenvector, and a much smaller dimension in
the direction of the most compressive principal strain rate eigenvector. It is less well
understood what the orientation and morphology of χ is in a reactive flow undergo-
ing dilatation effects from heat release. Previous statistical models of χ have relied on
analogous integral-scale quantities such as the turbulent kinetic energy and its dissipa-
tion rate, or assumed scalar variance and dissipation rate. However, 3D measurements
have shown that the thickness of regions of high χ scale not with the integral scale of
turbulence, but rather, with the small-scale turbulence, i.e. the Kolmogorov or Batche-
lor scales. The advent of terascale 3D direct numerical simulations (DNS) of moderate
Reynolds number turbulent reactive jet flames has enabled the direct computation of χ
and its evolution [12]. For the purpose of characterizing the regime of the simulation,
we no longer need to estimate local mixing dimensions from the large scale expected
values of the turbulence field, as we have the scalar dissipation rate field itself available.
The method presented here is devised to use the resolved χ field to identify and measure
the structures described above.

The first simulation data we treat is a temporally-evolving turbulent CO/H2 jet flame
undergoing extinction and reignition at different Reynolds numbers [12]. The simula-
tions were performed with up to 0.5 billion grid points. The configuration is shown on
the left of Figure 4. Periodic boundary conditions in the mean flow (x) direction result
it a situation where the mixing rates increase until approximately midway through the
simulation, after which point they begin to decay.

The second simulation is a spatially-evolving lifted turbulent ethylene/air jet flame.
This simulation was performed on a much larger grid, up to 1 billion grid points, and is
depicted on the right of Figure 4. In this arrangement, the configuration is statistically
stationary in time. Spatially, the rates of mixing decay downstream from the inlet. The
task we set for ourselves is to answer the following question: can we measure, on a
local basis, the mixing lengthscale in such a way that we can obtain a distribution of the
mixing lengths within a particular volume?

4 Application and Results

4.1 Application to dataset A: temporal jet flame

In the application to the first data-set, we apply the method to several time steps, with
relevance R = 0.85, to validate that the resulting features behave as we would expect
from the physics of the situation. Two typical features are shown in Figure 5.

The high scalar dissipation rate features are predominantly pancake shaped but are
embedded in R

3 with undulations as shown in Figure 5. Using the shortest side of
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Fig. 4. Schematic of combustion scenarios. Left, the temporally evolving jet. Right, the
lifted jet.

Fig. 5. Left, an isosurface of a feature with its oriented bounding box. Right, the isosur-
face of a feature and its medial axis. The inset zooms a portion showing the medial axis
vertices and lines connecting them to the closest point on the isosurface.

an oriented bounding box (such as obtained from principal component analysis) for
thickness is an over-estimate. Instead, we first compute the medial-axis of the isosurface
that represents the feature. For each vertex on the medial axis we compute the distance
c to the closest point on the isosurface; the thickness at that point of the medial axis is
defined as 2c. This method gives us a distribution of thickness values for each feature.

Figure 6 shows the thickness distribution of segments within four time-steps. This
is our primary interest, as this thickness indicates the physical lengthscale of the mixing
region. The distribution functions show that thickness tends to decrease from t = 0.05ms
to t = 0.1ms and then increases through t = 0.2ms. This is the expected behavior; as
mentioned earlier, the peak mixing rate is midpoint in the simulation, near t = 0.1ms,
after which the mixing rate decays.

4.2 Performance
The data is available for dataset A is a sequence of 241 time-steps; each time-step is a
regularly gridded sample of 768×896×512 float values. We run all our computations
on a 64bit Linux cluster with 3.4GHz Intel processors and 6GB memory per node.
All our computations can be submitted to a batch system. We present memory usage
and running times for each stage of the computation pipeline in Table 1. All numbers
are averages for the processing of a single time-step. Overall the batch system schedules
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Fig. 6. Distribution of segment thickness for Dataset A (temporal jet).

several jobs together and we are able to process all time-steps in the order of a few hours.
Although we use a conservative cut-off for ignoring low values of χ while computing
the segmentation we are able to compute it in a few minutes. We could choose to be
more conservative by including more edges at the cost of slightly more running time.
The most time consuming stage is the statistics computation. This is expected as this is
also the most compute intensive stage: we extract an isosurface for each segment and
compute its medial axis using tcocone [3]. However, once this stage is complete we
store all required statistics in a file per time-step so that we can extract various plots
from these data quickly.

time (hh:mm:ss) Memory
Streaming edges 00:29:28 4.4GB

Segmentation 00:03:18 361.0MB
Statistics 01:03:36 370.0MB

Table 1. Performance statistics for one time-step at each stage of the pipeline.

4.3 Application to dataset B: lifted flame

The second dataset is statistically stationary in time, so we perform our analysis for
only one time-step. However, it is spatially evolving, so we collect statistics for several
positions downstream of the inlet. The scalar dissipation rate decays (with respect to the
peak values and mean) with the distance from the inlet. In Figure 7, thickness statistics
analogous to those shown above for the temporally evolving jet are shown.

In comparison to the jet dataset, the χ segments in the lifted flame data-set are
much smaller and thinner. This is consistent with the physical differences between the
two simulations; the lifted data are much more highly strained near the jet inlet, so one
would expect that the mixing lengths would be smaller (corresponding to higher rates).

In the region near the inlet, autoignition kernels, which can be identified by a local
maxima in the HO2 concentration, develop and eventually transition into a fully burning
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Fig. 7. Distributions of segment thickness for Dataset B (lifted jet).

flame. Figure 8 (left) shows features obtained by segmenting the HO2 field along with
the overlapping χ features. As the χ features identify regions where the rates of mixing
could dissipate the radical build up and destroy the autoignition kernel, it is expected
that the kernels will live outside the high χ regions. This is indeed the case: Figure 8
(left) shows only those χ features that overlap with the autoignition features. Figure 8
(right) shows a close-up view with all of the χ features, which clearly occupy a large
percentage of the space, yet overlap minimally with the autoignition features.

Axial position # overlap points % of HO2 overlap points
[ 0, 250] 12 0.39
[250, 500] 204 1.00
[500, 750] 2,182 2.40
[750,1000] 4,699 5.01

Table 2. Count of overlap between HO2 and χ features

As the kernels grow and transition to a fully burning flame, they are less adversely
affected by high mixing rates. Table 2 gives an account of the variation of the over-
lap with distance from the inlet: the fraction of points within an autoignition feature
overlapping with a dissipation rate feature is small, and smallest near the inlet.

5 Conclusions

We have presented a method that is capable of determining a highly localized measure
of the mixing length. Application to two terascale combustion data sets indicates that
the method can be applied to very large datasets on relatively modest hardware. This is a
particularly useful feature of the method, as the hardware to perform the original simu-
lation is out of reach of a large fraction of the combustion community. Future work will
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HO2feature

X feature

Flame surface

Fig. 8. Relationship between χ and HO2 fields. Left, all HO2 kernels below the base of
the flame with χ segments that overlap them. Right, a close-up side view showing all χ
segments and HO2 kernels. χ segments are blue, HO2 are golden.

focus on comparison of the mean mixing length determined by this method to the tradi-
tional scaling laws when averaged over a large spatial / temporal region. Although we
extracted statistics for absolute measurements in this work to avoid ambiguity, we could
have as easily normalized the thickness by the chemical lengthscale characterizing the
reaction. In his form, the method can provide a direct measure of the ratio between
the mixing length resulting from the turbulent flow and the reaction lengthscale which
can be used to characterize the combustion simulation. The same local feature which is
useful to measure the mixing length is also a volumetric entity; comparing the results
of segmenting multiple fields provides information about their spatial proximity. In this
case, segmentation of χ features considered together with segmentation of HO2 features
indicates that autoignition kernels are preferentially found in regions of low mixing.
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Abstract. Tracking features and exploring their temporal dynamics can aid sci-
entists in identifying interesting time intervals in a simulation and serve as basis
for performing quantitative analyses of temporal phenomena. In this paper, we
develop a novel approach for tracking subsets of isosurfaces, such as burning re-
gions in simulated flames, which are defined as areas of high fuel consumption
on a temperature isosurface. Tracking such regions as they merge and split over
time can provide important insights into the impact of turbulence on the combus-
tion process. However, the convoluted nature of the temperature isosurface and
its rapid movement make this analysis particularly challenging.
Our approach tracks burning regions by extracting a temperature isovolume from
the four-dimensional space-time temperature field. It then obtains isosurfaces for
the original simulation time steps and labels individual connected “burning” re-
gions based on the local fuel consumption value. Based on this information, a
boundary surface between burning and non-burning regions is constructed. The
Reeb graph of this boundary surface is the tracking graph for burning regions.

Key words: Topological data analysis, Feature tracking, Combustion simulation,
Reeb graph, Tracking graph, Tracking accuracy

1 Introduction

Understanding combustion processes is a fundamental problem impacting areas such
as engine and stationary power plant design, both in terms of production efficiency
and pollutant emission. Fuel-lean flame configurations are of particular interest since
such flames generically produce far lower pollutants than comparable fuel-rich or sto-
ichiometrically mixed flames. However, such flames are difficult to stabilize in the
sort of quasi-steady robust configurations necessary for practical applications, partic-
ularly when using advanced fuel mixtures, such as hydrogen-air and hydrogen-seeded
methane-air. These advanced fuel mixtures, selected to reduce the use of carbon-based
fuels and subsequent emissions, often burn in cellular patterns of intense chemical re-
action, separated by regions of local extinction. A broad range of classical flame propa-
gation models used in analysis and engineering design of practical combustion systems
are based on the notion that a flame is a thin continuous interface separating cold reac-
tants from hot products. Such models are not suitable for modelling cellular flames. It
therefore is of great practical interest to understand this mode of combustion, with the
ultimate goal of incorporating the cellular burning behavior into revised engineering
design models.

In the present study, detailed numerical simulation is used to evolve a turbulent re-
acting hydrogen-air mixture in an idealized configuration. Characteristics of the flow
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Fig. 1. Burning regions on an isotherm of a lean flame. (Left) Isotherm (T=1225K)
extracted from a single time step and colored by fuel consumption rate. Blue signifies
low fuel consumption, and orange signifies high fuel consumption. (Center) Burning
regions are those portions of the isotherm where fuel consumption exceeds a given

threshold (here: 2.6
kgH2
m3s

of H2 consumption). (Right) Boundaries of the burning regions
identified by contouring.

and turbulence used in the simulation represent conditions similar to those found in
a practical turbulent combustor. The fields computed include the velocity and a set of
scalar quantities representing the temperature and mass densities of a large number of
molecular species. In the simulation these quantities are evolved in detail, naturally
forming into locally disconnected (cellular) burning structures. It has long been known
that the cellular hydrogen flame patterns correlate with a narrow band of intermedi-
ate temperature. Because of this correlation, we can build a simplified analysis of the
detailed simulation data by looking at the variable rate of combustion along a repre-
sentative isotherm (see Fig. 1, left illustration, for a representative example of such an
analysis). Thresholding the rate of fuel consumption on the isotherm yields a geometric
representation of the burning cells (Fig. 1, center illustration), and the time-evolution of
these structures provides an important basic characterization of the flame.

Our goal is to compute a tracking graph whose nodes represent creation/destruction
and split/merge events of burning cells and whose arcs represent evolution of cells over
time. Tracking burning cells over time presents two main challenges. First, the aim is
not to track surfaces per se, but features embedded in time-dependent surfaces. Second,
to utilize the tracking graph fully, a correlation between a specific burning cell in one
time step and a node/arc on the tracking graph must be maintained.

We derive this information by considering the boundaries of burning regions (Fig. 1,
right illustration), obtained via a second contouring operation based on the fuel con-
sumption rate on the triangle mesh comprising the isotherm, and determining when
these boundaries split and merge over time. Our approach extracts the boundary of the
space-time volume that each of these contours sweeps out over the course of the sim-
ulation and reduces the four-dimensional tracking problem to the computation of the
Reeb graph of the resulting surface (using time as a Morse function), which encodes
merge and split events. We also provide an in-depth analysis of tracking accuracy by
comparing simulations performed under varying conditions and with different temporal
and spatial resolutions. While the examples provided in this paper focus on the analy-
sis of combustion simulations, the underlying framework for topology-based tracking
obviously applies to a wide range of application areas.
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2 Related Work

Time-dependent Isosurface Extraction. Given a manifold M and a scalar function
f : M → R, an isosurface or level set of f at isovalue s is defined as all points on
M with function value s. If M is described by a three-dimensional rectilinear grid,
isosurfaces can be efficiently constructed using the Marching Cubes algorithm [1, 2].
More recent work [3] has extended this approach using convex hull computations to
define triangulations within a grid cell. This method eliminates the need for extensive
case tables, ensures consistency, and easily generalizes to higher dimensions.

One can exploit this generality to visualize time-varying isosurfaces by treating
time as an additional dimension creating the space-time manifold M×R. Extracting
a level set of M×R results in a three-dimensional hypersurface (embedded in four-
dimensional space-time) comprised of tetrahedra. Intersecting this volumetric space-
time mesh with planes of constant time values results in traditional two-dimensional
isosurfaces at a given time. Therefore, the hypersurface is a comprehensive description
of the temporal evolution of the corresponding two-dimensional isosurfaces.
Topological Analysis and Reeb Graphs. By construction, a level set of f provides only
limited information on f as a whole, but very detailed information about a specific func-
tion value. To understand the global behavior of f , it is useful to analyze its contours,
which are the connected components of all level sets of f . Contracting the contours of
a Morse function f into points creates the Reeb graph, which encodes the topology of
all level sets of f . Nodes of the Reeb graph are formed by the contours passing through
critical points of f , i.e., points where contour topology changes. Its arcs are formed by
the remaining contours, i.e., by the family of contours that do not change topology. For
more details on Reeb graphs and algorithms to construct them efficiently, we refer the
reader to the description by Pascucci et al. [4].

In our application, the boundaries of burning regions sweep out a two-dimensional
space-time surface S (see Fig. 2). Using the time-coordinate of all vertices of S as the
function f , the level set of f at value t describes the cell boundaries at time t. Thus, the
Reeb graph of f encodes the temporal evolution of the boundaries and can be used as
the tracking graph describing how cells merge and split over time.
Feature Tracking. Defining and tracking features has long been of interest to the vi-
sualization community. Most relevant to our work is feature tracking in the context of
scalar field visualization. Here, one usually is interested in tracking features defined by
thresholding or isosurface extraction [5].

Tracking algorithms can roughly be divided into two categories: tracking by geom-
etry and tracking by topology. Methods in the former category use various forms of
overlap and/or distance between geometric attributes, e.g., the center of gravity [6] or
volume overlap [7, 8] for tracking. Laney et al. [9] use a similar approach to track bub-
ble structures in turbulent mixing. Ji et al. [10, 11] track the evolution of isosurfaces in
a time-dependent volume by extracting the 3D space-time isosurface in a 4D space.

Methods in the latter category [12, 13] compute tracking information topologically
using, for example, Jacobi sets [14], which describe the paths all critical points take
over time. Sohn and Bajaj [15] introduce a hybrid approach using volume matching
similar to Silver and Wang [7, 8] instead of topological information [13, 14] to define
correspondences between contour trees.
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Fig. 2. Traced over time, the boundaries of the burning regions (Fig. 1, right illustration)
sweep out surfaces. In this figure, the swept out surfaces are colored according to time
(ranging from blue for early time steps to red for later time steps), which we use as the
Morse function in a Reeb graph construction step.

Geometric tracking, in general, is ill-suited for the flame surfaces of interest here.
As illustrated by Fig. 1, flame surfaces may be convoluted and contain many densely
packed burning cells. As a result, geometric distance is not a good predictor for tracking
burning cells, as flame sheets may fold on themselves, creating cells in close proximity
yet far apart relative to the flame surface. Current algorithms for topological tracking
using Jacobi sets are not capable of dealing with large embedded surfaces.

3 Feature Tracking Algorithm
An important aspect of the combustion process is how burning cells evolve over time. In
particular, scientists are interested in determining how and when cells are created/des-
troyed and merge/split. To obtain this information, we track the boundaries of burning
cells over time. For each time step, these boundaries are a set of curves, as shown in
Fig. 1, right illustration.

If we follow these boundary lines over time, they sweep out surfaces; see Fig. 2.
Using a 3D time surface in four dimensions, it is possible to extract this swept surface
directly. In a first step, one views the data set as a 4D data set, with time as the fourth
dimension, by concatenating all available time steps. The resulting data set serves as
input for Marching Cubes to extract a 3D time surface comprised of tetrahedra. Fur-
thermore, one also calculates the fuel consumption rate at the vertex positions and as-
sociates the rates with the individual vertices. A second step computes an isosurface of
fuel consumption rate on this tetrahedral mesh, resulting in the swept boundary surface
as shown in Fig. 2.

Based on this swept surface, it then is possible to track how burning regions change.
If we take this swept boundary surface as a manifold, then the elapsed simulation time is
a Morse function on it, and level sets correspond to boundaries at a given time. Critical
points, where the number of contours of the level set changes, correspond to the changes
of the number of burning cells. For example, in Fig. 2, in the area marked with the letter
“A” a new burning region is created, and in the area around the letter “B,” a burning
region splits into two separate burning cells. Consequently, the Reeb graph of the swept
boundary surface with time as a Morse function also is a tracking graph for individual
burning cells (after simplification).

Our actual implementation is based on this fundamental concept with some addi-
tional refinements that we describe in the following. Due to data set size, we pipeline
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Our method traces the evolution of burning regions and extinction pockets by
tracking their boundaries. This figure illustrates the underlying concepts for the 2D case;
the 3D case is analogous. (a) Input data comes as a set of discrete time slices. (b) We
treat time as an additional, third dimension and extract an isosurface. The resulting time
surface makes it possible to correlate isotherms from different time steps with each other.
(c) We then extract isotherms (contour lines in 2D) for all original time steps by filtering
all lines that have only vertices in the time step of interest (bold red lines in the figure).
(d) We classify isotherm vertices at original time steps as either burning (solid black
discs in the figure) or non-burning (empty circles in the figure) based on the local fuel
consumption rates and simplify the segmentation using a Morse complex-based method.
We note that vertices between time steps (arrowed vertex in figure) are not classified, yet.
(e) We classify vertices between time steps (arrowed vertex in figure) by thresholding,
and extract boundaries separating burning regions and extinction pockets (bold orange
lines). (f) To simplify this step, we snap intersection points on edges that connect burning
and non-burning vertices to the burning vertex (bold orange lines). We do so because it
simplifies data processing and does not change the topology of the boundary surface.
The Reeb graph (not shown) of the resulting surface is the desired tracking graph.

individual processing steps and stream data sets through this pipeline. While our
pipeline performs all these steps on 3D data sets, we use the 2D case shown in Fig. 3 to
illustrate the underlying concepts.

Extracting the Time Surface and Isosurfaces at the Original Time Steps. To extract
the boundary of burning cells over time, we need a means to correlate isosurfaces in
different time steps to each other. For this purpose, we add time as an additional dimen-
sion to the original 3D grid, resulting in a (virtual) 4D hyper-grid containing all time
steps of the simulation. We then extract a 3D isovolume that encodes the time evolution
of the flame surface, see Fig. 3(b). Intersecting this 3D (tetrahedral) isovolume with a
plane of constant time produces the flame surface for that particular time step. We use
the algorithm of Bhaniramka et al. to compute the isovolume and refer the reader to [3]
for a more detailed description.

Here we are interested only in isosurfaces at times that correspond to original time
steps in the simulation. In this special case, intersecting with a plane of constant time
can be reduced to a filter operation. Starting from the space-time tetrahedra, we obtain
the isosurface as the set of all tetrahedra-faces (triangles) whose vertices all lie in the
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time step of interest. We perform this filter operation for all time steps of the original
data set and save the corresponding flame surfaces. In addition to vertex positions, we
also interpolate the fuel consumption scalar field and associate these values with the
appropriate vertices.

Classification of Burning and Non-Burning Regions. Once all isosurfaces are ex-
tracted, we segment the surface for each time step into burning and non-burning re-
gions. For this purpose, we do not apply simple thresholding to identify burning cells.
Instead, we calculate the Morse complex of the isotherm for each individual time step,
with fuel consumption as the associated Morse function [16]. This approach supports
labeling each region with a unique identifier and performing persistence-based [17]
simplification on the number of burning regions, merging small burning regions with
nearby larger burning regions. While the hierarchy produced by this approach allows
free selection of the fuel consumption threshold and the simplification persistence, we
compute the segmentation for tracking using a persistence of 0.1 and a fuel consump-
tion threshold of 2.6. These values are based on parameter studies performed in [16].
The result is a segmentation of the flame surfaces into individual burning cells that as-
signs a unique (within the time step) identifier to each cell. We propagate this identifier
to all interior vertices of each cell.

Remember that the vertices of the flame surfaces are vertices of the space-time
isovolume as well. Therefore, once we have computed the individual segmentations,
only vertices in the regular time steps of the isovolume are classified as burning/non-
burning, and the burning ones have a additional identifier attached. (We note that even
though Fig. 2, shows a projection of the swept surface in 3D space, the triangle mesh
actually is embedded in four-dimensional space, where each vertex also has a time
coordinate. It is possible that the time coordinate of a vertex lies between two time steps
of the simulation.) The remaining non-classified vertices are those falling between time
steps. We classify these as burning/non-burning based on their fuel consumption value,
but assign no identifier. This value of fuel consumption must be interpolated from the
data available at adjacent time steps.

Extracting the Swept Boundary Surface. Based on the classification results, we could
use a standard marching tetrahedra algorithm to extract the boundary between burning
cells and extinction regions, shown as the bold orange line in Fig. 3(e). Each vertex
of this space-time surface lies on an edge of the isovolume that connects a burning to a
non-burning vertex (of the isovolume). As will be discussed later, we only are interested
in the connectivity of the space-time surface and not its geometry. Therefore, we can
simplify the extraction by snapping the intersection points on the tetrahedra edges to
the burning vertices of the isovolume as shown in Fig. 3(f). This snapping reduces the
extraction of the space-time surface to another filter operation. Starting from the isovol-
ume, we discard all tetrahedra whose vertices are either all burning or all non-burning.
We also discard tetrahedra with only a single burning vertex since the snapping opera-
tion will reduce the iso-triangle to a single point that does not contribute to the surface
connectivity. Tetrahedra that have two burning and two non-burning vertices require
special attention. Here, snapping intersection points to the burning vertices results in
two degenerate triangles, coinciding with the edge connecting the burning vertices. To
maintain proper connectivity, we must add at least one of these triangles to the surface.
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(a) (b) (c)

Fig. 4. Using the Reeb graph to compute a tracking graph. (a) Several time steps of a
2D data set with the boundaries of several cells indicated. (b) The space-time boundary
created by the boundaries of the cells in (a) as they are interpolated over time. The
surface is color coded using time as the Morse function, and the Reeb graph for the
surface is shown in white and grey. (c) Each cell within a time step is assigned a unique
identifier, which we use to augment the Reeb graph. Note that the final tracking graph
still contains nodes between time steps without any identifier (shown in grey).

Fig. 5. An extended merge event: Two cells (initially labeled 12 and 21) merge and
split twice before ultimately merging. These are inherent instabilities in segmenting by
thresholding caused by saddles very close to the cut-off.

Finally, tetrahedra with three burning vertices produce exactly one triangle identical to
one of its faces that we add to the surface.

Computing the Tracking Graph. Ignoring the snapping operation, the space-time sur-
face is the surface defined by the boundaries of the burning cells as they evolve over
time, see Fig. 4(b). Computing the Reeb graph of the time function on this surfaces
yields the tracking graph of the cells, as shown in Fig. 4 (c). Since the Reeb graph ig-
nores the embedding of the underlying manifold (the space-time surface) snapping the
vertices to those of the isovolume leaves the Reeb graph unchanged. As discussed in
Sect. 2, each arc of the Reeb graph corresponds to contours that do not change topology
as the function value changes. The Morse function in this case is time and therefore, arcs
describe boundaries of burning cells that, over time, neither change genus, nor interact
with other cells. Furthermore, at each time value for which a flame surface has been
extracted, all vertices forming a contour have the same identifier by construction. We
augment the Reeb graph with this information if necessary by adding nodes of valence
two. This approach allows us to correlate specific cells of the flame surface with points
in the tracking graph. This correlation is crucial when analyzing the graph. Finally, the
identifiers also enable us to compute the genus of the burning cells. Each hole in the in-
terior of a cell creates its own boundary component and thus appears in the Reeb graph
as a separate component. However, using the cell identifiers, we can collect easily all
components belonging to a particular cell and thus compute its genus.

Once we have computed the Reeb graph, we simplify [18] all loops that span less
than a full time step since they must represent artifacts of the construction (using lin-
ear interpolation between time steps no true feature should exist between time steps).
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For display purposes we also merge all nodes representing the same cell while keep-
ing track of its genus. Finally, we simplify all loops spanning exactly one time step
to streamline the graph. This simplification helps to resolve segmentation instabilities
caused by saddles close to the threshold value. Using this information, we then con-
struct a simplified graph representing the life of each component. Nodes of the graph
indicate significant events: birth, death, splitting and merging. Diamond-shape nodes
indicate events that occur between time steps. As shown in Fig. 5, one sometimes finds
“extended” split/merge events in which two regions merge and split several time before
finally merging/splitting. We also remove components of the graph that have an overall
life-span of less than two time steps. We use “dot” [19] to layout the resulting graph.

4 Results

We have used our method to analyze simulations of a lean hydrogen flame burning
under varying turbulence conditions labeled as “none,” “weak” and “strong.” With in-
creasing levels of turbulence, we observe a qualitative change in the formation and
propagation of burning cells. Our new tool can be used to quantify these changes. Fig. 6
shows a portion of the resulting tracking graph for the “none” turbulence case (the other
two would produce a qualitatively similar result). The resulting graphs are very large,
and evaluating differences between the different turbulence cases is the subject of on-
going research. However, the example clearly shows that the graph represents the split
and merge events for the burning regions.

In the remainder of this section, we focus on evaluating tracking accuracy. Due to
the size of the combustion simulations we are considering, we usually do not have every
time step for the entire simulation available for analysis. Instead, the simulation code
commonly saves only every fifth time step, and it is possible that features move several
cells between subsequent saved time steps. Our tracking accuracy study was motivated
by the fact that on first examination of the tracking graphs produced by our method, we
noticed artifacts that indicated an occasional loss of some of the tracked components.

Fig. 7 shows an example of an artifact that arises due to limited temporal resolution.
The first graph in Fig. 7, labeled “coarse,” shows the tracking results obtained by using
every fifth time step. Instead of showing a single death event for a burning region, the
graph shows the death of a burning region and the simultaneous birth of another region
that dies in the subsequent time step. The diamond shape of the death and birth events
indicates that both occur between two real time steps.

We first assumed that such event sequences occur when our method failed to track
a fast-moving component. In an attempt to remedy such errors, we inserted an interpo-
lated time step between every two original simulation time steps. Adding interpolated
time steps improved tracking performance in some instances, but not in the example
shown here. In the second graph in Fig. 7, labeled “interpolated,” the corresponding
component dies off completely in the interpolated time step (452.5) and is “reborn”
immediately before the next real simulation time step (455) and then immediately dies
again. Closer examination of this “false death event” reveals that the burning region
is moving several cells in a single time step so that there is no overlap of the cell in
two subsequent time steps. Thus, whenever interpolated values are used, either by our
classification between time steps in the coarse case, or when classifying the in-between
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Fig. 6. Subsection of the tracking graph for the “no turbulence” case compressed to
only show two merge and two split events. Arc color corresponds to region color in
corresponding segmentations. Round nodes correspond to cells explicitly segmented by
the Morse complex, diamonds to topological events between time steps. Red signifies
a merge, green a split, and turquoise a birth/death event. The figure shows three zoom
levels of the graph: graph for the entire simulation (bottom), a portion corresponding to
several subsequent time steps (middle) and a zoom into the two merge and split events
annotated with colored segmentations of the isotherm (top).
Coarse:

Interpolated:

Averaged:

Fig. 7. “Lost” tracking of a burning region.
time step in the interpolated case, interpolated values fall below the burning threshold
and the region is classified as “extinguished.”

For a small subrange of time (time step 431 to 511), we also had access to all time
steps of a higher-resolution version of the simulation. We downsampled this higher-
resolution data by averaging in space to the same resolution as the original coarse case.
With every time step available we used this version as a “gold standard,” with the caveat
that there may be differences due to performing the simulation at a higher resolution.
The bottom graph in Fig. 7 shows the result of using this finer data, labeled “averaged”.
With all time steps available, the death event is captured properly. The graph also differs
for earlier time steps in that an additional burning region splits off and dies. However,
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the split (time step 441) and subsequent death (time step 444) events occur entirely
between time steps available in the coarse case; this event simply is missed by tracking
with data at every fifth time step.

We compared tracking results for the three cases: (i) coarse data set with every fifth
time step, (ii) coarse data set with interpolated time steps, and (iii) averaged time steps
of the finer resolution simulation. During this period approximately 29 burning regions
existed in the domain (at the beginning and the end of the time period there were 29
burning regions; in between, the number of burning regions varied). The tracking graphs
for 16 of these 29 regions differed between the various analysis approaches.

Approximately 10% of the cases investigated showed inconsistencies between the
coarse and fine analyses that could not be attributed directly to the interpolation errors
discussed above. In these cases, the source of the discrepancies was traced to the data
itself: the coarse and fine values of the threshold quantity did not provide a consistent
segmentation, even though the actual solution used for the study was sufficiently grid-
independent. The explanation for the discrepancy is related to the numerical integration
procedures used to generate the threshold criteria itself. For our study, the combus-
tion solutions were generated using a locally adaptive solution technique that has the
property that proportionately small time steps are used near the highly reactive flame
surface, which requires the smallest grid spacing in the domain (other regions in the
solution were computed with cells that were 4-8 times larger). The thresholding quan-
tity used for the study is derived from the state of the evolved system: the effective rate
of fuel mass destruction over the local time step interval. However, this information is
written to disk as snapshots at the larger time intervals related to the coarsest grid cells,
so the finer diagnostic is undersampled by a factor of 4-8. Over this larger interval,
flame features can translate several fine cells and generate substantial sampling errors.
Unfortunately, solutions to this problem in our analyses would require a modification
to the on-the-fly diagnostics routines in the flow solver, and therefore, is not feasible
for the present study. As an aside, we can reasonably expect that thresholds based on
evolved quantities, rather than derived ones, would be substantially more robust to this
mode of failure.

Three of the 16 tracking differences were due to these differences in the data, with
the difference between coarse and fine simulation being mainly the exact time when
a merge took place. We verified that these paths and the tracking in the coarse case
are correct for the supplied data. Consequently, tracking in the coarse case was correct
in 16 cases. Furthermore, the discrepancy in two additional paths is due to two burn-
ing regions briefly merging between time steps of the coarse simulation, as shown in
Fig. 8. Thus, these events do not appear in the coarse data, and we count only the loss
of tracking for region 25 as error. The tracking differences for one region consists of
two burning regions splitting off and dying between time steps available in the coarse
simulation. (Interestingly, the interpolated case detects one of these split/death events.)
Discounting these differences, the coarse data allows correct tracking of 19 out of 29
regions. Most of the other differences involve erroneous merge events in the coarse
case between available time steps, with the general evolution of burning regions being
captured satisfactorily.
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Coarse:

Interpolated:

Averaged:

Fig. 8. A more complicated difference in tracking. In the averaged case the traces orig-
inating from regions 7 and 18 briefly merge with the trace of region 25. This merge
is followed by an immediate split before the next available coarse time step, resulting
in coarse and interpolated case missing it. The trace of region 25 is an example where
interpolation eliminates a “false death event.”

5 Conclusions and Future Work

We have presented a method to track burning regions in combustion simulations that
uses very general, topology-based techniques and that can be adapted for other appli-
cation areas. Our biggest problem is the lack of temporal resolutions since not all time
steps are available for analysis. In some instances, creating interpolated time steps helps
to improve tracking accuracy. However, in other cases interpolation aggravates prob-
lems due to fast moving burning regions. While improved interpolation techniques, e.g.,
Lagrangian-based techniques, that take additional velocity information available from
the simulation into account, may improve our diagnostic, it is likely that we cannot
avoid interpolation related problems completely. One possible solution is to integrate
tracking and topological analysis into the simulation code, giving it access to all time
steps. Going forward, we will pursue a tighter coupling between simulation and analy-
sis. We further plan to perform tracking of burning regions in a full three-dimensional
setting to avoid the issues associated with a sampling surface. For example, extracting
an isotherm first adds an additional parameter (value of temperature); it is desirable to
eliminate completely the influence of this parameter on analysis results.
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